
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2010

Context-aware query recommendations Context-aware query recommendations

Alexandros NTOULAS

Heasoo HWANG

Lise GETOOR

Stelios PAPARIZOS

Hady Wirawan LAUW
Singapore Management University, hadywlauw@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
NTOULAS, Alexandros; HWANG, Heasoo; GETOOR, Lise; PAPARIZOS, Stelios; and LAUW, Hady Wirawan.
Context-aware query recommendations. (2010). 1-12.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3674

This Patent is brought to you for free and open access by the School of Computing and Information Systems at
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research
Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3674&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3674&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

US 20100241647Al

(12) Patent Application Publication (10) Pub. No.: US 2010/0241647 A1
(19) United States

Ntoulas et al. (43) Pub. Date: Sep. 23, 2010

(54) CONTEXT-AWARE QUERY
RECOMMENDATIONS

(75) Inventors: Alexandros Ntoulas, Mountain
vieW, CA (US); Heasoo HWang, La
Jolla, CA (US); Lise C. Getoor,
Takoma Park, MD (US); Stelios
Paparizos, San Jose, CA (US);
Hady WiraWan LauW, Mountain
vieW, CA (US)

Correspondence Address:
MICROSOFT CORPORATION
ONE MICROSOFT WAY
REDMOND, WA 98052 (US)

(73) Assignee: Microsoft Corporation, Redmond,
WA (US)

(21) Appl. No.: 12/408,726

(22) Filed: Mar. 23, 2009

102

1

Publication Classi?cation

(51) Int. Cl.
G06F 17/30 (2006.01)

(52) us. c1. 707/765; 707/E17.014; 707/E17.03

(57) ABSTRACT

Described is a search-related technology in Which context
information regarding a user’s prior search actions is used in
making query recommendations for a current user action,
such as a query or click. To determine Whether each set or

subset of context information is relevant to the user action,
data obtained from a query log is evaluated. More particu
larly, a query transition (query-query) graph and a query click
(query-URL) graph are extracted from the query log; vectors
are computed for the current action and each context/sub
context and evaluated against vectors in the graphs to deter
mine current action-to-context similarity. Also described is
using similar context to provide the query recommendations,
using parameters to control the similarity strictness, and/or
Whether more recent context information is more relevant

than less recent context information, and using context infor
mation to distinguish between user sessions.

Offline Graph Construction Mechanism
106

11s
I

104 Query-Query /
Graph Extractor Query-Query

Graph

120 108

Query-URL Graph
Extractor

1

V Query-URL
Graph

M

110

User Action

A

Online Context
Aware Query

Recommendations

114

Logic

116
17

Results

17

User-Specific Context Storage

Patent Application Publication Sep. 23, 2010 Sheet 1 0f 4 US 2010/0241647 A1

102

1
Offline Graph Construction Mechanism 1,18

104 Query-Query /
Graph Extractor

.
Query 120 108
Log(s)

106

Query-Query
Graph

Query-URL Graph
Extractor Query-URL

Graph

A

110

User Action
Data (e.g.,

query or click)

112
114

User-Specific Context Storage

Online Context
Aware Query

Recommendations
Logic <—>

116

M W

Patent Application Publication Sep. 23, 2010 Sheet 2 0f 4 US 2010/0241647 A1

Hotels in
Paris

Louvre
tickets

Restaurant
Eiffel Tower

FIG. 2

Eiffel
Tower

0.2

encyl.org/xyz/france

0.5 @
0.2

wwW.hotels-paris.fr '
Paris

0-1 accommodation

0.7

Paris
hotels

FIG. 3

Patent Application Publication

400

406

i

begin (user action,
query / click)

Sep. 23, 2010 Sheet 3 of4

Retrieve Contexts for this
User (from User-Specific

Contexts Storage)

Create and Store (to
User-Specific

Contexts Storage)

User-Specific
Context Storage

|
|
|

' 408 i \
|
|

4

412

US 2010/0241647 A1

FIG. 4

Compute Score
Vectors (from Offline <- --------- --| 104

Graph(s)) |
v i

10 \ l '
Find Best Context for gglrirsltewcgizh
Current Sub-context <----> Mechanism

(from Of?ine Graph(s)) @ 6

114 Set Jump Vector with Best Context
and Current Sub-context

l
Produce Context-Aware Query
Recommendations (access

Online Graph(s) i-—--——-----—--——-> l l l l l l l l Append Current Sub-context
to Best Context (to User
Specific Contexts Storage)

Patent Application Publication Sep. 23, 2010 Sheet 4 0f 4 US 2010/0241647 A1

US 2010/0241647 A1

CONTEXT-AWARE QUERY
RECOMMENDATIONS

BACKGROUND

[0001] When searching for information online, users do not
always specify their queries in the best possible Way With
respect to ?nding desired results. When desired results are not
apparent, users sometimes click on relevant query recom
mendations (also knoWn as query suggestions, query re?ne
ments or related searches) to re?ne or otherWise adjust their
search activity.
[0002] Current technology provides such a query recom
mendation service that is based upon analyZing each current
query, but this technology does not alWays provide query
recommendations that are relevant. Irrelevant query recom
mendations do not bene?t users, and may lead to a user
employing a different search engine. Any technology that
provides more relevant query recommendations to users is
valuable to those users, as Well as to the search engine com
pany that provides the query recommendations.

SUMMARY

[0003] This Summary is provided to introduce a selection
of representative concepts in a simpli?ed form that are further
described beloW in the Detailed Description. This Summary
is not intended to identify key features or essential features of
the claimed subject matter, nor is it intended to be used in any
Way that Would limit the scope of the claimed subject matter.
[0004] Brie?y, various aspects of the subject matter
described herein are directed toWards a technology by Which
context information regarding prior search actions of a user is
maintained, and used in making query recommendations fol
loWing a current user action such as a query or click. To
determine Whether context information is relevant to the user
action, data obtained from a query log, e.g., in the form of a
query transition (query-query) graph and a query click
(query-URL) graph are accessed. For example, vectors may
be computed for the current action and each context/sub
context and evaluated against vectors in the graphs to deter
mine current action-to-context similarity.
[0005] In one aspect, parameters may be used to control
Whether the context information is considered relevant to the
current action, and/or Whether more recent context informa
tion is more relevant than less recent context information With
respect to the current action. In another aspect, the context
information may be analyZed to distinguish betWeen user
sessions.
[0006] Other advantages may become apparent from the
folloWing detailed description When taken in conjunction
With the draWings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention is illustrated by Way of
example and not limited in the accompanying ?gures in
Which like reference numerals indicate similar elements and
in Which:
[0008] FIG. 1 is a block diagram shoWing example compo
nents in a search environment/ architecture that provides con
text-aWare query recommendations.
[0009] FIG. 2 is a representation shoWing a small portion of
an example query transition (query-query) graph used in pro
viding context-aWare query recommendations.
[0010] FIG. 3 is a representation shoWing a small portion of
an example query click (query-URL) graph used in providing
context-aWare query recommendations.

Sep. 23, 2010

[0011] FIG. 4 is a How diagram shoWing example steps that
may be taken in online processing of a query to provide
context-aWare query recommendations.
[0012] FIG. 5 shoWs an illustrative example of a computing
environment into Which various aspects of the present inven
tion may be incorporated.

DETAILED DESCRIPTION

[0013] Various aspects of the technology described herein
are generally directed toWards determining Which queries
and/or clicks from a user’s search history (previous queries
and/or clicks) are related to the user’s current query, that is,
form the context of the current query. This context determi
nation is then useful in determining query recommendations
to return to the user in response to the query, e.g., included on
a results page.
[0014] In one implementation, an online algorithm/mecha
nism computes the similarity of the current query to context
data determined from the user’s history. As described beloW,
one approach involves constructing a query transition (query
query) graph and a query click (query-URL) graph from a
search engine’s query log, locating the current query and the
user’s history in the graphs, and computing the similarity
betWeen the current query and any previously identi?ed con
texts in order to determine the mo st relevant context to use for
the current query. Also described is an algorithm/mechanism
for generating query recommendations that are relevant to the
identi?ed context. For this, query recommendations are gen
erated around the identi?ed context using the same query
transition graph.
[0015] It should be understood that any of the examples
described herein are non-limiting examples. For example,
data and/or data structures other than query-query graph and
query-URL graph may be used instead of or in addition to
those described to obtain context. Similarly, other algorithms
instead of or in addition to those described may be used.
[0016] Moreover, While the examples herein are directed
toWards query recommendations, hoWever it is understood
that query recommendations encompasses the concept of
advertisements. Thus, for example, the technology described
herein may be used to return context-aWare advertisements,
instead of or in addition to What is understood to be traditional
query suggestions.
[0017] As such, the present invention is not limited to any
particular embodiments, aspects, concepts, structures, func
tionalities or examples described herein. Rather, any of the
embodiments, aspects, concepts, structures, functionalities or
examples described herein are non-limiting, and the present
invention may be used in various Ways that provide bene?ts
and advantages in computing and search technology in gen
eral.
[0018] As described herein, in order to improve the useful
ness and targeting of query recommendations, not only is the
current query considered, but also the context of the query,
including the set of the previous queries and/ or clicked URLs
that are determined to be related to the current query. For
example, if the user issues a query such as “paris” (the
example queries herein are not sensitive to capitalization), it
is more sensible to shoW the user recommendations regarding
the city of Paris if that user’s previous searches Were related to
traveling, rather than provide recommendations related to any
celebrity named Paris. As more speci?c examples, consider
that a user has previously issued the query “eiffel toWer”
and/or clicked on http://encyl.org/xyZ/france, or issued a
query like “louvre museum” and/or clicked on http://WWW.
hotels-paris.fr. When the same user later issues a query
“paris” it is likely more relevant to recommend queries such

US 2010/0241647 A1

as: a) “Versailles” b) “hotels in Paris France” and c)
“Champs-Elysees” instead of recommended queries about a
person or people. Similar scenarios apply for other ambigu
ous queries, e.g., “jaguar” (cars or animal), and so forth.
[0019] However, to effectively use the context of the user’s
query to generate query recommendations is a challenge,
because not all recent queries by a user may be relevant to the
current query. For example, a user may have previously
issued the queries: 1) “eiffel toWer” 2) “Jones” 3) “louvre
museum” 4) “stock market” 5) “paris”. In this case, “Jones”
and “stock market” are not relevant to the “paris” query, and
thus should not be included in the context for the current
query “paris”.
[0020] As another challenge, the current query, its context,
and the query recommendations may not necessarily have
overlapping Words With one another. For instance, the current
query “paris” does not share any common Word With either
the query “eiffel toWer” in its context or the query recommen
dation “Versailles”.
[0021] As described herein, these challenges are handled
using information about the search and clicking activities of
other users, Which is available from a query log (or various
query logs). More particularly, as described beloW, this search
engine query log information, Which includes the queries and
clicks that the engine’s users have submitted over a long
period of time, (e.g., one year), determines user actions that
are likely related. Then, given a current query, along With a
user’s recent (e.g., during the last Week) search activity in the
form of queries and clicked URLs, the context of the current
query is identi?ed, and used to generate focused query rec
ommendations that are relevant to this context.

[0022] FIG. 1 shoWs various aspects related to generating
contexts given a user’s history in order to produce context
aWare query recommendations. As generally represented in
FIG. 1, an o?lline graph construction mechanism 102 pro
cesses prior query-related click information, as maintained in
query logs 104 into data that may be used for determining
context-aWare query recommendations. As described herein,
this data is maintained in a query-query graph 106 and a
query-URL graph 108. In order to provide e?icient access,
the graphs 106 and 108 may be maintained as data stores,
such as implemented in a commercially available database
system or loaded into a memory in a server machine/ service.

[0023] After construction, When a user action 110 such as a
query or click (orpossibly a hover) is received and handled by
a search engine, one component or service provides online
context aWare query recommendations. To this end, logic 112
(as generally described beloW With reference to various algo
rithms and FIG. 4) accesses the query-query graph 106 and/or
query-URL graph 108, as Well as any user-speci?c context
storage 114, to provide results 116, Which may include con
text-aWare query recommendations.

[0024] Turning to the o?lline generation of the graphs 106
and 108, in order to determine the possible contexts of a user’s
history and to recommend queries based on these contexts,
the technology described herein leverages the information
that is present in the query logs 104 of a search engine (e.g.,
WWW.live.com). In one implementation, these query logs 104
are collected and/or processed over a period of time (e.g., one
year) to generate tWo graphs, namely the query-query graph
106 and the query-URL graph 108, each maintained in one or
more suitable data stores. Note that in one implementation,
the graphs are each constructed once, of?ine, and then
updated as appropriate.
[0025] To construct the query-query graph 106, a query
query graph extractor 118 extracts, for each logged user, the
successive query pairs from the search engine log. Each query

Sep. 23, 2010

qi is represented as a node in the graph. Each edge from q1 to
q2 corresponds to the fraction of the users that issued query q2
directly after they issued q1.
[0026] A small portion of one example of such a graph is
shoWn in FIG. 2. In this simpli?ed example, assuming that
there are 1,000 users in total Who issued the query “Eiffel
toWer”, 200 of them issued the query “louvre” as their next
query, While 800 of them issued the query “restaurant eiffel
toWer” as their next query. Therefore the Weights in the out
going edges of the node corresponding to “eiffel toWer” are
200/1000:02 and 800/ 1 000:0.8, respectively.
[0027] One optional variation While constructing this graph
that may be implemented includes dropping the outgoing
edges from a node if the Weight is very small (e.g., less than
0.001). This decreases the siZe of the graph Without signi?
cantly reducing the quality of the results. Further, in one
implementation, any edges With a count less than a minimum
(e.g., ten) are removed, Which produces a reasonably small
and manageable graph Without sacri?cing quality.
[0028] Another option is that instead of counting the frac
tion of users that issued q2 directly after q1, the extractor 118
may instead count the fraction of users that issued q2 some
time after q1 (that is, not necessarily as the next query). This
produces a more “connected” graph that may be helpful When
the users issue rare queries; hoWever it may slightly reduce
accuracy because of ?nding a larger, but less speci?c, pool of
candidate recommendations. Note that in practice, higher
quality results are produced When the graph is based on the
directly next query alternative.
[0029] To construct the query-URL graph 108, a query
URL graph extractor 120 extracts the queries that have
resulted in a click to a given URL. In one implementation,
generally represented in FIG. 3 as a small portion of such a
graph, the graph includes one part (the left part) that contains
the clicked URLs as nodes, and another part (the right) part
that contains the queries as nodes. Edges start from a URL and
end at a query; an edge from URL u to query q denotes that the
URL u Was clicked for the query q.
[003 0] The Weights on the edges denote What fraction of the
time a URL u Was clicked for query q. For example, assume
that the URL encyl.org/xyZ/france Was clicked 1000 times in
total, out of Which 200 times it Was clicked folloWing a query
for “eiffel toWer.” For this URL node to query node edge, the
Weight is 200/1000:02.
[0031] An optional variation in constructing the URL-to
query graph includes the dropping of the edges that have a
very small Weight (e.g., less than 0.01). This tends to reduce
the siZe of the graph Without signi?cantly reducing the pre
cision of the results. Further, in one implementation, any
edges With a count less than a minimum (e.g., ten) are
removed.
[0032] Turning to another aspect, namely identifying and
representing the possible contexts Within the current user’s
history, in general, a process (e.g., in the logic 112) captures
and mathematically represents the possible contexts Within
the user’s query history. From this, the process determines the
best possible (mo st relevant) context for the current query that
the user has just provided. As used in this example, “context”
comprises a set of related queries together With any clicked
pages (URLs) from Within the user’s search history; a context
may be represented as: Ci:{(ql, um, um, . . . uhk), (q2, u2,l .
. .), . . . }; Wherein each query (ql-qn) may have Zero or more

URLS (e.g., um, um) associated With it. Note that the larger
the index of the query, the later it comes in the user’s history,
that is, ql Was submitted before q2.
[0033] As used herein, each individual query together With
any clicked URL or URLs is referred to as a sub-context. One

US 2010/0241647 A1

example context (in brackets “{ }”), containing three sub
contexts (in parentheses “()”), is {(“paris”, WWW.paris.com,
WWW.paris.org), (“eiffel tower”, WWW.tour-eiffel.fr), (“lou
vre”)}.
[0034] The process de?nes a score vector r(S) of a sub
context S as a vector of real numbers that captures hoW similar
S is to the rest of the query nodes in the query-query graph
106. In one implementation, the score vector of S is computed
by performing a random Walk in the query-query graph 106
and using the query and the clicked documents as random
jump points during the random Walk. For example, given the
sub-context S:(“eiffel toWer”, WWW.tour-eiffel.fr) its score
vector may look something like: (“louvre”:0.2, “louvre tick
ets”:0.7, “Paris”:0. 1). For a more concise representation, any
queries With zero scores are not included in the score vector of
S.
[0035] The folloWing sets forth one such score vector com
putation algorithm:

Algorithm CalculateSubcontextScoreVector

Input:
The query-query graph GQ (labeled 106 ifFIG. l)
The query-URL graph GU (labeled 108 ifFIG. l)
The sub-context S = (q, ul, u2, uk)
The total number of random Walks numRWs E [0, +00)
The size of the neighborhood to explore in the Walk maxHops
The damping factor d
The importance of clicks hch-cks, Where 0 ; hall-Ck: ; 1

Output:
A score vector r(S)

Procedure:
/////////////////////////////////
// initialization steps — create the random jump vector
/////////////////////////////////
(l) foreach u,- E S
// get all queries pointing to u,- together With the values on the
// respective edges
(2) CQm- = { (q), Wj) I @dge(‘1,- —> 111-) EGU}
// merge step: merge the different CQm- in order to create one big
// CQS that contains the information for the URLs in S
// if a q]- appears multiple times With different Wj, add them up
// ifq (the query ofthe sub-session) appears in CO5, remove it

// from merged vector

(3) CQs = UCQm- - {(410%)}
// renormalize CO5 by computing the neW sum and dividing
(4) Sumfreq = Ewmnecg; Wi
// computation of jump vector g
(5) foreach (q,- , W,-) ECQS
(6) P(qj) = Wj / sum?eq
<7) gw=k.l.-.k.*P<q,->
// jump vector values for the queries identi?ed from u,- in S
(8) gq = l — hall-Ck: //jump vector value for the query q ofS
// random Walk computation
(9) r(S) = RandomWalk(GQ, g, numRWs, maxHops) With the
folloWing constraints:

foreach node n visited:
if n has no outlinks:

stop
if distance(n) Z maxHops:

stop

// normalization

else:
With probability d:

pick next node to visit among n’s neighbors in GQ
With probability (l-d):

pick next node to visit among the nodes in jump
vector g

(10) output r(S)
END

[0036] The step in line (9) performs the random Walk on the
query-query graph. This step essentially involves a standard
random Walk on the graph (Well-knoWn in the art) Where the
random jump nodes are de?ned With the g parameter. The

Sep. 23, 2010

random Walk can be run by representing the graph GQ as an
adjacency matrix and performing the iterations until conver
gence. An alternative approach is to use a Monte Carlo simu
lation for the random Walk. In this case, only numRWs of the
algorithm are performed, With maxHops used to limit the
length of the Walk aWay from every node.
[0037] In general the jump vector contains nodes that are
important for the random Walk and they bias the random Walk
toWards the neighborhoods of these nodes in the graph. The
Monte-Carlo simulation is used to save computational time,
e.g., instead of computing the exact converged values of the
random Walk on the Whole graph, a simulation is performed
around the neighborhood in the graph that is of interest
(Where neighborhood means the user’s current context as
captured by the jump vector).
[0038] By Way of example, assume that the query-query
graph is the one shoWn in FIG. 2, that numRWs:l 000 and that
maxHops:2 and that d:0.5. If the user has currently issued
the query “Paris” and the jump vector is {“paris”: 0.6, “lou
vre”: 0.2, “eiffel toWer”:0.2}, the process operates as folloWs:

. Keep a counter for the nodes visited during the Walk
2. Set currentinode=”Paris”
3. Start a random Walk on the graph from the currentinode and keep a

counter for every node that is visited
With probability 0.5, select an outgoing edge from the node paris as
nextinode, or With probability 0.5 select a node from the jump
vector as nextinode

. Once it is knoWn from Where to get the nextinode (from outgoing
edges or jump vector), select the next node according either the
Weights on the edges or the Weights in the jump vector.
For example:
Ifnextinode is to be an outgoing edge from “paris” — select “hotels
in paris”With probability 0.2, “louvre” With probability 0.5 and “eiffel
toWer” With probability 0.3.
If nextinode is from the jump vector — select “paris” as the next node
With probability 0.6 and “louvre” With probability 0.2 or “eiffel
toWer” With probability 0.2.

6. Visit the nextinode and increase its counter.
. If more than numRWs visits, stop.

8. If more than maxHops visits aWay from “Paris” reset and start Walk
again from the node “Paris”, i.e. set as nextinode=”Paris”

9. Set currentinode = nextinode and repeat the process from step 2
until numRWs is achieved.

10. Normalize the counters of the visited nodes to provide the output
values of the random Walk. They represent hoW important each one of
the visiting nodes is for the “Paris” starting query.

[0039] Note that in one actual implementation that uses the
Monte Carlo simulation method for the random Walk, an
outlink With probability 0.6 is folloWed, and a node from the
jump vector With probability 0.4 is selected; maxRWs is set to
1,000,000 and maxHops set to 3.
[0040] Once the score vectors of the sub-contexts are
obtained, the process computes the score vector of the context
in order to represent it mathematically. Depending on the
application, the context may be represented in various Ways,
such as by the most (or more) recent sub-context, by the
average of the sub-contexts, or by a Weighted sum of the
sub-contexts. The folloWing algorithm describes the calcula
tion of a context score vector:

Algorithm CalculateContextScoreVector

Input:
A context C,- = {S1, S2, ..
more recent the

. , Sk}// the larger the index in S,- the

US 2010/0241647 A1

-continued

Algorithm CalculateContextScoreVector

// sub-context
Representation mode m e {RECENT, CENTROID, SUM

// hoW to represent the context
The importance of sub-context recency hm
Army 2 1

Output:
A score vector r(C,-)

Procedure:
(1) ifm = RECENT

(2) r(C,-) = r(Sk) // represent the context With the score vector of the
// latest sub-context

(3) else ifm = CENTROID

mew}
Where 0 ; cencya

l k
(4) r(C;) : r(S;) // use average of score vectors of

j:1

// sub-contexts
(5) else ifm = SUM

(6) r(C,-) =(recency E](j =1)lk E K (1—(jrecency)1l((k — j)) r (Sjj)
// Wei ted

// backoff model; give more Weight to recent sub-context
(7) output r(C,-)

recency

[0041] Note that in one implementation 7»,ecency:1—7tc0mext.
The de?nition of kcomm is generally subjective and corre
sponds to hoW aggressively context is to be taken into
account.

[0042] To ?nd the best context for a neW sub-context,
assume that the user is starting a neW query (or a neW sub
context) With Zero or more clicked URLs. Before identifying
potentially relevant query recommendations to the user, the
process identi?es Which context from the user’s history is the
one most closely related to the current query/sub-context and
therefore is to be used for the query recommendation. In one
implementation, this is accomplished by computing a simi
larity score between the current query/sub-context and the
contexts Within the user’s history, as set forth beloW:

Algorithm SelectBestContext

Input:
A sub-context S, = (q, 11], ..., uk) // a neW query With Zero or
more clicked URLs

A set ofcontexts {C1, ..., Cm} from Where to pick the best one
A threshold esim, Where 0 2 65,-," 2 1 for the similarity function
The importance of subcontext recency Are
Where 0 ; Lemmy ;
Context vector mode m E { RECENT, CENTROID, SUM

Output:
The best context Cb for the given subcontext S,

Procedure:
(1) CandidateContexts = O

(2) r(S,) = CalculateSubcontextScoreVector(S,)
(3) for 1 2 i 2 m

(4) r(Cl-) = CalculateContextScoreVector(Ci, m
(5) compute siml- = similarity(r(S,) , r(C,-))
(6) ifsiml- Z 65,-,"
(7) CandidateContexts = CandidateContexts U (Ci, simi)
(8) if CandidateContexts == O
(9) Cb = C,- s.t. i = argmax(sim,-) // pick the context With the highest

// similarity

cenqya

, Emmy)

(10) else
(11) C17 = Cm // create a neW empty context because none

// ofthe contexts is close enough
(12) output Cb

Sep. 23, 2010

[0043] Any suitable similarity function may be used, such
as one of the folloWing:

[0044] Jaccard similarity on non-Zero elements:

Where NZ(r(St)) are the queries from Within St’s score
vector With a non-Zero value. Similarly NZ(r(Cl-)) are the
non-Zero elements for context Ci.

[0045] Kullback-Leibler similarity on non-Zero ele
ments:

a

Where NZ]-(r(St)) is the jth non-Zero element of r(St) and
NZj(r(Ci)) is the jth non-Zero element of context r(Cl.).

[0046] Similarity on top X % elements of score vectors
(reasonable values for X are 0.95§X§0.99):
[0047] let topX(r(St)) be the top X % values of the

score vector of St and de?ne topX(r(Cl-)) similarly

Where rJ-(St) is the jth top-X % element from St’s score
vector and rj(Cl.) is the jth top-X % element from Cl.’s
score vector, Where both elements appear in I(r(St),
r(C1))

[0050] To generate the context-aware query recommenda
tions once the best possible context for a given sub-context is
identi?ed, a process (e.g., implemented in the logic 112 of
FIG. 1) described beloW may be used. In general, one suitable
approach involves identifying the best context for the user’s
query, setting the jump vector appropriately and performing a
random Walk on the query-query graph. The output of the
random Walk comprise the queries that are most related to the
user’s context, as this is captured by the random walks jump
vector. Some or all of these queries may then comprise the set
of recommended queries that are returned to the user.

Algorithm CalculateQueryRecommendations

Input:
A subcontext S, = (q, u1, ..., uk) // a neW query With Zero or
more clicked urls

A set of contexts {C1, ..., Cm} from Where to pick the best one
A threshold 651,", Where 0 2 651-," 2 1 for the similarity function //
reasonable values

//
are 0.5 2 651-," 2 0.7
The importance of subcontext recency Are
Where 0 ; hrecency ; 1
The importance of context for the recommendations hcomm,
Where 0 ; hmmm i 1
Context vector mode m E { RECENT, CENTROID, SUM

Output:
A score vector Rq(S,) With recommendations

Procedure:

(1) r(S,) = CalculateSubcontextScoreVector(S,) // compute score
// vector of current sub-context

(2) Cbes, = SelectBestContext(S,, {C1, ..., Cm}, 6m", 7» recency,

cenqya

In)

US 2010/0241647 A1

-continued

Algorithm CalculateQueryRecommendations

(3) r(CbeS,) = CalculateContextScoreVector(CbeS,) // compute score
// vector for best context

(4) Rq(st) : (1 _;\‘contzxt) r(sz) + kcontext r(cbest)
// attach the current sub-context to the best context so that it is used
// in the future
(5) if S, does not change // the user has started a new sub

// context, i.e., there is an SH] in the system
(6) C1725, = append(S,, C be”) // attach current sub-context to

// the best context

(7) output Rq(S,)

[0051] The output score vector Rq(St) contains the score
values for the queries after the random walk around the con
text. In order to suggest the best queries to the user, the queries
within R q(St) may be sorted, with the top-k best queries
provided as recommendations.

[0052] FIG. 4 is a ?ow diagram that in general summarizes
the various algorithms/ steps described above, beginning at
step 400 where the user-provided input is received. Step 402
represents retrieving the contexts, if any exists, from the user
speci?c context storage. Note that in general, sub-contexts
may be per user session, and thus only the most recent session
or sessions may be considered.

[0053] Step 404 evaluates the contexts, if any, against the
user action to determine whether the input action is relevant to
a new sub-context or an existing sub-context. A vector-based
similarity threshold or the like may be used to determine if the
action is suf?ciently similar to be considered an existing
sub-context, or is a new sub-context.

[0054] If new, step 406 creates and stores a new sub-context
(and context if necessary) in the user speci?c context storage.
Note that in FIG. 4, solid lines represent the ?ow through the
various steps, whereas dashed lines represent data access
operations. Note that if no existing context was found, the
query recommendations may be found in the conventional
way, e.g., based upon the user action itself, without context.

[0055] Step 408 represents computing the score vectors,
such as via the above-described "CalculateContextScoreVec
tor” algorithm, using the o?lline graphs as appropriate. In
general, an o?lline graph is accessed to determine which query
(or queries) is most similar to the user action. Step 410 rep
resents ?nding the best context, such as via the above-de
scribed “SelectBestContext” algorithm, using the o?lline
graphs as appropriate. Step 412 uses the best context and
current sub-context to set the jump vector as described above.

[0056] With this information, step 414 produces the con
text-aware query recommendations, such as via the “Calcu
lateQueryRecommendations” algorithm described above.
These are returned to the user, which, as described above, may
be after ranking and/ or selecting the top recommended que
r1es.

[0057] Step 416 appends the current sub-context for main
taining in the user-speci?c contexts storage 114.
[0058] As mentioned above, query recommendations may
be advertisements. Other uses of query recommendations
may be to automatically add or modify an existing (e.g.,
ambiguous) query with additional recommendation-provided
data, such as to add “france” to “paris” to enhance an input
query, and add, substitute or otherwise combine the results of
the one or more queries (e.g., “paris”ias submitted by the
user and/or “paris france”ias submitted by the system fol
lowing enhancement) to provide enhanced results. Still

Sep. 23, 2010

another use is in social networking applications to match
users with other users or a community based upon having
similar context data.
[0059] Turning to an aspect referred to as sessioniZation,
the process that identi?es the contexts and attaches the current
sub-context to the best context can also be used to perform a
so-called “sessioniZation” of the user’s history, such in an
online and/or o?lline manner. In other words, the context
changes may help detect when the user has ended one session
and started another.
[0060] SessioniZation involves applying the process to
identify the possible contexts, which may be referred to as
sessions, on the collected history of a search user over a
period of time. This is useful in identifying “semantically”
similar collections of related queries within a user’s history
and a search engine’s query log, in order to study statistical
properties of the user behavior and/or obtain intelligence into
how the search engine is performing. For example, longer
sessions may mean that users spend more time searching, and
thus the recommendation service may require improvement,
such as via parameter tuning and the like. In another example,
if the sessions of a user are too long this may imply that he is
not able to locate what she is searching for and thus the search
engine may include broader topics in its search results in
order to help the user.

Exemplary Operating Environment

[0061] FIG. 5 illustrates an example of a suitable comput
ing and networking environment 500 on which the examples
of FIGS. 1-4 may be implemented. The computing system
environment 500 is only one example of a suitable computing
environment and is not intended to suggest any limitation as
to the scope of use or functionality of the invention. Neither
should the computing environment 500 be interpreted as hav
ing any dependency or requirement relating to any one or
combination of components illustrated in the exemplary oper
ating environment 500.
[0062] The invention is operational with numerous other
general purpose or special purpose computing system envi
ronments or con?gurations. Examples of well known com
puting systems, environments, and/ or con?gurations that
may be suitable for use with the invention include, but are not
limited to: personal computers, server computers, hand-held
or laptop devices, tablet devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputers, main
frame computers, distributed computing environments that
include any of the above systems or devices, and the like.
[0063] The invention may be described in the general con
text of computer-executable instructions, such as program
modules, being executed by a computer. Generally, program
modules include routines, programs, objects, components,
data structures, and so forth, which perform particular tasks
or implement particular abstract data types. The invention
may also be practiced in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted computing environment, program modules may be
located in local and/ or remote computer storage media
including memory storage devices.
[0064] With reference to FIG. 5, an exemplary system for
implementing various aspects of the invention may include a
general purpose computing device in the form of a computer
510. Components of the computer 510 may include, but are
not limited to, a processing unit 520, a system memory 530,
and a system bus 521 that couples various system components
including the system memory to the processing unit 520. The

US 2010/0241647 A1

system bus 521 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architectures.
By Way of example, and not limitation, such architectures
include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EI SA) bus,
Video Electronics Standards Association (V ESA) local bus,
and Peripheral Component Interconnect (PCI) bus also
knoWn as MeZZanine bus.

[0065] The computer 510 typically includes a variety of
computer-readable media. Computer-readable media can be
any available media that can be accessed by the computer 510
and includes both volatile and nonvolatile media, and remov
able and non-removable media. By Way of example, and not
limitation, computer-readable media may comprise computer
storage media and communication media. Computer storage
media includes volatile and nonvolatile, removable and non
removable media implemented in any method or technology
for storage of information such as computer-readable instruc
tions, data structures, program modules or other data. Com
puter storage media includes, but is not limited to, RAM,
ROM, EEPROM, ?ash memory or other memory technology,
CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other
medium Which can be used to store the desired information
and Which can accessed by the computer 510. Communica
tion media typically embodies computer-readable instruc
tions, data structures, program modules or other data in a
modulated data signal such as a carrier Wave or other transport
mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or
more of its characteristics set or changed in such a manner as
to encode information in the signal. By Way of example, and
not limitation, communication media includes Wired media
such as a Wired netWork or direct-Wired connection, and
Wireless media such as acoustic, RF, infrared and other Wire
less media. Combinations of the any of the above may also be
included Within the scope of computer-readable media.
[0066] The system memory 530 includes computer storage
media in the form of volatile and/or nonvolatile memory such
as read only memory (ROM) 531 and random access memory
(RAM) 532. A basic input/output system 533 (BIOS), con
taining the basic routines that help to transfer information
betWeen elements Within computer 510, such as during start
up, is typically stored in ROM 531. RAM 532 typically con
tains data and/ or program modules that are immediately
accessible to and/ or presently being operated on by process
ing unit 520. By Way of example, and not limitation, FIG. 5
illustrates operating system 534, application programs 535,
other program modules 536 and program data 537.

[0067] The computer 510 may also include other remov
able/non-removable, volatile/nonvolatile computer storage
media. By Way of example only, FIG. 5 illustrates a hard disk
drive 541 that reads from or Writes to non-removable, non
volatile magnetic media, a magnetic disk drive 551 that reads
from or Writes to a removable, nonvolatile magnetic disk 552,
and an optical disk drive 555 that reads from or Writes to a
removable, nonvolatile optical disk 556 such as a CD ROM or
other optical media. Other removable/non-removable, vola
tile/nonvolatile computer storage media that can be used in
the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, ?ash memory cards, digi
tal versatile disks, digital video tape, solid state RAM, solid
state ROM, and the like. The hard disk drive 541 is typically
connected to the system bus 521 through a non-removable
memory interface such as interface 540, and magnetic disk

Sep. 23, 2010

drive 551 and optical disk drive 555 are typically connected to
the system bus 521 by a removable memory interface, such as
interface 550.

[0068] The drives and their associated computer storage
media, described above and illustrated in FIG. 5, provide
storage of computer-readable instructions, data structures,
program modules and other data for the computer 510. In
FIG. 5, for example, hard disk drive 541 is illustrated as
storing operating system 544, application programs 545,
other program modules 546 and program data 547. Note that
these components can either be the same as or different from
operating system 534, application programs 535, other pro
gram modules 536, and program data 537. Operating system
544, application programs 545, other program modules 546,
and program data 547 are given different numbers herein to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 510
through input devices such as a tablet, or electronic digitiZer,
564, a microphone 563, a keyboard 562 and pointing device
561, commonly referred to as mouse, trackball or touch pad.
Other input devices not shoWn in FIG. 5 may include a joy
stick, game pad, satellite dish, scanner, or the like. These and
other input devices are often connected to the processing unit
520 through a user input interface 560 that is coupled to the
system bus, but may be connected by other interface and bus
structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 591 or other type of display
device is also connected to the system bus 521 via an inter
face, such as a video interface 590. The monitor 591 may also
be integrated With a touch-screen panel or the like. Note that
the monitor and/or touch screen panel can be physically
coupled to a housing in Which the computing device 510 is
incorporated, such as in a tablet-type personal computer. In
addition, computers such as the computing device 510 may
also include other peripheral output devices such as speakers
595 and printer 596, Which may be connected through an
output peripheral interface 594 or the like.
[0069] The computer 510 may operate in a netWorked envi
ronment using logical connections to one or more remote
computers, such as a remote computer 580. The remote com
puter 580 may be a personal computer, a server, a router, a
netWork PC, a peer device or other common netWork node,
and typically includes many or all of the elements described
above relative to the computer 510, although only a memory
storage device 581 has been illustrated in FIG. 5. The logical
connections depicted in FIG. 5 include one or more local area
netWorks (LAN) 571 and one or more Wide area netWorks
(WAN) 573, but may also include other netWorks. Such net
Working environments are commonplace in o?ices, enter
prise-Wide computer netWorks, intranets and the Internet.
[0070] When used in a LAN netWorking environment, the
computer 510 is connected to the LAN 571 through a netWork
interface or adapter 570. When used in a WAN netWorking
environment, the computer 510 typically includes a modem
572 or other means for establishing communications over the
WAN 573, such as the Internet. The modem 572, Which may
be internal or external, may be connected to the system bus
521 via the user input interface 560 or other appropriate
mechanism. A Wireless netWorking component 574 such as
comprising an interface and antenna may be coupled through
a suitable device such as an access point or peer computer to
a WAN or LAN. In a netWorked environment, program mod
ules depicted relative to the computer 510, or portions
thereof, may be stored in the remote memory storage device.
By Way of example, and not limitation, FIG. 5 illustrates
remote application programs 585 as residing on memory
device 581. It may be appreciated that the netWork connec

US 2010/0241647 A1

tions shown are exemplary and other means of establishing a
communications link betWeen the computers may be used.
[0071] An auxiliary subsystem 599 (e.g., for auxiliary dis
play of content) may be connected via the user interface 560
to alloW data such as program content, system status and
event noti?cations to be provided to the user, even if the main
portions of the computer system are in a loW poWer state. The
auxiliary subsystem 599 may be connected to the modem 572
and/ or netWork interface 570 to alloW communication
betWeen these systems While the main processing unit 520 is
in a loW poWer state.

CONCLUSION

[0072] While the invention is susceptible to various modi
?cations and alternative constructions, certain illustrated
embodiments thereof are shoWn in the draWings and have
been described above in detail. It should be understood, hoW
ever, that there is no intention to limit the invention to the
speci?c forms disclosed, but on the contrary, the intention is
to cover all modi?cations, alternative constructions, and
equivalents falling Within the spirit and scope of the inven
tion.
What is claimed is:
1. In a computing environment, a method comprising:
maintaining context information regarding prior search

actions;
receiving a current action; and
accessing data obtained from a query log to determine

Whether at least some of the context information is rel
evant to the current action.

2. The method of claim 1 further comprising, at least some
of the context information is relevant to the current action,
and further comprising, using at least some of the context
information to determine at least one query recommendation.

3. The method of claim 1 further comprising, extracting the
data from the query log, including processing information in
the query log into a query transition graph, and maintaining
the query transition graph as at least part of the data obtained
from the query log.

4. The method of claim 1 further comprising, extracting the
data from the query log, including processing information in
the query log into a query click graph, and maintaining the
query click graph as at least part of the data extra obtained
from the query log.

5. The method of claim 1 Wherein accessing the data
obtained from the query log comprises accessing a query
transition graph to determine similarity of the current action
With at least one query in the query transition graph.

6. The method of claim 1 Wherein accessing the data
obtained from the query log comprises accessing a query
transition graph or a query click graph, or both a query tran
sition graph and a query click graph, to determine similarity
of the current action With the context information.

7. The method of claim 1 further comprising, selecting a
sub-context from the context information based on similarity
betWeen the sub -context and the data obtained from the query
log.

8. The method of claim 7 Wherein the data obtained from
the query log comprises a query transition graph, and further
comprising calculating a sub-context score vector by Walking
through nodes of the query transition graph, and calculating a
context score vector based upon the sub-context score vector.

Sep. 23, 2010

9. The method of claim 1 further comprising using at least
one parameter to control Whether the context information is
relevant to the current action, or using at least one parameter
to control Whether more recent context information is more
relevant than less recent context information With respect to
the current action, or using parameters to control Whether the
context information is relevant to the current action and
Whether more recent context information is more relevant
than less recent context information With respect to the cur
rent action.

10. The method of claim 1 further comprising, using at
least some of the context information to distinguish betWeen
sessions.

11. In a computing environment, a method comprising:
receiving a user action at a search engine;
obtaining context information maintained for the user;
computing score vectors, by accessing at least one graph

containing information extracted from a query log; and
returning query recommendations based upon the score

vectors.

12. The method of claim 11 further comprising, determin
ing a most relevant context based upon the score vectors.

13. The method of claim 12 Wherein returning the query
recommendations based upon the score vectors comprises
determining a jump vector based upon the most relevant
context and a current sub-context.

14. The method of claim 11 further comprising, updating
the context information based upon the mo st relevant context
and the current sub-context.

15. The method of claim 11 further comprising, extracting
the information from the query log, including processing the
information in the query log into a query transition graph and
a query click graph.

16. The method of claim 11 further comprising, using at
least some of the context information to distinguish betWeen
sessions of a user associated With that context information.

17. One or more computer-readable media having com
puter-executable instructions, Which When executed perform
steps, comprising, extracting information from a query log
into a query transition graph and a query click graph, main
taining context information, accessing the query transition
graph, the query click graph and the context information to
identify a relevant context for a current query or click, and
providing at least one query recommendation based upon the
relevant context.

18. The one or more computer-readable media of claim 17
Wherein providing the at least one query recommendation
comprises providing data corresponding to an advertisement.

19. The one or more computer-readable media of claim 17
having further computer-executable instructions comprising
computing score vectors based upon accessing the query
transition graph, the query click graph and the context infor
mation, and using the score vectors to determine similarity of
the current query or click to a set of context information.

20. The one or more computer-readable media of claim 17
having further computer-executable instructions comprising,
using at least some of the context information to distinguish
betWeen sessions of a user associated With that context
information.

	Context-aware query recommendations
	Citation

	US20100241647.pdf

