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DeepMon: Mobile GPU-based Deep Learning Framework
for Continuous Vision Applications

Loc N. Huynh, Youngki Lee, Rajesh Krishna Balan
Singapore Management University

{nlhuynh.2014, youngkilee, rajesh}@smu.edu.sg

ABSTRACT
The rapid emergence of head-mounted devices such as the Mi-
crosoft Holo-lens enables a wide variety of continuous vision ap-
plications. Such applications often adopt deep-learning algorithms
such as CNN and RNN to extract rich contextual information from
the first-person-view video streams. Despite the high accuracy, use
of deep learning algorithms in mobile devices raises critical chal-
lenges, i.e., high processing latency and power consumption. In this
paper, we propose DeepMon, a mobile deep learning inference sys-
tem to run a variety of deep learning inferences purely on a mobile
device in a fast and energy-efficient manner. For this, we designed
a suite of optimization techniques to efficiently offload convolu-
tional layers to mobile GPUs and accelerate the processing; note
that the convolutional layers are the common performance bottle-
neck of many deep learning models. Our experimental results show
that DeepMon can classify an image over the VGG-VeryDeep-16
deep learning model in 644ms on Samsung Galaxy S7, taking an
important step towards continuous vision without imposing any pri-
vacy concerns nor networking cost.

Keywords
Mobile GPU; Mobile Sensing; Deep Learning; Continuous Vision

1. INTRODUCTION
The popularity of head-mounted augmented reality (AR) devices

such as the Microsoft Hololens [4] and the Google Glass [3] has
given rise to a new class of continuous mobile vision applications.
These range from identifying road signs in real time to provide di-
rections [15], to identifying people in the environment to give guid-
ance to individuals suffering from dementia [12]. In all these use
cases, the commonality is the need to perform computer vision al-
gorithms in real time on a continuous video stream provided by the
AR devices.

The current state-of-the-art approach to continuous video pro-
cessing is to use a deep neural network (DNN) approach where the
video streams are processed by a large and well-trained convolu-
tional neural network (CNN) or recurrent neural network (RNN).
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However, these networks require large amounts of CPU and mem-
ory resources to run efficiently. It has thus proved challenging to
achieve adequate performance when executing large deep learn-
ing networks on commodity mobile devices. For example, a com-
monly used object recognition model, VGG-Verydeep-16 [46], has
13 convolutional layers and three fully connected layers and takes
≈100 seconds to process a single image using CPU on a Samsung
Galaxy S7 smartphone.

One way to overcome this limitation is to use cloud resources to
run the required DNNs [25]. However, this introduces significant
privacy concerns (as the video feed is now available on the cloud
server) in addition to possible latency, and energy concerns depend-
ing on where the cloud is located and what network interface (LTE
etc.) is used.

In this paper, we present a system, called DeepMon1, that uses
the graphics processing unit (GPU) on mobile devices to execute
the large DNNs required for continuous video processing. Deep-
Mon can achieve continuous video processing (at about 1-2 frames
per second) of full HD (1080p) video frames using just the mem-
ory, CPU, and GPU resources of a commodity smartphone. This
speedup allows DeepMon to be used, with a larger processing pipe-
line where DeepMon can extract features from video frames that
can then be processed by cloud resources to produce a complete
knowledge. This greatly reduces the privacy impact of using a
cloud (as only features and not actual video frames are sent to the
cloud) as well as the latency and energy concerns (the feature set
is much smaller than the full video image). However, in this paper,
we focus solely on the optimisations and techniques to reduce the
local processing time from multiple seconds to ≈600ms per frame
and leave the integration with a complete cloud-enabled solution to
future work.

Before building DeepMon, we analysed various deep learning
models (e.g., VGG-Verydeep-16 [46] and YOLO [43]) to identify
their performance bottlenecks. We noticed that they commonly
adopt a large number of convolutional layers (to extract and refine
features) along with a small number of fully connected layers (to
make inferences). Our measurement showed that the convolutional
layer processing takes a significant portion of the entire process-
ing – e.g. 88.7% for VGG-Verydeep-16 and 85% for YOLO (see
Section 4).

We thus focused on techniques to reduce the processing latency
of convolutional layers. One clear solution was to offload the DNN
convolutional layer computation to the mobile GPU as these layers
have highly parallel and repetitive processing structures. However,
prior offloading techniques were developed for server-class GPUs
and required re-design/optimization for mobile GPUs with much

1The git repo of DeepMon is available at https://github.com/
JC1DA/DeepMon and the videos are at http://is.gd/DeepMon
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smaller number of processing cores and memory bandwidth; for in-
stance, NVidia GTX 980 GPU for desktops have 2,048 GPU cores
and 224GB/s memory read/write bandwidth while Mali T880 GPU
on Samsung Galaxy S7 has 12 GPU cores and 25.6GB/s memory
bandwidth.

We developed a suite of optimizations for processing convolu-
tional layers on mobile GPUs. First, we designed a smart caching
mechanism specially designed for convolutional layers. The key
idea is to exploit the similarity between consecutive frames in first-
person-view videos. Our mechanism is unique in that it utilizes
the internal processing structure of convolutional layers to reuse
the intermediate results of the previous frame to calculate the cur-
rent frame, instead of just simply reusing its final output. Sec-
ond, we decompose the matrices used in the convolutional layers
to accelerate the multiplications between high-dimensional matri-
ces, which are the bottleneck when running convolutional layers
on GPUs. Also, we applied a number of system-level optimiza-
tions (described in Section 6 to accelerate the matrix calculation in
mobile GPUs).

We implemented DeepMon using OpenCL [7] and Vulkan [9]
and tested it on various mobile GPUs (Adreno 420, Adreno 430,
and Mali T 880) with multiple large DNN models. For develop-
ers to adopt various DNN models in DeepMon, we also developed
a tool that automatically converts pre-trained legacy models and
loads them to DeepMon with its various optimization strategies ap-
plied.

Our results show that DeepMon significantly accelerates the pro-
cessing of large DNNs. For example, the latency of VGG-VeryDeep-
16 model-based inference reduces ≈5 times compared to the naive
GPU-based implementation with just a marginal reduction in infer-
ence accuracy (≈5%). This enables low-latency image classifica-
tions (i.e., 3 frames per 2 seconds). Note: VGG-Verydeep-16 is
the model many applications such as face recognition (Deep Face
from Oxford [42]) and object detection (YOLO [43] and Fast R-
CNN [22]) rely on. In addition, we conducted experiments on other
models for object detection (such as YOLO) on commodity smart-
phones (Samsung Galaxy S7, Note 4, etc.). Our results showed
that our proposed techniques could achieve a latency of 644ms for
VGG-Verydeep-16 and 1,006ms for YOLO on Samsung Galaxy
S7.

The contributions of our paper can be summarized as follows:

• To the best of our knowledge, DeepMon is the first system to
allow large DNNs to run on commodity mobile devices at a
low latency. Prior work, such as DeepX [35] and MCDNN [25],
has focused on smaller DNNs, cloud computation, and non-
commodity more powerful mobile devices such as the Tegra
K1.

• We devised a suite of optimization techniques to reduce the
processing latency of the convolutional layers of DNNs. Our
smart caching mechanism leverages similarities of consecu-
tive images to cache internally processed data within the deep
convolutional neural network. Also, we adopted and im-
proved state-of-the-art matrix multiplication techniques such
as model decomposition [31] and unfolding [14] to accel-
erate multiplication operations (the bottleneck operation in
convolutional layers) on mobile GPUs.

• We shared lessons about implementing DeepMon on OpenCL
and Vulkan and scaling it to support various mobile GPUs.
Prior work has focused primarily on CUDA [6] which, to
the best of our knowledge, is not supported by commodity
smartphones. DeepMon’s OpenCL implementation can be
deployed on a variety of Android-based devices with Snap-

dragon and Exynos chipsets while its Vulkan implementa-
tion (the first such implementation we could find) can be de-
ployed on recent iPhone models such as the iPhone 7. Fi-
nally, developers can easily load pre-trained legacy models
on various mobile GPUs by using DeepMon’s model con-
verting tool.

• We conducted extensive experiments showing that DeepMon
can execute very deep models such as VGG-Verydeep-16 on
video streams in near real-time, reducing the processing la-
tency to execute one frame from 3 seconds down to 644 ms.

2. RELATED WORK

Deep Learning on Mobile Devices. Lane et al. took impor-
tant first steps towards the real-time execution of DNN and CNN
on mobile devices [35, 36]. DeepEar [36] showed the feasibility of
running entire DNNs for audio sensing applications on low-power
mobile DSPs. DeepX [35] then enabled the execution of DNN and
CNN on mobile devices by splitting computations across multiple
co-processors. We believe that DeepMon can complement DeepX
in the following ways. First, DeepX is effective in reducing the
latency of fully-connected layers while our framework focuses on
reducing the latency of convolutional layers. Also, DeepMon sup-
ports OpenCL, Vulkan and GPUs on commercially available mo-
bile devices in the market whereas DeepX was prototyped on more
powerful hardware such as Tegra K1 and Snapdragon 801 on exter-
nal development kits.

DeepSense [28] presented early evidence that using a GPU could
help improve the latency of DNN computations – DeepMon ex-
tends that work by providing many more optimisations, a full im-
plementation, and extensive evaluation. Recently, Glimpse [15]
leveraged the cloud to enable real-time object detection and track-
ing while MCDNN [25] executed deep learning algorithms across
mobile devices and clouds. MCDNN [25] proposed efficient opti-
mization techniques such as building multiple smaller DNN models
to recognize frequently appearing objects, sharing visual features
between applications and optimizing task offloading to the clouds.
However, we tackled the problem of executing the full deep learn-
ing pipelines solely within a mobile device using its GPU. In ad-
dition, while DeepMon shares a high-level concept with MCDNN
(about re-using the DNN computation), DeepMon’s caching tech-
nique re-uses the intermediate partial results while processing con-
volutional layers, enabling much more fine-granule sharing of com-
putation across consecutive images.

Mobile Continuous Vision. Gabriel [24] uses cloudlets to sup-
port cognitive assistance applications while LiKamWa et al. pre-
sented optimization techniques for image sensors to enable con-
tinuous mobile vision [38] and Starfish [39] to support concurrent
execution of multiple vision applications. DeepMon also aims at
enabling continuous vision applications by focusing on efficiently
executing deep DNNs locally on mobile devices.

Deep Learning Optimization. In the machine learning com-
munities, there has been work to reduce the training time of CNNs
and DNNs [40]. There has been some work to optimize inference
time; for example, Vanhoucke et al. [50] and Jaderberg et al. [29]
presented optimization techniques to reduce the inference latency
(e.g., using fixed point arithmetic and SSSE3/SSE4 instructions on
x86 machines). DeepMon uses these techniques and develops ad-
ditional optimization techniques to further reduce the latency of
mobile-driven continuous vision applications.

Restructuring DNN models has been widely studied to reduce
the size of the model and accelerate the inference speed [18, 23,
29, 32, 34, 45]. Recently, Bhattacharya and Lane proposed a frame-
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App Size Top-1 Top-5 Arch.
(M) Acc. Acc.

(%) (%)

Deep Models
VGG-VeryDeep-16 IR 138.4 71.7 90.5 13c,5p,3fc
VGG-Face FR 145 98.95 - 13c,5p,3fc
YOLO IR 275 63.4 - 24c,4p,2fc

Shallow Models
AlexNet IR 60.8 58.2 80.8 5c,3p,3fc
VGG-F IR 60.8 58.6 80.9 5c,3p,3fc
VGG-M IR 102.9 63.1 84.5 5c,3p,3fc
LRCN AR 62.5 68.2 - 5c,3p,2lrn,
(CNN+LSTM) 3fc

Application (IR: image recognition, FR: face recognition,
AR: activity recognition),
Size: number of parameters,
Architecture (c: convolutional layers, p: pooling layers,
fc: fully connected layers, lrn: local response normalization)

Table 1: Comparison of DNN Models

work to sparsify fully-connected layers and separate convolutional
kernels, reducing the memory and computational costs of DNN/CNN
significantly for wearables [34]. Kim et al. proposed a Tucker-2
decomposition technique [32]. It decomposes a tensor into three
smaller ones, accelerating convolutional layer execution for mobile
devices. DeepMon adopts the Tucker-2 decomposition and tailor it
to work with our caching technique to further reduce the execution
latency of convolutional layers.

3. MOTIVATING SCENARIOS
The following usage scenarios drove the development of Deep-

Mon.
Speaker Identification: In this scenario, a user is wearing a pair

of AR glasses and moving through a conference venue. The video
stream captured by the glass is continuously processed to identify
the faces of the people in view. As people are identified, informa-
tion about them, such as their name, their last interaction with the
user, etc., is overlayed in the glass’s display.

Safety For The Elderly: In this scenario, the AR glasses are
worn by an elderly person going about their regular daily chores.
The glass’s video feed is constantly processed to detect objects,
such as oncoming traffic if a road is being crossed, or obstacles on
the pavement when walking, that need to be brought to the attention
of the user. In this way, the user can react early and appropriately
to various situations.

Both of these scenarios, face and object detection, share sim-
ilarities; (a) they both need to be performed in near real-time –
identifying people after they have left or hazards after they have
been hit are both undesirable outcomes, (b) the image screen may
contain images (children, relatives, etc.) that should not be sent
to a cloud service, (c) they can still be useful even at low frame
rates, for example, face and object recognition that operates at 1
to 2 frames per second can still provide near real-time feedback
to a user who is walking, and finally, (d) the state-of-the-art solu-
tions for both problems use deep DNNs – deep DNNs are DNNs
that have many computational layers (usually more than 10) that
substantially increase the accuracy at the expense of higher laten-
cies and computational requirements. In the rest of this paper, we
describe how DeepMon enables both face and objection detection
deep DNN models to run at 1 to 2 frames per second on commodity
smartphones.

Figure 1: Macroarchitecture of VGG-VeryDeep-16 [1]

4. DEEP LEARNING PIPELINES
Vision applications use many deep learning pipelines. We ex-

plored the most popularly used models, such as AlexNet, VGG-F,
VGG-VeryDeep-16, YOLO, Fast R-CNN (Region-based CNN), to
characterize their computational requirements and performance –
summary provided in Table 1. In this paper, we primarily focus
on models (VGG-VeryDeep-16 and YOLO in particular) that adopt
more than 15 processing layers to achieve higher accuracy.

4.1 Background on Various Models
VGG-VeryDeep-16 and VGG-Face. Figure 1 shows the de-

tailed processing structure of VGG-VeryDeep-16. The architecture
is composed of 13 convolutional layers, 5 pooling layers, and 3
fully-connected layers. Convolutional layers are in charge of ex-
tracting various features from an image and refining them while
fully connected layers make inferences from extracted features.
Pooling layers convert the data from the previous layer to feed to
the next input layer. The softmax layer is the final layer to aggre-
gate and normalize the scores generated by the last fully connected
layer and outputs the final classification result.

VGG-VeryDeep-16 [46] is used to classify images into one of
1,000 different image types with a confidence probability; it out-
puts top-N image types with the probability per type. VGG-Face
[42], is based on VGG-VeryDeep-16, and performs face recogni-
tion. We only use VGG-VeryDeep-16 in our evaluation as VGG-
Face has the same structural and algorithmic properties.

YOLO [43] recognizes and locates objects in an image. YOLO
can be trained with different datasets. For example, YOLO trained
with the VOC dataset [2] identifies 20 objects and tracks their lo-
cations while YOLO trained with the Pascal VOC dataset [8] can
identify and localize 80 different objects. The architecture of YOLO
is composed of 24 convolutional layers and two fully connected
layers, resulting in higher computational requirements compared
to VGG-VeryDeep-16 or VGG-Face.

Other Models. There are other smaller-sized but popular models
used for image classification, such as VGG-F [13], AlexNet [33],
and VGG-M [13]. Their architecture incorporates a much smaller
number of layers; for example, they use just 5 convolutional layers
to extract features and 4 fully connected layers for inference. These
models are much smaller than VGG-VeryDeep-16 or YOLO with
correspondingly lower accuracies given the same train and test data.
We omit these shallow models from the rest of the paper as (i) they
have already been studied by prior work [35, 36], and (ii) higher
accuracy object and face recognition would be more usable for end
user applications.
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Conv. FC. Pooling Total
(ms) (ms) (ms) (ms)

VGG-VeryDeep-16 2,647 294 40 2,984
YOLO 3,345 536.1 44.9 3,935
(CNN+LSTM) 5,488.8 161.7 2,158.8 8,301

Table 2: Latency Breakdown

At the other end, some extremely deep models achieve even
higher accuracies. For instance, ResNet-152 [26] has 152 layers
and achieves 3.62% higher accuracy compared to VGG-VeryDeep-
16. However, we noticed that the accuracy improvements of such
models are marginal compared to the models that have 15 to 25
layers while incurring much higher computational costs. We do not
expect those extremely deep models can be run on mobile devices
in near real-time and thus exclude them from this work.

There are other models such as Faster-RCNN [22] for object de-
tection and Long-term Recurrent Convolutional Networks (LRCN
[19]) for activity recognition – LRCN is the combination of CNN
and Long Short Term Memory (LSTM [27]). These models have
some common characteristics with VGG-VeryDeep-16 or AlexNet
and also modify the structures to achieve better performance and
accuracy. Even though they are applied in different scenarios, we
noticed that they have lots of commonality with VGG-based mod-
els and our workload characterization and optimization techniques
apply well to these models.

Effect of the model depth on accuracy and latency. In gen-
eral, the deeper the model becomes, the higher accuracy it achieves
for the same classification task. This increase in accuracy has been
validated by recent results [49] (although there are a few special
cases where a shallow network is equally accurate). For instance,
AlexNet with 5 convolutional layers achieves 80.8% top-5 accu-
racy to recognize an image while VGG-Verydeep-16 with 13 con-
volutional layers achieves 90.5% top-5 accuracy. Also, ResNet-152
with 152 layers shows 94.3% top-5 accuracy. On the other hand,
deeper models impose much higher computational or memory re-
quirements; For example, the number of operations required to ex-
ecute VGG-VeryDeep-16 is 21 times more than that of AlexNet
while ResNet-152 requires 4 times more memory space than VGG-
VeryDeep-16.

4.2 Workload Characterization
We noticed important common characteristics in the workloads

of deep deep-learning models that drove the optimisations in Deep-
Mon. First, each deep model has a large number of computational
layers – with the accuracy of the model increasing as more layers
(convolutional layers in particular) were added. Second, the ma-
jority of the layers are convolutional layers. Convolutional layers
play a critical role to extract useful features from images and then
refine them; in particular, they apply various types of filters over
the small blocks of an image to abstract out visual features such as
edges and shapes. Table 1 confirms that, in deep models, the most
processing layers are convolutional layers, with a small number of
fully connected layers and pooling layers.

Hence, it is likely that most of the processing time is spent in
convolutional layers. To check if this was the case, we measured
the running time of different deep learning models on a Samsung
Galaxy S7 and broke down the processing latency per layer type.
To do this, we implemented a GPU-based deep learning execution
framework (without any optimization techniques applied).

Table 2 shows the execution time broken down per layer type
(i.e., convolutional, fully-connected, and pooling). It indicates that

the convolutional layers dominate the processing time. For VGG-
VeryDeep-16, over 88.7 % of the processing time is occupied by the
convolutional layers followed by 9.8% and 1.3% for fully-connected
layers and pooling layers, respectively. For the YOLO model, over
85% of computation time is spent in convolutional layers. The rea-
sons for these time breakdowns are (i) there are many more convo-
lutional layers than other layers in deep models, and (ii) the total
number of addition and multiplication operations within convolu-
tional layers is much higher compared to fully connected layers and
pooling layers (e.g. VGG-VeryDeep-16 requires 15,346M addition
and multiplication operations for convolutional layers while only
123M operations are necessary for fully connected layers). These
results suggest that optimizing the processing time of convolutional
layers would lead to huge improvements in overall model process-
ing latencies.

5. DESIGN CONSIDERATIONS
We developed DeepMon with the following design goals:
No cloud offloading: Our primary design goal, for this paper,

was to use local phone resources only without any cloud offloading
to process deep DNNs as this area has compelling use cases without
any viable solutions. There are also scenarios, such as processing
of sensitive video feeds or video processing in places with poor or
expensive networking connectivity, where offloading is either un-
wanted (due to privacy concerns) or impossible (due to networking
issues). We do plan to extend our solution to support cyber forag-
ing (e.g. MAUI [16] and Chroma [10, 11]), where local and cloud
resources are used in a dynamic fashion.

Near real-time latency: Our intended application scenarios, de-
scribed in Section 3, both require near-real time processing of im-
age streams to give on-the-fly feedback to the users. However, we
do not aim to provide strict real-time support (e.g., < 50ms with
strict inter-frame timings) as we do not believe this is possible with
current commodity smartphones and deep DNNs. Instead, we aim
to push the research boundary to provide 1-2 frames per second
processing capability (the current state-of-the-art is 1 frame every
3-4 seconds).

Minimal accuracy loss: While achieving near-real-time pro-
cessing latencies is good, it cannot be done at the cost of accuracy
– otherwise improving latency becomes trivially easy. We thus re-
quire DeepMon to be only about 5% less accurate than running the
same model on a desktop PC.

Efficient power use. Minimizing the energy use of DeepMon is
essential as we aim at running complex deep learning pipelines on
mobile devices. In this paper, we focused on reducing the power
consumption of executing deep learning pipeline on a mobile de-
vice and rely optimising the power consumption of the video cam-
era (to capture and store continuous video feeds) to prior work [38].

Support a wide range of mobile GPUs and programming
APIs: There has been prior work [25, 35] that used external mobile
development boards, such as the Tegra K1, to test their solutions.
We designed DeepMon to work well on commodity smartphones
and tested it across a range of mobile phones and programming
APIs (the full list of test devices is shown in Table 3). In particular,
DeepMon supports both the OpenCL [7] and Vulkan [9] program-
ming APIs.

6. IMPLEMENTATION
In this section, we first show the overall architecture of Deep-

Mon, and then describe, in detail, the various techniques we adopted
to optimize the execution of deep learning pipelines.
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# GPU Memory Memory
Phone GPU APIs Cores Size Bandwid.

(#ALUs) (GB) (GB/s)

Samsung Mali OpenCL/ 12 4 25.6
S7 T880 Vulkan

Samsung Adreno OpenCL 4 3 12.8
Note 4 420 (128)

Sony Adreno OpenCL 4 3 12.8
Z5 430 (192)

Table 3: Specs for Commodity Mobile GPUs
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Figure 2: DeepMon System Architecture

6.1 Architecture Overview
Figure 2 shows the overall architecture of DeepMon, and Table 4

summarizes our techniques. DeepMon works through two different
phases: (1) the model conversion phase to convert existing mod-
els to run on mobile GPUs, and (2) the inference phase to process
image streams using the converted model to recognize useful infor-
mation.

Model conversion and loading. To use DeepMon, developers
first need to convert existing deep learning models (built for desk-
top GPUs) to fit on mobile GPUs. For this, we provide model con-
verter and model loader tools – the current DeepMon prototype can
convert a variety of existing models including the ones described in
Table 1. The model converter adapts the configurations and param-
eters of an existing model and generates a new model that can run
efficiently on mobile GPUs (See Section 6.4). The model loader
then loads the generated model on DeepMon– it allocates adequate
memory spaces to lay out input data for efficient convolution com-
putation and structures the processors for all the layers composing
the model (See Section 6.2)

DeepMon currently supports the models from three different deep
learning frameworks, namely Caffe [30], Matconvnet [51] and YO-
LO [43].

Real-time Inference. During the inference phase, DeepMon
takes a stream of first-person-view images as its input. The frame
dispatcher selects important frames to recognize and feeds them to
the GPU-based recognizer. Then, the GPU-based recognizer exe-
cutes the deep learning pipeline and outputs its inference results to

Techniques Description Evaluation

Model Conversion/Loading Section 6.2 -
Convolutional Layer Caching Section 6.3 Section 7.2–7.5&

Section 7.8–7.9
Layer Decomposition Section 6.4 Section 7.2–7.5
Convolution Optimizations Section 6.5 Section 7.2–7.5
Scaling to various GPUs/APIs Section 6.6&6.2 Section 7.6&7.7

Table 4: Summary of DeepMon’s techniques

Figure 3: The Flow of Model Conversation and Loading

the applications of interest. During the execution, it applies a suite
of optimization techniques, such as convolutional layer caching and
matrix multiplication optimizations, to boost the recognition speed
(explained in detail in Sections 6.3 and 6.5).

DeepMon supports both OpenCL and Vulkan and was tested on
phones with Adreno and Mali GPUs. We present our evaluation
results for various GPUs and Vulcan in Section 7.6 and 7.7.

6.2 Loading Models into Mobile GPUs
Figure 3 shows the detailed flow of the model conversion and

loading process. First, the model convertor decides how to layout
the input data into the memory space. The challenge here occurs
mainly because the memory space is linear while the input data
are multi-dimensional matrices. The wrong unfolding of the multi-
dimensional data into a linear space would result in huge fragmen-
tation of the data, which will slow down the convolution process-
ing significantly. Intuitively, the model converter lays out the data
such that matrix multiplications can be done by reading consec-
utive memory blocks and reusing them as much as possible once
they are in memory. This is particularly important for devices with
low memory bandwidth (e.g. Samsung Galaxy Note 4 and Sony
Xperia Z5).

Once the data layout is decided, the model loader initializes all
the necessary additional layers (e.g. convolutional, pooling, fully-
connected, etc.) within the DeepMon’s recognizer. During initial-
ization, DeepMon performs two important tasks: (a) memory allo-
cation and (b) kernel code compilation.

First, upon layer initialization, DeepMon needs to allocate mem-
ory spaces to store the metadata (e.g. size of filters, input size,
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(a) An image at time t0 (Left)
(b) An image at time t0 +500ms (Middle)

(c) The same image blocks marked as black (Right)

Figure 4: Example First-Person-View Images

output size, etc.) or parameter values. DeepMon stores all the
metadata in the host memory (or CPU memory) for easy data ac-
cess and stores all the parameters in the device memory (or GPU
memory). The GPU memory space is allocated based on the API
used (OpenCL or Vulkan). The memory space for the actual input
and output data is also allocated in the GPU memory for efficient
computation. This space can be mapped to the host memory when
necessary (e.g. to return final output to application).

Second, a specific kernel code, containing the code block to be
parallelized by the layer, needs to be built and loaded. Building
these kernel code is handled differently for OpenCL and Vulkan.
For OpenCL, a kernel is written in the OpenCL C-like language.
It does not require pre-built binary code for any specific device –
Instead, it supports compilation capabilities on the target device it-
self, making it easy to be ported to other OpenCL-enabled devices.
Vulkan, on the other hand, uses SPIR-V (Standard Portable In-
termediate Representation), an intermediate language for graphics
and parallel computation. In Vulkan, SPIR-V code can be loaded
onto various Vulkan-enabled devices without building binary code.
DeepMon prepares two separate convolutional implementations in
advance and compiles the kernel code on demand, based on the
chosen API, when a layer is initialized and loads the kernel into
memory.

6.3 Convolutional Layer Caching
As shown earlier (Section 4), the convolutional layers are the

main performance bottlenecks. To accelerate the computation of
these layers, we designed a caching mechanism optimised for con-
volutional layers. Our key observation is that first-person-view im-
ages tend not to change much over a short time duration. For ex-
ample, Figure 4 shows three first-person-view images; the left and
middle images were taken at time t0 and t0+500ms while the right-
most image, taken at time t0+500ms shows the same image blocks
(marked as black).

In particular, the background of images across multiple continu-
ous image frames often remains still while foreground objects tend
to move. Such commonality in images incurs heavy repetition in
the execution of convolutional layers as applying the full pipeline
on one image at a time applies the same convolution computations
on many different “repeated” frames and sub-frames.

Our caching mechanism reduces this repetitive computation sig-
nificantly. A plausible caching approach would be to reuse the final
result from the previous frame when the difference between frames
is under a certain threshold (Chen et al. [15] proposed a similar
idea). However, this approach would not work in many cases as
foreground objects (that take a small portion of the entire image
but are important to recognize) tend to change noticeably while the
background images do not. This makes the previously cached re-
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Figure 6: Effect of the Distance Values on Caching

sults either stale (on a cache hit) or incurs lots of cache misses. To
overcome this, we cache the partial results of convolutional layers
– i.e., we reuse the convolution outputs for the unchanged blocks of
an image while recalculating convolutions for the changed blocks.

6.3.1 Caching Mechanism
The overall flow of our caching mechanism is as follows. First,

we divide the image into a grid (e.g. an 8x8 grid) where each grid
block contains a fixed number of pixels. During the execution, we
compare corresponding blocks, b(t−1) and bt of two consecutive
images to determine if the outputs of the previous convolutional
layer, b(t−1), are reusable (i.e., it is a cache hit). Upon a cache hit,
DeepMon skips the convolution computation on the pixels within
the entire block. DeepMon caches the convolution outputs for the
first N convolutional layers only (where N is determined empiri-
cally for every model) since the computation for the later convo-
lutional layers are often quite small, and the caching overhead is
higher than the benefit. Cached values expire after a certain du-
ration – for example, we set the default expiration times, deter-
mined empirically, to 650ms for VGG-VeryDeep-16 and 1000ms
for YOLO.

However, the key challenge with this caching scheme is that it is
a non-trivial task to determine if the two image blocks are similar
or not. Indeed, if the image comparison is too heavyweight, the
caching overhead will quickly exceed its benefit. There are a few
image comparison algorithms with high comparison accuracy, for
example SIFT-based [41] and Hog-based [17] algorithms. How-
ever, their computational cost is high and not suitable for our cache
design (See Section 7.9 for the relevant results.).
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To solve this problem, we adopted a light-weight algorithm based
on colour histograms. For the two image blocks to compare, we
compute the histogram of the colour distribution and compute a
chi-square distance metric. If the distance is less than a pre-defined
threshold, the cell is marked as ”reusable”.

For efficient caching, it is important to choose the right num-
ber of bins (to calculate the histogram) and the distance threshold.
We carefully chose the right parameters through empirical studies
using AlexNet. First, we investigated the effect of the number of
bins by fixing the distance parameter to 0.005. Figure 5 shows that
as the number of bins increases, the accuracy increases while the
number of “cacheable” blocks decreases; in the figure, the caching
accuracy indicates how closely DeepMon outputs the final classi-
fication results with respect comparing to the original model. We
also explored the effect of distance threshold – the number of bins
was set to 16. Figure 6 shows the trade-off between accuracy and
cache hit rates for various distance threshold values. We use the
cross-over points of the accuracy and hit rate to decide a plausible
number of bins and distance threshold value.

To make caching work efficiently along with our GPU-based rec-
ognizer, we carefully re-implemented our GPU-specific kernels.
Intuitively, we first initialize all the memory spaces (that need to
contain the output of a convolutional layer) with the cached results.
Only for those blocks with cache misses, DeepMon maps the new
outputs into the corresponding memory spaces. This makes updat-
ing uncached results easy.

When reusing cached results, we had to be careful about the
edges of an image block. Figure 7 shows two examples of caching
applied on a block size of 4x4 in a convolutional layer with a filter
size of 3x3. Figure 7(a) shows an example where a convolutional
filter is applied to the edge of the cached block. In this case, the
output value becomes non-cachable as the 3x3 block being calcu-
lated may refer to non-cachable data (data outside of cached block).
For that reason, DeepMon will not reuse the results for the edges
of the block. However, when two or more consecutive blocks can
be cached, as shown in Figure 7(b), DeepMon reuses the cached
results for the edges that are shared by the cacheable consecu-
tive blocks. Importantly, for the models we are considering, the
block size is quite large for the first few convolutional layers (e.g.
28x28 pixels for the first layer for VGG-VeryDeep-16), making this
caching technique effective for all those layers.

6.4 Convolutional Layer Decomposition
We further optimize convolutional layers by decomposing the

convolutional parameters. Convolutional layers are well-known
to have redundant parameters [29], making them computationally
inefficient on resource-constrained devices. Prior research have
provided a few different methods (such as the tucker decomposi-
tion [32] and CP decomposition [37]) to decompose a convolutional
layer into three smaller convolutional layers so that the total com-
putation of the decomposed layers is less than that of the original
layer.

DeepMon adopts a variance of the Tucker decomposition named
Tucker-2 [32] over other alternatives since it is a better match to
DeepMon’s caching algorithm. The weights of a convolutional
layer are often represented as a tensor T of size [N x C x D x D]
in which N and C are the numbers of input and output channels,
respectively, while D is the size of the filters. Tucker-2 decom-
poses T into three smaller tensors T1, T2, T2 with the sizes of
[C’ x C x 1 x 1], [N’ x C’ x D x D], [N x N’ x 1 x 1] respectively,
where the number of new input and output channels (i.e. N′ and
C′) are reduced compared to those in the original tensor (i.e. N and
C). Intuitively, the decomposition reduces the number of dot prod-

(a) Example with a 4x4 Block and a 3x3 Filter (Top)
(b) Example with two 4x4 Consecutive Blocks and a 3x3

Filter (Bottom)

Figure 7: Caching on the Edge of an Image Block

uct operations from (N x C x D x D) to (C’ x C) + (N’ x C’ x D x D)
+ (N x N’), enabling DeepMon to further reduce the latency.

Tucker-2 decomposition is more appropriate to be used with our
caching technique due to its unique characteristic – two of the de-
composed layers have the filters with the size of [1 x 1]. [1 x 1]
filters do not reduce the input size to the subsequent layers, keep-
ing the cacheable block size across layers; note that if the block
sizes get reduced, the overhead to compute cache hit/miss will in-
crease, compromising the benefit of caching. On the other hand,
other decomposition methods use filters larger than [1 x 1], reduc-
ing the size of cachable blocks and making the caching less effec-
tive. Moreover, the [1 x 1] filter does not require separate handling
of the edges of cacheable blocks (as shown in the Figure 7). This
enables us to develop a more efficient GPU-kernel to reduce the
latency further.

The non-trivial problem, here, is to choose the right N’ and C’.
In practice, manual trial and error is still a common yet inefficient
approach that requires a lot of effort. Instead, we devised a double
binary search algorithm to reduce the amount of effort needed. The
key idea behind the algorithm is to find N’ and C’ that maximizes
the variance when we reconstruct the original tensor (e.g. similar to
principle component analysis). We define the desired variance that
we need to sufficiently reconstruct the tensor and then use binary
search to find the parameters that best produce the required vari-
ance. Finally, we fine-tune the model to recover from the possible
loss in its accuracy.

6.5 Optimizing Convolutional Operation
The execution of a deep learning pipeline heavily relies on ma-

trix multiplication. However, linear algebra libraries for OpenCL
(such as ClBlast and ViennaCL used in Caffe) are tuned for desktop
GPUs and do not perform efficiently on smartphones.

To accelerate convolutional operation, existing frameworks use
a technique called unfolding that converts inputs into a large ma-
trix and then uses matrix multiplication on the unfolded input and
filters to compute the result [14]. The unfolding technique requires
a large amount of memory and bandwidth when executing convo-
lutional layers. Unfortunately, the memory bandwidth on mobile
GPU is quite small compared to server GPU. This makes the un-
folding technique unsuitable for DeepMon.

Deeper observations showed that convolutional operations per-
formed without unfolding tend to consume less bandwidth for mem-
ory access. However, it also stores the data, in memory, in a non-
contiguous fashion, making it inefficient when running on memory-
constrained mobile GPUs. Our second observation is that carefully
laying out the convolutional weights in the format of [N x D x D x
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C] and its input in [H x W x C] makes it more GPU friendly as we
can read multiple items at the same time using OpenCL function-
ality. We also note that Caffe and YOLO use the format of [N x C
x D x D] for the weights of convolutional layers.

Figure 8 shows the speedup between our implementation and
conventional unfolding approach. We benchmark two approaches
using convolutional layers extracted from VGG-VeryDeep-16. We
drop convolutional layer 7, 10, 11 and 12 from our benchmark since
they have similar parameters to the other layers. We extract unfold-
ing kernel from Caffe and use ClBlast library (one of three linear
algebra used in Caffe) to do convolutional operations. Results show
that on lower bandwidth devices (Note 4 and Z5), our approach al-
most provides the better latency (speedup > 1). However, on S7,
since the device has integrated LPDDR4 which has doubled band-
width comparing to two other devices, conventional approach starts
to benefit at some layers. We additionally validated the latency
of convolutional layers with another commonly-used library, Vien-
naCL (on Caffe). We found out that ViennaCL performs slower
than ClBlast on Samsung Galaxy S7 – mainly due to its lack of
support to optimize various parameters.

We further reduce the processing latency of the convolutional op-
erations by using half floating point precision in OpenCL. Since the
memory bandwidth is limited on the mobile devices (compared to
desktop machines), it is highly useful to reduce the size of memory
reads and writes by half by dropping the last half digits of the data.
Our results, shown in Section 7, indicate that this optimisation is
effective at reducing latency without any significant impact on the
accuracy.

6.6 Scaling to Various Mobile GPUs
We implemented a number of techniques to allow DeepMon to

support various types of mobile GPUs. The most important con-
sideration was to adapt to the different memory architectures of
different mobile GPUs and the ways in which they read/write data
from the main memory.

Mobile GPUs support unified memory access that allows GPUs
to directly access the main memory and use it as its own memory.
However, the main memory is shared among the many components
of a mobile device and its data read/write bandwidth is limited.
This limited bandwidth could slow down the processing of Deep-
Mon as DNN execution usually requires the GPU to read a large
amount of data from the main memory.

One possible solution is to use local memory on the GPU chipset
itself. The local memory is a small memory (for instance 8KB on
Adreno 330 and 32KB on Adreno 430) which is used as a cache to
accelerate memory access during computation (data is first loaded

conv_1 conv_2 conv_3 conv_4
(ms) (ms) (ms) (ms)

Host memory 78.66 667.10 340.59 757.12
GPU local memory 63.98 526.9 262.57 584.80

Table 5: Benefit of using GPU Local Memory

into local memory and is reused during computation). However,
the size and architecture of the local memory vary across different
GPUs. For example, different Adreno boards have different sizes
of local memory while Mali GPUs have no local memory. Such
differences are the key challenge in making DeepMon support dif-
ferent mobile GPUs.

We address this issue by building kernel codes that can exploit
different amounts of local memory (including a kernel code for no
memory) and dynamically uses the appropriate code at runtime. In
particular, when executing convolution layers, if the memory re-
quirement for a single filter fits into the small local memory, we
adaptively use kernel code that supports that amount of local mem-
ory. Otherwise, we use the non-local-memory version.

We also build the kernel code in a way that the filters within a
convolutional layer are shared to evaluate all input values. Accord-
ingly, for the first layer of VGG-VeryDeep-16, we can fit all 64
filters with the size of [3 x 3 x 3] into the 8KB local memory of
the Xperia Z5. For the deeper layers that require more than avail-
able local memory, DeepMon loads a subset of filters into the local
memory and compute partial outputs at a time. We also find out that
the half floating point approximation reduces the size of filters by
half, allowing DeepMon to load more filters into the local memory.
Table 5 shows the processing time for the four first convolutional
layers while executing VGG-VeryDeep-16 on the Sony Xperia Z5
phone. It indicates that the use of local memory accelerates the
processing time by 23-30%.

7. EXPERIMENTS

7.1 Experimental Setup
We extensively measured the performance of DeepMon with a

variety of deep learning models and mobile GPUs.
Workloads. We used a variety of deep learning models as shown

in Table 1. We mainly report the results for two deep models, VGG-
VeryDeep-16 and YOLO, and report the results for other models
only when they are significant. We used the VGG-VeryDeep-16
model trained with the ILSVRC2012 train dataset [44] and YOLO
trained with the Pascal VOC 2007 train dataset [8].

Metrics and datasets. We used processing latency, accuracy,
and powerer consumption as our key evaluation metrics. For the
latency, we measured the duration to process an image, i.e., t1− t2
where t1 is the time that DeepMon outputs the inference result
and t2 is the time that DeepMon receives the input image. For
the latency evaluation, we used two test datasets: (i) the UCF101
dataset [48] comprising 13,421 short videos (less than a minute
long) created for activity recognition and (ii) LENA dataset [47]
consists of 200 first-person-view videos captured from Google Gla-
sses, and report the average latency across all processed frames
along with the 95% confidence interval. We used the UCF101
dataset by default while we report the performance for LENA dataset
in Section 7.8 and Section 7.9.

For accuracy, we measured the percentage of accuracy drop com-
pared to the original models. We focused on the drop as our goal is
not to improve the accuracy but to keep it close to that of the orig-
inal models while accelerating inference speed. Note: unlike prior
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Figure 9: Overall Processing Latency

work [25], we did not reduce the total number of possible output
categories (e.g., the number of objects that can be recognized by
the model). For the accuracy evaluation, we used the ILSVRC2012
[44] validation dataset for VGG-VeryDeep-16 and the Pascal VOC
2007 test dataset [20] for YOLO, and calculated the average ac-
curacy over each test dataset. For YOLO, we used the mean av-
erage precision (mAP), which is a standard metric to evaluate the
YOLO’s accuracy regarding both object recognition and localiza-
tion [21].

Finally, we measured the power consumption using the Monsoon
power monitor [5]. We reported the average energy consumption of
the smartphone while processing an image in uAh by measuring the
baseline energy consumption before running the processing logic
and deducting the baseline from the measured value. For energy
evaluation, we used the UCF101 dataset (the same dataset used in
the latency evaluation), and report the average energy consumption
across all processed frames along with the 95% confidence interval.

Alternatives. We compared the performance of DeepMon with
other plausible smartphone-based alternatives such as basic-CPU
and basic-GPU, and a few cloud-based alternatives. basic-CPU
only uses the mobile CPUs to compute the full deep learning pipelines
while basic-GPU utilizes the mobile GPUs for all processing layers
without optimization. For the cloud-based approaches, the mobile
device sends images to a cloud server, the server processes the im-
ages and return the results back to the mobile device (details of
the cloud-based alternatives are explained in Section 7.4). Also, to
look into the benefit of DeepMon, we applied different combina-
tions of the optimization techniques presented in Section 6 such as
convolutional layer caching (denoted as CA in the figures), layer
decomposition (DC), and half floating-point calculation (HF).

Devices and APIs. We used a Samsung Galaxy S7 (with Mali
T880 GPU), a Samsung Galaxy Note 4 (with Adreno 420), and a
Sony Xperia Z5 (with Adreno 430) as our experiment devices. Un-
less mentioned, we used the S7 as the default device. Also, we used
the OpenCL implementation of DeepMon by default while we mea-
sured the performance of the Vulkan implementation in Section 7.7.

7.2 Processing Latency
We first study the overall processing latency of DeepMon in com-

parison with naive approaches. Figure 9 shows the results, on an
S7, for the three models: AlexNet (trained with the ILSVRC2012
train dataset), VGG-VeryDeep-16 and YOLO.

The figure shows that DeepMon accelerates the processing of
deep learning models by 3-5 times compared to basic-GPU. Deep-
Mon processes VGG-VeryDeep-16, a model with 13 convolutional
layers and 3 fully-connected layers, at the latency of 644ms, en-
abling near real-time processing of continuous image streams. YOLO
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Figure 11: Recognition Accuracy

takes about 1 second as it includes more number of convolutional
layers to track their locations of the objects.

For smaller models such as AlexNet (or equivalents such as VGG-
F or VGG-M with 5 convolutional layers and 3 fully-connected lay-
ers), DeepMon can process an image with just 139 ms of latency.
Note: The processing time of basic-CPU is slower by one or two
orders of magnitude depending on the model. It takes 6345ms for
basic-CPU to process an image using AlexNet, which is 45.6 times
slower than DeepMon.

Digging deeper, we analysed which DeepMon techniques con-
tribute to the processing benefits. Figure 10 shows the latency
breakdown for VGG-VeryDeep-16 and YOLO while cumulatively
applying the various optimization techniques. The results show
that all techniques significantly contribute to the latency reduction
for VGG-VeryDeep-16. For YOLO, the benefit of the caching was
smaller than VGG-VeryDeep-16 as the layer decomposition tech-
nique highly optimizes the first few convolutional layers, making
the reuse of the cached results less beneficial.

7.3 Recognition Accuracy
Next, we investigate how much accuracy DeepMon compromises

in return for the latency benefits. Figure 11 shows the classifica-
tion accuracy of the original VGG-VeryDeep-16 and the mAP of
YOLO as well as the converted models optimized to run on Deep-
Mon. The figure shows that DeepMon drops about 5-6% of ac-
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Figure 12: Breakdown of DeepMon Accuracy Drop
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Figure 13: Comparison to DeepX on Samsung Galaxy S5

curacy while accelerating the latency 4-5 times. We designed our
techniques to keep the properties of the original architecture, thus
minimizing the impact on the recognition output. Note that Fast-
YOLO [43], a lightweight version of YOLO shows the lower mAP
of 52.7%, which is 5.44% lower than that of DeepMon, while the
latency benefit of Fast-YOLO was similar to DeepMon (i.e., ≈4.5
times when experimented on Samsung S7).

We further analysed which of DeepMon’s components contributed
to the accuracy drop. Figure 12 shows the results by applying
the three different techniques that affect the accuracy. The accu-
racy drop by layer decomposition is marginal, indicating that our
binary-search-based decomposition selects suitable decomposition
parameters. Also, the convolutional layer caching reduces accuracy
by about ≈3%, showing that the use of cached results marginally
affects the accuracy for video streams.

7.4 Comparison with Other Approaches
We now compare the processing latency of DeepMon with DeepX,

the state-of-the-art mobile deep learning inference engine. Fig-
ure 13 shows the latency and accuracy drop of DeepX and Deep-
Mon; we ran AlexNet using the SnapDragon 801 processor. DeepX
consumes 500ms to process an image with an accuracy drop of 5%.
DeepMon’s latency was 269ms, twice as fast as DeepX, when all
techniques are applied while its accuracy drop was 1% higher at
6%. DeepMon can be adjusted to only use the layer decomposition
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method which achieves 333ms latency (≈33% faster than DeepX),
but with only a 1.6% accuracy drop.

We also compared the latency of DeepMon with the cloud-based
alternatives. Figure 14 shows the results. We used three differ-
ent cloud variants: edge-strong, remote-strong, and remote-weak.
For, edge-strong, the mobile phone and the server was connected
through the local Wi-Fi network while the server is equipped with
a NVidia GTX 980 GPU (2,048 GPU cores, 8GB memory size
and 224GB/s memory bandwidth). For remote-strong and remote-
weak, we used Amazon EC2 servers (in particular g2.2xlarge and
t2.medium instances respectively) located in the EC2 Asia Pacific
(Singapore) datacenter. remote-strong was equipped with a K520
GPU (with 8 cores and 15 GB of memory) with while remote-weak
had no GPU. We used the Caffe [30] and YOLO [43] frameworks
to run the models on the cloud.

edge-strong is 2.7 times faster than DeepMon while remote-strong
is only 28% faster than DeepMonfor VGG-VeryDeep-16. The la-
tencies of remote-weak were 33.6 and 12 times slower than Deep-
Mon , respectively, due to its CPU-based execution of deep learn-
ing models. This suggests that we can leverage cloud services for
home- or office-based applications where the user can offload the
data safely to the edge servers with low networking latency and
fewer privacy concerns. On the other hand, we need to be careful
about using the remote clouds even when the users are willing to
send the data. The cost for remote-strong (using g2.2xlarge server
instance) is 1 USD per hour, imposing huge service cost for con-
tinuous vision applications. We can use less powerful instances,
although doing so might not improve the latency as indicated by
the numbers for remote-weak.

7.5 Power Consumption
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Figure 16: Processing Latency for Different GPUs

We now investigate the power consumption of DeepMon in com-
parison with basic-GPU, remote-strong, and remote-weak. Fig-
ure 15 shows the overall power consumption for each approach
along with the breakdown. All DeepMon measurements were done
on Samsung Note 4 as it has a detachable battery that could be
tapped with the Monsoon power meter.

The figure shows that DeepMon is lower than the power con-
sumption of basic-GPU by more than 5 times for both VGG-VeryDeep-
16 and YOLO. This savings is mostly from the reduced processing
time. remote-strong consumes 3 times lesser power as the mobile
device consumes power only to send the image to the cloud and
then goes into power saving mode until it receives the result. How-
ever, as stated earlier, you need a large expensive server instance to
see small latency benefits compared to DeepMon.

7.6 Latency on Other Mobile GPUs
We next studied the processing latency of DeepMon across dif-

ferent GPUs. We used a Samsung Galaxy Note 4 (with Adreno
420) and a Sony Xperia Z5 (Adreno 430). Figure 16 shows the re-
sults. While the latency reduction pattern by all our optimization
strategies remains similar, the absolute processing latency increases
by 2.4 times for the Note 4 and 2.34 times for the Z5, compared to
the Samsung Galaxy S7 (with Mali T 880). Even though the direct
comparison between Mali and Adreno is non-trivial, Mali’s faster
performance is likely to result from having more GPU cores and
higher memory bandwidth compared to Adreno 420 and 430. We
also noticed that the original VGG-VeryDeep-16 model cannot be
run on Z5 due to the limitations of the heap memory size – although
it can run after the decomposition technique reduces the model size
by half.

7.7 Latency of Vulkan
We also explored the performance of the Vulkan implementa-

tion of DeepMon. We used the Samsung Galaxy S7 that supports
both Vulkan and OpenCL. Figure 17 shows the processing time
per convolutional layer for VGG-VeryDeep-16. Even though there
are small differences in processing time per layer (compared to
OpenCL), all our techniques are equally effective on Vulkan as
well, resulting in similar overall processing times.

7.8 Performance on First-Person-View Videos
We further evaluated the latency and accuracy of DeepMon over

the first-person-view dataset, LENA, which could be the typical
workload for DeepMon. For accuracy, we reported the percent-
age of frames that the base model and DeepMon outputs the dif-
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Figure 18: Latency on the LENA Dataset

ferent classification result – we define this as the output difference
ratio. For VGG-VeryDeep-16, we consider that the output is dif-
ferent when the top-1 classification results of the base model and
DeepMon are different. For YOLO, we consider that the output
is different when the positions of the detected object (indicated as
rectangles on the image) overlap less than 50% (i.e., Intersection-
Over-Union (IoU) < 50%).

Figure 18 shows the latency of DeepMon on the entire LENA
dataset. DeepMon shows ≈4 times of overall latency reduction,
which is comparable to the benefit over the UCF101 dataset. In par-
ticular, our caching technique reduced ≈22% and ≈13% of the to-
tal execution times of VGG-Verydeep-16 and YOLO, respectively.
The reduction rate was slightly decreased compared to that of the
UCF101 dataset since the first-person-view videos tend to have
more frequent changes in the recorded scenes due to continuous
head movement. However, the results show that our caching tech-
nique is still effective for the first-person-view videos.

Figure 19 shows the output difference ratio. DeepMon produces
different outputs for 25.89% and 12.28% of the total frames com-
pared to the base VGG-VeryDeep-16 and YOLO models, respec-
tively. We empirically looked into such differently-classified frames
and found out that most of those frames are not correctly classified
or do not have a matching class in the base model, margin-ally af-
fecting the actual accuracy.

Interestingly, the output difference ratio of VGG-Verydeep-16 is
much higher than that of YOLO. This is because VGG-Verydeep-
16 always outputs one of the 1,000 pre-trained classes even though
the target frame is unlikely to be one of the 1,000 classes; for the
consecutive frames with low classification confidences, their top-1
classified objects vary sensitively from one frame to another (al-
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VGG-16(≥75%) indicates the accuracy evaluated only on the
videos with the average confident score above 75%. Similar
explanation applies to VGG-16(≥50%), YOLO(≥75%), and
YOLO(≥50%).

Figure 19: Accuracy on the LENA Dataset

SIFT-based Histogram-based
Overhead (ms) 2,580 4.77
Overall latency change (ms) 2,064 -534

(increased) (decreased)
Output difference ratio (%) 3.875 6.21
Cache hit rate (%) 31.4 35.52

Table 6: Caching Performance Analysis

though the frames include the same object), making our caching
results different from the newly calculated ones. We further calcu-
lated the output difference ratio only over the videos that have the
average classification confidence higher than 75% and 50%, and the
output difference ratio was reduced to 6.21 and 9.59, respectively.
For YOLO, the output difference ratio did not vary much since the
model eliminated "others" when its classification confidence was
below a certain threshold.

7.9 Convolutional Layer Caching Performance
We further studied how our caching technique performed over

the LENA dataset. We used Vgg-VeryDeep-16 for this study. Table
6 shows the results on the videos with the average confidence score
over 75%. DeepMon (with its histogram-based caching) shows
the average latency reduction of 538 ms. The benefit comes from
35.52% of cache hits, significantly reducing unnecessary recalcula-
tion of convolution operations. We noticed that the latency reduc-
tion was ≈20% less than that of the UCF101 dataset. As expected,
the cache hit rate over LENA, the first-person-view dataset, was
lower compared the cache hit rate over the UCF101 dataset. This
is mainly because head-mounted cameras tend to move more than
third-person-view cameras, resulting in bigger differences between
the two consecutive images.

We also compared our proposed histogram-based caching algo-
rithm against an alternative using SIFT features [41]. Although
SIFT-based algorithm provides the lower output difference ratio
(3.875%) than the ratio of the histogram-based algorithm (6.21%),
extracting SIFT features from multiple blocks of an image is highly
time-consuming; it took over 2.5 seconds to calculate SIFT features
for an image (across all convolutional layers). Due to high over-
head to calculate the SIFT features, it cannot be used to compare
image blocks for caching. On the other hand, our histogram-based

Base Base+HF DC DC+HF
VGG-Verydeep-16(MB) 578 289 517 258.5
YOLO(MB) 1,116 558 1,002 501

”Base” indicates the original model.

Table 7: Memory Footprint

approach can compare blocks of an image within 5 ms, making it
much more suitable to be adopted for our caching algorithm.

7.10 Memory Footprint
Table 7 shows the memory footprint for VGG-Verydeep-16 and

YOLO. The memory usage is well within the available memory
spaces of commodity mobile devices, showing that DeepMon man-
ages its memory usage efficiently. Also, the decomposition and
half-floating point approximation reduce the memory usage of Deep-
Mon; they reduce the memory usage from 578MB and 1116MB
down to 258.5MB and 501MB for VGG-Verydeep-16 and YOLO,
respectively. For the models that require large memory spaces,
other optimization techniques such as Singular Value Decomposi-
tion (SVD) [35] can be applied to further reduce the memory usage.

DeepMon mainly uses the memory to load the model and stores
input and output of a layer. DeepMon stores the entire model within
system memory for efficient inference since it is time-consuming to
load the model on-demand from the external memory. On the other
hand, DeepMon only stores input and output of the currently exe-
cuting layer – it discards all output data from previous layers once
they become of no use to keep memory usage as low as possible.
Accordingly, memory usage of DeepMon is capped at the size of
the model and the largest input and output size of a single layer.

8. CONCLUSION
In this paper, we present DeepMon, a system for enabling the

low-latency execution of deep DNNs on a mobile GPU. Deep-
Mon uses various optimisation techniques including the convolu-
tional layer caching, decomposition, and matrix multiplication op-
timizations to achieve significant speedups (over 3-4x) compared
to state-of-the-art current solutions. In particular, DeepMon allows
DNN-based face/object detection models, such as VGG-VeryDeep-
16 and YOLO, to process video frames at 1 to 2 frames per sec-
ond. We implemented DeepMon in both OpenCL and Vulkan and
tested it’s effectiveness using three different mobile GPUs (Adreno
420, Adreno 430, and Mali T 880) and against alternative solu-
tions such as state-of-the-art research systems (DeepX) and plau-
sible cloud-based solutions. Our results show that DeepMon sig-
nificantly outperforms all local-computation-only based solutions
with a marginal drop in accuracy and that DeepMon’s latency and
accuracy combination can only be bettered by using very large
(and expensive) cloud server instances with very good network-
ing connectivity. Videos of DeepMon in action are available at
http://is.gd/DeepMon. Also, DeepMon’s source code can be found
at https://github.com/JC1DA/DeepMon.
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