
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2016

Inferring links between concerns and methods with multi-Inferring links between concerns and methods with multi-

abstraction vector space model abstraction vector space model

Yun ZHANG

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA

Tien-Duy B. LE

Giuseppe SCANNIELLO

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
ZHANG, Yun; LO, David; XIA, Xin; LE, Tien-Duy B.; SCANNIELLO, Giuseppe; and SUN, Jianling. Inferring links
between concerns and methods with multi-abstraction vector space model. (2016). 2016 IEEE
International Conference on Software Maintenance and Evolution: ICSME 2016: Proceedings, 2-10
October 2016, Raleigh, North Carolina. 110-121.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3667

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yun ZHANG, David LO, Xin XIA, Tien-Duy B. LE, Giuseppe SCANNIELLO, and Jianling SUN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3667

https://ink.library.smu.edu.sg/sis_research/3667

Inferring Links between Concerns and Methods
with Multi-Abstraction Vector Space Model

Yun Zhang∗, David Lo†, Xin Xia∗‡, Tien-Duy B. Le†, Giuseppe Scanniello‡, Jianling Sun∗
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China

†School of Information Systems, Singapore Management University, Singapore
‡University of Basilicata, Potenza, Italy

yunzhang28@zju.edu.cn, davidlo@smu.edu.sg, xxkidd@zju.edu.cn, btdle.2012@smu.edu.sg,

giuseppe.scanniello@unibas.it, sunjl@zju.edu.cn

Abstract—Concern localization refers to the process of locating
code units that match a particular textual description. It takes
as input textual documents such as bug reports and feature
requests and outputs a list of candidate code units that are
relevant to the bug reports or feature requests. Many information
retrieval (IR) based concern localization techniques have been
proposed in the literature. These techniques typically represent
code units and textual descriptions as a bag of tokens at one
level of abstraction, e.g., each token is a word, or each token
is a topic. In this work, we propose a multi-abstraction concern
localization technique named MULAB. MULAB represents a
code unit and a textual description at multiple abstraction levels.
Similarity of a textual description and a code unit is now made
by considering all these abstraction levels. We combine a vector
space model and multiple topic models to compute the similarity
and apply a genetic algorithm to infer semi-optimal topic model
configurations. We have evaluated our solution on 136 concerns
from 8 open source Java software systems. The experimental
results show that MULAB outperforms the state-of-art baseline
PR, which is proposed by Scanniello et al. in terms of effectiveness
and rank.

Index Terms—Concern Localization, Multi-Abstraction, Text
Retrieval, Topic Modeling

I. INTRODUCTION

Developers receive bug reports and feature requests through

issue management systems such as Bugzilla and JIRA daily.

The amount of these reports are often too many for developers

to handle [1]. For each of these reports and requests, devel-

opers need to locate the code units that need to be modified

to fix bugs or be extended to implement a particular feature.

Considering a large code base with thousands or even millions

of files, this task is a daunting one. Much manual effort needs

to be spent to locate relevant code units. Thus, an automated

solution is needed.

Concern localization is a software maintenance process of

locating code units that need to be changed in response to

a modification request, such as bug fixing or a new feature

request. Change requests are usually formulated in natural

language, describing the problems or the solutions of the

software system, while the source code also includes large

amounts of text such as comments and identifiers.

Recently, a number of approaches have been proposed to

link bug reports and feature requests to the corresponding code

‡Corresponding author.

units, e.g., [2], [3], [4], [5], [6], [7], [8]. The bug reports and

feature requests could be viewed as concerns,1 and the linking

process of code units to concerns is referred to as concern
localization. Many past studies on bug localization, feature

location, etc. could be viewed as specific instances of concern

localization.

Many existing studies characterize both concerns (e.g.,

feature requests or bug reports) and code units as a bag (i.e.,

multi-set) of tokens at one abstraction level, e.g., [2], [3]. A

textual document (i.e., feature request, bug report, or code unit)

is represented as a set of words that appear in it. Alternatively,

a natural language processing technique referred to as topic

modeling (e.g., [10]) can be applied to infer a set of topics

that appear in the document. A topic is a distribution of words

and is a higher level abstraction of the original words. A set of

topics can be inferred from documents and these topics would

represent these documents. Similarities of documents can then

be measured as the similarities of their representations (i.e.,

their set of words or topics). The code units that are most

similar to the input concerns are output to the end user.

Recently, Scanniello et al. propose a static concern lo-

calization approach named PR which combines textual and

structural information together [11]. PR extracts dependency

among methods in a code base (based on direct references

between methods) and uses the PageRank algorithm to rank

methods based on their importance. Similarities between a

concern and a code unit (i.e., a method) is then measured

by multiplying the textual similarity computed by comparing

the concern and the code unit using vector space modeling

(VSM) and the importance of the code unit estimated using

PageRank. The experiment results show that their approach

leads to better retrieval performance than several baseline

approaches: one that uses textual information only and one that

combines textual and structural information via clustering [12].

While many past studies only compare two documents at

one abstraction level, in this work, we compare documents

at multiple abstraction levels. A word can be abstracted at

multiple levels of abstraction. For example, Raleigh can be

1A concern is a concept, requirement, feature, or property related to a
software system [9]. In this work, we focus on bug reports and feature requests
which are subsets of concerns, but the proposed approach could be used for
generic concerns.

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.51

110

Published in 2016 IEEE International Conference on Software Maintenance and Evolution: ICSME 2016: Proceedings,
2-10 October 2016, Raleigh, North Carolina, pp. 110-121.
http://doi.ieeecomputersociety.org/10.1109/ICSME.2016.51

abstracted to North Carolina, South Atlantic, U.S.A., North

America, Earth, and so on. Two documents might not share

the same word “Raleigh” but they might be about the same

state (i.e., North Carolina), the same country (i.e., U.S.A.), the

same continent (i.e., North America), and so on. By viewing

a document at multiple levels of abstractions the similarity or

difference of two documents can be better assessed.

To represent documents in multiple abstraction levels, we

leverage topic modeling. Topic modeling maps words that

appear in a document to topics. Each word is assigned to

one topic. The fewer the number of topics, the higher the

abstraction level. This is the case as a topic now represents

more words. On the other hand, the larger the number of

topics, the lower the abstraction level. Thus, we can iteratively

apply topic modeling using different numbers of topics to

create multiple abstraction levels. We can then aggregate these

abstractions to measure the similarity between a concern (e.g.,

a bug report or a feature request) and a code unit. We apply

an adaptive Latent Dirichlet Allocation (LDA) with Genetic

Algorithm (GA) to determine a near-optimal configuration for

LDA to tune the topic number of each abstraction level [13].

In the literature, vector space modeling (VSM) has been

shown to outperform many other information retrieval (IR)-

based techniques for concern localization [3], [14]. In this

paper, we extend VSM to consider multi abstraction levels.

We refer to the resultant model as MULti-ABstraction VSM

(MULAB). We evaluate MULAB on 8 open-source software

systems using information from 136 past change requests

which map to a total of 388 changed methods. To demon-

strate that the proposed multi-abstraction concept works, we

compare MULAB with PR, the state-of-the-art proposed by

Scanniello et al. [11].

This paper extends our preliminary study which appears

as an ERA track paper2 of ICSM 2013 [15]. In particu-

lar, we extend our preliminary work in several directions:

(i) Rather than arbitrarily setting the number of topics for

each abstraction level, we use LDA-GA to better tune the

topic numbers; (ii) We strengthen the experimental part by

utilizing concerns from 8 Java software systems to evaluate

our technique; (iii) We have compared the effectiveness of our

multi-abstraction approach against a recently proposed state-

of-the-art approach [11].

Our contributions, which form a super-set of those of our

preliminary study, are as follows:

1) We propose multi-abstraction concern localization. We

represent a document (i.e., a code unit, bug report, or

feature request) at multiple abstraction levels.

2) We propose a technique MULAB that leverages multi-

ple topic models to capture representations of documents

at different abstraction levels. MULAB employs an

adaptive LDA with genetic algorithm (LDA-GA) to tune

the topic numbers of each abstraction level. MULAB

2Two of the three authors of the preliminary study paper are co-authors of
this paper.

then uses these representations to compute the similarity

between a concern and a code unit.

3) We have evaluated MULAB on hundreds of concerns

from 8 Java software systems. Results show that our

proposed multi-abstraction approach outperforms PR by

a substantial margin.

Paper structure. In Section II, we briefly introduce LDA

and GA. In Section III, we present the details of MULAB.

We present our experimental results in Section IV. We review

related work in Section V. We conclude and mention future

work in Section VI.

II. PRELIMINARIES

A. Latent Dirichlet Allocation

A topic model views a document to be a probability distri-

bution of topics, while a topic is a probability distribution of

words. In our setting, a document is a program method in the

code base or a concern, and a topic is a higher-level concept

corresponding to a distribution of words. For example, we can

have a topic “Java Programming” which is a distribution of

words such as “variable”, “inheritance”, “class”, “method”,

and so on.

Latent Dirichlet Allocation (LDA) is a well-known topic

modeling technique proposed by Blei et al. [16], which has

been widely used in software engineering [13], [17], [18].

LDA takes a document-by-term matrix D as input, and outputs

two matrices DT and TT , i.e., a document-by-topic matrix

and a topic-by-term matrix. The document-by-term matrix

D is a term frequency matrix, in which Dij represents the

number of times that the j-th term (i.e., word) appears in the

i-th document. In the document-by-topic matrix DT , DTij

represents the probability of the i-th document to belong to

the j-th topic. Generally, a document is considered to belong

to the topic with the highest probability. In the topic-by-term

matrix TT , TTij represents the probability that the j-th term

belongs to the i-th topic. Likewise, we assign a term to the

topic with the highest probability and then we can conclude

what a topic is about by looking up the terms it contains.

After training, LDA can be used to infer the topic distribution

of a new document (in our case: a new concern). LDA takes

several parameters: the number of topics (K), and two hyper-

parameters α and β. While the hyper-parameters are typically

set to be 50/K and 0.01 respectively following the suggestions

by Blei et al. [16], the values of K needs to be carefully tuned.

There are several implementations for LDA in the literature.

In our work, we use an implementation based on collapsed

Gibbs sampling. This approach typically achieves the same ac-

curacy as the standard LDA implementation while being faster

in its execution [19], [20]. Besides the three parameters, K, α,

and β introduced above, our Gibbs sampling implementation

takes an additional parameter m which specifies the number of

Gibbs sampling iterations. By default, we set m to be 1,000.

B. Genetic Algorithms

A genetic algorithm (GA) is a stochastic search technique

that mimics the process of natural selection. Since its first

111

introduction by Holland [21] in the 1970s, genetic algorithms

have been widely used to generate solutions to optimization

problems using techniques such as mutation, selection, and

crossover. The advantage of GA with respect to other search

algorithms is its intrinsic parallelism, i.e., having multiple

solutions evolving in parallel to explore different parts of the

search space.

The GA search starts with a population of randomly gen-

erated individuals, where each individual (i.e., a chromo-

some) represents a random parameter configuration of the

optimization problem. Generally, the evolution of the whole

population is an iterative process, in which each iteration

is called a generation. In particular, the population evolves

through subsequent generations and, during each generation,

the individuals are evaluated based on a fitness function

that has to be optimized. The fitness function is used to

evaluate the different parameter configurations by generating

different fitness values. For creating the next generation, new

individuals (i.e., offsprings) are generated by: (1) applying a

selection operator, which randomly picks individuals based

on the fitness function (individuals with higher fitness values

are more likely to be selected), (2) recombining, with a

given probability, two individuals from the current generation

using the crossover operator, and (3) modifying, with a given

probability, individuals using the mutation operator. The new

generation of candidate solutions is then used in the next

iteration of the algorithm. Commonly, the algorithm terminates

when either a maximum number of generations have been

produced, or a satisfactory fitness level has been reached for

the population. More details about GA can be found in a book

by Goldberg [22].

III. MULAB

A. Overview

Figure 1 presents the overall framework of MULAB.

Our framework takes as input method corpus and concerns.

Method corpus is a collection of textual documents where each

document corresponds to a method in the code base. Each

document contains identifiers and words that appear in the

source code, documentation (e.g., Javadoc), and implementa-

tion comments of the corresponding methods. Concerns are a

collection of textual documents where each document is either

a bug report or a feature request. For each bug report and

feature request, we extract the text that appears in its title and

description. The output of our framework is a set of ranked

methods for each concern.

Our framework contains four processing steps: prepro-
cessing, topic number tuning, hierarchy creation, and multi-
abstraction retrieval. The purpose of the preprocessing step

is to convert methods and concern documents into a stan-

dard representation, i.e., a bag of words. The preprocessed

documents (i.e., methods and concerns) are then input to the

topic number tuning step. The topic number tuning step uses

a genetic algorithm to determine a near-optimal topic number

of LDA for each abstraction level and these are input to the

hierarchy creation step. The hierarchy creation step applies a

topic modeling technique a number of times to construct an

abstraction hierarchy. The abstraction hierarchy is a collection

of topic models with various settings, where each topic model

is a level in the hierarchy. This abstraction hierarchy is used

by the multi-abstraction retrieval step. In this step, we enhance

a standard text retrieval technique based on vector space

modeling (VSM) by leveraging the abstraction hierarchy. The

goal of the final processing step is to compare a concern (a

query) and a method (a document in the method corpus) by

considering multiple abstraction levels. We elaborate the four

processing steps in the following subsections.

B. Preprocessing Step

We first perform text normalization by removing common

Java keywords (e.g., public, private, class, extends, etc.),

and English stopwords. These words are deemed useless for

retrieving relevant code units (i.e., methods) for concerns as

either they appear in most documents or they carry little

meaning. We also normalize the text by excluding punctuation

marks and special symbols. Thus, we only retain some word

tokens and number literals. Furthermore, we break identifiers

into smaller tokens following Camel casing convention that is

the naming convention adopted by most Java programs. By

performing text normalization, we standardize word tokens in

Method Corpus with those that are used in Concerns.

Next, we apply the Porter Stemming Algorithm3 to reduce

English words into their root forms. For example, “models”,

“modeled”, “modeling” are all reduced to the same root word

“model”. We perform this step to standardize words of the

same meaning but are in different forms. At the end of this

step, we forward preprocessed method and concern documents

to the topic number tuning step to determine best settings to

infer topic models.

C. Topic Number Tuning Step

The parameter K of LDA, which is the number of topics,

is an important parameter that significantly determines LDA

output. An improper value of K for each abstraction level

may affect the performance of our approach. Therefore, we

use an adaptive LDA technique, leveraging genetic algorithm

(GA), to optimize the value of K in each abstraction level.

This approach proposed by Panichella et al. is referred to as

LDA-GA [13].

At the beginning, a population of p randomly-generated

chromosomes is initialized by LDA-GA, where each of chro-

mosome contains a random integer value corresponding to

the number of topics. Then, the population will evolve in n
generations to search for an optimal value of the number of

topics. The population is evolved relying on a fitness function

which corresponds to the Silhouette coefficient. The Silhouette

coefficient is a common evaluation metric for measuring the

goodness of a clustering result [13], [23], [24], [25]. In LDA-

GA, documents are clustered according to the topics inferred

by LDA, where documents assigned to the same topic are

3http://tartarus.org/martin/PorterStemmer/

112

Fig. 1. Overall Framework of MULAB

grouped in the same cluster. From these clusters of documents,

three steps are performed to compute the Silhouette coefficient:

1) Step 1: For a document di, we calculate the maximum

distance from di to the other documents in the same

cluster, which is denoted as a(di). And we calculate the

minimum distance from di to the centroids of the other

clusters not containing di, which is denoted as b(di).

2) Step 2: Given a(di) and b(di), we can calculate the Sil-

houette coefficient s(di) for the document di according

to the following formula:

s(di) =
b(di)− a(di)

max{a(di), b(di)}
3) Step 3: We compute the mean value of all s(di) as the

overall Silhouette coefficient.

The range of the Silhouette coefficient is [−1, 1]. A larger

value of the Silhouette coefficient indicates a better clustering.

When a high Silhouette coefficient is achieved for a particular

value of the number-of-topic parameter of LDA, it means

that the particular parameter value leads to a good result.

The higher Silhouette coefficient is achieved using a particular

parameter value, the more likely the parameter value is kept

in the genetic algorithm (GA)’s evolution process. Therefore,

by using LDA-GA, we can find a suitable number of topics

for each abstraction level.

The original implementation of LDA-GA is written in R

and it runs rather slowly. Thus, we reimplement LDA-GA

approach on the top of Pyevolve,4 an evolutionary computation

framework. By default, we set p as 100 and n as 50 and

Pyevolve’s crossover and mutation rate to be 0.09 and 0.02,

respectively. For each abstraction level, we execute LDA-GA

to generate an optimal value of number of topics. We set

different search ranges for each abstraction level. For example,

4http://pyevolve.sourceforge.net/

let us assume that there are L levels in an abstraction hierarchy.

For the first level, we set the search range to be integers in

the interval [2, D
L] where D refers to the total number of

documents in the data set. We set the search range as such

since we assume there should be at least 2 and at most D
topics (i.e., each document belongs to its own topic). Let us

assume that we a get an optimal result t1 for this range. For

the second level, we set the range to be integers in [t1,
2D
L]

and get the optimal number of topics t2. The process repeats

for the subsequent levels. Finally, for the Lth level, we set the

search range in [tL−1, D], and get the best number of topics tL
for this last level. This set of L topic numbers is then output

to the hierarchy creation step.

D. Hierarchy Creation Step

In the hierarchy creation step, we apply LDA a number of

times to create the abstraction hierarchies with the number

of topics inferred by the topic number tuning step. These

L abstraction levels form an abstraction hierarchy H . Topic

models with fewer topics are higher in the hierarchy while

those with more topics are lower in the hierarchy. We refer

to the number of topic models contained in a hierarchy as the

height of the hierarchy. At the end of this step, we create an

abstraction hierarchy which is used in the next step: multi-
abstraction retrieval.

E. Multi-Abstraction Retrieval

In this subsection, we discuss how to combine an abstraction

hierarchy with a text retrieval model (i.e., VSM). A retrieval

method takes a query (i.e., a bug report) and returns a sorted

list of most similar documents in a corpus (i.e., methods).

In standard VSM, a document is represented as a vector of

weights. Each element in a vector corresponds to a word, and

its value is the weight of the word. Term frequency-inverse

document frequency (tf− idf) is often used to assign weights

to words [26]. The following is the tf − idf weight of word

113

w in document d given a corpus (i.e., a set of documents) D,

denoted as tf-idf(w, d,D):

tf-idf(w, d,D) = log(f(w, d) + 1)× log
|D|

|{di ∈ D|w ∈ di}|
where f(w, d) is the number of times word w appears in

document d, and w ∈ di denotes that word w appears in

document di. Given a query document q, standard VSM

retrieval model would return the most similar documents in the

corpus D. Similarity between two documents is measured by

computing the cosine similarity between the two documents’

vector representations [26].

In MULAB, we integrate abstraction hierarchy into stan-

dard VSM by extending the vector that represents a document.

We added more elements to the vector. Each added element

corresponds to a topic of a topic model in the abstraction

hierarchy, and its value is the probability of the topic to appear

in the document. The size of an extended document vector is

V +
L∑

i=1

K(Hi), where V is the size of the original document

vector, L is the number of abstraction levels in the hierarchy,

and K(Hi) is the number of topics of the ith topic model in

the abstraction hierarchy H . Based on this representation, the

similarity between a query q and document d, considering a

corpus D, calculated using cosine similarity, is as follows:

sim(q, d,D) =

V∑
i=1

tf-idf(wi, q,D)× tf-idf(wi, d,D) +
L∑

k=1

K(Hk)∑
i=1

θHk
q,ti × θHk

d,ti

‖q‖ × ‖d‖
where

‖q‖ =

√√√√ V∑
i=1

tf-idf(wi, q,D)2 +
L∑

k=1

K(Hk)∑
i=1

(θHk
q,ti)

2

and

‖d‖ =

√√√√ V∑
i=1

tf-idf(wi, d,D)2 +

L∑
k=1

K(Hk)∑
i=1

(θHk

d,ti
)2

In the above equations, θHk

d,ti
is the probability of topic ti to

appear in the document d as assigned by the kth topic model

in the abstraction hierarchy H .

For example, assuming that a bug report br after text prepro-

cessing has the following 7 words: “source”(3), “control”(2),

“activity”(2), “reduce”(2), “tool”(1), “root”(1), “list”(1). We

also have two methods m1 and m2. Each of them contains

5 words: m1 ={“source”(7), “control”(4), “activity”(3),
“root”(7), “list”(1)} and m2 ={“source”(10), “control”(10),
“reduce”(5), “tool”(4), “root”(6)}. The number in parenthe-

ses is the number of times a word appears in a document.

Let us assume that an abstraction hierarchy of height 1 is

used, and the topic model has 3 topics. Let us also assume

that there are 1000 methods, and terms in m1 and m2 do not

appear in other methods. Considering only the 7 words, the

representative vectors of br, m1, and m2 are:

Vbr = [1.62, 1.29, 1.43, 1.43, 0.90, 0.81, 0.90, 0.26, 0.72, 0.02]

Vm1
= [2.44, 1.89, 1.81, 0.00, 0.00, 2.44, 0.90, 0.00, 0.99, 0.00]

Vm2
= [2.81, 2.81, 0.00, 2.33, 2.10, 2.28, 0.00, 0.57, 0.43, 0.00]

The first 7 entries in each vector are the weights of the 7

words computed using the tf − idf formula, and the last 3

entries are the rounded probabilities θH1

d,ti
of topics 1, 2 and

3 respectively in the documents. Finally, we calculate cosine

similarities between bug report br and methods m1 and m2.

The results are sim(br,m1) = 0.82 and sim(br,m2) = 0.84.

Thus, m2 is more relevant to bug report br than m1.

IV. EXPERIMENT AND ANALYSES

In this section, we evaluate the effectiveness of MULAB

and compare it with other approaches. The experimental

environment is an Intel(R) Core(TM) i7-4710HQ 2.50 GHz

CPU, 16GB RAM desktop running Windows 10 (64-bit).

A. Dataset

We use datasets from 8 open source Java software systems

(including two versions of one of these systems, namely jEdit)

for our experimentation. In the datasets, there are totally 136

concerns which map to 388 methods. The Java systems are

the same as those used by Scanniello et al. [11] except the

Eclipse 3.5 system for which we do not have the source

code files. In our experiment, the content of a concern is the

textual description retrieved from the title and description of

a bug report or a change request, along with methods that are

relevant to it, i.e., methods modified to address the concern.

Each Java method is treated as a document, and all of the

Java methods form a corpus. Table I shows the statistics of

the data sets used in the experiment after preprocessing. The

first column shows the names of the software systems and

the URLs of their official web pages. The analyzed version

of each system and the number of classes are reported in the

second and third columns, respectively. The total number of

methods in each system is shown in the fourth column, while

the fifth column presents the number of concerns used in the

study. The number of relevant methods is shown in the sixth

column. A short description of each system is presented in the

last column.

B. Evaluation Metrics

Concern localization takes a bug report and a collection of

methods as input, and returns a ranked list of these methods.

We use two performance metrics to evaluate a concern local-

ization solution: effectiveness and rank, which are commonly

used for concern localization studies [11], [12], [27], [28] and

used to evaluate our baseline approach PR.

Effectiveness refers to the position of the first relevant

method in the returned ranked list. Once such a method is

reached, developers can determine what other methods need

to be changed by analyzing the relationships between the

methods. Rank refers to the sum of the positions of the relevant

114

TABLE I
DATASET

System Version Classes Methods Concerns Changed Methods Description

Art of Illusion
(www.artofillusion.org)

2.4.1 453 6,229 8 12 A free, open source 3D modeling and rendering
studio

aTunes
(www.atunes.org)

1.10 419 3,712 16 30 A full featured audio player and manager.

jEdit
(www.jedit.org)

4.2 411 5,384 16 33 A text editor for programming with an extensible
plug-in architecture.

jEdit
(www.jedit.org)

4.3 492 7,095 4 9 A text editor for programming with an extensible
plug-in architecture.

Cocoon
(cocoon.apache.org)

2.2 833 5,612 14 38 A spring-based framework built on separation of
concerns and component-based development.

Derby
(db.apache.org/)

10.7.1.1 3,418 40,278 29 80 A pure Java relational database engine of using
standard SQL and JDBC as its APIs.

Lucene
(lucene.apache.org)

4.0 5,199 24,682 24 112 A full-featured text search engine library.

OpenJPA
(openjpa.apache.org)

2.0.1 4,765 41,474 25 74 An open source implementation of the Java
Persistence API specification.

methods in the returned ranked list. Effectiveness and rank
nicely complement each other; in fact, effectiveness gives us a

best case scenario when an ideal user is performing a concern

localization task. Conversely, rank indicates the total effort

needed to identify all relevant methods for a given concern

by following the ranked list (i.e., a worst case scenario). The

lower the effectiveness and rank values, the better a concern

localization technique is.

C. Research Questions

Research Question 1: How effective is MULAB?
Motivation. We investigate the effectiveness of MULAB and

compare its results with those by Scanniello et al. [11] (PR,

from here on). Answer to this research question would shed

light to whether and to what extent MULAB improves over

the state-of-the-art approach.

Approach. To answer this research question, we report the

results obtained by applying MULAB and PR to our dataset

mentioned in Section IV-A. MULAB takes in one parameter

L which is the height of the abstraction hierarchy. For this RQ,

we set L to be 4. We compute the effectiveness and rank scores

of MULAB and PR for each concern and calculate the number

of concerns for which each of the approach outperforms (or

achieves the same scores as) the other.

To check if the differences in the performance of MULAB

and PR are statistically significant, we apply the Wilcox-

on signed-rank test [29] at 95% significance level on two

paired data of all the 136 concerns which corresponds to the

effectiveness and rank scores of two competing approaches

respectively. We do not apply the test to each system as the

numbers of concerns in some systems are small(e.g., 4 for

jEdit4.3, 8 for Art of Illusion), it makes no sense to do the

statistical test.

We also use Cliffs delta (δ) [30], which is a non-parametric

effect size measure that quantifies the amount of difference

between two approaches. In our context, we use Cliffs delta to

compare MULAB with PR. The delta values range from -1 to

1, where δ = −1 or 1 indicates the absence of overlap between

two approaches (i.e., all values of one group are higher than

the values of the other group, and vice versa), while δ =
0 indicates the two approaches are completely overlapping.

Table II describes the meaning of different Cliffs delta values

and their corresponding interpretation [30].

TABLE II
CLIFFS DELTA AND THE EFFECTIVENESS LEVEL [30]

Cliffs Delta(|δ|) Effectiveness Level

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

|δ| ≥ 0.474 Large

Results. Table III presents the analysis results of effectiveness

scores of MULAB and PR. The second column represents

the number of concerns on which MULAB achieves better

effectiveness scores than PR, the third column indicates the

number of concerns on which PR performs better than MU-

LAB, and the last column shows the number of concerns on

which MULAB and PR achieve the same scores. We also

report the overall results of the 8 systems in the last row. The

results demonstrate that MULAB is more effective than PR

on all but one of the Java systems. For one of the Java systems

(i.e., Art of Illusion), both perform equally well. Among

the 136 concerns, MULAB performs better on 90 concerns,

PR performs better on 41 concerns, and the two approaches

achieve the same effectiveness scores on 5 concerns. We have

also performed a Wilcoxon signed-rank test and found that the

difference in the effectiveness scores is significant with a p-

value of < 0.001. The Cliff’s delta is 0.348, which corresponds

to a medium effect size.

Table IV presents the analysis results of rank scores of

MULAB as compared with those of PR. The second col-

umn represents the number of concerns on which MULAB

achieves better rank scores than PR, the third column indicates

the number of concerns on which PR performs better than

115

TABLE III
DATA ANALYSIS RESULTS ON EFFECTIVENESS SCORES OF MULAB AND

PR. #WINS = NUMBER OF CONCERNS FOR WHICH MULAB
OUTPERFORMS PR, #LOSES = NUMBER OF CONCERNS FOR WHICH

MULAB LOSES FROM PR, #DRAWS = NUMBER OF CONCERNS FOR

WHICH BOTH APPROACHES ACHIEVE THE SAME EFFECTIVENESS SCORES.

Systems #Wins #Loses #Draws

Art of Illusion 4 4 0

aTunes 9 6 1

jEdit4.2 9 7 0

jEdit4.3 3 1 0

Cocoon 8 2 4

Derby 24 5 0

Lucene 19 5 0

OpenJPA 14 11 0

Overall 90 41 5

TABLE IV
DATA ANALYSIS RESULTS ON RANK SCORES OF MULAB AND PR. #WINS

= NUMBER OF METHODS FOR WHICH MULAB OUTPERFORMS PR,
#LOSES = NUMBER OF METHODS FOR WHICH MULAB LOSES FROM PR,

#DRAWS = NUMBER OF METHODS FOR WHICH BOTH APPROACHES

ACHIEVE THE SAME RANK SCORES.

Systems #Wins #Loses #Draws

Art of Illusion 6 6 0

aTunes 19 10 1

jEdit4.2 21 12 0

jEdit4.3 7 2 0

Cocoon 26 6 6

Derby 59 21 0

Lucene 81 31 0

OpenJPA 41 33 0

Overall 260 121 7

MULAB, and the last column shows the number of concerns

on which MULAB and PR achieve the same scores. We also

report the overall results of the 8 systems in the last row.

From the table, we can see that for the 8 systems, MULAB

performs better than that of the PR. The results demonstrate

that MULAB outperforms PR on all but one of the Java

systems. For one of the Java systems (i.e., Art of Illusion),

both perform equally well. Among the overall 388 methods,

MULAB performs better on 260 methods, PR performs better

on 121 methods, and the two approaches achieve the same rank

scores on 7 methods. A Wilcoxon signed-rank test shows that

the difference in the rank scores is significant with a p-value

of < 0.001. The Cliff’s delta is 0.362, which corresponds to

a medium effect size.

MULAB outperforms PR on all the 8 Java systems when
evaluated in terms of effectiveness and rank. Statistical tests
show that the differences are statistically significant and
substantial.

Research Question 2: What is the effect of varying the text
used to represent a concern on MULAB’s effectiveness?
Motivation. By default, we use the text in the summary

and description fields of bug reports and change requests to

represent a concern – which is the setting used for RQ1 and

RQ3. In this research question, we investigate the performance

of MULAB when we only use text in the summary field

and text in the description field independently. We want to

investigate if our default setting is a better option.

Approach. To answer this research question, we conduct an

experiment with three kinds of text to represent a concern:

default (summary and description), summary only, description

only. MULAB takes in one parameter L which is the height

of the abstraction hierarchy. For this RQ, we set L to be 4.

We compare the effectiveness and rank scores achieved by

MULAB using each of the three kinds of text.

Results. The experiment results are shown in Tables V and VI.

For each kind of text (default, summary, or description),

we report the number of wins, loses, and draws for each

Java system. Wins, loses, and draws represent the number

of concerns5 or methods6 for which a particular kind of text

performs the best, performs worse than another, and performs

as well as the others, respectively. We also report the overall

results in the last row.

Table V shows the data analysis results on effectiveness

scores of MULAB using the three kinds of text to represent

a concern. From the table, we can see that the default setting

outperforms the others. Among the 136 concerns, default
performs the best on 66 concerns, summary performs the

best on 46 concerns, and description performs the best on 48

concerns. The effectiveness scores are the same for 6 concerns.

So we can draw the conclusion that our default configuration

(i.e., use both summary and description) outperforms the other

two in terms of effectiveness.

Table VI shows the data analysis results on rank scores of

MULAB using the three kinds of text to represent a concern.

From the table, we can see that the default setting outperforms

the others. Among the 388 methods, default performs the

best on 182 methods, summary performs the best on 116

methods, and description performs the best on 115 methods.

The rank scores are the same for 12 methods. So we can

draw the conclusion that our default configuration (i.e., use

both summary and description) outperforms the other two in

terms of rank.

MULAB with default configuration (which uses text from
both summary and description fields to represent a concern)
performs better than when only text from summary and text
from description are used independently, in terms of both
effectiveness and rank scores.

Research Question 3: What is the effect of varying the
height of the topic model hierarchy on MULAB’s effec-
tiveness?
Motivation. By default, we set the height of the hierarchy

L as 4, which is the setting used for RQ1 and RQ2. In this

research question, we investigate the performance of MULAB

for different values of L.

Approach. To answer this question, we conduct an experiment

with four different hierarchy heights (i.e., L = 1, 2, 3, and 4).

We then compare the results achieved by MULAB using these

5When effectiveness is used as a yardstick
6When rank is used as a yardstick

116

TABLE V
DATA ANALYSIS RESULTS ON EFFECTIVENESS SCORES OF MULAB WITH DIFFERENT KINDS OF TEXT TO REPRESENT A CONCERN. #WINS = NUMBER OF

CONCERNS FOR WHICH A KIND OF TEXT PERFORMS THE BEST, #LOSES = NUMBER OF CONCERNS FOR WHICH A KIND OF TEXT PERFORMS WORSE THAN

ANOTHER, #DRAWS = NUMBER OF CONCERNS FOR WHICH ALL KINDS OF TEXT LEAD TO THE SAME SCORE.

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 3 5 0 4 4 0 3 5 0

aTunes 8 8 0 4 12 0 6 10 0

jEdit4.2 9 6 1 2 13 1 5 10 1

jEdit4.3 2 2 0 2 2 0 2 2 0

Cocoon 9 2 3 3 8 3 5 6 3

Derby 11 18 0 15 14 0 8 21 0

Lucene 13 9 2 8 14 2 9 13 2

OpenJPA 11 14 0 8 17 0 10 15 0

Overall 66 64 6 46 84 6 48 82 6

TABLE VI
DATA ANALYSIS RESULTS ON RANK SCORES OF MULAB WITH DIFFERENT KINDS OF TEXT TO REPRESENT A CONCERN. #WINS = NUMBER OF

CONCERNS FOR WHICH A KIND OF TEXT PERFORMS THE BEST, #LOSES = NUMBER OF CONCERNS FOR WHICH A KIND OF TEXT PERFORMS WORSE THAN

ANOTHER, #DRAWS = NUMBER OF CONCERNS FOR WHICH ALL KINDS OF TEXT LEAD TO THE SAME SCORE.

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 5 7 0 6 6 0 3 9 0

aTunes 15 15 0 7 23 0 10 20 0

jEdit4.2 18 14 1 6 26 1 9 23 1

jEdit4.3 6 3 0 3 6 0 2 7 0

Cocoon 23 11 4 6 28 4 14 20 4

Derby 30 50 0 35 45 0 19 61 0

Lucene 53 52 7 32 73 7 31 74 7

OpenJPA 32 42 0 21 53 0 27 47 0

Overall 182 194 12 116 260 12 115 261 12

different hierarchy heights in terms of effectiveness and rank

scores.

Results. The experiment results are shown in Table VII and

Table VIII. For each hierarchy height, we report the number

of wins, loses, and draws for each Java system. Wins, loses,

and draws represent the number of concerns7 or methods8 for

which a variant of MULAB (with a given hierarchy height)

outperforms the other variants, loses to another variant, and

perform equally well as the other variants, respectively. We

also report the overall results in the last row.

Table VII shows the data analysis results on effectiveness s-

cores of MULAB with different hierarchy heights (L=1,2,3,4).

From the table, we can see that the variant of MULAB

with L set to 4 outperforms the others. Among the 136

concerns, MULAB with L=4 performs the best on 61 con-

cerns, MULAB with L=3 performs the best on 35 concerns,

MULAB with L=2 performs the best on 24 concerns, and

MULAB with L=1 performs the best on 28 concerns. The

effectiveness scores are the same for 16 concerns. So we

can draw the conclusion that our default configuration (i.e.,

L=4) outperforms the other three. We also compare the worst

performing variant (i.e., L=2) with PR, and the result shows

that it outperforms PR for 88 concerns (draws for 42 concerns)

in terms of effectiveness. Wilcoxon sign-rank test shows that

7When effectiveness is used as a yardstick
8When rank is used as a yardstick

the difference in the effectiveness scores is significant at p-

value of < 0.001. The Cliff’s d is 0.353 which corresponds to

a medium effect size.

Table VIII shows the data analysis results on rank scores of

MULAB with different hierarchy heights (L=1,2,3,4). From

the table, we can see that the variant of MULAB with L set to

4 outperforms the others. Among the 388 methods, MULAB

with L=4 performs the best on 137 methods, MULAB with

L=3 performs the best on 89 methods, MULAB with L=2

performs the best on 99 methods, and MULAB with L=1

performs the best on 105 methods. The ranks scores are the

same for 40 methods. So we can draw the conclusion that our

default configuration (i.e., L=4) outperforms the other three.

We also compare the worst performing variant (i.e., L=3) with

PR, and the result shows that it outperforms PR for 259

methods (draws for 121 methods) in terms of rank. Wilcoxon

sign-rank test shows that the difference in the rank scores is

significant at p-value of < 0.001. The Cliff’s d is 0.371 which

corresponds to a medium effect size.

MULAB with L=4 performs better than MULAB with L=1,
L=2, and L=3. The worst performing variant among the four
still statistically significantly and substantially outperforms
PR in terms of effectiveness and rank.

117

TABLE VII
DATA ANALYSIS RESULTS ON EFFECTIVENESS SCORES OF MULAB WITH DIFFERENT HIERARCHY HEIGHTS (L=1,2,3,4). #WINS = NUMBER OF

CONCERNS FOR WHICH A VARIANT OF MULAB OUTPERFORMS THE OTHERS, #LOSES = NUMBER OF CONCERNS FOR WHICH A VARIANT MULAB
LOSES FROM ANOTHER VARIANT, #DRAWS = NUMBER OF CONCERNS FOR WHICH ALL VARIANTS PERFORM EQUALLY WELL.

L=1 L=2 L=3 L=4

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws
Art of Illusion 2 6 0 0 8 0 4 4 0 2 6 0

aTunes 2 11 3 2 11 3 3 10 3 8 5 3

jEdit4.2 4 11 1 3 12 1 3 12 1 8 7 1

jEdit4.3 0 3 1 1 2 1 1 2 1 3 0 1

Cocoon 2 6 6 4 4 6 2 6 6 3 5 6

Derby 7 22 0 5 24 0 9 20 0 15 14 0

Lucene 5 14 5 3 16 5 7 12 5 10 9 5

OpenJPA 6 19 0 6 19 0 6 19 0 12 13 0

Overall 28 92 16 24 96 16 35 85 16 61 59 16

TABLE VIII
DATA ANALYSIS RESULTS ON RANK SCORES OF MULAB WITH DIFFERENT HIERARCHY HEIGHTS (L=1,2,3,4). #WINS = NUMBER OF METHODS FOR

WHICH A VARIANT OF MULAB OUTPERFORMS THE OTHERS, #LOSES = NUMBER OF METHODS FOR WHICH A VARIANT MULAB LOSES FROM ANOTHER

VARIANT, #DRAWS = NUMBER OF METHODS FOR WHICH ALL VARIANTS PERFORM EQUALLY WELL.

L=1 L=2 L=3 L=4
System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws

Art of Illusion 2 10 0 2 10 0 4 8 0 4 8 0

aTunes 5 20 5 5 20 5 6 19 5 14 11 5

jEdit4.2 7 25 1 7 25 1 6 26 1 14 18 1

jEdit4.3 1 7 1 3 5 1 2 6 1 4 4 1

Cocoon 8 14 16 11 11 16 9 13 16 12 10 16

Derby 26 53 1 18 61 1 25 54 1 29 50 1

Lucene 33 64 15 31 66 15 26 71 15 33 64 15

OpenJPA 23 50 1 22 51 1 11 62 1 27 46 1

Overall 105 243 40 99 249 40 89 259 40 137 211 40

D. Threats to Validity

Threats to internal validity relate to errors in our experi-

ments. We have double checked our implementations and all

the experiment results. Hence, we believe there are minimal

threats to internal validity. Still, there could be errors that we

did not notice.

Threats to external validity relate to the generalizability of

our results. We have tried to mitigate this threat by evaluating

our approach on 136 concerns from 8 open source software

systems. The software systems we used in our empirical study

were chosen primarily because of the availability of data

and previous studies. Data of these systems were manually

vetted and a part of these systems were also used in previous

work [11], [12], [31], [32]. Admittedly, the concerns that we

investigate may not sufficiently represent all concerns from

all systems. Finally, our choice of baseline clearly impacts the

results. As future work, we plan to study more baselines.

Threats to construct validity refer to the suitability of our

evaluation metrics. We use effectiveness and rank which are

also used by past software engineering studies to evaluate

the effectiveness of concern localization techniques [11], [12],

[27], [28]. Thus, we believe there is little threat to construct

validity.

V. RELATED WORK

A. Concern Localization

Concern localization is an important and recurring step in

maintenance of a software system. We describe some past

studies in the following paragraphs. Due to space limitations,

our survey is by no means complete.

Text analysis. Wang et al. [3] evaluate 10 information retrieval

techniques and discover that VSM has the best performance.

Rao and Kak also investigate the use of LDA with VSM [14].

However, in their approach, VSM is considered separately

from LDA. The results of the two are combined together using

a weighted sum. The performance of the resulting composite

model is worse than that of VSM. In this work, we integrate

LDA and VSM by constructing a single unified vector and

we use a hierarchy of topic models; the resulting approach

performs better than Scanniello et al.’s approach, which has

been shown to be better than VSM on the same dataset [11].

Text and static analysis. To improve the accuracy of concern

localization, a few hybrid approaches have been proposed,

which combine IR techniques with static program analysis.

Zhao et al. [33] present a two-phase approach to concern

localization, which first applies an IR technique to identify

an initial set of feature-code-unit links based on the textual

description of the concerns and code units, and then enrich

the initial links by exploring program call graph. Similarly,

118

Eaddy et al. [34] employ pruned dependency analysis to boost

the recall of IR or dynamic-analysis-based approaches. Most

recently, Scanniello et al. [11] propose a text retrieval-based

concern localization technique which considers the structural

relationships between source code documents. They use a

link analysis algorithm PageRank to rank the document space

and to improve concern localization. The algorithm uses links

(i.e., dependencies) among documents to organize them into

a hierarchical structure. With their technique, source code

documents are automatically ranked with respect to a textual

query written by the developer, based on the dependencies

and the lexical similarities between the documents. We have

shown that our approach which relies only on textual contents

of concerns and methods are able to outperform the latest

approach by Scanniello et al. on a benchmark dataset used by

many prior studies.

Text, static and/or dynamic analysis. Aside from text and

information gleaned using static analysis, execution traces

have been used to aid concern localization. Liu et al. [35]

apply IR-based filtering to rank the methods being executed

in a single test scenario. Dit et al. [36] define a data fusion

model for feature location that integrates different types of

information to locate features using IR, dynamic analysis,

and web mining algorithms. Our technique does not consider

execution traces since most bug reports and change requests

do not come with execution traces [37].

B. Search-Based Algorithms in Software Engineering

Search-based algorithms have been used to improve various

software engineering activities. Harman and Jones propose

the concept of search-based software engineering and they

demonstrate how to reformulate a SE problem as a search-

based problem [38]. Later, Harman et al. provide a review

and classification of search-based software engineering tech-

niques [39]. Many search-based algorithms have been pro-

posed in the literature; we highlight a number of them in the

following paragraphs.

Li et al. use various search algorithms including greedy

search, hill climbing, and genetic algorithms for test case

prioritization [40]. Canfora et al. construct a classification

model by using multi-objective genetic algorithm for cross-

project defect prediction [41]. Wang et al. propose a search-

based approach for clone detection [42]. A number of search-

based algorithms have been proposed to generate test cases

that satisfy various criteria for various programs [43]. Antoniol

et al. apply a genetic algorithm to allocate staff to project

teams and to allocate teams to work package [44]. Gold et

al. reformulate concept binding problem (i.e., assigning the

most plausible concept for a source code segment) as a search

problem to allow overlapping concept boundaries, and genetic

and hill climbing algorithms are used to search for solutions

to this problem [45].

Mancoridis et al. use a search-based algorithm to group

software modules into clusters by minimizing cohesion and

maximizing coupling [46]. Wang et al. use a genetic algorithm

to improve fault localization; their approach analyzes a set

of failing and correct execution traces to locate faulty basic

blocks that are root causes of bugs [47]. Goues et al. propose

GenProg, which uses genetic algorithm to automatically repair

defects in software projects [48]. Le et al. propose HDRepair

that mines bug fix patterns from version history and subse-

quently uses genetic programming to evolve patches for new

bugs based on mined fix patterns [49]. Le et al. propose to use

program logic specifications to evolve a buggy implementation

until a correct patch is found via genetic programming and

deductive verification [50]. More recently, Panichella et al.

use genetic algorithm to identify near optimal solutions to

customize various stages of an IR process [51]. The proposed

approach explores what kinds of character pruning, identifier

splitting, stop word removal, stemming, term weighting, and

IR techniques are best to be used. Lohar et al. present a

novel approach to trace retrieval, which utilizes a machine-

learning engine to search for the best configuration given an

initial training set of validated trace links [52]. Wang et al.

introduce desktop and parallelised cloud-deployed versions of

a search-based solution that finds suitable configurations for

empirical studies [42]. Xia et al. propose an accurate change

classification technique named collective personalized change

classification (CPCC), which leverages a multi-objective ge-

netic algorithm [53]. They also utilize genetic algorithm to

do cross-project defect prediction; in particular, they propose

a hybrid model reconstruction approach, named HYDRA,

which contains two phases: genetic algorithm (GA) phase and

ensemble learning (EL) phase [54].

In this work, similar to the above approaches, we also

utilize a search-based algorithm. However, we address a new

problem, namely multi-abstraction concern localization. The

approach by Panichella et al. [51] only considers one level of

abstraction.

VI. CONCLUSION AND FUTURE WORK

Existing concern localization studies characterize both con-

cerns and code units as a bag of tokens at one abstraction
level. In this study, we propose a multi-abstraction concern

localization technique named MULAB which combines a

hierarchy of topic models with VSM. We use genetic algorithm

to estimate a near-optimal configuration of the topic models.

Our experiments on 136 concerns from 8 open-source software

systems show that our approach performs better than PR,

the state-of-art approach recently proposed by Scanniello et

al. [11], when evaluated in terms of effectiveness and rank.

In the future, we plan to perform a deeper analysis on cases

where our multi-abstraction approach does not work well, and

improve the effectiveness of our proposed approach further.

We also plan to merge our approach with other advanced

text mining solutions, e.g., paraphrase detection, deep learning,

etc., for more optimal performance.

Acknowledgment. This research was supported by NSFC

Program (No.61572426) and National Key Technology R&D

Program of the Ministry of Science and Technology of China

under grant 2015BAH17F01.

119

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in ETX, 2005, pp. 35–39.

[2] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in ICSE 2003.

[3] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization using
information retrieval: An empirical study on linux kernel,” in WCRE
2011.

[4] T.-D. B. Le, R. J. Oentaryo, and D. Lo, “Information retrieval and
spectrum based bug localization: Better together,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 579–590.

[5] S. Wang, D. Lo, and J. Lawall, “Compositional vector space models for
improved bug localization,” 2014.

[6] S. Wang and D. Lo, “Version history, similar report, and structure:
Putting them together for improved bug localization,” in Proceedings of
the 22nd International Conference on Program Comprehension. ACM,
2014, pp. 53–63.

[7] X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang, “Cross-language bug
localization,” in Proceedings of the 22nd International Conference on
Program Comprehension. ACM, 2014, pp. 275–278.

[8] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on bug
reports,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 14–24.

[9] M. P. Robillard and G. C. Murphy, “Representing concerns in source
code,” ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1, 2007.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[11] G. Scanniello, A. Marcus, and D. Pascale, “Link analysis algorithms for
static concept location: an empirical assessment,” Empirical Software
Engineering, vol. 20, no. 6, pp. 1666–1720, 2015.

[12] G. Scanniello and A. Marcus, “Clustering support for static concept
location in source code,” in Program Comprehension (ICPC), 2011 IEEE
19th International Conference on. IEEE, 2011, pp. 1–10.

[13] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “How to effectively use topic models for software engi-
neering tasks? an approach based on genetic algorithms,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 522–531.

[14] S. Rao and A. C. Kak, “Retrieval from software libraries for bug
localization: a comparative study of generic and composite text models,”
in MSR, 2011.

[15] T.-D. B. Duy, S. Wang, and D. Lo, “Multi-abstraction concern local-
ization,” in Proceedings of the International Conference on Software
Maintenance. IEEE, 2013.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
the Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[17] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 95–104.

[18] S. W. Thomas, “Mining software repositories using topic models,” in
Proceedings of the 33rd International Conference on Software Engi-
neering. ACM, 2011, pp. 1138–1139.

[19] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Sciences, vol. 101, no. suppl 1, pp. 5228–
5235, 2004.

[20] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking lda: Why
priors matter,” in Advances in neural information processing systems,
2009, pp. 1973–1981.

[21] J. H. Holland, Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial
intelligence. U Michigan Press, 1975.

[22] D. E. Goldberg et al., Genetic algorithms in search optimization and
machine learning. Addison-wesley Reading Menlo Park, 1989, vol.
412.

[23] P. J. Rousseeuw and L. Kaufman, Finding Groups in Data. Wiley
Online Library, 1990.

[24] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Density-based clustering
in spatial databases: The algorithm gdbscan and its applications,” Data
mining and knowledge discovery, vol. 2, no. 2, pp. 169–194, 1998.

[25] A. Hotho, A. Maedche, and S. Staab, “Ontology-based text document
clustering,” KI, vol. 16, no. 4, pp. 48–54, 2002.

[26] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. Cambridge, 2008.

[27] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location,” in Software Maintenance, 2009.
ICSM 2009. IEEE International Conference on. IEEE, 2009, pp. 351–
360.

[28] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. C.
Rajlich, “Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval,” Software Engineering,
IEEE Transactions on, vol. 33, no. 6, pp. 420–432, 2007.

[29] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[30] N. Cliff, Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[31] L. Moreno, W. Bandara, S. Haiduc, and A. Marcus, “On the relationship
between the vocabulary of bug reports and source code,” in Proceedings
of International Conference on Software Maintenance, 2013, pp. 452–
455.

[32] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval in soft-
ware engineering,” in Proceedings of the International Conference on
Software Engineering, ser. ICSE. IEEE Press, 2013, pp. 842–851.

[33] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “Sniafl: Towards a
static noninteractive approach to feature location,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 15, no. 2,
pp. 195–226, 2006.

[34] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc, “Cerberus:
Tracing requirements to source code using information retrieval, dynam-
ic analysis, and program analysis,” in Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on. IEEE, 2008,
pp. 53–62.

[35] D. Liu and S. Xu, “A combined concept location method for java
programs,” in Computer Software and Applications Conference, 2007.
COMPSAC 2007. 31st Annual International, vol. 2. IEEE, 2007, pp.
29–42.

[36] B. Dit, M. Revelle, and D. Poshyvanyk, “Integrating information
retrieval, execution and link analysis algorithms to improve feature
location in software,” Empirical Software Engineering, vol. 18, no. 2,
pp. 277–309, 2013.

[37] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards more accurate
retrieval of duplicate bug reports,” in ASE, 2011, pp. 253–262.

[38] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[39] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Computing
Surveys (CSUR), vol. 45, no. 1, p. 11, 2012.

[40] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms
for regression test case prioritization,” IEEE Trans. Softw. Eng.,
vol. 33, no. 4, pp. 225–237, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2007.38

[41] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Multi-objective cross-project defect prediction,” in
Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on. IEEE, 2013, pp. 252–261.

[42] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: a rigorous approach to clone evaluation,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering.
ACM, 2013, pp. 455–465.

[43] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
2004 ACM SIGSOFT international symposium on Software testing and
analysis, ser. ISSTA ’04. New York, NY, USA: ACM, 2004, pp. 119–
128. [Online]. Available: http://doi.acm.org/10.1145/1007512.1007528

[44] G. Antoniol, M. D. Penta, and M. Harman, “A robust search-based
approach to project management in the presence of abandonment,
rework, error and uncertainty,” in Proceedings of the Software Metrics,
10th International Symposium, ser. METRICS ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 172–183. [Online]. Available:
http://dx.doi.org/10.1109/METRICS.2004.4

[45] N. Gold, M. Harman, Z. Li, and K. Mahdavi, “Allowing overlapping
boundaries in source code using a search based approach to concept
binding,” in null. IEEE, 2006, pp. 310–319.

120

[46] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner,
“Bunch: A clustering tool for the recovery and maintenance of
software system structures,” in Proceedings of the IEEE International
Conference on Software Maintenance, ser. ICSM ’99. Washington,
DC, USA: IEEE Computer Society, 1999, pp. 50–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=519621.853406

[47] S. Wang, D. Lo, L. Jiang, Lucia, and H. C. Lau, “Search-based fault
localization.” in ASE, P. Alexander, C. S. Pasareanu, and J. G. Hosking,
Eds. IEEE, 2011, pp. 556–559.

[48] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” Software Engineering,
IEEE Transactions on, vol. 38, no. 1, pp. 54–72, 2012.

[49] X. D. Le, D. Lo, and C. Le Goues, “History driven program repair,” in
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2016, Suita, Osaka, Japan, March 14-18,
2016, 2016, pp. 213–224.

[50] X. B. D. Le, Q. L. Le, D. Lo, and C. L. Goues, “Enhancing automated
program repair with deductive verification,” in ICSME, 2016.

[51] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “Parameterizing and assembling ir-based solutions for software
engineering tasks using genetic algorithms,” in SANER, 2016.

[52] S. Lohar, S. Amornborvornwong, A. Zisman, and J. Cleland-Huang,
“Improving trace accuracy through data-driven configuration and compo-
sition of tracing features,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 378–388.

[53] X. Xia, D. Lo, X. Wang, and X. Yang, “Collective personalized
change classification with multiobjective search,” IEEE Transactions on
Reliability, 2016.

[54] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang, “Hydra: Mas-
sively compositional model for cross-project defect prediction,” IEEE
Transactions on software Engineering, 2016.

121

	Inferring links between concerns and methods with multi-abstraction vector space model
	Citation
	Author

	Inferring Links between Concerns and Methods with Multi-abstraction Vector Space Model

