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(pang, Carey, miron)@cs.wisc.edu 

ABSTRACT - In real-time and goal-oriented database systems, 
the amount of memory assigned to queries that sort or join large 
relations may fluctuate due to contention from other higher- 
priority transactions. This study focuses on techniques that 
enable external sorts both to reduce their buffer usage when they 
lose memory, and to effectively utilize any additional buffers that 
are given to them. We also show how these techniques can be 
extended to work with sort-merge joins. A series of experiments 
confirms that our proposed techniques are useful for sorting and 
joining large relations in the face of memory fluctuations. 

1. INTRODUCTION 
Database management systems (DBMS) are faced with 

increasingly demanding performance objectives. These objec- 
tives include time constraints, as in real-time database systems 
[SIGM88, RTS92], and administratively-defined performance 
goals, as in goal-oriented database systems [Ferg93, Brow931. 
Traditional DBMS scheduling policies are no longer adequate to 
meet such objectives; a DBMS has to prioritize transactions that 
are competing for system resources according to the system-wide 
objectives and the resource requirements of the transactions. A 
consequence of priority scheduling is that transactions may be 
forced to release some or all of the resources that they hold. 
Moreover, executing transactions may also be given additional 
resources as they become available. Active transactions may 
therefore experience changes in resource availability during their 
lifetimes, depending on the priority of competing transactions. 

A common practice in existing database systems is to allocate 
a fixed amount of memory to each query (or subquery) throughout 
its lifetime. Unfortunately, this practice does not work well with 
prioritized transaction scheduling because certain queries, particu- 
larly those that join or sort large relations, can hold on to a large 
number of buffers for extended periods of time. If these queries 
are permitted to hold on to their buffers until they complete, other 
higher-priority transactions may not be able to execute due to a 
shortage of memory. This seriously reduces the effectiveness of 
priority scheduling. Moreover, this practice does not allow a 
query to take advantage of excess memory that may become 
available. There is therefore a need for large queries to be adap- 
tive when memory availability varies. In a recent paper 
[Pang93a], we presented and evaluated techniques that allow hash 
joins to adapt to changes in their allocated memory. This study 
focuses on the same problem for large external sorts, i.e. sorts that 
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involve relations that cannot fit endrcly in the available memory. 
and for sort-merge joins. 

Sorting is frequently used in database systems to product 
ordered query results. It is also the basis of merge join [Rlas77]. a 
join algorithm employed by many existing DBMSs, and it is used 
in some systems for processing group-by queries. An external 
sort consists of two steps: the first step fetches portions of the 
relation into memory to be sorted and written out as sorted runs, 
while the second step (which may involve several sub-steps) 
merges these runs into the sorted resull. For a large relation. both 
the sort step and the merge step can potentially utilize many 
memory pages. Moreover, sorting a large relation may take a 
long period of time. Consequently, during the lifetime of a large 
external sort, the DBMS may wish to appropriate some of the 
sort’s memory to satisfy the memory requirements of higher- 
priority transactions that arrive; buffers that are taken away may 
subsequently he returned after those transactions leave the system. 
Given the prospect of continually having memory taken away and 
given back during its lifetime, it is desirable for an external sort to 
be able to continue its execution after it loses some of its buffers 
(and hence be p&&y pree~rabfe). An external sort should 
preferably also have the capability to subsequently adapt its buffer 
usage to take advantage of any extra memory that may become 
available. To simplify our discussion, we shall henceforth refer to 
these changes in memory allocation as memory fluctuations. 

One way to deal with memory fluctuations would be for tbc 
DBMS to employ virtual memory techniques to page the buffers 
of an affected external sort into and out of a smaller region of 
allocated memory, without having to inform the sort operator. If 
this causes too many page faults, the DBMS could suspend the 
sort altogether. An advantage of this approach is that it shields 
the external sort algorithm from the complexity involved in adapt- 
ing to memory fluctuations. However, there may be scvcrc per- 
formance drawbacks associated with this approach. On one hand, 
suspending external sorts that are affected by memory fluctuations 
reduces the number of active transactions, which may lcatl to 
under-utilization of system resources. Paging the buffers of an 
external sort, on the other hand, is likely to result in thrashing 
when the difference in the amount of available memory and rbc 
number of buffers used is significant. 

In this study, we investigate a different approach, namely. to 
directly involve the affected external sorts in adapting to memory 
fluctuations. We propose and study the performance of ;I 
memory-change adaptation strategy called dynumic splitting. 
Dynamic splitting adjusts the buffer usage of external sorts to 
reduce the performance penalty that results from memory shor- 
tages and to take advantage of excess memory. In addition, we 
study how dynamic splitting works with several different in- 
memory sorting strategies and merging strategies that external 
sorts can employ. We also show how our techniques cm bc 

extended to handle sort-merge joins. To undcrstantl the perfor- 
mance trade-offs of different stmtegies. and IO identify those SII;I- 

tcgiea that adapt well IO changes in system larffer usage. we h;rvr 
constructed il detailed simulation nltdcl ol' ii liillillUSC systctil. 
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This model ennhlcs us to study the behavior of the different stra- 
lcpics over il wide range of system resource configurations. 

‘I’hr rcmnintler ol’ this paper is organized as follows. Section 
1 rrvicws the standard externnl sort algorithm, together with some 
illli)lclllclltution techniques that arc commonly employed by exter- 
nal sorts. The issue of adapting external sorts to memory Ructua- 
lions is addressed in Section 3, which also introduces the dynamic 
splilling slrategy. A detailed simulator of a database system, 
intended for studying the performance of the various strategies, is 
described in Section 4. Section 5 presents the results of a series 
of simulation experiments showing that, over a wide range of sys- 
km conditions. dynamic splitting offers an effective solution to 
the problem of memory fluctuations. Then, in section 6, we dis- 
ws how the same mechanisms that make external sorts 
memory-adaptive can be extended to sort-merge joins. Finally, 
our conclusions arc prescntcd in Section 7. 

2. STANDARD EXTERNAL SORT ALGORITHMS 

An external sort involves two distinct phases. The firs1 phase 
is a spli/ phase, which employs an in-memory sorting method to 
divide the source relation into a number of sorted runs. The 
second phase, the merge phase, consists of one or more merge 
steps. each of which combines a number of runs into a single 
sorted run. The merge phase terminates when only one run 
remains. Within this framework, the choice of the in-memory 
sorting method for the split phase is independent of the choice of 
111c merging strategy. This section reviews the common sorting 
mclhods and merging strategies that are found in the literature. 

2.1. In-Memory Sorting Methods 

Qrtickvort and replacement selection are two in-memory sort- 
ing methods that arc commonly used in external sorts. An exter- 
II~ sort that employs Quicksort first fills the available memory 
with as many pages of the source relation as will fit at a time, 
sorts the tuples in the memory-resident pages, and then writes the 
result 0111 as a sorted run, This process is repeated until the entire 
source rtA;llio~~ has been scanned. Quicksort produces runs that 
;Irc as large as the memory that is allocated for the split phase. 

‘l%c second sorting method, replacement selection, works as 
li~llows: Pages of the source relation are fetched, and the tuples in 
these pages arc copied into an ordered heap data structure. As 
more pages arc fetched, the heap gradually grows in size until it 
occupies all of the available memory. At this point, a page of 
tuplcs is repeatedly removed from the heap and written to the 
current run so as to make space for the next incoming page of 
tuples. The tuplcs that are removed are those that have the smal- 
lest key values (assuming the source relation is to be sorted in 
ascending order) in the heap, subject to the condition that these 
IllpIes must have greater key values than the latest tuple written 
out in the current run. When none of the tuples in the heap satisfy 
this condition, the current run ends and a new run is started. On 
the average, the length of the runs produced by replacement selec- 
tion is twice the memory allocated for the split phase [Knut73], 
i.c. (wire as long as the runs generated with Quicksort. Hence, 
replacement selection creates only half as many runs as Quick- 
sort. This could significantly shorten the merge phase that fol- 
lows. A nice discussion of the details involved in implementing 
rcplaccment sclccction can be found in [Salz90]. 

Although replacement selection can shorten the merge phase, 
it is not always preferable to Quicksort because replacement 
s&&on can also lead to a longer split phase [Grae90, DeWi911. 
With Quicksort, there is a cycle of reading several pages from the 
source relation, sorting them, and then writing them to disk. In 

COntraSt. replacement selection alternates between reading a page 
from the source relation and writing a page to the current run. 
When the source relation and the run reside on the same disk, this 
results in many more disk seeks than in the cast of Quicksofi 
IGrae901. In order to reduce disk seeks in replacement selection, 
a third possible in-memory sorting method is to use replacement 
selection, but to do block writes, i.e. to write several pages (say 
N) OUI to the run each time, instead of only one page al a time as 
in the original replacement selection procedure. A large N will 
result in fewer disk seeks, but at the same time it will reduce the 
average length of the runs. In the extreme case where N is equal 
to the amount of available memory, this replacement selection 
variant will fill all of the available buffers with relation pages, 
then write the sorted pages out together. In this case, the benefit 
of replacement selection is lost, since the length of the runs 
becomes the number of available buffers. Thus, the value of N 
has to reflect a compromise between reducing disk head move- 
ments and increasing the average length of the sorted runs. 
Whether the original replacement selection, Quicksort, or replace- 
ment selection with block writes is preferable depends not only on 
the hardware characteristics of the system, but also on memory 
allocation and the size of the relation to be sorted. 

2.2. Merging Strategies 

The split phase generates a set of n runs which have to be 
combined into a single sorted run in the merge phase. The merge 
phase consists of one or more steps; a merge step takes as input a 
number of sorted runs and combines them into a longer sorted 
run. Each input run of a merge step requires an input buffer, and 
an output buffer is needed for the output run. If at least n + 1 
pages of memory are available for the merge phase, a single step 
suffices to combine all of the n runs. 

When the source relation is large relative to the available 
memory, the database system may not be able to allocate enough 
buffers to a sort operator for it to merge all of its runs in a single 
step. In this case, preliminary merge steps are required to reduce 
the number of runs before the final merge can be carried out. 
Every preliminary merge step incurs extra I/O operations to fetch 
its input runs from disk and to write out its output run, and there is 
also extra CPU cost associated with each preliminary step. For 
this reason, it is desirable for every preliminary step to combine 
as many runs as the available memory allows, so that there will be 
as few merge steps as possible. A simple strategy, then, is for 
each step to merge m - 1 runs, where m is the number of available 
buffers. Figure l(a) illustrates this strategy for the case where n = 
10 and m = 8. The 10 runs are denoted by R l, .., R 1O, and R l-1O 
denotes the run that results from merging R l to R 10. In this case, 
the 10 runs are merged in two steps. The first step merges all the 
tuples in RI to R, into R l-7. Step two, which merges R l-7, Rg, 
Rg and RIO into the final result, begins only after the first step is 
completed. An alternate strategy is to merge just enough runs in 
the first step so that each of the subsequent steps merges m - 1 
runs. Figure l(b) illustrates the second strategy. The first merg- 
ing strategy is called “naive” merging, and the second strategy is 
called “optimized” merging [Grae901. From Figures l(a) and 
l(b), it should be apparent that “naive” merging is more expensive 
than “optimized” merging, as the final step has to process all of 
the tuples in the relation in both strategies. The preliminary steps 
incurs extra cost, and should therefore merge as few runs as possi- 
ble (without increasing the number of merge steps) to keep the 
extra cost down. By merging more runs, “naive” merging 
increases the cost of the preliminary steps unnecessarily. Thus, 
the general rule is to adopt “optimized” merging [Grae93]. 
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Figure 1: Merging Strategies 

Another important aspect of the merging strategy concerns the 
choice of input runs. All of the merge steps, other than the final 
merge, have a choice of input runs and should thus merge the 
shortest possible runs. Such a choice minimizes the cost of the 
preliminary merges in two ways: Firstly, choosing the shortest 
runs for a given merge step obviously minimizes its cost. 
Secondly, the output run of an early merge step may be selected 
as one of the input runs of a subsequent preliminary merge step. 
By minimizing the size of the input runs of the early merge step, 
and hence the size of its output run, the cost of the later merge 
step is also reduced because it needs to merge fewer tuples. For 
these reasons, all of the algorithms studied in this paper adopt the 
policy of merging the shortest possible runs at any given step. 

3. ADAPTIVE EXTERNAL SORT ALGORITHMS 

In the previous section, we assumed that the amount of avail- 
able memory remains the same throughout the lifetime of an 
external sort. As discussed in the introduction, however, it is 
desirable for a sort operator to be able to execute with a varying 
number of buffers. This section gives a detailed description of a 
set of alternative memory-adaptive external sort algorithms. 
Since the in-memory sorting methods for the split phase are 
independent of the merging strategies for the merge phase, we 
shall first treat the in-memory sorting methods separately before 
addressing the merging strategies. Finally, we end the section by 
introducing some notation that will bc used to denote different 
external sort algorithms throughout the rest of the paper. 

3.1. Split-Phase Adaptation 
If an external sort is in the split phase when it is asked by the 

DBMS to release a page, the sort can immediately do so if it has 
unused buffers, i.e. buffers that are not currently occupied by 
tuples from the relation. If all of its buffers are in use, however, it 
will have to clear some or all of the memory-resident tuplcs by 
writing them to output runs before it can free any of its buffers. 
In the case of typical implementations of Quicksort, all of the 
tuples in memory have to be sorted and written out as a new run 
before a page can be released’. When there are many tuples in 
memory, this may result in considerable delays. In contrast, with 
replacement selection, the sort needs only to remove a page of 
tuples from the heap, write the page out, and then release the 
empty page to the DBMS. Next, we consider the case where an 
external sort is given additional buffers in the split phase. With 
Quicksort, if the external sort is in the process of filling its 
memory with relation pages, the sort can immediately fill the 
newly allocated buffers with more relation pages. If the external 

’ To implement Quicksort efficiently. sorting is usually not carried out 
on the actual tuples. Instead, a list of (key, pointer) pairs is created and 
sorting is done on this list. AHer the sorting is complete. tuples are it- 
trieved from their respective pages by following the pointers assoeiatcd 
with the keys. Thus. in a given step of the split phase, it is not possible lo 
simply release a buffer after the first page of tuples has been written out. 

sort has already started sorting its tuples to create a run, however. 
the new page will remain unused until the run has been written 
out and the external sort resumes fetching relation pages. In Ihc 
case of replacement selection, the new buffer can immediately be 
used to fill the next incoming page of tuples. Thus, replacement 
selection is much more responsive than Quicksort in adapting to 
memory fluctuations. 

3.2. Merge-Phase Adaptation Strategies 
In contrast to the split phase, the merge phase does not adapt 

to memory tluctuations as easily. One possible solution is to 
adopt hybrid approaches that allow a sorI operator to adapt to 
memory fluctuations only in the split phase. leaving the DBMS to 
suspend an affected external sMt or page its buffers when iC is ill 
the merge phase. Besides the drawbacks of suspension and pag- 
ing that we discussed in the introduction, these hybrid approachcs 
would also prevent an external sort from taking advantage ol 
extra memory (beyond the initially allocated amount) Ihn( may 
become available while the sort is in the merge phase. In this 
study, we will therefore explore a third alternative. called &urnic. 
splitting, that actively involves an affected sort in adapting IO 
memory fluctuations that occur during the merge phase. 

3.2.1. Suspension 

The most straightforward approach to deal with memory shor- 
tages that occur during the merge phase of an external sort is for 
the DBMS to suspend the external sort altogether. The buffers of 
the external sort can be taken away once it has been suspcndcd. 
The only information that is needed to resume the merging is the 
position of the next tuple in each input run. Since the sort opern- 
tor already keeps track of this information for normal merging 
operations, no special mechanisms are necessary for suspension. 
Our implementation of suspension fetches all the input buffers 
together when the external sort resumes. This reduces disk seek 
costs, as opposed to fetching the buffers on demand. 

3.2.2. Paging 
Another obvious way to deal with memory Iluctuations during 

the merge phase is to resort to MRU paging whencvcr the 
memory available to an external sort is insufficient to hold all the 
input buffers for its current merge step. Our impiemcntation of 
paging works as follows: The external sort keeps a copy of the 
current tuple of each input run in its private work space, where the 
tuples are merged. After writing out the smallest tuple to the out- 
put run, the external sort determines which input run this tuplc 
came from, and then attempts to copy the next tuple from this 
input run. If the buffer for this input run is no longer in memory, 
the most recently used buffer is selected for replacement. and a 
disk read is issued to bring the required buffer back in. As with 
suspension, paging enables an external sort to relinquish its 
buffers as and when they are needed for replacement or for 
release to the DBMS. 

3.2.3. Dynamic Splitting 
Dynamic splitting is a strategy that is designed to adapt the 

merge phase of external sorts to varying memory allocation. 
When a shortage causes the available memory to go below the 
requirement of an executing merge step, this strategy adapts by 
splitting the merge step into a number of sub-steps that each tits 
within the remaining memory. When additional buffers are given. 
the merge steps can bc combined into larger steps, i.e. steps that 
merge more runs, to take advantage of the now-larger memory. 
The details of the dynamic splitting strategy are presented below. 

Suppose that a sort operator is currently executing a merge 
step, which can he eilhcr the final mcrgc of all cxistinp runs or iI 
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preliminary merge step. If a memory shortage occurs, causing the 
available memory to become less than the buffer requirement of 
the current merge step, the sort operator can immediately stop the 
c,,rrenl step, split it into a number of sub-steps, and then start exe- 
culing the lirst sub-step. To illustrate this, suppose that the merge 
phase of an external sort started with IO runs and I I buffers, 
which allowed all runs to be merged at once as in Figure 2(a). 
While the sort is executing this merge step, the available memory 
is reduced to 8 buffers. The sort operator responds by splitting 
Ihc merge into a preliminary step that merges R, to R4 into R,4 
(assuming “optimized” merging), and a final step that merges 
H , 4 with KJ to X,,, into R,-,,,. After the split, the sort immedi- 
alcly starts to work on the preliminary step. (Note that some of 
the tuples from R, to R4 have already been merged into RI-,,, 
prior to the split, so only the tuples that still remain in R, to X4 
will be merged into RI4 by the preliminary step.) This is illus- 
truted in Figure 2(b), where the preliminary step, the merge step 
with the salid arrows, is the one that is being executed. The final 
step. which has dotted arrows, is inactive. Suppose that no further 
changes in memory allocation take place, and that the external 
sort completes the preliminary step without interruption. There 
:,rc now only 7 runs, and the sort is ready to resume the final 
merge step. At this stage, RI-,,-, contains some of the tuples from 
K , to R ,,, that were merged prior to the split, R5 to R ,,, each con- 
ti,ins some remaining tuples. and the remaining tuples of R, to R4 
ilrc now in R14. To get the entire sorted result, the sort needs to 
complete R ,-,“. This is achieved by merging R ,-4 with whatever 
is left in R5 to H ,,,, appending the result to R ,-,” (Figure 2(c)). 

I laving discussed how dynamic splitting breaks a merge step 
into sub-steps in response to a memory reduction, we now present 
Ihc provision in the dynamic splitting strategy that allows an 
cxtemal sort to combine existing merge steps to take advantage of 
extra buffers as they become available. We shall introduce this 
provision by continuing our earlier example. Suppose that, while 
Ihc sort is executing the preliminary step (the step with the solid 
arrows) in Figure 2(b), the available memory increases to 1 I 
pages apain. Instead of completing this step before performing 
(Iv linal merge as discussed previously, the sort operator can 
switch to the tinal merge directly. Figure 3 illustrates the process 
involved. At this stage, R,-,,, contains some of the luples from 
HI to R ,,) that were merged prior to the split. To produce the final 
rcsul~, the sort operator needs to append to RImro the rest of the 
luples that were originally left in R, to R ,“. However, since the 
sort has already been executing the preliminary step, some of the 
leftover tuples in H, to R4 are now in R ,+ It is therefore neces- 
s;,ry for the external sort to first merge R,A with Rs to RIO. 
appending the result to R ,+. This is shown in Figure 3(a), where 
the linal step, which has solid arrows, is now active and the prel- 
iminary step is inactive. Once R ,A becomes empty, the sort can 
proceed to combine the final step with the preliminary step to pro- 
duct a new final step that again merges the tuples remaining in R, 
IO N ,,,, adding them to R ,-,,, as well (Figure 3(b)). 

Ri-10 RI-IO Rl-IO 
4 

\, 
f4 ‘\ 

I 
RI> b 

‘\ // 
4 b.,, 

t 
RI -** RIO -a* RIO RI-4 R5 --- Rio 

(u) (b) 
Figure 2: Splitting 

(d 

Although our only example shows a split that breaks a merge 
step into two sub-steps, the splitting procedure. can bc recursively 
applied lo break a merge step into more than two sub-steps. For 
example, the preliminary step in Figure 2(b) can be split again if 
memory decreases further while the step is being executed. Simi- 
larly, it is possible lo combine more than two merge steps by 
applying the combining procedure recursively. To fully exploit 
the capabilities of dynamic splitting, the merge phase always 
starts with a step that combines all of the runs produced in the 
split phase. If the available memory is insufficient to execute this 
step, it is immediately split into sub-steps that fit in memory. This 
enables an external sort to take advantage of excess memory that 
may become available later by combining existing merge steps 
into steps that merge more runs, helping the sort to recover from a 
low initial memory allocation if memory happens to be in short 
supply at the beginning of the merge phase. 

There is an important difference between dynamic splitting 
and the splitting process that was described in Section 2.2, which 
we will call static splitting to distinguish it from dynamic split- 
ting. When an external sort has more runs to merge than its 
memory allows, static splitting is used to initiate preliminary 
merge steps to reduce the number of runs. Once started, a merge 
step has to execute to completion before another merge step can 
be executed. In contrast to static splitting, dynamic splitting 
allows an external sort to switch between merge steps, if it so 
desires, without having to wait for any step to complete. This 
ability to switch to a different merge step immediately is essential 
if an external sort is to effectively adapt to both increases and 
reductions in its allocated memory during the merge phase. 

3.3. Notation for External Sort Algorithms 

In this section, we have discussed three in-memory sorting 
methods and three merge-phase adaptation strategies that will be 
evaluated in the performance study that follows. In addition, we 
will compare the relative merits of “naive” versus “optimized” 
merging for the following reason: While “optimized” merging 
always performs at least as well as “naive” merging for a fired 
memory allocution. it is not obvious that this is still the case if the 
memory allocation of a sort operator may be reduced while it is 
executing. In such situations, “naive” merging may turn out to be 
better because it utilizes all of the currently available buffers right 
away (while the sort operator still has them). Since the choice of 
in-memory sorting method, merging strategy and merge-phase 
adaptation strategy are all independent, there are 18 possible 
external sort algorithms, each employing a different combination 
of in-memory sorting method, merging strategy, and merge-phase 
adaptation strategy. To differentiate between the algorithms, we 
shall denote each algorithm by a string of the form X,X2X3, 
where X, is either repfl, quick, or replN (replacement selection, 
Quicksort, or replacement selection with N-page block reads and 
writes), X2 is either nuive or opt (“naive” merging or “optimized” 
merging), and X:, is either susp, page, or split (suspension, pag- 
ing, or dynamic splitting). Thus, for example, quick.opt,su.sp 

(a) W 
Figure 3: Combining Merge Steps 
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denotes external sort with Quicksort, optimized merging, and 
suspension. This notation is summarized in Table 1. 

4. DATABASE SYSTEM SIMULATION MODEL 

To aid in our on-going research on real-time databases, we 
have constructed a simulation model’ of a centralized database 
system. The portion of our simulation model that is relevant to 
this study is shown in Figure 4. There are five components: a 
Source that generates transactions one after another, and collects 
statistics on completed transactions: a Transaction Manager that 
models the execution details of transactions, including external 
sorts; a Buffer Manager that implements the buffer management 
policy; and a CPU Manager and a Disk Manager that are respon- 
sible for managing the system’s CPU and disks,respectively. In 
this section, we describe how the simulation model captures the 
details of the database, workload, and various physical resources 
of a database system. The simulator is written in DeNet [Livn90]. 

To investigate how different memory-adaptive mechanisms 
react to fluctuations in the amount of available memory, we simu- 
late an environment where sorts commonly have to contend fol 
memory with other “transactions” that have small memory 
requirements and, occasionally, with “transactions” that have 
large buffer demands. The memory contention experienced by 
the active sorts is modelled here by two other streams ol’ compet- 
ing memory requests, one small and the other large. The genera- 
tion of small memory requests follows n Poisson distribution with 
a mean rate of &,,, and the proportion of the total memory that a 
small request takes up varies uniformly between 0% and 
MemThres. Moreover, the duration that a small request remains 
in the system after receiving its required memory is modcllcd 
using an exponential distribution with a mean of p,,N. Similarly. 
large memory requests arrive at a mean rate of hk,.Xe and have :I 
mean duration of c(I.,.~~. Each large request occupies between 0% 
and 100% of the total memory. 

4.1. Database and Workload Model 4.2. Physical Resource Model 

Table 2 summarizes the database and workload model param- 
eters that are relevant to this study. Our objective is to simulate a 
stream of external sorts on different relations. To facilitate this, 
the database consists of NumRef relations. Each relation i (1 I i < 
NumRel), in turn, has a size of RelSizei MBytes arid occupies con- 
tiguous pages on disk. If there are multiple disks, all relations are 
horizontally partitioned [Ries78, Livn87] across all of the disks. 
To minimize disk head movement, the relations are allotted the 
middle cylinders of the disks; temporary files occupy either the 
inner cylinders or the outer cylinders. 

Table 3 lists the parameters that specify the physical resources 
of our model, which consist of one CPU, multiple disks and main 
memory. There is a single CPU queue that is managed by ~hc 
first-come-first-serve (FCFS) discipline. The MIPS rating of the 
CPU is given by CPUSpeed. Table 4 gives the cost of various 
CPU operations that are involved in the execution of extcrnill 
sorts. These CPU costs are based on instruction counts taken 
from the Gamma database machine [DeWi90]. 

The workload is made up of a series of external sorts. A new 
sort is submitted to the system only when the previous sort has 
been completed. Each sort involves a relation R, which is uni- 
formly selected from among the relations in the database. 

Turning to the disk model parameters in Table 3, #Disks 
specifies the number of disks attached to the system. Each disk 
has its own queue and disk requests are serviced according to the 
elevator algorithm. The characteristics of the disks are also given 
in Table 3. Using the parameters in this table, the total time 

Meaning 
# of relations in the database 
Size of relation i 

Database 
NumRel 
RelSizei 
TupleSizei 
workload 
MemThres 

small memory request 
h small Arrival rate of small requests 

P” 
Duration of small requests 

hlrgr Arrival rate of large requests 
Plarar Duration of lame reauests 

Table 2: Database and Workload Model Parameters 

Parameter 
In-Memory Sorting 

Meaning 

repll _ - 
quick 

Replacement selection 
Quicksort 
Replacement selection with 
N-page reads and writes 

“Naive” merging 
“Optimized” merging 

Merging Strategy 
naive 
opt 

Merge-Phase Adaptation 
su.fP Suspension. 
Page Paging 
split Dynamic Splitting 

Table 1: Notation for External Sort Strategies 
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Figure 4: Database System Model 
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J F 

Avg tuple size of relation i 
Meaning 

Max. % buffer demand of a 

D. Value 
IO 
20 MBytes 
256 Bytes 
D. Value- 

20% 

I rcqlsec 
0.8 second 
0. I reqlscc 
5 seconds 

.- 
Parameter Meaning D. Value 
CPUSpeed MIPS rating of CPU 20 MIPT 
#Disks Number of disks I 
SeekFactor Seek factor of disk 0.000617 
RotateTime Time for one disk rotation 16.7 msec 
#Cylinders Number of cylinders per disk 1500 
CylSize Number of pages per cylinder 90 pages 
PageSize Number of bytes per page 8 KHyccs 
M Total number of buffer oages 0.3 MBvtcs 

Table 3: Physical Resource Model Parameters 

Copy a tuple to OUI~UI buffer 

Table 4: Number of CPU Instructions Per Opcratiotl 
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recluired to complete a disk access is computed as: 

DiskAccess = Seek + RotateDelay + Transfer 
The time required to seek across n tracks is [Bitt88]: 

Seek’l’imc (n) = SeekFactor x G 

Finally. the total memory size is M MBytes. A reservation 
mechanism is provided to allow operators, including sorts, to 
reserve buffers. Reserved buffers are managed by the operators 
themselves. Page replacement for non-reserved pages is by LRU. 

5. EXPERIMENTS AND RESULTS 

In this section, the database system simulator described in 
Section 4 is used to evaluate the performance of the alternative 
memory-adaptive external sort algorithms. We begin with an 
experiment where the amount of memory that is allocated to each 
external sort remains unchanged throughout its lifetime. This 
experiment is intended to give us an initial understanding of the 
trade-offs between differeru in-memory sorting methods and 
merging strategies before we delve into the complexities intro- 
duced hy memory fluctuations. We then present a baseline model 
that is used to study the performance impact of memory fluctua- 
tions, and further experiments are carried out by varying a few 
parameters each time. The performance metric of interest here is 
1 he average sort response time. 

5.1. No Memory Fluctuation 

As mentioned above, our first experiment is designed to study 
the trade-offs of different in-memory sorting methods and merg- 
ing strategies in the context of fixed memory allocation. For this 
experiment. we let IlRll be 20 MBytes, and vary M, the total sys- 
tcm memory. Every external sort will execute with all of the sys- 
lcrn memory throughout its lifetime. h,,,” and &,, are both set 
lo 0 request/second, so that there is no memory fluctuation. The 
rest of the parameters are assigned their default values in Tables 2 
and 3. Finally, for the in-memory sorting method repM, we let N 
he 6 (meaning that tuples are removed from the heap and written 
out in blocks of 6 pages). This choice was made because, for our 
system configuration, N = 6 leads to a considerable reduction in 
the average per-page disk access time over N = 1, as indicated in 
‘I’ahle 5. without incurring the penalty of a significant increase in 
I hc numher of sorted nms that the split phase generates, as will be 
evident from our experimental results. (Note that the average 
per-page disk access time shown in Table 5 includes the time 
spent waiting for service, i.e., including waits for completions of 
previously issued asynchronous disk write requests.) 

Figure 5 presents the response times for the various combina- 
tions of in-memory sorting methods and merging strategies. The 
average number of sorted runs produced by each in-memory sort- 
ing method, together with the corresponding average number of 
merge steps and split-phase duration, are given in Table 6. Since 
there is no memory tluctuation in this experiment, the merge- 
phase adaptation stralegies do not come into play here. The figure 
shows that all of the response times drop sharply initially as M is 
increased. As M grows beyond 0.6 MBytes, however, all of the 
curves level off. This behavior can be attributed to the reduction 
in the number of merge steps that takes place as the average 
number of generated runs decreases. As is evident from Table 6, 
the number of required merge steps initially drops drastically. 
However, once M reaches 0.6 MBytes, all three in-memory sort- 
ing methods produce fewer runs than the number of available 
buffers; thus, there can be no further reduction in the number of 
merge steps (until M grows to 20 MBytes, at which point there 
will he a sudden drop in response time because it will then be pos- 
sihlc IO sort the entire relation all at once in memory). In this 

region, increasing M leads to fewer sorted runs at the end of the 
split phase, and hence lower disk seek costs when the runs are 
merged; this accounts for the slight reductions in response time at 
the right-hand side of Figure 5. 

Comparing the response times of the three in-memory sorting 
methods, it is clear that repl 1 consistently yields the worst perfor- 
mance. This is due to the large number of random I/OS that repf 1 
produces, as the external sort alternates between reading a relation 
page and writing a page to tbe output run. In contrast, Quicksort 
writes out an entire run each time, thus producing considerably 
fewer random I/OS. Quicksort therefore has a much shorter split 
phase than rep1 1, which more than offsets the longer merge phase 
that results from the larger number of runs that Quicksort gen- 
erates. (Similar observations about the relative trade-offs between 
Quicksort and rep1 1 were made in [Grae90, DeWi911.) By writ- 
ing multiple pages instead of only a single page each time as in 
repf I, rep1 6 is able to sigtificantly reduce tbe number of disk 
seeks in replacement selection, bringing the duration of its split 
phase much closer to that of quick. Moreover, the number of runs 
that rep1 6 creates is only marginally more than repf 1 in almost all 
cases. Thus, rep1 6 is clearly superior to rep1 1. Between quick 
and rep1 6, rep1 6 is the winner when M < 0.6 MBytes, whereas 
quick is just slightly faster for M > 0.6 MBytes. Tbe trade-off 
between quick and rep1 6 is again due to the number of runs that 
the two approaches generate, relative to the amount of allocated 

N 1 1 2 4 6 8 10 12 
Time 1 62 36 26 23 22 21 21 

Table 5: Average Per-Page Disk Access Time (msec) 
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-?- 0.07 0.14 0.21 0.32 0.42 0.63 0.84 1.40 

(9) (18) (27) (41) (54) (81) (108) (179) 

280 149 101 65 52 34 25 15 
141 75 52 33 27 18 13 8 
202 89 57 35 28 19 14 9 

32.0 9.0 4.0 2.0 1.0 1.0 1.0 1.0 
15.7 4.2 1.9 1.0 1.0 1.0 1.0 1.0 
22.4 4.9 2.1 1.0 1.0 1.0 1.0 1.0 

34 31 29 29 28 27 27 27 
89 86 85 84 83 83 82 82 
34 31 31 31 30 30 30 30 

Table 6: Performance Results for No Memory Fluctuation 



memory. Table 6 shows that for M c 0.6 MBytes, quick results in 
more merge steps, and consequently a longer merge phase. than 
repl6. This is why rep1 6, which creates significantly fewer runs 
than quick, is superior there. For M 1 0.6 MBytes, there is 
enough memory to merge all of the runs produced by quick in a 
single step, so repl6’s fewer runs gives it little advantage over 
quick. In this region, the duration of the split phase becomes the 
dominant factor. Since Quicksort requires fewer CPU instruc- 
tions than replacement selection, which incurs extra CPU cost in 
copying tuples between its heap structure and the input/output 
buffers, quick is marginally faster than rep1 6 in this region. 

Next, we turn our attention to the two merging strategies, 
optimized merging (opt) and naive merging (naive). Figure 5 
shows that opt consistently leads to shorter response times than 
naive for M < 0.4 MBytes, whereas the two merging strategies 
yield identical performance when M > 0.4 MBytes. Recall that 
naive and opt differ in the number of runs that they combine in 
the first preliminary merge step. The output run of the first prel- 
iminary merge step may in turn be combined by a subsequent 
merge step, the output run of which may be. the input of yet 
another merge step, and so on. The decision of naive to include 
more runs in the first preliminary step thus leads to an increase in 
the cost of each of these affected steps [Grae93]. The more merge 
steps there are, the larger the number of affected steps becomes, 
and consequently the higher the penalty of naive gets. For small 
M values, the number of sorted runs that the merge phase has to 
combine is large relative to the available memory, as shown in 
Table 6. This results in many merge steps, causing the observed 
differences in response time between naive and opt in Figure 5. 
Conversely, when M is large, the number of merge steps required 
is small, and so is the penalty of choosing naive over opt. As M 
increases, the number of merge steps reduces gradually until, 
when only a single merge step suffices to combine all of the runs, 
there is no difference between the two merging strategies. 

Having now gained initial intuition regarding the performance 
characteristics and the relative merits of the in-memory sorting 
methods and merging strategies for fixed memory allocation, we 
can now proceed to evaluate their performance in the face of 
memory fluctuations. We will also explore how they interact with 
the merge-phase adaptation strategies described in Section 3.2. 

5.2. Baseline Experiment 
In our baseline experiment, we simulate a situation where the 

relation to be sorted is much larger than the available memory. 
This is done by setting II@ to 20 MBytes and M to 0.3 MBytes. 
Small memory requests arrive at an average rate of li,,N = 1 
request/second and stay in the system for an average of prd, = 
0.8 second. MemThres is set to 20%. Large memory requests 
arrive at &ge = 0.1 request/second, and each large request lasts 
an average of phVc = 5 seconds. The parameter settings for this 
experiment are summarized in Tables 2 and 3. 

Figure 6 gives the response time of the various external sort 
algorithms for this experiment. The figure shows a wide spread 
of response times, from a high of 320 seconds produced by 
quick,opt,susp down to a low of 141 seconds, using 
rep1 6,opt.split. This indicates that the choice of external sort 
algorithm can have a very significant performance impact. We 
observe that the four shortest response times are all produced by 
external sorts that employ split. Moreover, the five worse per- 
formers all employ susp. To understand the reason behind these 
behaviors, we shall analyze the merge-phase adaptation strategies 
before considering the in-memory sorting methods and the merg- 
ing strategies further, as the merge-phase. adaptation strategies 
appear to exert the greatest influence on performance. 

The response times given in Figure 6 are also listed in Tahle 
7. which is organized to highlight the performance tradeoffs 
associated with the different merge-phase adaptation strategies. 
For example, with Quicksort and naive merging, the first row of 
Table 7 shows that the average response times are, mspectively, 
307 and 228 seconds when suspension and paging are used, while 
only 178 seconds are required in the case of dynamic splitting. as 
indicated by the third column of the same row. All three mcrgc- 
phase adaptation strategies have minimal delays in responding to 
memory fluctuations, as they allow an external sort to release the 
memory occupied by its input buffers immediately upon request. 
before taking merge-phase adaptation strategy-specific actions IO 
adjust to the memory shortage. In fact, the observed avcrapc 
delays for the merge phase are consistently less than I msec; for 
this reason, we do not show the delays caused by the merge-phnsc 
adaptation strategies here. In terms of response times, howcvcr, 
there is a marked difference between the performance of the three 
merge-phase adaptation strategies. Among the three, suspension 
(susp) has the worst response times because it does not allow an 
external sort to make any progress when there is a memory shor- 
tage. Paging (page) and dynamic splitting (split), in contrast. both 
enable an external sort to keep progressing, which is why they arc 
faster than susp. When there is a memory shortage, page incurs 
extra I/OS in paging its input buffers. ‘This is a better alternative 
than susp, but the penalty of paging can be high because the 
number of extra I/OS is proportional to the extent of the memory 
shortage. In the case of split. an external sort deals with memory 
shortages by initiating a merge step that fits the remaining 
memory. This reduces the number of input runs for subsequent 
merge steps, thereby making them less vulnerable to memory 
fluctuations. Moreover, splif is able to take advantage of excess 
buffers when they become available by switching to a merge step 
that combines more runs. This is why, as expected, split is able to 
produce shorter response times than page. 

Next, WC evaluate the trade-offs among the in-memory sorting 
methods. To facilitate interpretation of the results, we reorganize 
Table 7 into Table 8 to highlight the impact of the different in- 
memory sorting methods. Also included in the table are the aver- 
age duration of the split phase, the average number of sorted runs 
produced in this phase, and the average split-phase delay (the time 
that each in-memory sorting method takes to respond to memory 
shortages). In the table, all the algorithms that employ the same 
in-memory sorting method have the same average number 01 
runs, split-phase duration and split-phase delay, as the merging 
strategies and merge-phase adaptation strategies concern only the 
merge phase and not the split phase. Due to the much longer 
split-phase durations that result from excessive disk seeks, as seen 
in Section 5.1, replacement selection (repll) is almost always 
slower than Quicksort (quick) and replacement selection with 
block writes (repl6). The only exceptions occur when quick is 
used in conjunction with susp, which produces the worst response 
times. The reason is because quick generates many more sorted 
runs than rep1 I, making the external sorts much more vulnerable 
to memory shortages. When used with susp. the much slower 
merge phase thus overwhelms any savings that quick derives from 
a shorter split phase. The results also clearly indicate that, as for 
fixed memory allocations, rep16 outperforms both repf I and 
quick: rep16 is faster than rep1 1 due to ~~16’s much shorter 
split-phase duration, while rep1 6 outperforms quick because quick 
generates more runs and hence results in more merge steps in the 
merge phase. Moreover, among the thne in-memory sorting 
methods. quick is the least responsive in reacting to memory 
fluctuations. As discussed in Section 3.1. Quicksort results in 
considemblc split-phase delays because it has to sort all of the 
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Table 7: Merge-Phase Adaptation 
Strategies 

memory-resident tuplcs and then write 
them out before it can release its 
buffers. In contrast, the two replace- 
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split-phase delays since they need only 
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from the heap to satisfy a waiting memory request. rep1 I is 
slower than rep16 in reacting to memory shortages because 
II,/)/ I writes out only a single page of tuples each time, keeping 
the remaining memory pages filled with tuples from the source 
relation. As n result, every memory request, regardless of its size, 
encounters a delay while waiting for the external sort to free its 
memory. In comparison, rep1 6 flushes a block of 6 pages to disk 
each time. After a flush, it takes a while before the 6 free pages 
can hc filled with relation tuples again, at which point another 
llush is carried out. Hence rep16 leaves a few free buffers around 
~IOSI of the time. These existing free buffers help to reduce the 
number of pages that have to be written out in order to satisfy a 
memory request, thereby shortening the delay it experiences. In 
casts where the memory requests are small, the free buffers alone 
usually suffice to satisfy the requests, so they need not be delayed 
at all. This explains the difference in average split-phase delays 
in Table 8 due to the choice of rep1 1 versus rep1 6. 
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We now examine the two alternative merging strategies. 
‘Ihhlc 9 focuses on the relative merits of naive merging (naive) 
versus optimized merging (opt). The table shows that opt is better 
than naive when used in conjunction with paging or dynamic 
splitting, while the reverse is true when the merge-phase adapta- 
tion strategy is suspension. Recall that naive combines more runs 
in the first merge step, leaving fewer runs to the final merge step. 
This makes the external sorts more vulnerable to memory shor- 
tages in the first step than in the final step. In contrast, opt 
nttcmpts to minimize cost by merging as few runs in the first step 
as possible without increasing the number of merge steps. The 
result is that the external sort is less vulnerable to memory shor- 
Iilges in the first step, but becomes more vulnerable in the final 
step due IO the larger number of runs that are left until the final 
s~cp. Since the final step (which has to process all of the tuples in 
lhc relation) typically lasts longer than the first step, the net effect 
is that o/It makes an external sort more vulnerable to memory 
shortages than naive. Thus, whether opt is better than naive 
depends on how much time opt saves by merging fewer runs in 
the first step, as compared to the penalty caused by exposing the 
cxtcrnal sort to memory shortages for a longer period of time. 
With suspension. an external sort does not make any progress at 
alI when there is a memory shortage, so the penalty of opt 
outweighs its advantage; this explains why opt performs badly 
with susp. In contrast to suspension. paging and dynamic split- 
ting enable an external sort to keep progressing during periods of 
memory shortages. Thus, the penalty of opt is not as high, lead- 
ing opt to be beneficial with both paging and dynamic splitting. 
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Figure 6: Response Times for Baseline Experiment 

To summarize the results of this experiment, we can reach the 
following conclusions about cases where the relation to be sorted 
is significantly larger than the available memory. First. dynamic 
splitting is superior to paging, while suspension results in very 
large response times and should be avoided. Second, among the 
three in-memory sorting methods, rep1 6 combines rep1 l’s advan- 
tages (producing long sorted runs and short split-phase delays in 
responding to memory shortages), together with the short-split- 
phase-duration characteristic of quick, making rep16 the in- 
memory sorting method of choice here. Finally, provided paging 
or dynamic splitting is used, opt is beneficial and preferable to 
naive. Overall, repl6,opt.split appears to be the most promising 
algorithm, followed by rep1 B,naive,split and quick,opt,split. 

5.3. M to IGRll Ratio 
In the next experiment, we study the sensitivity of the external 

sort algorithms to different ratios of memory size to relation size. 
This is achieved by varying M, the total number of buffers, while 
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keeping the other parameters constant at their settings of Tables 2 
and 3. In particular, the memory fluctuation rates are the same as 
in the baseline experiment, and lpil remains at 20 MBytes so that 
an increase in M results in an increase in the memory to relation 
size ratio. For this experiment, the in-memory sorting methods 
examined will be limited to Quicksort (quick) and replacement 
selection with block writes (repl6); repf 1 will not be considered 
further because it produces only slightly fewer runs than rep16 
while incurring the penalty of a much longer split phase. We will 
also exclude suspension, since it renders an external sort inactive 
when memory shortages occur, and is therefore not as effective as 
paging or dynamic splitting as the baseline experiment showed. 

We first examine the performance of the two remaining 
merge-phase adaptation strategies, dynamic splitting (split) and 
paging @age). The merge-phase delays produced by both of the 
merge-phase adaptation strategies are less than 1 msec for the 
entire range of M values that we examined, hence we do not show 
the merge-phase delays here. Figure 7 plots the response times 
for the algorithms that employ replacement selection with block 
writes (repf 6) as a function of M. The algorithms that use Quick- 
sort follow the same trends as those in Figure 7 and are not shown 
here. Note that, with the workload parameter settings for this 
experiment, the range of the average available memory for exter- 
nal sorts here is the same as the range of memory sizes used in 
Section 5.1. Figure 7 shows that split consistently performs at 
least as well as page: for M = 0.1 MBytes, split is about 30% fas- 
ter than page, but the difference between their response times nar- 
rows considerably when M increases; for M > 0.6 MBytes, the 
difference is insignificant. The reason for this trend is that an 
increase in M leads to an increase in the length of the sorted runs 
produced in the split phase, producing a corresponding decrease 
in the number of runs that have to be merged. This makes the 
external sorts less vulnerable to memory shortages during the 
merge phase, so there are fewer occasions when paging or 
dynamic splitting are required. In contrast, a small M will 
increase an external sort’s reliance on its merge-phase adaptation 
strategy, which is why the performance differences between split 
and page are more pronounced for smaller M values. 

We now turn our attention to the in-memory sorting methods, 
Quicksort (quick) and replacement selection with block writes 
(repf6). The response time of the algorithms based on dynamic 
splitting, the most promising merge-phase adaptation strategy, are 
shown in Figure 8. The results indicate that rep1 6 is about 5% 
faster than quick when M = 0.1 MBytes. As M increases, the 
response times of the two in-memory sorting methods converge 
gradually; beyond M = 0.9 MBytes, rep16 and quick have about 

the same response times. This trend was also observed in the first 
experiment where external sorts executed with fixed memory allo- 
cations throughout their lifetimes. Compared to Figure 5 for the 
first experiment, however, the response time difference between 
quick and rep16 at the lea-side side of Figure 8 is noticeably 
smaller. The reason is because, by sorting and writing out the 
entire contents of its memory in response to a memory shortage, 
quick frees up all of its buffers so that additional memory requests 
that arrive while the current run is being genemted can be satisfied 
without requiring further actions on the part of the external sort. 
rep1 6. in contrast, frees up just enough memory to meet the 
demands of a waiting memory request. When the next memory 
request arrives, repl6 is forced to write out another block of 
buffers. Consequently, rep16 experiences more interference from 
competing memory requests than quick. This explains quick’s 
performance gains on rep16 for M c 0.9 MBytes where external 
sorts are sensitive to memory fluctuations, though rep16 still 
yields faster response times than quicik here. Besides its generally 
shorter response times, another factor that favors repf 6 over quick 
is repl6’s responsiveness to memory fluctuations. Figure 9 gives 
the mean and maximum split-phase delays for the two in-memory 
sorting methods. The figure shows that the split-phase delays 
caused by both sorting methods grow as M increases. For rep1 6. 
the split-phase delay is proportional to M simply kcausc, as M 
increases, so does the size of the memory fluctuations (due to the 
way our workload is defined). This leads to an increase in the 
average number of pages that repf6 has to write out to satisfy 
each memory shortage. In the case of quick, this growth is due to 
the increased size of the sorted runs, which rake longer lo sort cad 
to write out. Figure 9 also shows that, besides consistently being 
slower in responding lo memory fluctuations, the split-phase 
delays produced by quick also grow at a much faster rate than that 
of rep1 6. In particular, at M = 2 MBytes, the mean delay of quick 
reaches almost 0.4 second, which is 4 times as long as that of 
repl6. Considering both the response times and the split-phase 
delays produced by the two in-memory sorting methods. rep16 
appears to be superior to quick overall. 

Finally. we evaluate the two alternative merging stmtegics. 
Figures 7 and 8 show the response times for both algorithms that 
employ naive merging (n&e) and algorithms that employ optim- 
ized merging (opr). While these figures cover only a subset of the 
entire space of eight alternative algorithms, the remaining algo- 
rithms give similar results and are not shown. Like the differcncc 
between split and page, there is a significant difference between 
naive and opt for small M values. When M = 0. I MBytes, naive 
results in a slightly over 5% increase in response time compared 
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to II/IL ‘I’hc dil’l‘crcocc hetwecn the two merging strategies dimin- 
ishcs steadily its M increases until, at M = 0.9 MBytes, both stra- 
tegies yield identical performance. Again, this behavior is similar 
to what we observed in the static memory allocation case, so we 
shall nol elaborate further on the cause. 

The results of this experiment support our baseline 
experiment’s conclusion that, overall, dynamic splitting yields 
better performance than paging. Moreover, rep16 is superior to 
quick. both in terms of response time and responsiveness to 
memory fluctuations. Finally, among the two merging strategies, 
optimized merging is the preferred choice. 

5.4. Magnitude of Memory Fluctuations 

Our next experiment is designed to explore the sensitivity of 
the memory-adaptive mechanisms to different memory fluctuation 
magnitudes. Instead of an environment where most of the con- 
tenders for system memory are small memory requests, as in pre- 
vious experiments. here we examine a situation where most of the 
memory requests are large. To achieve this, we interchange the 
arrival rate and duration of the small and the large requests, so 
that now &,,, = 0. I request/second, &Mu = 5 seconds, hwr = I 
request/second, and &,mr is 0.8 second. All the other parameters 
arc set as in the previous experiment. 

Figure 10 highlights the performance difference between 
dynamic splitting (&jr) and paging (page). Compared to the per- 
formance results obtained for the previous experiment (shown in 
Figure 7). we note that here both @if and page produce longer 
rcsponsc times. Moreover, the difference in nsponse time 
hctween split and page is greater here. These changes are due to 
the increased frequency of large memory requests, which reduces 
the number of buffers that are available to the external sorts. This 
leads to an increase in the number of merge steps in the merge 
phase, and lengthens the response time of spfir. For example, for 
M = 0.1 MBytes. split’s response time is now 345 seconds, 
whereas it was only 280 seconds previously. In the case of page. 
there are additional factors that adversely affect the performance 
of the external sorts: When the actual number of buffers that an 
cxtcrnal sort has is smaller than the buffer requirement of an exe- 
ruling merge step, the penalty in extra ~/OS that paging incurs is 
proportional to the extent of the memory discrepancy. In this 
experiment. where memory availability fluctuates more widely, 
the penalty of paging is magnified by the larger memory 
discrepancies. Moreover, an external sort based on paging is 
unable to utilize memory that is in excess of its initial memory 
allocation. This handicap causes paging to suffer from memory 
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lluctualions; moreover, the larger the memory fluctuations, the 
greater an impact this handicap exerts on sort performance. 
Together, these two factors slow down the performance of page 
over and above the performance penalty already imposed by the 
larger number of merge steps. In particular, they account for the 
12~second hike in page’s response time, from an average of 410 
seconds in Figure 7 to an average of 530 seconds here, compared 
to the smaller 65-second increase in the case of split. 

The performance results for the two in-memory sorting 
methods, Quicksort (quick) and replacement selection with block 
writes (repl6). are shown in Figure 11. From the figure, it is 
apparent that the increase in the magnitude of memory fluctua- 
tions narrows the performance difference between quick and 
repf 6 as compared to the previous experiment (Figure 8). The 
reason is because here frequent large memory shortages force 
rep1 6 to write out many memory-resident tuples each time. This 
hampers repl6’s ability to keep a large selection of tuples in 
memory and to write out only those tuples that have small key 
values, leading to shorter output runs. As a result, the number of 
runs that rep1 6 produces becomes much closer to that of quick. 

Finally, we examine how the change in memory fluctuation 
magnitude impacts the merging strategies. The response times of 
some algorithms that employ naive merging (naive) and others 
that are based on optimized merging (opt) are given in both Fig- 
ures IO and 1 I. In this experiment, where external sorts fre- 
quently experience large fluctuations in their allocated memory, 
the number of runs that an external sort selects for the first prelim- 
inary merge step during a split, whether according to naive or 
based on opt. often turns out to be sub-optimal because of 
significant changes that occur in the external sort’s memory allo- 
cation during the preliminary merge steps. Thus, opt is not that 
much better than naive here, in contrast to the previous experi- 
ment where memory allocation was less volatile. 

In summary, this experiment reveals that large fluctuations in 
memory availability accentuate the importance of the merge- 
phase adaptation strategy, while diminishing the differences 
between the alternative in-memory sorting methods and merging 
strategies. Again, the results reinforce our previous conclusions 
about the usefulness of dynamic splitting. 

5.5. Rate of Memory Fluctuations 

Our last experiment is designed to investigate how different 
memory fluctuation rates might affect the relative performance of 
the merge-phase adaptation strategies and the in-memory sorting 
methods. We vary the fluctuation rates by first lowering them to 
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A small - - 0.2 request/second and h,Orgc = 0.02 request/second. To 
ensure that this does not change the average available memory 
from that in the baseline experiment, the duration of the memory 
requests are prolonged by the same factor, i.e. p,,mu = 4 seconds 
and ~~~~~~ = 25 seconds. Next, we raise the rate of fluctuation by a 
factor of 25, setting hfmll = 5 requests/second, p,,,,, = 0.16 
second, brsr = 0.5 request/second, and vlarbr = I second. The 
performance results are presented in Figures 12 and 13. 

Figures 12 and 13 show the performance results of four of the 
external sort algorithms for both the fast and slow memory 
fluctuations (labeled&t and slow, respectively, in the figures). In 
the figures, the solid lines show the response times of the algo- 
rithms, while the dotted lines give the split-phase durations. The 
solid curves in these two figures show that, while the relative per- 
formance of the algorithms remains the same as in our previous 
experiments, the change in memory fluctuation rate does have an 
impact on the response time of the algorithms for small M values. 
The figures also indicate that when M is large, increasing fluctua- 
tion rate has little impact on the response time because external 
sorts are not sensitive to memory fluctuations in this region, as 
discussed in previous experiments. As M is decreased, external 
sorts become vulnerable to memory fluctuations, and switching 
the fluctuation rate parameters from their slow settings to their 
fast settings increases the response times of all four external sort 
algorithms shown here. For paging, .the reason is that, when 
memory allocation increases after a shortage, paging requires 
some time before the pages that have been swapped out can be 
brought back in to fill the newly allocated memory. During this 
time, the effective number of buffers used is less than the allo- 
cated memory. Therefore, when the memory fluctuation rate 
increases, the effective memory utilization goes down and this 
leads to longer response times. In the case of dynamic splitting, 
the external sorts react to changes in memory allocation by 
switching merge steps. Each switch incurs some overhead in 
bringing the input and output buffers of the new step into 
memory, so dynamic splitting is also adversely affected by 
increased memory fluctuations. After M = 0.3 MBytes, however, 
further reduction in M narrows the gap between the response 
times for the slow and the fast tluctuat~on settings. This 
phenomenon is due to the fact that, as M decreases, so does the 
magnitude of the memory fluctuations, and hence the performance 
penalty imposed by these fluctuations. This is why external sorts 
suffer less from the more frequent fluctuations when the buffer 
size is very small than when M is slightly larger. In contrast to 
the merge-phase adaptation strategies, the in-memory sorting 
methods are insensitive to changes in the fluctuation rate, as 
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indicated by the dotted lines in Figures 12 and 13, since the avcr- 
age available memory remains the same. 

To summarize, this experiment leads us to conclude that, ovrr 
a wide range of memory fluctuation rates, the algorithm 
repl6,opt,spfif delivers the best overall performance among those 
that we considered. Dynamic splitting therefore appears to be a 
promising merge-phase adaptation strategy in practice. 

6. MEMORY-ADAF’TIVE SORT-MERGE JOINS 

Like the external sort algorithm, a sort-merge join consists of 
a split phase and a merge phase. The split phase divides the two 
source relations into two separate sets of sorted runs. This is 
exactly as in the case of external sorts, except that now there is an 
additional relation to split. The in-memory sorting methods that 
we have examined, namely replacement selection, Quicksort and 
replacement selection with block writes, can thus bc used here 
without any changes. In the merge phase, runs from both rclu- 
tions are merged concurrently, and sorted tuples from the two 
relations are joined directly as they are merged. In the event that 
the total number of runs from the two relations exceeds the avail- 
able memory, the final merge step, i.e. the step that combines all 
the runs from both relations and produces the join results, has lo 
be split. The preliminary step that is created as a result of this 
split will work on one of the relations, merging some of its exist- 
ing runs into a longer sorted run. Since there arc two relations, 
the preliminary step has a choice of which relation to merge. To 
minimize cost, the chosen relation is the one that will Icad to a 
smaller total input sirs for the mcrgc step. For example, if lhc 
preliminary step has to merge 15 runs, the number of pages in the 
smallest 15 runs from each individual relation is summed, and the 
relation with the smaller sum is selected. Any of Ihe three 
merge-phase adaptation strategies, i.e. suspension, paging and 
dynamic splitting, can be used to adapt the sort-merge join to 
memory fluctuations during the merge phase. However, the naive 
and optimized merging strategies have to be modified slightly in 
order to comply with the requirement that each preliminary step 
merges only runs from the same relation. 

During a split, the desired number of runs to be merged in the 
preliminary step is determined by either the naive or the optim- 
ized merging strategy. In some cases, one or both of the relations 
may not have that many runs. To illustrate this point, consider a 
situation where a sort-merge join has I 1 buffers, and the two rela- 
tions are split into 5 runs and 14 runs, respectively. Both naive 
merging and optimized merging will attempt to merge IO mns in 
the preliminary step so that the remaining runs can be merged all 
at the same time. Unfortunately, the first relation has only 5 runs, 
so it cannot be chosen for the preliminary step. In such cases, we 
modify the naive and optimized merging strategies to select the 
relation that has more runs for the preliminary step. in order not to 

introduce more steps to the merge phase. 

Since the same basic mechanisms work for both cxtcrnal sorts 
and sort-merge joins, the relative performance trade-offs bctwecn 
the different in-memory sorting methods, merging strategies and 
merge-phase adaptation strategies are the same in both cases 
[Pang93b]. Therefore the combination of rep1 6,opr,spli/ also 
provides an effective means to do sort-merge joins in the face of 
fluctuations in memory availability. 

7. CONCLUSION 

In this paper, we have addressed issues related to query cxc- 
cution in situations where the amount of memory available to a 
query may bc reduced or increased during its lifetime. Thcsc 
situations will arise in real-time or goal-oriented clafabase 
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systems. whcrc nantory may he appropriated from a query to 
~ncct lhc ttcnumtls of higher-priority transactions. und where addi- 
tion;d mcn~c~~~y may he made avuilablc when other queries com- 
plctc and free their buffers. In particular, WC considered the 
spccitic problem of cxtemal sorts, which require large numbers of 
huffers to execute efficiently and are thus especially susceptible to 
lluctuations in memory availability. Simple approaches that react 
to a reduction in an cxtemal sort’s allocated memory by suspend- 
ing the sort altogether, or by paging the buffers of the sort into 
and out of I he remaining memory, may lead to under-utilization of 
system resources or thrashing. Furthcrmorc, these approaches do 
not nltow external sorts to make use of extra memory (beyond 
their initial memory allocation) that may become available during 
their lifetime. There is therefore a need for more sophisticated 
approaches that adapt external sorts to memory fluctuations. 

An external sort consists of two phases: the split phase fetches 
portions of the relation into memory, where they are sorted and 
then written out as sorted runs, and the merge phase combines the 
resulting runs into the sorted result. The merge phase consists of 
one or more merge steps, each of which combines a number of 
runs into a single, longer run. We studied Quicksort and replace- 
mcnt sclcction. two common in-memory sorting methods that are 
used for the split phase. In addition, we also studied a variation of 
rcplacemcnt selection that uses block writes to reduce disk seeks. 
All three in-memory sorting methods allow external sorts to 
respond to memory shortages by writing sorted tuples out to 
reduce their buffer usage; when memory increases, the newly 
atlocatcd memory is used to till more relation pages. In contrast 
to the in-memory sorting methods, the merge phase is not as 
easily adapted to memory fluctuations. We therefore examined 
hyhrid approaches that allow external sorts to adapt to memory 
lluctuations only in the split phase, letting the DBMS suspend the 
external sorts or page their buffers if memory shortages occur 
white they are in the merge phase. In addition, we proposed a 
mrrgc-phase adaptation strategy, called dynumic splirfing, that 
cnahles external sorts to better respond to memory shortages and 
IO exploit excess memory in the merge phase by involving the 
sorts in adapting to memory fluctuations. This strategy splits an 
executing merge step into sub-steps that fit within the remaining 
~nc~mry when a shortage occurs, and it combines existing merge 
slcps into larger steps (i.e. steps that merge more runs at once) to 
trike advantage of excess buffers when they become available. 

To understand how effective the different in-memory sorting 
methods and merge-phase adaptation strategies are in dealing 
with memory fluctuations, we constructed a detailed simulation 
model. A series of experiments revealed that, when the available 
memory is small retativc to the relation to be sorted, the merge- 
phase adaptation strategy is the dominant performance factor. 
Among the merge-phase adaptation strategies, dynamic splitting 
outperforms paging; the smaller the size of memory is relative to 
the relation, the more significant the performance difference 
between the two strategies becomes. The third mergephase 
atlaptntion strategy, suspension, consistently yields unsatisfactory 
response times, Thus dynamic splitting appears to be an attractive 
strategy for sorting large relations. Our results also showed that 
replacement selection with block writes is the preferred in- 
memory sorting method. Besides consistently producing response 
times that are at least as fast as Quicksort, replacement selection 
with block writes also makes external sorts more responsive, 
compared to Quicksort, in releasing memory when required to do 
so. Overall, our results indicate that the combination of dynamic 
splitting and replacement selection with block writes enables 
external sorts to deal effectively with memory fluctuations. 

Like external sorts. sort-merge joins are vulnerable to 
memory fluctuations due to their large memory requirements. 
The sort-merge join algorithm is also made up of a split phase and 
a merge phase. The split phase divides each of the two operand 
relations into sets of sorted runs. In the merge phase, runs from 
both relations are combined concurrently, and the sorted tuples 
from the two relations are joined directly. If there are too many 
runs to be merged at the same time, preliminary steps are created 
to merged some of the existing runs from one (or both) relation(s) 
into longer sorted runs. The same techniques that we examined in 
the context of external sorts can be applied to sort-merge joins in 
order to make them memory-adaptive. Moreover, the same rela- 
tive performance trade-offs apply to both external sorts and sort- 
merge joins. Therefore, the combination of dynamic splitting and 
replacement selection with block writes is also an effective means 
to adapt sort-merge joins to fluctuations in memory availability. 

For future work, we intend to explore alternative strategies for 
adapting the merge phase of an external sort. One such strategy is 
to dynamically adjust the buffer- size (i.e., the I/O block size) 
according to memory availability; a combination of buffer size 
adjustment and dynamic splitting would likely yield an even more 
effective solution than dynamic splitting alone, particularly for 
large memory sizes. Another important avenue for future work is 
the development of strategies for appropriately utilizing adaptive 
sort and join methods in the context of adaptive query plans for 
complex (e.g., many-way join) queries. 
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