
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

8-1993

Memory-adaptive external sorting Memory-adaptive external sorting

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Michael J. CAREY
University of Wisconsin-Madison

Miron LIVNY
University of Wisconsin-Madison

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
PANG, Hwee Hwa; CAREY, Michael J.; and LIVNY, Miron. Memory-adaptive external sorting. (1993). 19th
International Conference on Very Large Data Bases: August 24-27 1993, Dublin, Ireland: Proceedings.
618-629.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3663

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3663&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3663&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Memory-Adaptive External Sorting

HweeHwa Pang Michael J. Carey Miron Livny
Computer Sciences Department

University of Wisconsin - Madison
Madison, WI 53706

(pang, Carey, miron)@cs.wisc.edu

ABSTRACT - In real-time and goal-oriented database systems,
the amount of memory assigned to queries that sort or join large
relations may fluctuate due to contention from other higher-
priority transactions. This study focuses on techniques that
enable external sorts both to reduce their buffer usage when they
lose memory, and to effectively utilize any additional buffers that
are given to them. We also show how these techniques can be
extended to work with sort-merge joins. A series of experiments
confirms that our proposed techniques are useful for sorting and
joining large relations in the face of memory fluctuations.

1. INTRODUCTION
Database management systems (DBMS) are faced with

increasingly demanding performance objectives. These objec-
tives include time constraints, as in real-time database systems
[SIGM88, RTS92], and administratively-defined performance
goals, as in goal-oriented database systems [Ferg93, Brow931.
Traditional DBMS scheduling policies are no longer adequate to
meet such objectives; a DBMS has to prioritize transactions that
are competing for system resources according to the system-wide
objectives and the resource requirements of the transactions. A
consequence of priority scheduling is that transactions may be
forced to release some or all of the resources that they hold.
Moreover, executing transactions may also be given additional
resources as they become available. Active transactions may
therefore experience changes in resource availability during their
lifetimes, depending on the priority of competing transactions.

A common practice in existing database systems is to allocate
a fixed amount of memory to each query (or subquery) throughout
its lifetime. Unfortunately, this practice does not work well with
prioritized transaction scheduling because certain queries, particu-
larly those that join or sort large relations, can hold on to a large
number of buffers for extended periods of time. If these queries
are permitted to hold on to their buffers until they complete, other
higher-priority transactions may not be able to execute due to a
shortage of memory. This seriously reduces the effectiveness of
priority scheduling. Moreover, this practice does not allow a
query to take advantage of excess memory that may become
available. There is therefore a need for large queries to be adap-
tive when memory availability varies. In a recent paper
[Pang93a], we presented and evaluated techniques that allow hash
joins to adapt to changes in their allocated memory. This study
focuses on the same problem for large external sorts, i.e. sorts that

This work was partially supported by a scholarship from the Institute
of Systems Science, National University of Singapore, and by an IBM
Research Initiation Grant.

Permission to copy without fee all or purr of this material is granted pm-
vided that the copies are not made or distributed for direct commercial
advantage. the VWB copyright notice and the title of the publication and
its date appear. and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise. or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993.

involve relations that cannot fit endrcly in the available memory.
and for sort-merge joins.

Sorting is frequently used in database systems to product
ordered query results. It is also the basis of merge join [Rlas77]. a
join algorithm employed by many existing DBMSs, and it is used
in some systems for processing group-by queries. An external
sort consists of two steps: the first step fetches portions of the
relation into memory to be sorted and written out as sorted runs,
while the second step (which may involve several sub-steps)
merges these runs into the sorted resull. For a large relation. both
the sort step and the merge step can potentially utilize many
memory pages. Moreover, sorting a large relation may take a
long period of time. Consequently, during the lifetime of a large
external sort, the DBMS may wish to appropriate some of the
sort’s memory to satisfy the memory requirements of higher-
priority transactions that arrive; buffers that are taken away may
subsequently he returned after those transactions leave the system.
Given the prospect of continually having memory taken away and
given back during its lifetime, it is desirable for an external sort to
be able to continue its execution after it loses some of its buffers
(and hence be p&&y pree~rabfe). An external sort should
preferably also have the capability to subsequently adapt its buffer
usage to take advantage of any extra memory that may become
available. To simplify our discussion, we shall henceforth refer to
these changes in memory allocation as memory fluctuations.

One way to deal with memory fluctuations would be for tbc
DBMS to employ virtual memory techniques to page the buffers
of an affected external sort into and out of a smaller region of
allocated memory, without having to inform the sort operator. If
this causes too many page faults, the DBMS could suspend the
sort altogether. An advantage of this approach is that it shields
the external sort algorithm from the complexity involved in adapt-
ing to memory fluctuations. However, there may be scvcrc per-
formance drawbacks associated with this approach. On one hand,
suspending external sorts that are affected by memory fluctuations
reduces the number of active transactions, which may lcatl to
under-utilization of system resources. Paging the buffers of an
external sort, on the other hand, is likely to result in thrashing
when the difference in the amount of available memory and rbc
number of buffers used is significant.

In this study, we investigate a different approach, namely. to
directly involve the affected external sorts in adapting to memory
fluctuations. We propose and study the performance of ;I
memory-change adaptation strategy called dynumic splitting.
Dynamic splitting adjusts the buffer usage of external sorts to
reduce the performance penalty that results from memory shor-
tages and to take advantage of excess memory. In addition, we
study how dynamic splitting works with several different in-
memory sorting strategies and merging strategies that external
sorts can employ. We also show how our techniques cm bc

extended to handle sort-merge joins. To undcrstantl the perfor-
mance trade-offs of different stmtegies. and IO identify those SII;I-

tcgiea that adapt well IO changes in system larffer usage. we h;rvr
constructed il detailed simulation nltdcl ol' ii liillillUSC systctil.

618

This model ennhlcs us to study the behavior of the different stra-
lcpics over il wide range of system resource configurations.

‘I’hr rcmnintler ol’ this paper is organized as follows. Section
1 rrvicws the standard externnl sort algorithm, together with some
illli)lclllclltution techniques that arc commonly employed by exter-
nal sorts. The issue of adapting external sorts to memory Ructua-
lions is addressed in Section 3, which also introduces the dynamic
splilling slrategy. A detailed simulator of a database system,
intended for studying the performance of the various strategies, is
described in Section 4. Section 5 presents the results of a series
of simulation experiments showing that, over a wide range of sys-
km conditions. dynamic splitting offers an effective solution to
the problem of memory fluctuations. Then, in section 6, we dis-
ws how the same mechanisms that make external sorts
memory-adaptive can be extended to sort-merge joins. Finally,
our conclusions arc prescntcd in Section 7.

2. STANDARD EXTERNAL SORT ALGORITHMS

An external sort involves two distinct phases. The firs1 phase
is a spli/ phase, which employs an in-memory sorting method to
divide the source relation into a number of sorted runs. The
second phase, the merge phase, consists of one or more merge
steps. each of which combines a number of runs into a single
sorted run. The merge phase terminates when only one run
remains. Within this framework, the choice of the in-memory
sorting method for the split phase is independent of the choice of
111c merging strategy. This section reviews the common sorting
mclhods and merging strategies that are found in the literature.

2.1. In-Memory Sorting Methods

Qrtickvort and replacement selection are two in-memory sort-
ing methods that arc commonly used in external sorts. An exter-
II~ sort that employs Quicksort first fills the available memory
with as many pages of the source relation as will fit at a time,
sorts the tuples in the memory-resident pages, and then writes the
result 0111 as a sorted run, This process is repeated until the entire
source rtA;llio~~ has been scanned. Quicksort produces runs that
;Irc as large as the memory that is allocated for the split phase.

‘l%c second sorting method, replacement selection, works as
li~llows: Pages of the source relation are fetched, and the tuples in
these pages arc copied into an ordered heap data structure. As
more pages arc fetched, the heap gradually grows in size until it
occupies all of the available memory. At this point, a page of
tuplcs is repeatedly removed from the heap and written to the
current run so as to make space for the next incoming page of
tuples. The tuplcs that are removed are those that have the smal-
lest key values (assuming the source relation is to be sorted in
ascending order) in the heap, subject to the condition that these
IllpIes must have greater key values than the latest tuple written
out in the current run. When none of the tuples in the heap satisfy
this condition, the current run ends and a new run is started. On
the average, the length of the runs produced by replacement selec-
tion is twice the memory allocated for the split phase [Knut73],
i.c. (wire as long as the runs generated with Quicksort. Hence,
replacement selection creates only half as many runs as Quick-
sort. This could significantly shorten the merge phase that fol-
lows. A nice discussion of the details involved in implementing
rcplaccment sclccction can be found in [Salz90].

Although replacement selection can shorten the merge phase,
it is not always preferable to Quicksort because replacement
s&&on can also lead to a longer split phase [Grae90, DeWi911.
With Quicksort, there is a cycle of reading several pages from the
source relation, sorting them, and then writing them to disk. In

COntraSt. replacement selection alternates between reading a page
from the source relation and writing a page to the current run.
When the source relation and the run reside on the same disk, this
results in many more disk seeks than in the cast of Quicksofi
IGrae901. In order to reduce disk seeks in replacement selection,
a third possible in-memory sorting method is to use replacement
selection, but to do block writes, i.e. to write several pages (say
N) OUI to the run each time, instead of only one page al a time as
in the original replacement selection procedure. A large N will
result in fewer disk seeks, but at the same time it will reduce the
average length of the runs. In the extreme case where N is equal
to the amount of available memory, this replacement selection
variant will fill all of the available buffers with relation pages,
then write the sorted pages out together. In this case, the benefit
of replacement selection is lost, since the length of the runs
becomes the number of available buffers. Thus, the value of N
has to reflect a compromise between reducing disk head move-
ments and increasing the average length of the sorted runs.
Whether the original replacement selection, Quicksort, or replace-
ment selection with block writes is preferable depends not only on
the hardware characteristics of the system, but also on memory
allocation and the size of the relation to be sorted.

2.2. Merging Strategies

The split phase generates a set of n runs which have to be
combined into a single sorted run in the merge phase. The merge
phase consists of one or more steps; a merge step takes as input a
number of sorted runs and combines them into a longer sorted
run. Each input run of a merge step requires an input buffer, and
an output buffer is needed for the output run. If at least n + 1
pages of memory are available for the merge phase, a single step
suffices to combine all of the n runs.

When the source relation is large relative to the available
memory, the database system may not be able to allocate enough
buffers to a sort operator for it to merge all of its runs in a single
step. In this case, preliminary merge steps are required to reduce
the number of runs before the final merge can be carried out.
Every preliminary merge step incurs extra I/O operations to fetch
its input runs from disk and to write out its output run, and there is
also extra CPU cost associated with each preliminary step. For
this reason, it is desirable for every preliminary step to combine
as many runs as the available memory allows, so that there will be
as few merge steps as possible. A simple strategy, then, is for
each step to merge m - 1 runs, where m is the number of available
buffers. Figure l(a) illustrates this strategy for the case where n =
10 and m = 8. The 10 runs are denoted by R l, .., R 1O, and R l-1O
denotes the run that results from merging R l to R 10. In this case,
the 10 runs are merged in two steps. The first step merges all the
tuples in RI to R, into R l-7. Step two, which merges R l-7, Rg,
Rg and RIO into the final result, begins only after the first step is
completed. An alternate strategy is to merge just enough runs in
the first step so that each of the subsequent steps merges m - 1
runs. Figure l(b) illustrates the second strategy. The first merg-
ing strategy is called “naive” merging, and the second strategy is
called “optimized” merging [Grae901. From Figures l(a) and
l(b), it should be apparent that “naive” merging is more expensive
than “optimized” merging, as the final step has to process all of
the tuples in the relation in both strategies. The preliminary steps
incurs extra cost, and should therefore merge as few runs as possi-
ble (without increasing the number of merge steps) to keep the
extra cost down. By merging more runs, “naive” merging
increases the cost of the preliminary steps unnecessarily. Thus,
the general rule is to adopt “optimized” merging [Grae93].

619

RI-II-I RI-IO _ ._
Step 2: 4 \,h

t \ \
RI-~ Rg R9 RIO RI-~ Rs *** RIO

Step 1:
:

r,
\ i

4 t,,

RI **- R7 RI *-* R4

(a) “Naive” Merging (b) “Optimi&” Merging

Figure 1: Merging Strategies

Another important aspect of the merging strategy concerns the
choice of input runs. All of the merge steps, other than the final
merge, have a choice of input runs and should thus merge the
shortest possible runs. Such a choice minimizes the cost of the
preliminary merges in two ways: Firstly, choosing the shortest
runs for a given merge step obviously minimizes its cost.
Secondly, the output run of an early merge step may be selected
as one of the input runs of a subsequent preliminary merge step.
By minimizing the size of the input runs of the early merge step,
and hence the size of its output run, the cost of the later merge
step is also reduced because it needs to merge fewer tuples. For
these reasons, all of the algorithms studied in this paper adopt the
policy of merging the shortest possible runs at any given step.

3. ADAPTIVE EXTERNAL SORT ALGORITHMS

In the previous section, we assumed that the amount of avail-
able memory remains the same throughout the lifetime of an
external sort. As discussed in the introduction, however, it is
desirable for a sort operator to be able to execute with a varying
number of buffers. This section gives a detailed description of a
set of alternative memory-adaptive external sort algorithms.
Since the in-memory sorting methods for the split phase are
independent of the merging strategies for the merge phase, we
shall first treat the in-memory sorting methods separately before
addressing the merging strategies. Finally, we end the section by
introducing some notation that will bc used to denote different
external sort algorithms throughout the rest of the paper.

3.1. Split-Phase Adaptation
If an external sort is in the split phase when it is asked by the

DBMS to release a page, the sort can immediately do so if it has
unused buffers, i.e. buffers that are not currently occupied by
tuples from the relation. If all of its buffers are in use, however, it
will have to clear some or all of the memory-resident tuplcs by
writing them to output runs before it can free any of its buffers.
In the case of typical implementations of Quicksort, all of the
tuples in memory have to be sorted and written out as a new run
before a page can be released’. When there are many tuples in
memory, this may result in considerable delays. In contrast, with
replacement selection, the sort needs only to remove a page of
tuples from the heap, write the page out, and then release the
empty page to the DBMS. Next, we consider the case where an
external sort is given additional buffers in the split phase. With
Quicksort, if the external sort is in the process of filling its
memory with relation pages, the sort can immediately fill the
newly allocated buffers with more relation pages. If the external

’ To implement Quicksort efficiently. sorting is usually not carried out
on the actual tuples. Instead, a list of (key, pointer) pairs is created and
sorting is done on this list. AHer the sorting is complete. tuples are it-
trieved from their respective pages by following the pointers assoeiatcd
with the keys. Thus. in a given step of the split phase, it is not possible lo
simply release a buffer after the first page of tuples has been written out.

sort has already started sorting its tuples to create a run, however.
the new page will remain unused until the run has been written
out and the external sort resumes fetching relation pages. In Ihc
case of replacement selection, the new buffer can immediately be
used to fill the next incoming page of tuples. Thus, replacement
selection is much more responsive than Quicksort in adapting to
memory fluctuations.

3.2. Merge-Phase Adaptation Strategies
In contrast to the split phase, the merge phase does not adapt

to memory tluctuations as easily. One possible solution is to
adopt hybrid approaches that allow a sorI operator to adapt to
memory fluctuations only in the split phase. leaving the DBMS to
suspend an affected external sMt or page its buffers when iC is ill
the merge phase. Besides the drawbacks of suspension and pag-
ing that we discussed in the introduction, these hybrid approachcs
would also prevent an external sort from taking advantage ol
extra memory (beyond the initially allocated amount) Ihn(may
become available while the sort is in the merge phase. In this
study, we will therefore explore a third alternative. called &urnic.
splitting, that actively involves an affected sort in adapting IO
memory fluctuations that occur during the merge phase.

3.2.1. Suspension

The most straightforward approach to deal with memory shor-
tages that occur during the merge phase of an external sort is for
the DBMS to suspend the external sort altogether. The buffers of
the external sort can be taken away once it has been suspcndcd.
The only information that is needed to resume the merging is the
position of the next tuple in each input run. Since the sort opern-
tor already keeps track of this information for normal merging
operations, no special mechanisms are necessary for suspension.
Our implementation of suspension fetches all the input buffers
together when the external sort resumes. This reduces disk seek
costs, as opposed to fetching the buffers on demand.

3.2.2. Paging
Another obvious way to deal with memory Iluctuations during

the merge phase is to resort to MRU paging whencvcr the
memory available to an external sort is insufficient to hold all the
input buffers for its current merge step. Our impiemcntation of
paging works as follows: The external sort keeps a copy of the
current tuple of each input run in its private work space, where the
tuples are merged. After writing out the smallest tuple to the out-
put run, the external sort determines which input run this tuplc
came from, and then attempts to copy the next tuple from this
input run. If the buffer for this input run is no longer in memory,
the most recently used buffer is selected for replacement. and a
disk read is issued to bring the required buffer back in. As with
suspension, paging enables an external sort to relinquish its
buffers as and when they are needed for replacement or for
release to the DBMS.

3.2.3. Dynamic Splitting
Dynamic splitting is a strategy that is designed to adapt the

merge phase of external sorts to varying memory allocation.
When a shortage causes the available memory to go below the
requirement of an executing merge step, this strategy adapts by
splitting the merge step into a number of sub-steps that each tits
within the remaining memory. When additional buffers are given.
the merge steps can bc combined into larger steps, i.e. steps that
merge more runs, to take advantage of the now-larger memory.
The details of the dynamic splitting strategy are presented below.

Suppose that a sort operator is currently executing a merge
step, which can he eilhcr the final mcrgc of all cxistinp runs or iI

620

preliminary merge step. If a memory shortage occurs, causing the
available memory to become less than the buffer requirement of
the current merge step, the sort operator can immediately stop the
c,,rrenl step, split it into a number of sub-steps, and then start exe-
culing the lirst sub-step. To illustrate this, suppose that the merge
phase of an external sort started with IO runs and I I buffers,
which allowed all runs to be merged at once as in Figure 2(a).
While the sort is executing this merge step, the available memory
is reduced to 8 buffers. The sort operator responds by splitting
Ihc merge into a preliminary step that merges R, to R4 into R,4
(assuming “optimized” merging), and a final step that merges
H , 4 with KJ to X,,, into R,-,,,. After the split, the sort immedi-
alcly starts to work on the preliminary step. (Note that some of
the tuples from R, to R4 have already been merged into RI-,,,
prior to the split, so only the tuples that still remain in R, to X4
will be merged into RI4 by the preliminary step.) This is illus-
truted in Figure 2(b), where the preliminary step, the merge step
with the salid arrows, is the one that is being executed. The final
step. which has dotted arrows, is inactive. Suppose that no further
changes in memory allocation take place, and that the external
sort completes the preliminary step without interruption. There
:,rc now only 7 runs, and the sort is ready to resume the final
merge step. At this stage, RI-,,-, contains some of the tuples from
K , to R ,,, that were merged prior to the split, R5 to R ,,, each con-
ti,ins some remaining tuples. and the remaining tuples of R, to R4
ilrc now in R14. To get the entire sorted result, the sort needs to
complete R ,-,“. This is achieved by merging R ,-4 with whatever
is left in R5 to H ,,,, appending the result to R ,-,” (Figure 2(c)).

I laving discussed how dynamic splitting breaks a merge step
into sub-steps in response to a memory reduction, we now present
Ihc provision in the dynamic splitting strategy that allows an
cxtemal sort to combine existing merge steps to take advantage of
extra buffers as they become available. We shall introduce this
provision by continuing our earlier example. Suppose that, while
Ihc sort is executing the preliminary step (the step with the solid
arrows) in Figure 2(b), the available memory increases to 1 I
pages apain. Instead of completing this step before performing
(Iv linal merge as discussed previously, the sort operator can
switch to the tinal merge directly. Figure 3 illustrates the process
involved. At this stage, R,-,,, contains some of the luples from
HI to R ,,) that were merged prior to the split. To produce the final
rcsul~, the sort operator needs to append to RImro the rest of the
luples that were originally left in R, to R ,“. However, since the
sort has already been executing the preliminary step, some of the
leftover tuples in H, to R4 are now in R ,+ It is therefore neces-
s;,ry for the external sort to first merge R,A with Rs to RIO.
appending the result to R ,+. This is shown in Figure 3(a), where
the linal step, which has solid arrows, is now active and the prel-
iminary step is inactive. Once R ,A becomes empty, the sort can
proceed to combine the final step with the preliminary step to pro-
duct a new final step that again merges the tuples remaining in R,
IO N ,,,, adding them to R ,-,,, as well (Figure 3(b)).

Ri-10 RI-IO Rl-IO
4

\,
f4 ‘\

I
RI> b

‘\ //
4 b.,,

t
RI -** RIO -a* RIO RI-4 R5 --- Rio

(u) (b)
Figure 2: Splitting

(d

Although our only example shows a split that breaks a merge
step into two sub-steps, the splitting procedure. can bc recursively
applied lo break a merge step into more than two sub-steps. For
example, the preliminary step in Figure 2(b) can be split again if
memory decreases further while the step is being executed. Simi-
larly, it is possible lo combine more than two merge steps by
applying the combining procedure recursively. To fully exploit
the capabilities of dynamic splitting, the merge phase always
starts with a step that combines all of the runs produced in the
split phase. If the available memory is insufficient to execute this
step, it is immediately split into sub-steps that fit in memory. This
enables an external sort to take advantage of excess memory that
may become available later by combining existing merge steps
into steps that merge more runs, helping the sort to recover from a
low initial memory allocation if memory happens to be in short
supply at the beginning of the merge phase.

There is an important difference between dynamic splitting
and the splitting process that was described in Section 2.2, which
we will call static splitting to distinguish it from dynamic split-
ting. When an external sort has more runs to merge than its
memory allows, static splitting is used to initiate preliminary
merge steps to reduce the number of runs. Once started, a merge
step has to execute to completion before another merge step can
be executed. In contrast to static splitting, dynamic splitting
allows an external sort to switch between merge steps, if it so
desires, without having to wait for any step to complete. This
ability to switch to a different merge step immediately is essential
if an external sort is to effectively adapt to both increases and
reductions in its allocated memory during the merge phase.

3.3. Notation for External Sort Algorithms

In this section, we have discussed three in-memory sorting
methods and three merge-phase adaptation strategies that will be
evaluated in the performance study that follows. In addition, we
will compare the relative merits of “naive” versus “optimized”
merging for the following reason: While “optimized” merging
always performs at least as well as “naive” merging for a fired
memory allocution. it is not obvious that this is still the case if the
memory allocation of a sort operator may be reduced while it is
executing. In such situations, “naive” merging may turn out to be
better because it utilizes all of the currently available buffers right
away (while the sort operator still has them). Since the choice of
in-memory sorting method, merging strategy and merge-phase
adaptation strategy are all independent, there are 18 possible
external sort algorithms, each employing a different combination
of in-memory sorting method, merging strategy, and merge-phase
adaptation strategy. To differentiate between the algorithms, we
shall denote each algorithm by a string of the form X,X2X3,
where X, is either repfl, quick, or replN (replacement selection,
Quicksort, or replacement selection with N-page block reads and
writes), X2 is either nuive or opt (“naive” merging or “optimized”
merging), and X:, is either susp, page, or split (suspension, pag-
ing, or dynamic splitting). Thus, for example, quick.opt,su.sp

(a) W
Figure 3: Combining Merge Steps

621

denotes external sort with Quicksort, optimized merging, and
suspension. This notation is summarized in Table 1.

4. DATABASE SYSTEM SIMULATION MODEL

To aid in our on-going research on real-time databases, we
have constructed a simulation model’ of a centralized database
system. The portion of our simulation model that is relevant to
this study is shown in Figure 4. There are five components: a
Source that generates transactions one after another, and collects
statistics on completed transactions: a Transaction Manager that
models the execution details of transactions, including external
sorts; a Buffer Manager that implements the buffer management
policy; and a CPU Manager and a Disk Manager that are respon-
sible for managing the system’s CPU and disks,respectively. In
this section, we describe how the simulation model captures the
details of the database, workload, and various physical resources
of a database system. The simulator is written in DeNet [Livn90].

To investigate how different memory-adaptive mechanisms
react to fluctuations in the amount of available memory, we simu-
late an environment where sorts commonly have to contend fol
memory with other “transactions” that have small memory
requirements and, occasionally, with “transactions” that have
large buffer demands. The memory contention experienced by
the active sorts is modelled here by two other streams ol’ compet-
ing memory requests, one small and the other large. The genera-
tion of small memory requests follows n Poisson distribution with
a mean rate of &,,, and the proportion of the total memory that a
small request takes up varies uniformly between 0% and
MemThres. Moreover, the duration that a small request remains
in the system after receiving its required memory is modcllcd
using an exponential distribution with a mean of p,,N. Similarly.
large memory requests arrive at a mean rate of hk,.Xe and have :I
mean duration of c(I.,.~~. Each large request occupies between 0%
and 100% of the total memory.

4.1. Database and Workload Model 4.2. Physical Resource Model

Table 2 summarizes the database and workload model param-
eters that are relevant to this study. Our objective is to simulate a
stream of external sorts on different relations. To facilitate this,
the database consists of NumRef relations. Each relation i (1 I i <
NumRel), in turn, has a size of RelSizei MBytes arid occupies con-
tiguous pages on disk. If there are multiple disks, all relations are
horizontally partitioned [Ries78, Livn87] across all of the disks.
To minimize disk head movement, the relations are allotted the
middle cylinders of the disks; temporary files occupy either the
inner cylinders or the outer cylinders.

Table 3 lists the parameters that specify the physical resources
of our model, which consist of one CPU, multiple disks and main
memory. There is a single CPU queue that is managed by ~hc
first-come-first-serve (FCFS) discipline. The MIPS rating of the
CPU is given by CPUSpeed. Table 4 gives the cost of various
CPU operations that are involved in the execution of extcrnill
sorts. These CPU costs are based on instruction counts taken
from the Gamma database machine [DeWi90].

The workload is made up of a series of external sorts. A new
sort is submitted to the system only when the previous sort has
been completed. Each sort involves a relation R, which is uni-
formly selected from among the relations in the database.

Turning to the disk model parameters in Table 3, #Disks
specifies the number of disks attached to the system. Each disk
has its own queue and disk requests are serviced according to the
elevator algorithm. The characteristics of the disks are also given
in Table 3. Using the parameters in this table, the total time

Meaning
of relations in the database
Size of relation i

Database
NumRel
RelSizei
TupleSizei
workload
MemThres

small memory request
h small Arrival rate of small requests

P”
Duration of small requests

hlrgr Arrival rate of large requests
Plarar Duration of lame reauests

Table 2: Database and Workload Model Parameters

Parameter
In-Memory Sorting

Meaning

repll _ -
quick

Replacement selection
Quicksort
Replacement selection with
N-page reads and writes

“Naive” merging
“Optimized” merging

Merging Strategy
naive
opt

Merge-Phase Adaptation
su.fP Suspension.
Page Paging
split Dynamic Splitting

Table 1: Notation for External Sort Strategies

repfN

Source Tram
Mgr

CPU
request k-4 --

CPU

CPU Mgr
-
t-l x
-r- / ,

J tIllllS ‘-py--- reply I--. ,‘ :*

page //Page CPU
fi

CPU
request i reply request reply

!
page

I .,‘““““.- (3 I-) reply
. . . . (

Figure 4: Database System Model

1

J F

Avg tuple size of relation i
Meaning

Max. % buffer demand of a

D. Value
IO
20 MBytes
256 Bytes
D. Value-

20%

I rcqlsec
0.8 second
0. I reqlscc
5 seconds

.-
Parameter Meaning D. Value
CPUSpeed MIPS rating of CPU 20 MIPT
#Disks Number of disks I
SeekFactor Seek factor of disk 0.000617
RotateTime Time for one disk rotation 16.7 msec
#Cylinders Number of cylinders per disk 1500
CylSize Number of pages per cylinder 90 pages
PageSize Number of bytes per page 8 KHyccs
M Total number of buffer oages 0.3 MBvtcs

Table 3: Physical Resource Model Parameters

Copy a tuple to OUI~UI buffer

Table 4: Number of CPU Instructions Per Opcratiotl

622

recluired to complete a disk access is computed as:

DiskAccess = Seek + RotateDelay + Transfer
The time required to seek across n tracks is [Bitt88]:

Seek’l’imc (n) = SeekFactor x G

Finally. the total memory size is M MBytes. A reservation
mechanism is provided to allow operators, including sorts, to
reserve buffers. Reserved buffers are managed by the operators
themselves. Page replacement for non-reserved pages is by LRU.

5. EXPERIMENTS AND RESULTS

In this section, the database system simulator described in
Section 4 is used to evaluate the performance of the alternative
memory-adaptive external sort algorithms. We begin with an
experiment where the amount of memory that is allocated to each
external sort remains unchanged throughout its lifetime. This
experiment is intended to give us an initial understanding of the
trade-offs between differeru in-memory sorting methods and
merging strategies before we delve into the complexities intro-
duced hy memory fluctuations. We then present a baseline model
that is used to study the performance impact of memory fluctua-
tions, and further experiments are carried out by varying a few
parameters each time. The performance metric of interest here is
1 he average sort response time.

5.1. No Memory Fluctuation

As mentioned above, our first experiment is designed to study
the trade-offs of different in-memory sorting methods and merg-
ing strategies in the context of fixed memory allocation. For this
experiment. we let IlRll be 20 MBytes, and vary M, the total sys-
tcm memory. Every external sort will execute with all of the sys-
lcrn memory throughout its lifetime. h,,,” and &,, are both set
lo 0 request/second, so that there is no memory fluctuation. The
rest of the parameters are assigned their default values in Tables 2
and 3. Finally, for the in-memory sorting method repM, we let N
he 6 (meaning that tuples are removed from the heap and written
out in blocks of 6 pages). This choice was made because, for our
system configuration, N = 6 leads to a considerable reduction in
the average per-page disk access time over N = 1, as indicated in
‘I’ahle 5. without incurring the penalty of a significant increase in
I hc numher of sorted nms that the split phase generates, as will be
evident from our experimental results. (Note that the average
per-page disk access time shown in Table 5 includes the time
spent waiting for service, i.e., including waits for completions of
previously issued asynchronous disk write requests.)

Figure 5 presents the response times for the various combina-
tions of in-memory sorting methods and merging strategies. The
average number of sorted runs produced by each in-memory sort-
ing method, together with the corresponding average number of
merge steps and split-phase duration, are given in Table 6. Since
there is no memory tluctuation in this experiment, the merge-
phase adaptation stralegies do not come into play here. The figure
shows that all of the response times drop sharply initially as M is
increased. As M grows beyond 0.6 MBytes, however, all of the
curves level off. This behavior can be attributed to the reduction
in the number of merge steps that takes place as the average
number of generated runs decreases. As is evident from Table 6,
the number of required merge steps initially drops drastically.
However, once M reaches 0.6 MBytes, all three in-memory sort-
ing methods produce fewer runs than the number of available
buffers; thus, there can be no further reduction in the number of
merge steps (until M grows to 20 MBytes, at which point there
will he a sudden drop in response time because it will then be pos-
sihlc IO sort the entire relation all at once in memory). In this

region, increasing M leads to fewer sorted runs at the end of the
split phase, and hence lower disk seek costs when the runs are
merged; this accounts for the slight reductions in response time at
the right-hand side of Figure 5.

Comparing the response times of the three in-memory sorting
methods, it is clear that repl 1 consistently yields the worst perfor-
mance. This is due to the large number of random I/OS that repf 1
produces, as the external sort alternates between reading a relation
page and writing a page to tbe output run. In contrast, Quicksort
writes out an entire run each time, thus producing considerably
fewer random I/OS. Quicksort therefore has a much shorter split
phase than rep1 1, which more than offsets the longer merge phase
that results from the larger number of runs that Quicksort gen-
erates. (Similar observations about the relative trade-offs between
Quicksort and rep1 1 were made in [Grae90, DeWi911.) By writ-
ing multiple pages instead of only a single page each time as in
repf I, rep1 6 is able to sigtificantly reduce tbe number of disk
seeks in replacement selection, bringing the duration of its split
phase much closer to that of quick. Moreover, the number of runs
that rep1 6 creates is only marginally more than repf 1 in almost all
cases. Thus, rep1 6 is clearly superior to rep1 1. Between quick
and rep1 6, rep1 6 is the winner when M < 0.6 MBytes, whereas
quick is just slightly faster for M > 0.6 MBytes. Tbe trade-off
between quick and rep1 6 is again due to the number of runs that
the two approaches generate, relative to the amount of allocated

N 1 1 2 4 6 8 10 12
Time 1 62 36 26 23 22 21 21

Table 5: Average Per-Page Disk Access Time (msec)

300-

x200-
c

- a- quick, naive
-0- quick opt
- *-. repll, naive
- repll, opt
- a-. repl6, naive
- rcpl6, opt

M MBytes
(pages)
Runs
l quick
l rep1 1
l rep1 6
Merge Steps
l quick
0 rep1 1
l rep1 6
Split-Phase
Duration (set)
l quick
0 rep1 1
l rep1 6

“olo 0:4 0:s 112
M WWs)

Figure 5: No Memory Fluctuation
-?- 0.07 0.14 0.21 0.32 0.42 0.63 0.84 1.40

(9) (18) (27) (41) (54) (81) (108) (179)

280 149 101 65 52 34 25 15
141 75 52 33 27 18 13 8
202 89 57 35 28 19 14 9

32.0 9.0 4.0 2.0 1.0 1.0 1.0 1.0
15.7 4.2 1.9 1.0 1.0 1.0 1.0 1.0
22.4 4.9 2.1 1.0 1.0 1.0 1.0 1.0

34 31 29 29 28 27 27 27
89 86 85 84 83 83 82 82
34 31 31 31 30 30 30 30

Table 6: Performance Results for No Memory Fluctuation

memory. Table 6 shows that for M c 0.6 MBytes, quick results in
more merge steps, and consequently a longer merge phase. than
repl6. This is why rep1 6, which creates significantly fewer runs
than quick, is superior there. For M 1 0.6 MBytes, there is
enough memory to merge all of the runs produced by quick in a
single step, so repl6’s fewer runs gives it little advantage over
quick. In this region, the duration of the split phase becomes the
dominant factor. Since Quicksort requires fewer CPU instruc-
tions than replacement selection, which incurs extra CPU cost in
copying tuples between its heap structure and the input/output
buffers, quick is marginally faster than rep1 6 in this region.

Next, we turn our attention to the two merging strategies,
optimized merging (opt) and naive merging (naive). Figure 5
shows that opt consistently leads to shorter response times than
naive for M < 0.4 MBytes, whereas the two merging strategies
yield identical performance when M > 0.4 MBytes. Recall that
naive and opt differ in the number of runs that they combine in
the first preliminary merge step. The output run of the first prel-
iminary merge step may in turn be combined by a subsequent
merge step, the output run of which may be. the input of yet
another merge step, and so on. The decision of naive to include
more runs in the first preliminary step thus leads to an increase in
the cost of each of these affected steps [Grae93]. The more merge
steps there are, the larger the number of affected steps becomes,
and consequently the higher the penalty of naive gets. For small
M values, the number of sorted runs that the merge phase has to
combine is large relative to the available memory, as shown in
Table 6. This results in many merge steps, causing the observed
differences in response time between naive and opt in Figure 5.
Conversely, when M is large, the number of merge steps required
is small, and so is the penalty of choosing naive over opt. As M
increases, the number of merge steps reduces gradually until,
when only a single merge step suffices to combine all of the runs,
there is no difference between the two merging strategies.

Having now gained initial intuition regarding the performance
characteristics and the relative merits of the in-memory sorting
methods and merging strategies for fixed memory allocation, we
can now proceed to evaluate their performance in the face of
memory fluctuations. We will also explore how they interact with
the merge-phase adaptation strategies described in Section 3.2.

5.2. Baseline Experiment
In our baseline experiment, we simulate a situation where the

relation to be sorted is much larger than the available memory.
This is done by setting II@ to 20 MBytes and M to 0.3 MBytes.
Small memory requests arrive at an average rate of li,,N = 1
request/second and stay in the system for an average of prd, =
0.8 second. MemThres is set to 20%. Large memory requests
arrive at &ge = 0.1 request/second, and each large request lasts
an average of phVc = 5 seconds. The parameter settings for this
experiment are summarized in Tables 2 and 3.

Figure 6 gives the response time of the various external sort
algorithms for this experiment. The figure shows a wide spread
of response times, from a high of 320 seconds produced by
quick,opt,susp down to a low of 141 seconds, using
rep1 6,opt.split. This indicates that the choice of external sort
algorithm can have a very significant performance impact. We
observe that the four shortest response times are all produced by
external sorts that employ split. Moreover, the five worse per-
formers all employ susp. To understand the reason behind these
behaviors, we shall analyze the merge-phase adaptation strategies
before considering the in-memory sorting methods and the merg-
ing strategies further, as the merge-phase. adaptation strategies
appear to exert the greatest influence on performance.

The response times given in Figure 6 are also listed in Tahle
7. which is organized to highlight the performance tradeoffs
associated with the different merge-phase adaptation strategies.
For example, with Quicksort and naive merging, the first row of
Table 7 shows that the average response times are, mspectively,
307 and 228 seconds when suspension and paging are used, while
only 178 seconds are required in the case of dynamic splitting. as
indicated by the third column of the same row. All three mcrgc-
phase adaptation strategies have minimal delays in responding to
memory fluctuations, as they allow an external sort to release the
memory occupied by its input buffers immediately upon request.
before taking merge-phase adaptation strategy-specific actions IO
adjust to the memory shortage. In fact, the observed avcrapc
delays for the merge phase are consistently less than I msec; for
this reason, we do not show the delays caused by the merge-phnsc
adaptation strategies here. In terms of response times, howcvcr,
there is a marked difference between the performance of the three
merge-phase adaptation strategies. Among the three, suspension
(susp) has the worst response times because it does not allow an
external sort to make any progress when there is a memory shor-
tage. Paging (page) and dynamic splitting (split), in contrast. both
enable an external sort to keep progressing, which is why they arc
faster than susp. When there is a memory shortage, page incurs
extra I/OS in paging its input buffers. ‘This is a better alternative
than susp, but the penalty of paging can be high because the
number of extra I/OS is proportional to the extent of the memory
shortage. In the case of split. an external sort deals with memory
shortages by initiating a merge step that fits the remaining
memory. This reduces the number of input runs for subsequent
merge steps, thereby making them less vulnerable to memory
fluctuations. Moreover, splif is able to take advantage of excess
buffers when they become available by switching to a merge step
that combines more runs. This is why, as expected, split is able to
produce shorter response times than page.

Next, WC evaluate the trade-offs among the in-memory sorting
methods. To facilitate interpretation of the results, we reorganize
Table 7 into Table 8 to highlight the impact of the different in-
memory sorting methods. Also included in the table are the aver-
age duration of the split phase, the average number of sorted runs
produced in this phase, and the average split-phase delay (the time
that each in-memory sorting method takes to respond to memory
shortages). In the table, all the algorithms that employ the same
in-memory sorting method have the same average number 01
runs, split-phase duration and split-phase delay, as the merging
strategies and merge-phase adaptation strategies concern only the
merge phase and not the split phase. Due to the much longer
split-phase durations that result from excessive disk seeks, as seen
in Section 5.1, replacement selection (repll) is almost always
slower than Quicksort (quick) and replacement selection with
block writes (repl6). The only exceptions occur when quick is
used in conjunction with susp, which produces the worst response
times. The reason is because quick generates many more sorted
runs than rep1 I, making the external sorts much more vulnerable
to memory shortages. When used with susp. the much slower
merge phase thus overwhelms any savings that quick derives from
a shorter split phase. The results also clearly indicate that, as for
fixed memory allocations, rep16 outperforms both repf I and
quick: rep16 is faster than rep1 1 due to ~~16’s much shorter
split-phase duration, while rep1 6 outperforms quick because quick
generates more runs and hence results in more merge steps in the
merge phase. Moreover, among the thne in-memory sorting
methods. quick is the least responsive in reacting to memory
fluctuations. As discussed in Section 3.1. Quicksort results in
considemblc split-phase delays because it has to sort all of the

624

-
-.-- susp 1 page (split
Rcsp. (XC)
l qubk.rrtrivc
0 qrtid.ryN
0 rep1 I ,mive
l rep1 I ,opt
l rep1 &naive

307 228
320 223
287 239
302 238
218 186
244 183

Table 7: Merge-Phase Adaptation
Strategies

memory-resident tuplcs and then write
them out before it can release its
buffers. In contrast, the two replace-
mcnt selection procedures lead to short
split-phase delays since they need only
to write out just enough pages of tuples

300

8
d 200

1
8 100

0

luick
laive,
rusp

I

from the heap to satisfy a waiting memory request. rep1 I is
slower than rep16 in reacting to memory shortages because
II,/)/ I writes out only a single page of tuples each time, keeping
the remaining memory pages filled with tuples from the source
relation. As n result, every memory request, regardless of its size,
encounters a delay while waiting for the external sort to free its
memory. In comparison, rep1 6 flushes a block of 6 pages to disk
each time. After a flush, it takes a while before the 6 free pages
can hc filled with relation tuples again, at which point another
llush is carried out. Hence rep16 leaves a few free buffers around
~IOSI of the time. These existing free buffers help to reduce the
number of pages that have to be written out in order to satisfy a
memory request, thereby shortening the delay it experiences. In
casts where the memory requests are small, the free buffers alone
usually suffice to satisfy the requests, so they need not be delayed
at all. This explains the difference in average split-phase delays
in Table 8 due to the choice of rep1 1 versus rep1 6.

quick,
opt,
susp rep1 I,

naive.

quick,
IldVC.

We now examine the two alternative merging strategies.
‘Ihhlc 9 focuses on the relative merits of naive merging (naive)
versus optimized merging (opt). The table shows that opt is better
than naive when used in conjunction with paging or dynamic
splitting, while the reverse is true when the merge-phase adapta-
tion strategy is suspension. Recall that naive combines more runs
in the first merge step, leaving fewer runs to the final merge step.
This makes the external sorts more vulnerable to memory shor-
tages in the first step than in the final step. In contrast, opt
nttcmpts to minimize cost by merging as few runs in the first step
as possible without increasing the number of merge steps. The
result is that the external sort is less vulnerable to memory shor-
Iilges in the first step, but becomes more vulnerable in the final
step due IO the larger number of runs that are left until the final
s~cp. Since the final step (which has to process all of the tuples in
lhc relation) typically lasts longer than the first step, the net effect
is that o/It makes an external sort more vulnerable to memory
shortages than naive. Thus, whether opt is better than naive
depends on how much time opt saves by merging fewer runs in
the first step, as compared to the penalty caused by exposing the
cxtcrnal sort to memory shortages for a longer period of time.
With suspension. an external sort does not make any progress at
alI when there is a memory shortage, so the penalty of opt
outweighs its advantage; this explains why opt performs badly
with susp. In contrast to suspension. paging and dynamic split-
ting enable an external sort to keep progressing during periods of
memory shortages. Thus, the penalty of opt is not as high, lead-
ing opt to be beneficial with both paging and dynamic splitting.

su SP
quick,
Opt.
PW

quick,
opt
split

h I

rep1 I,
naive,
pnwepl I.

naive,
split

Ill

t-c”1 I repId
.‘r..’

opt. ~l6.

Figure 6: Response Times for Baseline Experiment

To summarize the results of this experiment, we can reach the
following conclusions about cases where the relation to be sorted
is significantly larger than the available memory. First. dynamic
splitting is superior to paging, while suspension results in very
large response times and should be avoided. Second, among the
three in-memory sorting methods, rep1 6 combines rep1 l’s advan-
tages (producing long sorted runs and short split-phase delays in
responding to memory shortages), together with the short-split-
phase-duration characteristic of quick, making rep16 the in-
memory sorting method of choice here. Finally, provided paging
or dynamic splitting is used, opt is beneficial and preferable to
naive. Overall, repl6,opt.split appears to be the most promising
algorithm, followed by rep1 B,naive,split and quick,opt,split.

5.3. M to IGRll Ratio
In the next experiment, we study the sensitivity of the external

sort algorithms to different ratios of memory size to relation size.
This is achieved by varying M, the total number of buffers, while

r rep11
99
77

L

0 maximum
Response Time (set)

)I 0.180
0.032
0.149

287
239
200
302
238
184

Table 8: Performance of In-Memory Sorting Methods

naive opt
quick,susp 307 320
quick,page 228 223
quick,split 178 156
rep1 I ,susp 287 302
rep1 I ,page 239 238
rep1 I ,split 200 184
rep1 6,susp 218 244
rep1 6,page 186 183
rep1 &split 160 141

Table 9: Response Time (seconds) for Merging Strategies

625

keeping the other parameters constant at their settings of Tables 2
and 3. In particular, the memory fluctuation rates are the same as
in the baseline experiment, and lpil remains at 20 MBytes so that
an increase in M results in an increase in the memory to relation
size ratio. For this experiment, the in-memory sorting methods
examined will be limited to Quicksort (quick) and replacement
selection with block writes (repl6); repf 1 will not be considered
further because it produces only slightly fewer runs than rep16
while incurring the penalty of a much longer split phase. We will
also exclude suspension, since it renders an external sort inactive
when memory shortages occur, and is therefore not as effective as
paging or dynamic splitting as the baseline experiment showed.

We first examine the performance of the two remaining
merge-phase adaptation strategies, dynamic splitting (split) and
paging @age). The merge-phase delays produced by both of the
merge-phase adaptation strategies are less than 1 msec for the
entire range of M values that we examined, hence we do not show
the merge-phase delays here. Figure 7 plots the response times
for the algorithms that employ replacement selection with block
writes (repf 6) as a function of M. The algorithms that use Quick-
sort follow the same trends as those in Figure 7 and are not shown
here. Note that, with the workload parameter settings for this
experiment, the range of the average available memory for exter-
nal sorts here is the same as the range of memory sizes used in
Section 5.1. Figure 7 shows that split consistently performs at
least as well as page: for M = 0.1 MBytes, split is about 30% fas-
ter than page, but the difference between their response times nar-
rows considerably when M increases; for M > 0.6 MBytes, the
difference is insignificant. The reason for this trend is that an
increase in M leads to an increase in the length of the sorted runs
produced in the split phase, producing a corresponding decrease
in the number of runs that have to be merged. This makes the
external sorts less vulnerable to memory shortages during the
merge phase, so there are fewer occasions when paging or
dynamic splitting are required. In contrast, a small M will
increase an external sort’s reliance on its merge-phase adaptation
strategy, which is why the performance differences between split
and page are more pronounced for smaller M values.

We now turn our attention to the in-memory sorting methods,
Quicksort (quick) and replacement selection with block writes
(repf6). The response time of the algorithms based on dynamic
splitting, the most promising merge-phase adaptation strategy, are
shown in Figure 8. The results indicate that rep1 6 is about 5%
faster than quick when M = 0.1 MBytes. As M increases, the
response times of the two in-memory sorting methods converge
gradually; beyond M = 0.9 MBytes, rep16 and quick have about

the same response times. This trend was also observed in the first
experiment where external sorts executed with fixed memory allo-
cations throughout their lifetimes. Compared to Figure 5 for the
first experiment, however, the response time difference between
quick and rep16 at the lea-side side of Figure 8 is noticeably
smaller. The reason is because, by sorting and writing out the
entire contents of its memory in response to a memory shortage,
quick frees up all of its buffers so that additional memory requests
that arrive while the current run is being genemted can be satisfied
without requiring further actions on the part of the external sort.
rep1 6. in contrast, frees up just enough memory to meet the
demands of a waiting memory request. When the next memory
request arrives, repl6 is forced to write out another block of
buffers. Consequently, rep16 experiences more interference from
competing memory requests than quick. This explains quick’s
performance gains on rep16 for M c 0.9 MBytes where external
sorts are sensitive to memory fluctuations, though rep16 still
yields faster response times than quicik here. Besides its generally
shorter response times, another factor that favors repf 6 over quick
is repl6’s responsiveness to memory fluctuations. Figure 9 gives
the mean and maximum split-phase delays for the two in-memory
sorting methods. The figure shows that the split-phase delays
caused by both sorting methods grow as M increases. For rep1 6.
the split-phase delay is proportional to M simply kcausc, as M
increases, so does the size of the memory fluctuations (due to the
way our workload is defined). This leads to an increase in the
average number of pages that repf6 has to write out to satisfy
each memory shortage. In the case of quick, this growth is due to
the increased size of the sorted runs, which rake longer lo sort cad
to write out. Figure 9 also shows that, besides consistently being
slower in responding lo memory fluctuations, the split-phase
delays produced by quick also grow at a much faster rate than that
of rep1 6. In particular, at M = 2 MBytes, the mean delay of quick
reaches almost 0.4 second, which is 4 times as long as that of
repl6. Considering both the response times and the split-phase
delays produced by the two in-memory sorting methods. rep16
appears to be superior to quick overall.

Finally. we evaluate the two alternative merging stmtegics.
Figures 7 and 8 show the response times for both algorithms that
employ naive merging (n&e) and algorithms that employ optim-
ized merging (opr). While these figures cover only a subset of the
entire space of eight alternative algorithms, the remaining algo-
rithms give similar results and are not shown. Like the differcncc
between split and page, there is a significant difference between
naive and opt for small M values. When M = 0. I MBytes, naive
results in a slightly over 5% increase in response time compared

300
- o- naive, page
--o-~opt,page
- +c-. naive, split
- opt, split f2w

$

%
k 100
er:

- o-. quick, naive
* quick, opt
- *-. repl6, naive

h I.0

-+a-- repl6, opt 9

d

-0- quick(mean)
P I

- *-. quick(max) I’
* rcpl6(mean) ”
-u- . repE(max) ,t/’

I
,O ’

,X .
/) I I -0’

M (MBytes)

Figure 7: rep1 6 (M to IlRll Ratio) Figure 8: split (M to lwll Ratio) Figure 9: In-Memory Sorting Delays

to II/IL ‘I’hc dil’l‘crcocc hetwecn the two merging strategies dimin-
ishcs steadily its M increases until, at M = 0.9 MBytes, both stra-
tegies yield identical performance. Again, this behavior is similar
to what we observed in the static memory allocation case, so we
shall nol elaborate further on the cause.

The results of this experiment support our baseline
experiment’s conclusion that, overall, dynamic splitting yields
better performance than paging. Moreover, rep16 is superior to
quick. both in terms of response time and responsiveness to
memory fluctuations. Finally, among the two merging strategies,
optimized merging is the preferred choice.

5.4. Magnitude of Memory Fluctuations

Our next experiment is designed to explore the sensitivity of
the memory-adaptive mechanisms to different memory fluctuation
magnitudes. Instead of an environment where most of the con-
tenders for system memory are small memory requests, as in pre-
vious experiments. here we examine a situation where most of the
memory requests are large. To achieve this, we interchange the
arrival rate and duration of the small and the large requests, so
that now &,,, = 0. I request/second, &Mu = 5 seconds, hwr = I
request/second, and &,mr is 0.8 second. All the other parameters
arc set as in the previous experiment.

Figure 10 highlights the performance difference between
dynamic splitting (&jr) and paging (page). Compared to the per-
formance results obtained for the previous experiment (shown in
Figure 7). we note that here both @if and page produce longer
rcsponsc times. Moreover, the difference in nsponse time
hctween split and page is greater here. These changes are due to
the increased frequency of large memory requests, which reduces
the number of buffers that are available to the external sorts. This
leads to an increase in the number of merge steps in the merge
phase, and lengthens the response time of spfir. For example, for
M = 0.1 MBytes. split’s response time is now 345 seconds,
whereas it was only 280 seconds previously. In the case of page.
there are additional factors that adversely affect the performance
of the external sorts: When the actual number of buffers that an
cxtcrnal sort has is smaller than the buffer requirement of an exe-
ruling merge step, the penalty in extra ~/OS that paging incurs is
proportional to the extent of the memory discrepancy. In this
experiment. where memory availability fluctuates more widely,
the penalty of paging is magnified by the larger memory
discrepancies. Moreover, an external sort based on paging is
unable to utilize memory that is in excess of its initial memory
allocation. This handicap causes paging to suffer from memory

MO

.i

l
H

250-

dc

400
- 9-. naive, page
- opt, page
- Y- nsive. split
* opt, split

lluctualions; moreover, the larger the memory fluctuations, the
greater an impact this handicap exerts on sort performance.
Together, these two factors slow down the performance of page
over and above the performance penalty already imposed by the
larger number of merge steps. In particular, they account for the
12~second hike in page’s response time, from an average of 410
seconds in Figure 7 to an average of 530 seconds here, compared
to the smaller 65-second increase in the case of split.

The performance results for the two in-memory sorting
methods, Quicksort (quick) and replacement selection with block
writes (repl6). are shown in Figure 11. From the figure, it is
apparent that the increase in the magnitude of memory fluctua-
tions narrows the performance difference between quick and
repf 6 as compared to the previous experiment (Figure 8). The
reason is because here frequent large memory shortages force
rep1 6 to write out many memory-resident tuples each time. This
hampers repl6’s ability to keep a large selection of tuples in
memory and to write out only those tuples that have small key
values, leading to shorter output runs. As a result, the number of
runs that rep1 6 produces becomes much closer to that of quick.

Finally, we examine how the change in memory fluctuation
magnitude impacts the merging strategies. The response times of
some algorithms that employ naive merging (naive) and others
that are based on optimized merging (opt) are given in both Fig-
ures IO and 1 I. In this experiment, where external sorts fre-
quently experience large fluctuations in their allocated memory,
the number of runs that an external sort selects for the first prelim-
inary merge step during a split, whether according to naive or
based on opt. often turns out to be sub-optimal because of
significant changes that occur in the external sort’s memory allo-
cation during the preliminary merge steps. Thus, opt is not that
much better than naive here, in contrast to the previous experi-
ment where memory allocation was less volatile.

In summary, this experiment reveals that large fluctuations in
memory availability accentuate the importance of the merge-
phase adaptation strategy, while diminishing the differences
between the alternative in-memory sorting methods and merging
strategies. Again, the results reinforce our previous conclusions
about the usefulness of dynamic splitting.

5.5. Rate of Memory Fluctuations

Our last experiment is designed to investigate how different
memory fluctuation rates might affect the relative performance of
the merge-phase adaptation strategies and the in-memory sorting
methods. We vary the fluctuation rates by first lowering them to

-a-. quick, naive 400
-o- quick, opt
- u- rep14 naive
- rcplb, opt

M (MBytes) M (MBytes)

Figure IO: rep1 6 Figure I 1: split
(Memory Fluctuation Magnitude) (Memory Fluctuation Magnitude)

-b- opt, page; fast
--t opt, page; slow
-o- opt, split; fast
+-- opt, split; slow
- o- split phase; fast
- a-. split phase; slow

M (MByW

Figure 12: quick
(Memory Fluctuation Rate)

627

A small - - 0.2 request/second and h,Orgc = 0.02 request/second. To
ensure that this does not change the average available memory
from that in the baseline experiment, the duration of the memory
requests are prolonged by the same factor, i.e. p,,mu = 4 seconds
and ~~~~~~ = 25 seconds. Next, we raise the rate of fluctuation by a
factor of 25, setting hfmll = 5 requests/second, p,,,,, = 0.16
second, brsr = 0.5 request/second, and vlarbr = I second. The
performance results are presented in Figures 12 and 13.

Figures 12 and 13 show the performance results of four of the
external sort algorithms for both the fast and slow memory
fluctuations (labeled&t and slow, respectively, in the figures). In
the figures, the solid lines show the response times of the algo-
rithms, while the dotted lines give the split-phase durations. The
solid curves in these two figures show that, while the relative per-
formance of the algorithms remains the same as in our previous
experiments, the change in memory fluctuation rate does have an
impact on the response time of the algorithms for small M values.
The figures also indicate that when M is large, increasing fluctua-
tion rate has little impact on the response time because external
sorts are not sensitive to memory fluctuations in this region, as
discussed in previous experiments. As M is decreased, external
sorts become vulnerable to memory fluctuations, and switching
the fluctuation rate parameters from their slow settings to their
fast settings increases the response times of all four external sort
algorithms shown here. For paging, .the reason is that, when
memory allocation increases after a shortage, paging requires
some time before the pages that have been swapped out can be
brought back in to fill the newly allocated memory. During this
time, the effective number of buffers used is less than the allo-
cated memory. Therefore, when the memory fluctuation rate
increases, the effective memory utilization goes down and this
leads to longer response times. In the case of dynamic splitting,
the external sorts react to changes in memory allocation by
switching merge steps. Each switch incurs some overhead in
bringing the input and output buffers of the new step into
memory, so dynamic splitting is also adversely affected by
increased memory fluctuations. After M = 0.3 MBytes, however,
further reduction in M narrows the gap between the response
times for the slow and the fast tluctuat~on settings. This
phenomenon is due to the fact that, as M decreases, so does the
magnitude of the memory fluctuations, and hence the performance
penalty imposed by these fluctuations. This is why external sorts
suffer less from the more frequent fluctuations when the buffer
size is very small than when M is slightly larger. In contrast to
the merge-phase adaptation strategies, the in-memory sorting
methods are insensitive to changes in the fluctuation rate, as

- opt, page; fast
- opt. page; slow
-o-- opt, split; fast
-c opt, split; slow
- *- split phase; fast
- -+ split phase; slow

.O~-~~--.--*--------.

0, I I 1 i
0.0 0.5 1.0 1.5 2.0

M WWW
Figure 13: rep1 6 (Memory Fluctuation Ratk)

indicated by the dotted lines in Figures 12 and 13, since the avcr-
age available memory remains the same.

To summarize, this experiment leads us to conclude that, ovrr
a wide range of memory fluctuation rates, the algorithm
repl6,opt,spfif delivers the best overall performance among those
that we considered. Dynamic splitting therefore appears to be a
promising merge-phase adaptation strategy in practice.

6. MEMORY-ADAF’TIVE SORT-MERGE JOINS

Like the external sort algorithm, a sort-merge join consists of
a split phase and a merge phase. The split phase divides the two
source relations into two separate sets of sorted runs. This is
exactly as in the case of external sorts, except that now there is an
additional relation to split. The in-memory sorting methods that
we have examined, namely replacement selection, Quicksort and
replacement selection with block writes, can thus bc used here
without any changes. In the merge phase, runs from both rclu-
tions are merged concurrently, and sorted tuples from the two
relations are joined directly as they are merged. In the event that
the total number of runs from the two relations exceeds the avail-
able memory, the final merge step, i.e. the step that combines all
the runs from both relations and produces the join results, has lo
be split. The preliminary step that is created as a result of this
split will work on one of the relations, merging some of its exist-
ing runs into a longer sorted run. Since there arc two relations,
the preliminary step has a choice of which relation to merge. To
minimize cost, the chosen relation is the one that will Icad to a
smaller total input sirs for the mcrgc step. For example, if lhc
preliminary step has to merge 15 runs, the number of pages in the
smallest 15 runs from each individual relation is summed, and the
relation with the smaller sum is selected. Any of Ihe three
merge-phase adaptation strategies, i.e. suspension, paging and
dynamic splitting, can be used to adapt the sort-merge join to
memory fluctuations during the merge phase. However, the naive
and optimized merging strategies have to be modified slightly in
order to comply with the requirement that each preliminary step
merges only runs from the same relation.

During a split, the desired number of runs to be merged in the
preliminary step is determined by either the naive or the optim-
ized merging strategy. In some cases, one or both of the relations
may not have that many runs. To illustrate this point, consider a
situation where a sort-merge join has I 1 buffers, and the two rela-
tions are split into 5 runs and 14 runs, respectively. Both naive
merging and optimized merging will attempt to merge IO mns in
the preliminary step so that the remaining runs can be merged all
at the same time. Unfortunately, the first relation has only 5 runs,
so it cannot be chosen for the preliminary step. In such cases, we
modify the naive and optimized merging strategies to select the
relation that has more runs for the preliminary step. in order not to

introduce more steps to the merge phase.

Since the same basic mechanisms work for both cxtcrnal sorts
and sort-merge joins, the relative performance trade-offs bctwecn
the different in-memory sorting methods, merging strategies and
merge-phase adaptation strategies are the same in both cases
[Pang93b]. Therefore the combination of rep1 6,opr,spli/ also
provides an effective means to do sort-merge joins in the face of
fluctuations in memory availability.

7. CONCLUSION

In this paper, we have addressed issues related to query cxc-
cution in situations where the amount of memory available to a
query may bc reduced or increased during its lifetime. Thcsc
situations will arise in real-time or goal-oriented clafabase

628

systems. whcrc nantory may he appropriated from a query to
~ncct lhc ttcnumtls of higher-priority transactions. und where addi-
tion;d mcn~c~~~y may he made avuilablc when other queries com-
plctc and free their buffers. In particular, WC considered the
spccitic problem of cxtemal sorts, which require large numbers of
huffers to execute efficiently and are thus especially susceptible to
lluctuations in memory availability. Simple approaches that react
to a reduction in an cxtemal sort’s allocated memory by suspend-
ing the sort altogether, or by paging the buffers of the sort into
and out of I he remaining memory, may lead to under-utilization of
system resources or thrashing. Furthcrmorc, these approaches do
not nltow external sorts to make use of extra memory (beyond
their initial memory allocation) that may become available during
their lifetime. There is therefore a need for more sophisticated
approaches that adapt external sorts to memory fluctuations.

An external sort consists of two phases: the split phase fetches
portions of the relation into memory, where they are sorted and
then written out as sorted runs, and the merge phase combines the
resulting runs into the sorted result. The merge phase consists of
one or more merge steps, each of which combines a number of
runs into a single, longer run. We studied Quicksort and replace-
mcnt sclcction. two common in-memory sorting methods that are
used for the split phase. In addition, we also studied a variation of
rcplacemcnt selection that uses block writes to reduce disk seeks.
All three in-memory sorting methods allow external sorts to
respond to memory shortages by writing sorted tuples out to
reduce their buffer usage; when memory increases, the newly
atlocatcd memory is used to till more relation pages. In contrast
to the in-memory sorting methods, the merge phase is not as
easily adapted to memory fluctuations. We therefore examined
hyhrid approaches that allow external sorts to adapt to memory
lluctuations only in the split phase, letting the DBMS suspend the
external sorts or page their buffers if memory shortages occur
white they are in the merge phase. In addition, we proposed a
mrrgc-phase adaptation strategy, called dynumic splirfing, that
cnahles external sorts to better respond to memory shortages and
IO exploit excess memory in the merge phase by involving the
sorts in adapting to memory fluctuations. This strategy splits an
executing merge step into sub-steps that fit within the remaining
~nc~mry when a shortage occurs, and it combines existing merge
slcps into larger steps (i.e. steps that merge more runs at once) to
trike advantage of excess buffers when they become available.

To understand how effective the different in-memory sorting
methods and merge-phase adaptation strategies are in dealing
with memory fluctuations, we constructed a detailed simulation
model. A series of experiments revealed that, when the available
memory is small retativc to the relation to be sorted, the merge-
phase adaptation strategy is the dominant performance factor.
Among the merge-phase adaptation strategies, dynamic splitting
outperforms paging; the smaller the size of memory is relative to
the relation, the more significant the performance difference
between the two strategies becomes. The third mergephase
atlaptntion strategy, suspension, consistently yields unsatisfactory
response times, Thus dynamic splitting appears to be an attractive
strategy for sorting large relations. Our results also showed that
replacement selection with block writes is the preferred in-
memory sorting method. Besides consistently producing response
times that are at least as fast as Quicksort, replacement selection
with block writes also makes external sorts more responsive,
compared to Quicksort, in releasing memory when required to do
so. Overall, our results indicate that the combination of dynamic
splitting and replacement selection with block writes enables
external sorts to deal effectively with memory fluctuations.

Like external sorts. sort-merge joins are vulnerable to
memory fluctuations due to their large memory requirements.
The sort-merge join algorithm is also made up of a split phase and
a merge phase. The split phase divides each of the two operand
relations into sets of sorted runs. In the merge phase, runs from
both relations are combined concurrently, and the sorted tuples
from the two relations are joined directly. If there are too many
runs to be merged at the same time, preliminary steps are created
to merged some of the existing runs from one (or both) relation(s)
into longer sorted runs. The same techniques that we examined in
the context of external sorts can be applied to sort-merge joins in
order to make them memory-adaptive. Moreover, the same rela-
tive performance trade-offs apply to both external sorts and sort-
merge joins. Therefore, the combination of dynamic splitting and
replacement selection with block writes is also an effective means
to adapt sort-merge joins to fluctuations in memory availability.

For future work, we intend to explore alternative strategies for
adapting the merge phase of an external sort. One such strategy is
to dynamically adjust the buffer- size (i.e., the I/O block size)
according to memory availability; a combination of buffer size
adjustment and dynamic splitting would likely yield an even more
effective solution than dynamic splitting alone, particularly for
large memory sizes. Another important avenue for future work is
the development of strategies for appropriately utilizing adaptive
sort and join methods in the context of adaptive query plans for
complex (e.g., many-way join) queries.

REFERENCES
[Bitt881 D. Bitton. J. Gray, “Disk Shadowing”, Proc. VLDB, 1988.
[BIas77] M.W. Blasgen, K.P. Eswaran, “Storage and Access in Rela-

tional Databases”, IBM System7 Journal, 16(4), 1977.
[Brow93] K.P. Brown, M.J. Carey, M. Livny, “Managing Memory to

Meet Multiclass Workload Response Time Goats”, Proc. VLQE. 1993.
[DeWi90] D.J. Dewitt et al, “The. Gamma Database Machine Project”,

IEEE Truns. on Knowledge andData Engineering, 2(l), 1990.
[DeWi91] D.J. Dewitt, J.F. Naughton, D.A. Schneider, “Parallel Sort-

ing on a Shared-Nothing Architecture using Probabilistic Splitting”, Proc.
I’DIS, 1991.

[Ferg93] D. Ferguson, C. Nikolaou, L. Georgiadis, “Goal Oriented,
Adaptive Transaction Routing for High Performance Transaction Process-
ing Systems’*, Proc. PDIS, 1989.

IGrae901 G. Graefe. “Parallel External Sorting in Volcano”. Technicul
R&port CC!:CS-459-90, ‘University of Colorado, B&lder, 1990.

[Gras931 G. Graefe, A. Linville. L.D. Shapiro, “Sort versus Hash
Revisited”, IEEE Trans. on Knowledge and Data Engineering (to appear).

[Knut73] D. Knuth. The Art of Computer Programming, Vol. Ill: Sort-
ing and Searching, Addison-Wesley, Reading, MA., 1973.

[Livn87] M. Livny, S. Khoshatian, H. Bon& “Multi-Disk Management
Algorithms”, Proc. SIGMETRICS, 1987.

[Livn90] M. Livny, “DeNet User’s Guide”, CS Dept., UW - Madison,
1990.

[Pang93a[H. Pang, M.J. Gamy, M. Livny, “Pattially Preemptible Hash
Joins”, Proc. SIGMOD. 1993.

[Pang93b] H. Pang, M.J. Carey. M. Livny, “Memory-Adaptive Exter-
nal Sorting”, CS Technical Report, UW - Madison, 1993.

IRtes78] D. Ries. R. Epstein, “Evaluation of Distribution Criteria for
Distributed Database Systems”, UC&/ERL Technical Report M7&/22, UC
Berkeley, 1978.

[R’IS92] Real-Time Sysfems. 4(3), Special Issue on Real-Time Data-
bases, 1992.

[S&98] B. Sal&erg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, B.
Vaughan. “F&Sort: A Distributed Single-Input Single-Output External
Sort”, Proc. SIGMOD. 1990.

[SIGMSII] SIGMOD Record, 17(l), Special Issue on Real-Time Data
Base Systems, S. Son, editor, 1988.

[zCU98] H. Zeller. J. Gray, “An Adaptive Hash Join Atgorithm for
Multiuser Environments”. Proc. VWB, 1990.

629

	Memory-adaptive external sorting
	Citation

	Memory-Adaptive External Sorting

