
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-1993

Partially preemptible hash joins Partially preemptible hash joins

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Michael J. CAREY
University of Wisconsin-Madison

Miron LIVNY
University of Wisconsin-Madison

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
PANG, Hwee Hwa; CAREY, Michael J.; and LIVNY, Miron. Partially preemptible hash joins. (1993). SIGMOD
'93: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data: May 26-28,
1993, Washington, DC. 59-68.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3660

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3660&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Partially Preemptible Hash Joins

HweeHwa Pang Michael J. Carey Miron Livny

Computer Sciences Department
University of Wisconsin - Madison

M8clison, WI 537(K

{pang, carey, miron}@cs. wi.ac. edu

ABSTRACT — With the advent of real-time and goel-oriertted

database systems, priority schedulirtg is likely to be art important

feature in future database management systems. A consequence

of priority scheduling is that a transaction may lose its buffers to

higher-priority tmneactions, and may be given additions

memory when transactions leave the system. Due to their heavy
reliance on main memory, hash joins are especially vulnerable to
fluctuations in memory availabdity. Previous studies have pro-

posed modifications to the hash join algorithm to cope with these

fluctuations, but the proposed algorithms have not been exten-
sively evahtated or compared with each other, This paper con-

tains a performance study of these algorithms. In additio~ we

introduce a family of memory-adaptive hash join algorithms that

turns out to offer even better solutions to the memory fluctuation
problem that hash joina experience.

1. INTRODUCTION

Database management systems (DBMS) are faced with

increasingly demanding performance objectives. These objec-

tives could bS time constraint requirements, as in real-time dtia-
bsses [REAL92], or administration defined goals as in goal-

oriented databases [Ferg93]. Traditional first-come-first-serve or

rotmd-robm schedu~mg policies are no longer adequate to meet

such objectives; a DBMS has to prioritize transactions that are

competing for system resources according to the system objec-

tives and the resource requirements of the transactions.

With priority scheduling, the DBMS may preempt a trattsac-

tion that is currently allocated a resource when that resource is
requested by a higher-priority transaction. To avoid severe per-

formance degradstio~ e.g. due to convoys that arise when tran-

sactions holding criticst resources are suspended [B1ss77], it is
desirable to preempt a transaction only at a preemption-safe

point, where the transaction is not holding any critical resources

and the preemption cost is minimal [Ston8 1]. Scsns artd updates,
which acquire and release resources repeatedly throughout their

lifetimes, have frequent preemption-safe points. In contras~

large joins, especially hash joins, hold on to their buffers for an

extended period each time. The DBMS therefore cannot wait for

these joins to reach their preemption-safe points. When a join

has to be preempted prematurely, measures have to be taken to

minimize the performance penalty of preemption.

To execute efficiently, a hash join requires a significant

amount of main memory to hold its hash table. Depending on
rhe specific algorithm used, the number of buffers that a hash join
utilizes ranges anywhere from the square root of the size of the

This work was partially supported by a scholarship from the Insti-
tute of Systems Science, National University of Singapore, and by an

IBM Research Initiation Grant.

Permission to copy without fee all or part of this material is

granted provided that the copies ars not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requiree a fea

and/or epecific permission.

SIGMOD /5/93/Washington, DC, USA

01993 ACM 0-89791 -592-51931000510059 . ..$1 .50

inner relation to the inner relation size [DeWi84, Shsp86], which

can be a substantial portion of the system memory. Moreover,
this hash table has to be kept in memory for a long period of

time. Consequently, during the lifetime of a large hash join, the

DBMS may have to appropriate some of the join’s memory to
satisfy the memory requirements of higher-priority transactions;

the buffers that are taken away may subsequently be returned

after those transactions leave the system. Given the prospect of

continually having memory taken away and given back during its
lifetime, a hash join has to adapt its buffer usage to minimize any

detrimental effect that might result from the changes in its allo-

cated memory. To simplify our discussion, we shell henceforth

refer to these changes as memory fluctuations.

One way to deal with memory fluctuations would be for the

DBMS to employ virtual memory techniques to page the hash

table of an affected hash join into and out of a smaller region of
allocated memory without having to inform the join operator. If
this causes too mrmy page faults, the DBMS could suspend the

join altogether. Art advantage of this approach is that it shields
the hash join algorithm from the complexity involved in adapting
to memory fluctuations. However, there may be severe perfor-
mance drawbacks associated with this approach. Ott one hand,

suspending hash joins that are affected by memory fluctuations

reduces the number of active transactions, which may lead to

under-utilization of system resources. Paging the hash table of a

joi~ on the other hand, is likely to result in thrashing; a hash join
accesses its hash table pages rsndotrdy, and arty page that is

replaced will likely be needed before long.

In this study, we investigate a different approach, namely, to

involve the affected hash joins in adapting to the fluctuations.

These algorithms range from relatively simple ones, which
require few extensions to the original hash join algorithm, to

sophisticated algorithms that dynamically adjust the buffer usage

of hash joins to reduce the performance penalty that results from

memory fluctuations. The second group of algorithms includes a

family of hash join variants called Partially Preemptible Hash
Join (PPHJ). Alt the PPHJ variants are capable of dynamically

adjusting the buffer usage of a join in reaction to a drop in the

amount of memory allocated to it (hence partially preemptible),

or en increase in the allocated memory. They differ from one

another in the way that they prepare for the event of memory

shortage, and in the way that they utilize excess memory.

Together, these algorithms cover a wide range of choices in ded-
ing with fluctuations in memory aveilabtity. To understand the
performance trade-offs of each algorithm and to identify those
algorithms that adapt well to changes in system buffer usage, we

have constructed a detailed simulation model of a database sys-

tem. This model enables us to study the behavior of the hash join
algorithms over a wide range of system resource configurations.

The remainder of this paper is organized as follows. Section

2 reviews existing work that is related to our study. The family
of PPHJ algorithms is in~oduced in Section 3. Also included in

Seetion 3 is a description of the algorithms that will be studied

along with PPHJ. A detailed simulator of a database system,

intended for studying the performtmce of the various algorithms,

59

is described in Section 4. Section 5 presents the results of a
series of simulation experiments showing tha~ over a wide range

of system condhions, PPHJ offers effective solutions to the prob

lem of memory fluctuations. Finally, our conclusions are

presented in Section 6.

2. RELATED WORK

Jn this section, we describe the studies reported in the litera-
ture that are related to our work. Before doing so, we first itttro-
duce some notation that will be used throughout the paper.

A hash join involves an inner relation R, and an outer rela-
tion S. Relation R has 1~11pages and WI tuples. Similsrly, S has

INI pages md PI mples. We assume that IISII> IIRII. We also use
a “fudge factor”, F, to represent the overhead for a hash table.

E.g., a hash table for R is assumed to require ~~11 pages.

Some of the earliest work on joins using hashing is reported

in [Kits83], which introduced the GRACE Hash Join algorithm.

In GRACE, a join is processed in three phases. First, the inner

relation R is split into _ disk-resident partitions that are
approximately equal in size. In the next phase, the outer relation

S is partitioned using the same split function. Finally, the R and

S tuples of each disk-resident partition are joined in memory. In
the variation of the GRACE al orithm that is presented in

e[Shap86], a join requires only FIIRII output buffers throughout
its lifetime. Excess buffers are used to hold subsets of R and/or

S so they need not be written to disk.

A shortcoming of the GRACE Hash Join algorithm is that it
does not effectively utilize memory that is in excess of the

minimum - buffers. Jrt [DeWi84], DeWitt et al proposed
the Hybrid Hash Join algorithm, which follows the same three

phases that GRACE has but uses excess memory more effec-

tively. The Hybrid Haah Join algorithm divides the source rela-
tions into only as many disk-resident partitions as are necessary

to split R into sets that can fit in memory. Each of these parti-

tions is assigned an output buffer. Instead of using the rest of the

memory to hold subsets of R and S as in GRACE, this memory is

used to hold the hash table for the first partition, so that the R and
S tttples that belong to this partition can be joined in memory
directly as S is being scanned. The Hybrid Hash Join algorithm

was shown to have superior performance over GRACE.

The Hybrid Hash Join algorithm is designed to make full use
of the memory that a join has available when it first starts execu-

tion. During the course of execution, however, there may be a
misfit between the amount of memory that the DBMS can allo-
cate to the join and the size of its R partitions. One possible

cause of this dkwrepancy is due to incorrect estimation of the

hash attribute dktribution. This results in a situation where some
R partitions are larger than the allocated memory, while other R

partitions are under-sized. In ~aka88], a modification of Hybrid

Hash Join was proposed to deal with this memory misfit prob-
lem. Instead of deciding on the number of partitions at the s-

the proposed modhication splits the inner relation into smaller
subsets, called buckets, which will later be grouped into pan.i-
tions. The number of buckets is a parameter of the algorithm.

Each bucket is assigned a memory-resi&nt hash table that is ini-
tially empty. As R is scanned, the buckets gradually grow in

size. Each time the memory requirement for the join tries to
exceed the available memory, a bucket is written out to disk and
all but one of its pages are released. The remaining page is then
used as an output buffer for that bucket. After the inner relation

R has been scarme~ there will be as many memory-resident

buckets as is possible to fit into the available memory. These

buckets are then combined into a single R partition that is

equivalent to the first partition in Hytild Hash Join. The d~k-

resident buckets are also grouped into partitions that will fit
snugly in memory when they are brought back in. The next two

phases proceed exactly as in the Hybrid (or GRACE) Hash Join

algorithm. Through a series of experiments, this mo&ficd algo-

rithm was shown to outperform Hybrid Hash Join when the hash
attribute dMribution cannot be accurately determined [Kits89].

Another factor that can cause a dwcreoancv between the

memory requirement of a join and the mem&y ~at is available
to it is memory contention due to other transactions or queries (as
d~cttssed in the introduction), or by other processes that are rutt-

nittg in the system concurrently with the DBMS. Zeller and Gray
first addressed thii situation in [Zel190]. LAe the algorithm in

Naka88], the algorithm that they proposed divides the inner rela-

tion into many buckets. Unlike the Nakayama et al algorithm,
the Zeller and Gray algorithm immediately groups these buckets

into tentative partitions. The total number of buckets and the

number of buckets per partition are both parameters of the algo-

rithm. Inhially, these partitions are each given a memory-
resident hash table. As R is scanned and the partitions grow in

size, the join may attempt to acquire more memory than what is

allocated to it. When this happens, a partition will be written out

to dwk, and the memory that is used for its hash table will be
deallocated. This partition now becomes disk-resident, and it is

given only an output buffer. Should a partition ultimately turn
out to be too blg for the allocated memory, the buckets that make

up this partition will be regrouped into two smaller partitions.

After R has been scannd there will be one or more memory-
resident R partitions, plus zero or more R prmtitions that r&ide

on disk. Moreover, each R partition will be small enough to tit

into the allocated memory. The remaining portion of the join

proceeds as in phases 2 and 3 of Hybrid (or GRACE) Hash Join.

The drawback of this algorithm is that when a d~k-resident parti-
tion gets split (during phase 1), its existing disk pages will con-

tain tuples from the two new partitions. These pages will have to

be fetched repeatedly during phase 3 of the join when dk.k-

resident padtions are processed. The proposed algorithm was

prototype in NonStop SQL, and a preliminary evaluation
showed the algorithm to be superior to sort-merge join.

3. MEMORY-ADAPTIVE HASH JOIN ALGORITHMS

This section describes in detail the memory-adaptive hash

join algorithms that will k examined in this study. FirsL Par-
tially Preemptible Hash Join (PPHJ), a new family of hash join

tdgorithms that dynamically aher the memory usage of joins

according to buffer availability, is introduced. We then relate the
algorithms proposed in [Naka88] and [ZC1190] to PPHJ. Finally,
we describe how our implementations of the basic GRACE and

Hybrid Hash Join algorithms cope with memory fluctuations.

3.1. Partially Preemptible Hash Join

In order to adapt effectively to memory fluctuations, a join
has to respond quickly and work with a smaller buffer space

when memory is taken away; it must also utilize any additional
memory that it is given while executing. These are the main
design considerations of PPHJ.

Like the GRACE and Hybrid Hash Join algorithms, PPHJ

executes a join in three phases. Phases 1 and 2 partition the inner
relation R and the outer relation S, respectively. During these

two phases, tbe tuples of some R partitions are held entirely in

memory-resi&nt hash tables, while the tuples of other R parti-
tions are stored partly or entirely on disk. To simplify our dis-

cussion we shall henceforth refer to the memory-resident parti-

tions as expanded partitions, and the disk-resident partitions as

contracted partitions. Finally, in phase 3, S tuples that reside on
dmk are fetched and joined with the corresponding R tuples. The

60

details of these three phases will become clear shortly.

Whh PPHJ, the choice of the number of partitions has a

significant performance implication. On one hand, we could

minimize the number of partitions, as in the Hybrid Hash Join

algorithm, by making each contracted partition as large as the

initial amount of memory. This would enable the join to make
full use of the memory that it starts off with, but would also

expose the join to memory fluctuations during phase 3; this is
because phase 3 of the join will still require all of the initially
allocated memory to build a haah table for each contracted parti-

tion. On the other hand, having many small partitions would
make the join less vulnerable in phase 3, but would introdum

other problems: Since each partition requires at least one page of

memory, having more partitions leaves less space in which to

expand partitions. To balance the benefit of smaller partitions

against the penalty of a larger number of partitiona, PPHJ

attempts to minimize both the number of partitions and the aver-

age partition size. This is achieved by setting the number of ar-
?titions to m, making the partition size also about Fl~ll.

PPHJ therefore divides the source relations into w p@i-

tions, the same number of partitions that GRACE Hash Join uses.

Besides rendering joins less vulnerable to fluctuations in

memory availability during phase 3, having m partitions
rather than the minimum numlxr of partitions has another advan-
tage in that it enables PPHJ to reduce the buffer usage of a join

during phases 1 and 2 when necessary. Instead of one big

expanded partition, PPHJ maintains several smaller partitions,

and each expanded partition has its own hash table. To reduce

buffer usage, PPHJ simply contracts one of these partitions by

flushing its hash table and freeing all but one page of its memory.

3.1.1. PPHJ: The Basics

Having given an overview of PPHJ, we now present the algo-
rithm in detail. The PPHJ algorithm involves five steps. Step (1)

initializes the join. Phases 1 and 2 of the join are implemented

by steps (2) and (3), respectively. Finally, in phase 3, the join
iterates over steps (4) and (5) until all the partitions have been

folly recessed. Note that the detailed algorithm entails ordering
ethe Fl~ll partitions. The purpose of this ordering will become

clear shortly (once we introduce the variants of PPHJ).

(1) Choose a hash fitnction h and a partition of its hash values

that will split R into I?l, ... R- and S into Sl, ... S
Pso that each R partition will have approximately Fl~ll

pages. An R partition can either be “expanded” or “con-

tracted”, with the restriction that partition i cannot be con-

tracted before partition i+l. In other words, when needed,

we always contract the expanded pmtition that has the

highest index. Each expanded partition requires w
pages for its hash table, and each contracted partition needs

one output buffer. Expand as many partitions as the allo-

cated memory allows. Any leftover buffers are used as a
spool area for pages that are being flushed to disk. The spool
area is managed by the LRU policy.

(2) Scan R. Hash each tuple with h. If the tuple belongs to an
expanded psrtitio~ insert the tuple in the hash table of that

partition; otherwise the tuple belongs to a contracted parti-
tion, so copy it to the corresponding output buffer. In the

event that an output buffer becomes full, flush it. After R has
been completely scanned, flush all output buffers. During
thii step, memory maybe taken away from the joiu and this
may necessitate contracting more partitions. To contract a

partition, flush its hash pages and give away all but one of its

allocated pages. The remaining page is then used as an out-
put buffer. When this step is finished, we have a hash table

in memory for each expanded partitio~ and all the con~acted

partitions are either on d~k or in the spool area.

(3) Scan S, hashing each tuple with h. If the tuple hashes to a

partition of R that is currently expanded probe the

corresponding haah table for a match. If there is a match,

output the result tuple; otherwise drop the tuple. If the tuple
belongs to a con~acted partition of R, copy the tuple to the

corresponding S partition’s output buffer. When an output

buffer fills, it is flushed. After S has been completely

scanned flush all output buffers. (Note that additional parti-
tions of R can be contracted during this step in response to
changes in the amount of memory available to the join.)

Repeat steps 4 and (5) for each partition i that has a nonempty

S/, i G 1, ... FFl~ll. Partition Si will be nonempty if partition I/i

was contracted at the start of or at some point during step (3).

(4) If the hash table of Ri is not already in memory, read in Ri

and build a hash table for i~

(5) Scan Si, hashing each tuple and probing the hash table for Ri.

If there is a match, output the result tuple, otherwise toss the
S tuple away. (Note that some pages of Ri and Si may be in

the spool sre~ thus avoiding 1/0s.)

3.1.2. PPHJ: Variations on a Theme

When memory is taken away from a jofi the basic PPHJ

algorithm adapts by contracting partitions; the DBMS suspends

the join if fewer than w pages remain. Any extra memory is

assigned to a spool. The following (optional) mechanisms are

designed to use the extra memory more effectively.

1.

2.

3.

Contraction. In step (1) of PPHJ, instead of assigning all
_ pages to every expanded padion at once, we could

let each partition start off with only 1 Pagq and allocate addi-

tional pages to a partition only when all its current pages ae

full; the pages that a p~ition owns are linked to form a hash
chain, as in [Zel190]. Thk allows all partitiona to be

“expanded” initially. Under this variation, contraction occurs
when an expanded partition requires an additional page and
none is available. To distinguish between the original

approach of contracting partitions at the start and this varia-
tion, we call the former approach early contraction and this
variation late contractwn. An advantage of late contraction

is that memory may be added after a join has begun execu-

tion, thus eliminating the need to contract some partitions.

Expansion. Throughout step (3), whenever a join has enough
ff~ memory to expand the contracted partition that has the

lowest index, seize the opportunity and do so. (This is in

contrast to just using the free memory for the spool area.)

Expanding a partition involves fetching those of its R tuples

that have previously been written to disk so that future S
tuples that haah to thii partition can be joined directly. By

arranging to have as many partitions expanded as possible

during step (3), this mechanism seeks to minimize the
number of S pages that ever have to be written to disk.

Prioritized Spooling. Steps (2) and (3) of PPHJ flush filled

output buffers of contracted partitions. These pages can be
recalled either in step (3), to re-expand partitions, or in steps

(4) and (5), when contracted partitiona are processed. Since

partitions with lower index numbers are expanded (in step

(3)) and scanned (ii steps (4) and (5)) before those with
higher index numbers, we can prioritize the pages in a join’s
spool to ensure that pages will be protected horn replacement
until there is no page belonging to a higher-in&x partition in

the spool area. Moreover, to complement the expansion

mechanism, R pages ue preferred over S pages in step (3),

so that the spool retains as many R pages as possible to

61

facilitate partition expansion. This should improve the effec-

tiveness of spooling as compared to the LRU strategy.

Each of the above mechanisms can be used by itself or can
be combmed with the other two mechanisms, giving rise to eight

PPHJ variants. To distinguish between them, we shall posttix a

string of the form XIX2X3 to PPHJ, where Xl is either late or
early (late or early contraction), X2 is either exp or noexp (expan-

sion or no expansion), and X3 is either prio or b-u (priority or

LRU spooling). For example, PPHJ(early,noexp,lru) denotes the

basic PPHJ, with early contraction no expansion and LRU

spooling; PPHJ(late,~,prb) denotes the fully enhanced PPHJ,
with late contraction, expansion and prioritized spooling.

3.2. Other Algorithms

3.2.1. Nakayama et al

The algorithm proposed in ~aka88], which we will call

NKT from here on, delays the decision to contract buckets as
long as possible. When a bucket has to be contracte~ all of its
memory-resident pages are flushed to disk without going through
the spool area. After contraction, filled output pages of this

bucket are spooled if space permits. Therefore, except for its

failure to spool pages of contracting buckets, NKT combines late

contraction no expansion, and LRU spoliig, using the termino-
logies of PPHJ. Our contex~ where the number of buffers allo-

cated to a join may be reduced at any point during its lifetime,

necessitates two adaptations to NKT, Firsc the original NKT
algorithm contracts buckets only during phase one of a join. This

is inadequate for our purposes, so we allow contractions all
through phases 1 and 2. The next adaptation is motivated by the
need to keep the size of the R partitions as small as possible, so

as to minimize the join’s vulnerability to memory fluctuations
when the R partitions are held in memory-resident hash tables.

Therefore, instead of grouping several buckets into bigger parti-

tions, we let each bucket form a partition by itself. Finall the
Ptotal number of buckets, a parameter of NKT, is set to Fl~ll.

‘His parameter value is chosen to miniiize the number of buck-

ets and the average bucket size (as d=cussed in the beginning of

this section), as well as to provide a consistent comparison
between NKT and PPHJ. We shall refer to our implementation

as NKT 1 to differentiate it horn the original NKT algorithm.

3.2,2. Zeller and Gray

Like the Nrdcaysma et al algorithm, the algorithm of Zeller

and Gray allows contractions to occur only during the tirst phase

of a join [Zel190]. Our implementation relaxes this restriction so

that contractions may occur in both phase 1 and phase 2. The
total number of buckets, a parameter of the algorithm, is set to

w for the same reason as in NKT’. The number of buckets

that make up each partition, another algorithm parameter, is

chosen to be one. Thk choice is motivated by the need to keep
the size of the R partitions as small as possible, as in the case of
NKT. The resulting algorithm, which we denote as ZG 1, is

equivalent to PPHJ(lare,noexp,lru).

3,2.3. GRACE and Hybrid

Besides PPHJ, NKTl and ZG 1, we also include the GRACE

and Hybrid Hash Join al orithtns in this study. Our implementa-
+tion of GRACE uses Fl~ll pages for the output buffer of the

partitions, and excess buffers me used as an LRU spool area. In
the event that less than m pages can be allocated to a join,

the DBMS suspends the join altogether. For Hybrid Hash Join,
we have implemented two dfierent versions. In the first version,

the DBMS suspends a join if it loses any of the buffers that it

starts off with; therefore, this version is not partially preemptible.
In contrast, the second version resorts to LRU paging whenever

the memory available to the join is insufficient to hold its entire

hash table. Jn this casq the join remains executabl~ so the

second hybrid hash join version is partially preemptible. These
two versiona are denoted by Hyb(Susp) and Hyb(Page), respec-

tively. Whh Hyb(Susp), all the pages of a join that are written to

disk while the join is suspended will be fetched together when
the join resumes. This results in sequential I/@, as opposed to
random J/Os which would occur if the d~k-resident pagea were
to be paged in on demand. Hyb(Page) dces the following for

each page that is read in while pmtitioninglprocessing relation S:
Tuples in this S page which hash to contracted partitions are

copied to the output buffers, while tuples that belong to the (sin-

gle) expanded partition are joined with tuples in the R pwtition’s
hash table in two stages. Stage 1 processes those tuples in the

current S page that hash to pages in the memory-resident portion

of the hash table and then discards these processed S tuples. S

triples that hash to hash table pages that have been paged out to
disk are not processed in stage 1. In the second stage of process-

ing an S page, all of the disk-resident hash table pages that are
required are fetched in order to process the remaining tuples in

the current S page. During this stage, hash table pages that are

replaced are no longer useful to the current S page, as the S

toples that need these pages of the hash table have already been

processed. This two-stage strategy requires knowledge about

which hash table pagea have been swapped OUL and which pages

still remain in memory. However, this strategy is superior to a

simple strategy that fetches a missing hash table page each time
it is demanded by an S tuple, as the simple strategy may repeat-
edly swap out hash pages that will be used by subsequent S

tuples. This would lead surely to unacceptable performance.

4. DATABASE SYSTEM SIMULATION MODEL

To aid in our on-going research on real-time database sys-

tems, we have constructed a simulation model of a centralized

database system. The portion of our simulation model that is

relevant to this study is shown in Figure 1. There twe five com-

ponents: a Source that generates wmsactions and collects statis-

tics on completed transactions; a Transactwn A4anager that
models the execution of transactions, includiig joiw, a Br&er

Manager that implements the buffer management policy; and a

CPU Manager and a Disk hlanager that are responsible for

managing the system’s CPU and disks, respectively. In this sec-

tiorL we describe how the simulation model captures the details

of the database, worklod and various physical resources of a

database system. The simulator is written in DeNet [Llvn90].

4.1. Database and Workload Model

Table 1 summarizes the database and workload model
parameters that are relevant to this study. Our objective is to

simulate a stream of binary hash joins on different source rela-

tions. To facilitate this, the database consists of two groups of
relations. There are NumRel ~ relations in the first group, and

page

//

page CPU

tl

CPU
rqtest reply request reply

I Buffer MgrHi’il
page

request Disk Mgr

page

reply

Figure 1: Database System Model

62

NtunRe12 relations in the second. Each relation isj (i = 1, ~ 1 s j
s NtunReli), in ~ has a size of Rel+!iizei,j ~ytes SZId OCCtt@S

contiguous pages on disk. If there are multiple disks, all rela-

tions are declustered (horizontally partitioned) [Ries78, Livn87]
across all of the disks. To minimize d~k head moveme~ the
relations are allotted the middle cylinders of the disks; temporary

files occupy either the inner cylin&rs or the outer cylinders.

In this study, the workload is made up of a series of joins; a

new join is submitted to the database system only when the ~e-
vious join has been completed. Each join involves an inner rela-

tion R, which is uniformly selected from the relations in the first

group, and an outer relation S which is uniformly selected from

the second group. We assume that each tttple in S joins with

exactly one tuple in R, i.e. the join selectivity is 1~1. This is
intended to model joins that involve the primary key of one rela-

tion and the foreign key of another relation.

To investigate how different join algorithms adapt to fluctua-

tions in the amount of available memory, we simulate an

environment where joins have to contend for memory with other

“transactions” that have small memory requirements and occa-
sionally, with “transactions” that have large buffer demands. The

memory contention experienced by the active joins is modelled

here by a simple stream of competing memory requests. The
duration of the memory requests follows an exponential d~tribu-
tion with a mean of Dur~etiCq, With a probability of

P (smallReq), a memory request takes up a small number of
memory pages; otherwise a large portion of memory is

demanded. The proportion of the total memory that a small
request takes up varies uniformly between 0~0 aztd MemThres.

h the case of a large request, between 070 to 100%o of the total

memory is taken up.

4.2. Physical Resource Model

The psmrneters that specify the physical resources of our

model, which consist of one CPU, multiple disks, and main

memory, are listed in Table 2. There is a single CPU quett~ and
a tlrst-come-fizst-serve (FCFS) scheduling dkciplirte is used,

The MIPS rating of the CPU is given by CPUSpeed. Table 3
gives the cost of various CPU operations that are involved in the

execution of a join. These CPU costs are based on instruction

counts taken from the Gamma database machine [DeWi90].

Turning to the disk model, #Disks specifies the number of

disks attached to the system. Each of the disks has its own queue

and uses an FCFS scheduling policy. (We also implemented the

elevator algori~ but found that the performance difference
between the elevator and the FCFS policies was negligible for

our experiments. Hence we used FCFS here to speed up our

simulation experiments.) The characteristics of the disks are also

given in Table 2. Using the parameters in this table, the total

time required to complete a dkk access is computed ax

DiakAccess = Seek + RotateDelay + Transfer

Database Meaning D. Vafue

NwnRel~ #of relations in group 1 5

RelSizel j sizeof relmionj of group 1 2 MBytes

NumRe12 #of relations in gtuup 2 5

RelSize2 j Sire of relationj of group 2 20 MBytes

TupfeSizei.i Avg mple size of relation ij 256 Bytes

Workload Meaning D. Value

Du%femReq Avg mem. request duration 1 second

MemThres Msx. % buffer demand of a 20%

“small” memory request

P(smnllReq) “SmsW mem. request prob. 0.8

Parameter Meaning D. Vafue

CPUSpeed MIPsratingof CPu 20 MIPS

#Dieks #of disks 1

SeekPaetar Seek factor of disk 0.00M17

RotateTime ‘Mne for one disk rotation 16.7 msec

#Cylinders #of cylinders px disk 15(XI

CyfSize #of pages px cylio&r 90 pages

PageSue #of bytes perpage 8 ~J53S

M Total system memory 3.2 MBytes

SleepTime Tiie ke.tween memory writes 1 second

FlushThres Threshold for memory writes O second

Table 2 Physical Resoume Model Parameters

Operatfan # Instructions

Initiate a join 40,000

Terminate a join 10,OOO

Reada tuplefrorn memory page 300

Hash a tuple 500

Copy a tuple to oufput bufer 100

Insert a triple into hash table 100

Probe hash table 200

Start an 110 operatwn 1000

Reada pogejkwn disk Io,ooo
Write a page to dkk Io,ooo

Table 3: Number of CPU Instructiars Per operation

required to seek across n tracks is ~itt88]:The time
SeekTime (n)= SeekFactor x ~

Finally, the system has a total memory size of M MBytes. A
memory t&erv~on mechanism is Provided to allow ofirators,

including joins, to reserve buffers. Buffers that are reserved me
managed by the operators themselves. Page replacement for

non-reserved pages is handled as follows: The DBMS first

attempts to find the least recently used clean page for replace-

ment avoiding the dirty pages initially. If there is no clean page,

then the least recently used duty page is selected. Before a dirty

page can be replac~ however, its contents need to be written to

disk Thii lengthens the time that is needed to satisfy buffer

requests, and should be avoided if possible. For this reason, an
asynchronous memory write process is provided to flush dirty

pages to disk periodically [Teng84]. The write process is

activated every SleepTime seconds. Upon activation, the process

flushes all of the dirty pages that are older than FlushThres. The

reason for flushing only the “old dirty pages is to prevent
unnecessary writes of frequently updated pages.

5. EXPERIMENTS AND RESULTS

In thii sectio~ the database system simulator described in

Section 4 is used to evahtate the perforrntmce of the alternative

memoty-adaptive hash join algorithms. We begin with a base-
line mode~ and further experiments are carried out by varying a

few parameters each time. The performanm metric of intereat
here is the average join response time. Fore= of reference, the

ittdlcator for the algoritbzns are summarized in Table 4.

5.1. Baseline Experiment

In our first experiznen~ we simulate an environment where,
except for occasional shortages, there is abundant memory for
joins to execute. This environment is simulated by a steady

stream of small memory requests and some occasional large

memory requests. To achieve this, the mean duration of memory
requests is set to 1 second, and MemThres and P(smaflReq) are

set to 20% and 0.8, respectively. In other words, 80% of the time

Table 1: Database and Workload Model Parameters

63

Indicator Algorithm

PPHJ Partially Preemptible Hash Join

60. GRACE

v early vs late

● noexp w exp

● lru vs prio
z()

N@

GRACE
Hyb(Surp)

Early vs Late C-&traction

No Expansion vs Expansion

LRu Vs Priority spooling

Zeller and Gray algorithm
Nakayama et al algorithm

GRACE Hash Join
Hybrid Hash Join with Suspension

Hyb(Page) Hybrid Hash Join with Paging

Table 4: Algorithm Indicators

a memory request takes UP 0-20% of the total memory, and the
other 20?0 OF the time ~e request takes up between 0% and

100% of the total buffer space. Moreover, to model primary

key-foreign key joins, we let 1~11and IISII be 2 MBytes and 20

MBytes, respectively, and M be 3.2 MBytes. (These pwarneter
values were chosen by scaling the combination Ill?ll = 10 MBytes,

I]SII = 100 MBytes, and M = 16 MBytes down by a factor of 5, so

as to keep the simulation cost down.) Finally, the memory write
process is activated every second. Upon activation, the process

flushes all of the dirty pages. Therefore SleepTime and

FlushThres are 1 second and O seconds, respectively. The
parameter settings are surmmmized in Tables 1 and 2.

Figure 2 gives the response time of the various algorithms for
this experiment. Jn the figure, the four PPHJ variants with

expansion, i.e. early,exp,lru, early, expp-io, late,exp,lru, and

late,exp,prio, deliver the best performance, followed by the two

hybrid hash join algorithms. The response time of the remaining

four PPHJ variants, i.e. early, noexp,lru, early,rwapprio,

late,rroexp,lru, and late,rtcwxp,prio, are roughly twice as long as
those of the first four PPHJ variants. Finally, the GRACE Hash
Join rdgorithm produces unacceptably long response times — its

average response time is more than four times those of the best

PPHJ variant. We also collected statistics on the average

memory that a join gets upon startup, and found this to be
roughIy the same for aI1 the algorithms. Hencz the behaviors
observed here are due to the mechanism(s) of the join algorithms,
and not because of a systematic bias in memory alkxation. To

understand the reason behind these behaviors, we shall analyze

each algorithm in turn. In the case of the eight PPHJ variants and

ZG], which is equivalent to PPHJ(late,rroexp, b-u), since their
response times ae determined by three different mechanisms, we
shaIl examine the impact of each of these mechanisms instead.

Before doing so, we shall fist introduce a few terms that will be

used to characterize the detailed behavior of the algorithms.

We denote the number of 1/0s that a join incurs, excluding
those for reading the source relations and writing the results, as
“Overhead-I/Os”. Overhead-I/Os consist of two compamnts —
those associated with R partition pages, which we denote as R-
UOS, and those associated with S partition pages, which are

denoted as S-I/Os.

Let us first evahrate the expansion mechanism (rwexp vs.
exp). Recall that expansion attempts to expand as many parti-

tions as possible during the second phase of a join so as to max-

tilze the number of S tuples that sre joined duectly during this

phase. The detailed results are listed in Table 5, which highl@ts

the performance trade-offs associated with expansion. These

results show that expansion is clearly beneficial under the

baseline’s set of experimental conditions. The reason is as fol-

lows: Comparing each set of performance results for no expan-

sion with those for expansion in the corresponding row, we

observe that expansion results in slightly more R-J/Os. For

Figure 2 Baseline Experiment

example, with late contraction and priority spooling, Table 5

shows that PPHJ requires 275 R-I/Os when there is no expansion

and 304 R-JPs when expansion is activated. This increase is

expected because expansion briigs in disk-resident pages of R

pmtitions during the second phase of a join. These R pages may
subsequently be swapped out due to another memory shortage,

and thus have to be refetched later. Consequently, some R parti-

tion pages are fetched more than once, resulting in the observed

increase in R-I/Os. However, by arranging to expand as many
p@.itiona as possible during phase 2 of a join, few S pages need

to be written out to disk and then processed in phase 3. As an
example, refer to the last row of Table 5 again. With expansion,

the number of S-I/Os is only 75, compared to the 1675 S-I/Os in

the case where there is no expansion. This large reduction in S-

I/Os more than offsets the drawback in increased R-I/Os, reduc-

ing the response time by more than 50’%!

We now examine the priority spooling s~ategy (lru vs. prio).

To facilitate interpretation of the results, we reorganize Table 5

into Table 6 to highlight the relative contributions of LRU spool-
ing versus priority spooling. Table 6 shows that priority spooling

produces only a slight performance improvement over LRU

spooling. In fac~ for the two better combinations involving
expansion, i.e. early,exp and late,exp, the performance differ-

ence between the two spooling strategies is negligible. The inef-

fectiveness of priority spooling, when expansion is in effec~ is
explained as follows: Jn an environment where there is ample

memory and memory shortages are rare, most of the spooled R

pages are recalled for expansion before they are forced out by

occasional memory shortages. Moreover, since expansion keeps
most of the R tuples in memory-resident hash tables, few S
tttples need to be written out. The strategy that is used to manage

the spool area thus has little impact on performance.

Nex~ we evahtate the relative merits of early versus late con-

tractions (early vs. late). Table 7 focuses on the impact of the
timing of contraction. Late contraction consistently produces

lower R-I/Os and S-I/Os than early contraction, leadiig late

noexp —
9 earlyjru

● early .prio

● late,lru

wtate@a

exp —

9 earlyJru

● earlyprio

● late,lru

wlateprio

+

R-I/O

310

290
304

275

322

302

310
304

m
2001

1724
1790

1675

77

77

72
75

2311

2014

2094
1950

399

379

382

379

Table 5: Expansion Mechanism

Eqr.

38.0

32.9
36.7
32.3

17.0
16.1

16.1

16.1

64

R.1/O s.I/o Overhead-L/O Rasp.

lru —

● early floexp 310 2001 2311 38.0
● early,exp 322 77 399 17.0
● late,noexp 304 1790 2094 36.7
s Iate,exp 310 72 382 16.1

prio —

weorly,noexp 290 1724 2014
● early,exp 302 77 379
●fate.noexp 275 1675 1950
● late,exp 304 75 379

32.9

16.1

32.3

16.1

Table 6 LRU vs Priority Spooling

contraction to have lower response times than early contraction.
The superior performance of late contraction is explained by the
following: By keeping the partitions of a join expanded as long

as possible, it may turn out that some partitions need not be con-

tracted after all because additional memory is allocated to the

join. Moreover, in the worse case, late contraction will contract
only as many partitions as early con~action does. Late contrac-

tion thus outperforms early contraction. However, the difference

in perform~ce between the two contraction strategies is not sub.
stsntial, especially when there is expansion. The reason for this

is as follows. In phase 1 of a jofi early contraction may result in

more partitions being contracted than is necessitated by the sub-

sequently available memory. If this happens, however, the
excess memory is used to spool the pages of the contracted R

partitions. Once phase 2 begina, these spooled pages are recalled

to expand partitions so, shortly after the start of phase 2, the join

is operating with just as many expanded partitions as it would
have been with late contraction. As a resul~ expansion enables
early contraction to stay competitive with late contraction.

Turning to NKT1 in Figure 2, we note that it is similax to

PPHJ(late,noexp,fru), except that NKT1 writes pages of contract-

ing buckets directly to dwk. Thus NKT1 loses some of the
benefits of spooling if excess memory is not fully utilized. This

explains the slightly longer response time of NKT1 compared to

PPHJ(late,noexp,h-u). Clearly, neither PPHJ(late,naxp,bu) nor

NKTl is the method of choice for this experiment,

As expected, GRACE Hash Join has the largest response
time. Although its small buffer requirement makes GRACE the

least vulnerable to memory variability, it fails to exploit the

available memory effectively. Instead of joining most of the par-

titions directly in phases 1 and 2 as in the other algorithms,

GRACE simply partitions the source relations during these tsvo

phases, and it starts joining the partitions only in phase 3. This

approach results in many extra 1/0s, of course, which accounts

for the relatively poor performance of GRACE.

Finally, we analyze the behavior of Hyb(Susp) and
Hyb(Page). Recall that when a join loses any of the memory that

R.UO s.I/o Overhead.L/O I Rem. [

I early —

8 noexp,lru 310 2001 2311 38.0
● noexp,prio 290 1724 2014 32.9

~● exp,lru 322 77 399 17.0
~● expprio 302 77 379 16.1

late —

● noexp,lru 304 1790 2094 36.7

9 noexp,prio 275 1675 1950 32.3
● exp,ku 310 72 382 16.1
● expprio 304 75 379 16.1

Table 7: Early vs Late Contraction

it starts off wi~ Hyb(Susp) allows the DBMS to suspend the

join until the lost memory is returnd, Hyb(Page) pagea the hash
table of the join within the remaining memory. Since there is

ample memory in this experimen~ the memory that a join 10SC5is

quickly returned. Thus, botb versions of the Hybrid Hash Join

algorithm perform much better than NKT1, ZG 1 and the PPHJ
variants without expansion, as these algorithms contract parti-

tions in response to occasional memory shortages and do not

recover from these contractions. However, since a hybrid hash

join is not able to utilize extra memory that is allocated during its

execution except for spooling, a join that arrives when there is a

memory shortage will run with a sub-optimal allocation

throughout its lifetime. This is why both Hyb(Susp) and

Hyb(Page) axe significantly worse than the PPHJ variants that
allow expansion.

To summarize the results of this experiment, we can derive
the following conclusions about environments where memory is
abundant and the inner and the outer relations differ in size.

Fwst, expansion is clearly beneficial, as it produces a consider-

able reduction in response time by avoiding many I/Os for the
larger relation. %con~ early contraction and LRU spooling per-

form only slightly worse than late contraction and priority spool-

ing, respectively, when the expansion mechanism is in effect.
Therefore, while Partially Preemptible Hash Join with late con-

traction, expansion, and priority spooling clearly yields the best

performance, all the PPHJ variants with expansion provide feasi-

ble alternatives to deal with memory fluctuations.

5.2. Memory Contention

In the next experiment, we investigate how the trade-offs
between the different algorithms change when we move from an

environment where there is ample memory to a situation where
memory contention is a severe problem. The total memory size
is reduced here to only 40% of Ilf?ll, while the rest of the parame-

ters are set as in Tables 1 and 2. Figure 3 gives the performtmce

results. We will focus only on behaviors that differ significantly

from those observed in the previous experiment.

Firs& we observe that expansion (rwexp vs. exp) now pro-

duces only a 10% reduction in response tirn~ compared to the

50% performance gain that we obtained in the baseline experi-
ment. To understand thii change, we examine the detailed per-

formance results that are presented in Table 8. Due to severe

memory contention, many of the R partition pages that expansion

brings in during phase 2 have to be removed when memory avai-

lability falls again. These pages will have to be refetched subse-

quently, which leads to a large increase in R-I/Os with expan-

sion. In fact, expansion roughly doubles the number of R-I/Os.

In addition, since the buffer sptice that is available to expand par-
titions is limited here, expan.w m is unable to obtain its previous

large increase in the number of S tuples that can be directly

joined in phase 2. Still, the decrease in S-I/Os more than com-
pensates for the increased R-I/Os.

Turning our attention to spooling (lru vs. prio) in Figure 3,
we again see that priority spooling produces only a slight perfor-

mance improvement over LRU spooling. In this experimen~
where memory shortages occur frequently, few pages are able to

remain in the spool area until they are recalled by the joins. This

is evident from the large R-I/o and S-J/O values here. For exam-

ple, with late contraction, no expansion, and priority spooling

(late,noexp~rio), each join requires an average of 471 R-I/Os.
This indicates that about 236 R partition pages are written to disk
(since each written page involves two 1/0s — one to write the
page to d~k, and snother to fetch the page in later for process-

ing} this is more than 9CM0 of the R pages. As a resul~ the

65

I II RJ/O

l--t
noexp —

● eariy,lru 473

● earlypio 472
wlateJru 472
● lateprw 471

ew —
● eariy,lru 897
wearly~io 816

e late,lru 887
9 kateprw 796

s-I/o Overhaad.I/O I Resp. ~

---L
4571 5044

4570 5042

4549 5021

4522 4993

3367 4264

3360 4176

3306 4193

3310 41(M

72.0

68.9

72.0

68.5

64.4

63.8

63.9

63.1

I late,

Table 8: Expansion Mechanism
.

spooliig policy doea not impact performance significantly.

Nex~ we compare early contraction and late contraction

(curly vs. late). As in the previous experirnenti late contraction

leads to only a small performance gain over early contraction
here, but for a different reason. In this experiment, due to the
more severe memory contention, few joina are able to retain any
large amount of memory for very long. Thus, early contraction

and late contraction result in about the same number of expanded

partitions, which accounts for their similar response times.

whereas PPHJ(kzte,rwap,lru) outperformed NKTl in the

previous experimen~ in this experiment NKTl has a slightly

lower response time than PPHJ(Lzte,noq,lru). Since NKTl

loses some opportunities to spool pages that are being flushed to

disk, this outcome surprised us inhially. A closer examination

however, reveals that this is precisely why NKT1 performs better.
The reason for this is becausq in a memory-constrained situa-

tion, most of the spooled pages are eventually written to d~k.
PPHJ(kzte,notzxp,lru) writes these spooled pages out one at a time
as new output pages are generated, which results in many ran-

dom I/@ when the pages are fetched in to memo~ for process-

ing, By writing out all of the pages of a contracting partition at

once, NKT1 reaps the benefits of sequential I/Os. This is why it
is superior to PPHJ(kzte,noap,lru) here.

A comparison of GRACE with the other algorithms in Figure

3 shows that it is only ls~o worse than the best PPHJ variant.

Since the main shortcoming of GRACE is its ineffective utiliza-

tion of excess memory, and the level of memory contention here

leaves little excess memory for the active joins, GRACE’s con-

servative use of buffer space yields satisfactory performance. In

contras~ Hyb(Susp) and Hyb(Page) both produce very long
response times. In the case of Hyb(Sttsp), joins have long
response times because they are often suspended for long periods

of time due to memory contention. To understand the poor per-

formance of Hyb(Page), consider the following scenario: Sup-
pose an active join just lost some of its memory and, as a resul~

part of its hash table has been flushed out. The join then fetches

the next page of S tuples and Ixoceeds to probe the part of the
hash table that is in memory. After this, the missing hash table
pages have to be fetched in to process this S page completely.
Before the fetch can be carried OUL however, some dirty hash
table pages that are currently residing in memory must be paged
out to make space for the pages that are about to be fetched in.
Thk at least doubles the number of hash table pages that are writ-

ten out to disk.

The results of this experiment coniirm our previous conclu-

sions that expansion should definitely be attempted when the ISVO

source relations differ in size. Moreover, late contraction and
priority spooling again perform only slightly better than early

contraction and LRU spooling.

Figure 3: Memory Contention

5S. M to Iwll Ratio and lull to IKII Ratio

The first two experiments lead us to conclude that expanding

partiticnts during the second phase of a join produces a consider-
able reduction in its response time, and that late contraction and
priority spooliig lead to some additional savings. We now verify
these conclusions by examining the sensitivity of the expansion

mechanism to buffer availabdity and the size of the outer rela-

tion. This is achieved by varying M, the total number of buffers,
while keeping the other parameters constant. The value of those

parameters, except for llSll which will be specified later, are those

listed in Tables 1 and 2. For this experiment we will present

only NKTl, PPHJ(late,noexp,lru)/ZG 1, PPHJ(early,exp,lru),

PPHJ(kzfe,noq@o) and PPHJ(kzte,~~rio). The other PPHJ
variants will not be examined further because their performance

was found to be consistently inferior to that of the last three

PPHJ algorithms that we have selected to show. GRACE,
Hyb(Susp) and Hyb(Page) are also excluded because they con-
sistently provide unacceptable response times.

In the first part of this experimen~ llSll is set to 2 MBytes, the

same sim as 1~11. This is intended as a worst case scenario for

eqxmsion since a smaller 1~11(relative to 1~11)lowers the number
of S partition page J/Os that expansion can save. Figure 4 plots

the response time of the five algorithms against M. This figure

shows thatno algorithm clearly dominates the others. Since the

inner and the outer relations have the same size, the reduction in

S-IK)S that expansion produces just about balances out against

the extra R-IK)s that are incurred in expanding partitions, thus
explaining the similar response times of PPHJ(hte,exp,prio) and

PPHJ(late,rwexpprw). NKT1 snd PPHJ(late,noexp,lru)/ZG 1
have almost the same reaponee times as PPHJ(lafe,noexp#rio)

here because, as we have seen in the previous experiments, the

choice of LRU versus priority spooling has little influence on
performattce. Finally, PPHJ(early,exp,lru) is comparable to

PPHJ(late,exp~rio) because there is little performance difference

due to early versus late contraction when expansion is in effect.

For the second pat of this experiment, we increase 11.Sllto 20

MBytes to simulate a condition that is more favorable to expan-
sion (and arguably more typical as well). Figure 5 shows the
algorithms’ response times. In this case, expansion starts to pay
off even for small M values. This is because every R page that is

read in to expand a partition produces, on the average, a ten-fold
reduction in S-I/O. Expansion is therefore worthwhile so long as
the average number of times that an R page has to be refetched
due to memory fluctuations is less than the reduction produced

for S. This is supported by the results for PPHJ(Lzte,exp@o)

and PPHJ(eurly,exp,lru), which clearly outperform all of the

other algorithms in Flgttre 5. Moreover, PPHJ(kzre,exp#rio) and

PPHJ(eurfy,exp,lru) have almost the same curves, which lends

further support to our conclusion that late contraction and

66

20 +- early,expJrtt

~ lateJtoexp,lrtt/ZG’

~ latefloexp,prio

\

4- late,exp,ptio

~ NKT’

o i 2 3

M (MBytes)

Figure 4: 1~11= 1~11= 2 MBytes

i

-0- early,exp,lrtt

120 -+- l~~noexp,~G’

%1 -+ late, noexp,prio

*
-0- early,exp,lru

g 4-
++ late~oexp,~G’

:
-+- latemoexp,prio

--=- late,exp,prio

~ NKT’

o I I i I 1

0246810

Interarrival Time (see)

Figure 5: 1~11= 2 MBytes, 1~11= 20 MBytes Figure 6: 1~11= 1$1[= 2 MBytes

priority spooling produce only a slight improvement when

expansion is used. As for the remaining three algorithms,

PPHJ(late,noexpprio) dominates PPHJ(fufe,nuexp,fru)/ZG 1 and

NKT1 because of the gains from priority spooling, while NKT1 is

slightly better than PPHJ(late,rwexp,lru)/ZG 1 due to NKT1’s use

of sixpential I/Os.

To summarize, the results of this experiment show that PPHJ
with late cmdractio~ expansion, and priority spooling has the

best performance over a wide range of M to IIRll and 1~11to IIRII

ratios. When the 1~11to 1~11ratio is at its minimum, i.e. [~1[=

IPII. ppHJ(late,exp,prh) performs as well as any other algorithm
that we have examined. As the [~[1 to [~11 ratio increases, the

performamx dtiference between PPHJ(Lrte,tzrp. p-io) and the

other algorithms starts to widen. The only exception to this is

PPHJ with early contraction, expansio~ and LRU spooling,

which emerged as a close second to PPHJ(kzte,cnpprio) here.

Therefore expansion should definitely be attempted.

5,4. Rate of Memory Fluctuations

The expansion mechanism attempts to expand as many parti-

tions as memory permits while the outer relation S is beiig

scanned. In expanding a partition, the DBMS may have to incur

some R-I/Os to bring in disk-resident pages of the partition. If

the partition remains expanded for a while, the reduction in S-

I/Os that result from expanding tJte partition will gradually offset
the cost of expansion. Jf a memory shortage forces out a pmi-

tion soon after it is expanded, however, the expansion would not

be worthwhile. There is therefore a minimum vahte for

Dur~e~tq * the average time between consecutive memory
fluctuations, in order for expansion to be worthwhile. This sec-

tion examines the relationship between the cost-effectiveness of
expansion and the value of DurM~M~q. For the experiments here,

M is set to 0.8 MBytes to simulate an environment where

memory requests have a pronounced effect on the number of

buffers that are available for executing joins. 1$11is set to 2
MBytes, the same size as IIRII. Moreover, hrrne~eq is varied

between 0.1 second and 10.0 seconds to generate a wide range of

memory request interarrival times. The value of the other param-
eters are those Iiited in Tables 1 and 2.

Figure 6 presents the response times of the different algo-
rithms. This figure shows that all five algorithms deliver sinilsr

performance when DurMaeq is greater than 1 second, for the
same reasons as in previous experiments. When DurM~eq goes
below 1 second, however, expansion has a detrimental effect on

system performance, as evident from the curves for

PPHJ(fate,noexp#rio) and PPHJ(lute,exp,prio) in Figure 6.

Hence th~ minimum DurMcMcq for expansion to be worthwhile is

about one second for this experiment. An interesting observation
horn Figure 6 is tha~ when DurMa.q goes below 1 second, the

algorithms that employ priority spoo~mg, PPHJ(kzfe,noexpprio)

and PPHJ(lute,exp~rio), outperform those algorithms that rely

on LRU spodmg. The reason is as follows: When memory avai-
lability fluctuates rapidly, entire blocks of spooled pages are fre-

quently flushed out in response to memory shortages. Whit LRU
spooliig, each block usually contains pages from severrd parti-
tions, hence generating many random I/@. In contras~ priority

spooling flushes spooled pages by partition. Since pages from

the same partition are allocated to consecutive disk pages, this

significantly reduces disk seek times.

We also experimented with other 1~11to Ill?ll ratios. In all of
thew experiments, we observed that once DurM&,q falls below

0.5 to 1 second, the two expansion-based algorithms, namely

PPHJ(eur/y,exp,/ru) and PPHJ(kzte,tztp~rio), do not perform as
well as the non expansion-based algorithms. These experiments
confirm that there is a minimum value for DurMctitq in order for

expansion to be worthwhile. [Pang93] presents an analysis of the
detailed I/O costs of partition expansion, showing why this
minimum Dur~~&tq value occurs in the region of 0.5 second to 1

second for our resource parameter settings.

To surmnarize, this section demonstrates that expansion is

almost always beneficial; tbe exception is when memory availa-

bility fluctuates very rapidly. Given that typical transactions take

on the order of a second to complete, and that sorts and joins

requiring sigficant amounts of memory take much longer, it

seems unlikely for buffer availability to change so fast as to

cause expansion to perform badly in practice. Thus expansion
appears to be a generally useful mechanism.

5.5. Discu=ion of Other Alternatives

As described in Section 3, we have extended the algorithms

in ~aka88] and [Zel190] to allow partition contractions during
the second phase of a join. An alternative would have been to

restrict contractions to only the fist phase of a join and, if addi-

tional memory is lost during phase two, to suspend the join or to

page its hash tables into and out of the remaining memory. We

have shown that Hyb(Susp) and Hyb(Page) both result in long

response times, so it is clear that doing suspension or paging with
the Nakayama et al algoritlun and the Zeller and Gray algorithm

would only worsen their performance. We therefore did not
include those alternatives in this study.

In the algorithms studied here, a join is always cognizant of
which of its pages are in memory. Another possible approach to

dealing with memory fluctuations, as mentioned in the introduc-

tiorL would be to let the DBMS (or the operating system) page

67

the hash table of a hash join without informing the join operator.

Since a replaced page could be allocated a different memory

address space when it is subsequently read in, this approach pre-

cludes the possibility of using memory pointers for the hash

tables. Instead, logical addresses have to be us~ thus resulting

in extra overheads for pointer dereferencing. Morwver, using

this simple approack the system could appropriate any of the

join’s buffers. Since the join operator would have no knowledge

of which buffers are paged out, it would access its buffers

without attempting to first make use of those buffers that are in
memory. This approach would result in even longer response

times than Hyb(Page), and was therefore not considered. Simi-

larly, the DBMS could simply suspend a join without informing

it. This simple approach would be worse than Hyb(Susp), which

fetches all the pages that have been swapped out when a join
resumes execution, as fetching these pages together results in

sequential IIOS and lower overheads. This alternative was there-
fore ruled out too.

6. CONCLUSION

In this paper, we have addressed the issue of join execution

in situations where the amount of memory available to a query

may be reduced or increased during its lifetime. These situations

will arise in real-time or goal-oriented database systems, where

memory may be appropriated from a join to meet the buffer

requests of higher-priority queries, and where additional memory
may be made available when other queries complete and free
their buffers. In particular, we considered the problem of

scheduling hash joins, which require large numbers of buffers to
execute efficiently and are thus especially susceptible to fluctua-

tions in memory availability. Our study showed that simple

approaches that react to a reduction in a join’s allocated memory

by suspending the join altogether or by paging the hash table of

the join into and out of the remainiig memory will not produce

acceptable performance. There is therefore a need for more

sophisticated approaches that enable the join to adapt itself to

these memory fluctuations.

To investigate the effectiveness of adapting the buffer usage

of hash joins to memory fluctuations, we proposed a family of

memory-adaptive hash join algorithms, called Partially Preernp-
tible Hash Join (PPHJ). All the PPHJ rdgorithtns split the source

relations of a join into a number of partitions that are initially

expanded, i.e. held in memory-resident hash tables. When the

allocated buffers are insufficient to hold all the partitions, PPHJ

responds by contracting one of the expanded partitions, i.e. by
flushing its haah table to duk and by deallocating all but one of
its buffer pages. The remaining page is used as an output buffer

for the contracted partition. Each of the PPHJ variants utilizes

additional memory through a (tixed) combination of three

mechanisms: late contractwn, expansion, rmd priority spooling.

Lute contraction keeps the partitions of a join expanded as long
as possible, i.e. until the buffer usage of the join actually exceeds
the allocated memory. In contrast. earlY contraction starts a join
by expanding only as many partitions as it estimates will fit into

the available memory; the rest of the partitions are immediately
contracted. The advantage of late contraction is that additional
buffers may be given while the join is executing, thus avoiding
the need to contract some patitions altogether. If memory per-
mits, expansion fetches contracted pmtitions of the inner relation

R into memory-resident hash tables while the outer relation S is
being partitioned thereby increasing the number of S tttples that

can be joined directly without further I/Os. The last mechanism,
priority spooling, concerns how excess memory is utilized.
PPHJ utilizes excess buffers to spool pages that are being flushed

to disk, in the hope that these pages will be fetched again while

they are still in memory. By defaul~ the LRU policy is used to

manage this spool area. If priority spooling is activated, pages in
the spool area are prioritized according to the page access pattern

of the join so that pages that are likely to be needed first are kept

in the SPO1 area. Each of these three mechanisms can be used
independently or in conjunction with the other two mechanisms,

thus resulting in eight different PPHJ variants.

To understand the performance trade-offs of different hash

join algorithms, we constructed a detailed DBMS simulation

model. Through a series of experiments, we confirmed that
hybrid hash join with suspension or paging is not satisfactory.
Our experiments also revealed that, with one exception, expan-

sion produces a substantial reduction in the response time of a

join over a wide range of memory availability and outer versus

inner relation sizes. The exception was when memory availabil-
ity fluctuates extremely rapidly. Moreover, further savings can
be achieved by late contraction and priority s~olirtg, though the

savings are not nearly as significant. These findings are impor-

tant in two ways. FmL previous studies [Naka88, Zel190] have

proposed algorithms that rely on late contraction. Our study

showed that expanding partitions while the outer relation S is

being scanned leads to more effective utilization of excess

memory, and hence to lower response times. Second, PPHJ with
early contraction+ expansio~ and LRU spooling was shown to

produce response times that were at most 10% longer thtm that of

the best PPHJ variant. Thus for practical reasons it might be

desirable to adopt this altemativ~ this would avoid complicating

further the code for the hash join algorithm by incorporating late
contraction artd priority spooling. In shor~ we have identified a
simple and yet effective way to deal with memory fluctuations —

namely, PPHJ with expansion.

REFERENCES

[Bitt88] D. Bitton, J. Gray, “Disk Shadowing”, Pmt. VLDB, 1988.
[Blas77] M. Blasgen, K. Eswarart, “Storage and Access in Relational

Databases”, IBM System Journal, 16(4), 1977.
[DeWi84] D. DcWitt et al, “lrnplementation Techniques for Main

Memory Database Systems”, Proe. SIGMOD, 1984.
[DeWi90] D. DeWitt et al, “The Gamma Database Machine Project”,

IEEE Trans. on Knowledge and Data Engineering, 2(l), 1990.
~erg93] D. Fergusar, C. Nikolaon, L. Gcorgiadis, “Goal Oriented,

Adaptive Transaction Routing for High Performance Transaction Pro-
cessing Systems”, Proc. PDIS, 1989.

[KitstU] M. Kitsuregawa, H. Tanaka, T. Moto-oka, “Application of
Hash to Data Base Machine and Its Architecture”, New Generation Com-
puting, l(I), 1983.

[Kits89] M. Kitsuregawa, M. Naksysma, M. Takagi, “The Effect of
Bucket Size Ttming in the Dynamic Hybrid GRACE Hash Join Method”,
Proc. VLDB, 1989.

[Livn87] M. Livny, S. Khoshsfisn, H. Borsl, “Multi-Disk Manage-
ment Algorithms”, Proc. SIGMETRICS, 1987.

[Livn90] M. I&my, “DeNet User’s Guide”, CS Dept., UW-Madiron,
1990.

[Naka88] M. Nskayarna, M. Kitsuregawa, M. Takagi, “Hash-
Partitioned Join Method Using Dynamic Destsging Strategy”, Proc.
VLDB, 1988.

[Pan~93] H. Pang, M. ~=y, M. L&Ily, “ptwtidty Preemptible Hash

Joins”, CS Technical Report, UW-Madiron, 1993.
[REAL92] Real-Time System, 4(3), Special Issue on Real-Time

Databases, 1992.
[Ries78] D. Ries, R. Epstein, “Evaluation of Distribution Criteria for

Distributed Database Systems”, UCBIERL Technical Report M78122, UC
Berkeley, 1978.

[Shap86] L Shapiro, “Join Processing in Database Systems with
hge Main Memories”, ACM Trans. on Database Systems, 11(3), 1986.

[Ston81] M. Stonebraker, “Operating System Support for Database
Management”, Cornrn. of fhe ACM, 24(7), 1981.

~eng84] J. Teng, R. Gumaer, ‘“hknagirtg IBM Database 2 Buffers to
Maximize Performance”, IBM Systwm JournaI, 23(2), 1984.

[Zet190] H. Zeller, J. Gray, “An Adaptive Hash Join Algorithm for
Maltiuser Envirurnnents”, Proc. VLDB, 1990.

68

	Partially preemptible hash joins
	Citation

	tmp.1499755087.pdf.uDYUe

