
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-1994

Managing memory for real-time queries Managing memory for real-time queries

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Michael J. CAREY
University of Wisconsin-Madison

Miron LIVNY
University of Wisconsin-Madison

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
PANG, Hwee Hwa; CAREY, Michael J.; and LIVNY, Miron. Managing memory for real-time queries. (1994).
SIGMOD '94: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data:
Minneapolis, Minnesota, May 24-27. 221-232.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3659

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

MANAGING MEMORY FOR REAL-TIME QUERIES

HweeHwa Pangf Michael J. Carey Miron Livny

Computer Sciences Department
University of Wisconsin - Madison

Madison, WI 53706

ABSTRACT — The demanding performance objectives that

real-time database systems (RTDBS) face necessitate the use of

priority resource scheduling. This paper introduces a Priori~
Memory Management (PMM) algorithm that is designed to
schedule queries in RTDBS. PMM attempts to minimize the
number of missed deadlines by adapting both its multiprogram-
ming level and its memory allocation strategy to the characteris-
tics of the offered workload. A series of simulation experiments
confirms that PMM’s admission control and memory allocation
mechanisms are very effective for real-time query scheduling.

1. INTRODUCTION

The real-time database system (RTDBS) performance

objective of minimizing the number of missed deadlines

can be very demanding. This is particularly so in jirm

RTDBSS [Hari90], where jobs lose all value once their

deadlines expire. In order to accomplish their objective,

RTDBSS employ multiprogramming so that all of their

resources can be utilized productively to service incoming

jobs. Moreover, RTDBSS use priority scheduling to

resolve any resource contention that arises from multipro-

gramming. While the problem of scheduling real-time

transactions has been extensively studied, largely from a

concurrency control perspective, executing multiple

queries that require large amounts of computational

memory (e.g., hash tables for joins or tournament trees for

external sorts) introduces admission control and memory

allocation issues that have yet to be addressed.

Many queries can simply read their operand relation(s)

once and produce results directly if given their maximum

required memory. Alternatively, as long as the memory

allocation of the queries meet certain minimum require-

ments, they can also be run with less memory by writing

out temporary files and subsequently reading them back in

for further processing. For instance, a hash join can either

execute with its maximum required memory, which is

slightly greater than its inner relation size, or it can run in

an additional pass with as few buffer pages as the square

root of its inner relation size [Shap86]. In order to derive

the benefits of multiprogramming, it may be necessary for

an RTDBS to admit some queries with less than their max-

imum memory allocations. If too many queries are admit-

ted, however, the resulting additional I/Os could lead to

thrashing, making high concurrency harmful instead of

helpful. Multiprogramming is therefore a two-edged

This work was partially supported by a scholarship from the Nationat
Univ. of Singapore (NUS), and by an IBM Research Initiation Grant.

~ Present address: Institute of Systems Science, NUS.

Permission to co without fee all or part of this material is
ecf?lgranted provid t at the copies are not made or distributed for

direct commercial advantaqe, the ACM copyright notice and the
titie of the publication and Its date appear, and notice is given
that copying is by permission of the Assdation of Computing
Machinery. To copy otherwise, or to republish, raquires a fee
ancf/or specific permission.

SIGMOD 94- 5/94 Minneapolis, Minnesota, USA
@ 1994 ACM 0-89791 -639-5/94/0005..$3.50

sword, and RTDBSS require a priority-cognizant admis-

sion control mechanism to protect them against thrashing.

Having determined which queries to admit, the next

issue that an RTDBS faces is memory allocation. While

the highest-priority query at a given CPU or disk will use

that resource exclusively, memory must be shared among

all of the admitted queries. When the total maximum

memory requirement of the admitted queries exceeds the

available memory, the RTDBS must decide on the amount

of memory to give each query. This decision needs to

take into account queries’ timing requirements to ensure

that urgent queries receive their required resources in time

to meet their deadlines. In addition, the effectiveness of

memory allocation in reducing individual queries’

response times should be considered so as to make the best

use of the available memory [Corn89, Yu93].

In this paper, we introduce a Priori~ Memory

Management (PMM) algorithm that is designed to

schedule queries in firm RTDBSS. PMM does not assume

any advance knowledge of workload characteristics or

query execution times, as such knowledge is usually not

available in a database system. Instead, PMM controls the

number of queries that may gain admission at any time by

dynamically choosing a target multiprogramming level

(MPL) to balance the demands on the system’s memory,

CPU, and disks. Moreover, PMM can either insist that

queries be admitted only with their maximum memory

allocations, or it can give higher-priority queries their

maximum required memory while allowing lower-priority

queries to run with their minimum requirements. Both the

target MPL and the memory allocation policy are chosen

based on past system behavior. The Earliest Deadline pol-

icy [Liu73], which gives higher priority to queries whose

deadlines are more imminent, is used to guide the admis-

sion and memory allocation decisions of PMM.

The remainder of this paper is organized as follows:

Section 2 briefly discusses related work, and the PMM

algorithm is introduced in Section 3. A detailed simulator

of a firm RTDBS, intended for studying the performance

of the PMM algorithm, is described in Section 4. Section

5 presents the results of a series of experiments showing

that, over a wide range of workloads, PMM offers an

effective solution to the memory management problem

that arises in scheduling real-time queries. Finally, our

conclusions are presented in Section 6.

2. BACKGROUND

This section briefly describes several studies reported

in the literature that are related to our work. We first

review related work on query scheduling, and we then

devote the rest of the section to the dynamic query pro-

cessing algorithms that PMM relies upon as primitives.

221

2.1. Query Scheduling

While a number of studies have addressed real-time

transaction scheduling [eg., Abbo88, Hari90, Huan89] and

disk scheduling [Abbo89, Abbo90, Care89, Chen91,

Kim9 1], to the best of our knowledge no work has dealt

with query scheduling issues in RTDBSS. The work that

is most relevant to our work here is reported in [Corn89,

Yu93]. That work examined the effect of memory alloca-

tions on query response times in traditional (non-real-

time) database systems, and concluded that giving some of

the queries their maximum required memory, while allo-

cating the minimum possible memory to the rest, leads to

near-optimal memory usage. This result is incorporated in

the memory allocation strategies of PMM.

2.2. Memory-Adaptive Query Primitives

In a priority scheduling environment such as an

RTDBS, large queries involving operations like hash joins

and external sorts face the prospect of having memory

taken away andlor allocated to them during their course of

execution. In anticipation of such memory fluctuations,

this study will employ the adaptive hash join and external

sorting algorithms that we found to deliver the best perfor-

mance among a range of alternatives that we investigated

in a recent pair of studies [Pang93a, Pang93b]. The two

algorithms are briefly summarized here.

The hash join algorithm that PMM employs was intro-

duced in [Pang93a] as Partially Preemptible Hash Join

(PPHJ) with late contraction, expansion, and priori~

spooling. PPHJ splits the pair of input relations into a set

of partitions, as is done in traditional hash joins as well.

At any one time during join execution using PPHJ, some

of these partitions may be expanded, i.e., held in hash

tables in memory, while others are contracted, i.e.,

resident on disk. When asked by the memory manager to

free up buffers, PPHJ can do so by reducing the number of

expanded partitions. Moreover, if extra memory becomes

available while the outer (probing) relation is being split,

PPHJ can expand contracted partitions so that outer rela-

tion tuples that hash to these partitions can be joined

directly and then discarded, thus avoiding some I/Os.

The external sorting algorithm that PMM employs

begins by using replacement selection to split the operand

relation into sorted runs; these sorted runs are then repeat-

edly merged into longer runs until only a single run

remains. These are the usual phases of an external sorting

algorithm. What makes the algorithm adaptive is that,

during the merging process, an executing merge step can

be split into sub-steps that fit within the remaining

mcmo~ if memory reductions occur [Pang93b]. Con-

versely, existing merge steps can be combined into larger

steps (i.e., steps that merge more runs at once) to take

advantage of any excess buffers that become available.

3. PRIORITY MEMORY MANAGEMENT

In firm RTDBSS [Hari90], queries become worthless if

they fail to complete by their deadlines. Consequently, the

primary performance objective of an RTDBS is to minim-

ize the number of missed deadlines without intentionally

discriminating against any particular type of queries. In

order to achieve this objective, resource scheduling deci-

sions in these systems have to be priority-driven. The

Priority Memory Management (PMM) algorithm is a

priority-cognizant algorithm designed to regulate memory

usage for firm real-time query workloads.

The PMM algorithm consists of an admission control

component and a memory allocation component. Both

components employ the Earliest Deadline (ED) scheduling

policy [Liu73], so queries that are more urgent are given

higher priority in admission and memory allocation deci-

sions than queries whose deadlines are further away. The

ED policy is adopted here, instead of policies that take

into account query execution times, because (accurate)

execution time information is usually not available a priori

in a database system. The admission control component

sets the target multiprogramming level (MPL) by statisti-

cal projection from past miss ratios and their associated

MPL values. In cases where the statistical projection

method fails, PMM falls back on a heuristic that chooses

the MPL based on desirable resource utilization levels.

The memory allocation component operates using one of

two strategies — a Max strategy that assigns to each query

either its maximum required memory or no memory at all,

and a MinMax strategy that allows some low-priority

queries to run with their minimum required memory while

the high-prip-ity ones get their maximum. The choice of

memory allocation strategy is based on statistics about the

workload characteristics that PMM gathers, Since both

the MPL setting and memory allocation strategy choices

have to be tailored to the characteristics of the workload,

PMM constantly monitors the workload for changes that

may necessitate adjustments to its decisions. The details

of the algorithm are presented below. The key parameters

of PMM, which will be explained as they appear in the

following description, are summarized in Table 1.

3.1. Admission Control

The task of the admission control mechanism is to

determine the MPL based on current operating conditions.

In order to minimize the miss ratio, defined as the propor-

tion of queries that fail to complete by their deadlines, the

MPL has to be high enough so that the CPU and disk

resources can be fully exploited. However, the MPL

should not be so high as to cause the system to experience

thrashing. The relationship between MPL and miss ratio

thus follows the shape of a concave curve. PMM attempts

to locate the optimal MPL, i.e., the MPL that leads to the

lowest miss ratio on this curve, through a combination of

miss ratio projection and a resource utilization heuristic,

revising its MPL setting after every SampleSize queries

are served by the system, The two components of the

MPL determination method are presented below.

F
[Util~W,

‘fllH,gh 1
Adaptcon~eyel

e

Meaning
Re-evaluation frequency
(#of query completions)
Range of “desirable” CPU/
disk utilization levels
Conf. level of statistical
tests for PMM adaptation
Conf. level of statistical
tests for worktoad changes

Default
30

[0.70, 0.85]

95’70

99’%

Table 1: PMM Algorithm Parameters

222

3.1.1. Miss Ratio Projection

The miss ratio projection method approximates the

relationship between MPL and miss ratio by a concave

quadratic equation; this equation is used to set the

system’s target MPL. A quadratic equation is used here

because it stabilizes faster than higher-order equations,

while still capturing the general shape of the concave

curve. After every SampleSize query completions, PMM

measures the miss ratio, missi, that the current MPL, mpli,

produces. Based on this pair of values, together with past

miss ratios and their associated MPL settings, a new qua-

dratic equation is calculated according to the least squares

method [Drap81]. It is important to note that PMM does

not actually have to keep track of individual miss ratio

readings, but only the values of k, X mpli, X mpl~, X mpl~,

Xmplf, X missi, X mpli x missi, and Z mplf x missi, where

k is the number of times PMM is invoked. After approxi-

mating the equation, a new MPL value is chosen accord-

ing to the type of curve obtained:

Type 1: The curve has a bowl shape. In this case, the

curve has a minimum. Therefore, the target MPL is set to

the minimum of the curve. (This is the expected case after

the algorithm has been operating for a while.)

Type 2: The curve is monotonic decreasing, i.e. higher

MPLs lead to lower miss ratios. This indicates that the

optimal MPL is beyond the highest MPL tried so far.

Since the curve may not be valid if extrapolated too far,

the projection method selects an MPL that is one above

this largest attempted MPL. Next, PMM applies the

resource utilization heuristic (described below) to see if an

even higher MPL may be warranted. If so, the MPL sug-

gested by that heuristic is adopted; otherwise PMM sticks

to the MPL that the miss ratio projection method picked.

Type 3: The curve is monotonic increasing. The MPL

computation procedure for this case is just the opposite of

the procedure for Type 2 curves. Here the projection

method tentatively selects an MPL that is one unit below

the smallest MPL that has been tried so far. Next, a

second MPL is obtained using the resource utilization

heuristic. The two MPLs are then compared, and the

smaller of the two is adopted.

Type 4: The curve has a hill shape. Occasionally the

fitted curve takes on this shape due to randomness in the

observed miss ratios caused by inherent workload fluctua-

tions. When this happens, the projection method fails and

PMM resorts to the resource utilization heuristic.

An attractive feature of the miss ratio projection

method is that the MPL values that it picks improve over

time: Initially, the shape of the fitted curve is largely

influenced by random workload fluctuations. As time

progresses and more miss ratio readings are obtained, the

fitted curve will gradually stabilize and its optimum will

close in on the optimal MPL. At this point, the system can

be expected to deliver good performance so long as there

are no significant changes in the workload characteristics.

(Workload changes will be addressed in Section 3,3).

3.1.2. Resource Utilization Heuristic

The resource utilization (RU) heuristic attempts to help

the system achieve low query miss ratios by keeping the

utilization of the most heavily loaded resource among the

CPU and disks within some “desirable” range, [Uti/hW,

Util~igh], thus avoiding situations where the bottleneck

resource is either under-utilized or near saturation. The

heuristic extrapolates from the current MPL and utilization

to predict a new MPL that is likely to bring the utilization

into the middle of the [Utizbw, utilH@] range by applying

the following formulal:

util~n + Utilff,@
MPL~cW = x Mp&urrent6., ,,. .,

,4 x UILLcur,ent

The linear dependency between MPL and utilization that

this formula assumes is based on the observation that the

utilization of a resource increases approximately linearly

with the MPL until the resource is near saturation, at

which point the utilization levels off. Since neither the

RU heuristic nor the miss ratio projection method are

likely to push the utilization way above Util~zgk to satura-

tion, the above formula should provide satisfactory MPL

estimates most of the time. Even in regions where the

linear dependency assumption does not hold, the RU

heuristic is still useful in steering the MPL setting in the

direction of the optimal MPL since utilization increases

monotonically with MPL.

As described, one of the values that the RU heuristic

uses to compute the new MPL is the utilization of the most

heavily loaded resource at the current MPL. Due to ran-

dom workload fluctuations, the utilization over the dura-

tion of the current batch of SampleSize queries may not be

indicative of the resource’s overall average utilization at

that MPL. For this reason, the heuristic actually averages

the utilization values that have been obtained so far

instead of relying only on the most recent utilization read-

ing. Conceptually, PMM computes the average utilization

at the current MPL, denoted as UtilcUrrent in the formula

above, by first obtaining a straight line from every pair

<util,, mph> of observed utilization values and their asso-

ciated MPLs by using the least squares method [Drap8 1],

again applying the linearity assumption. The average util-

ization is then taken from the fitted line as the rate that

corresponds to the current MPL. For the purposes of com-

puting the straight line, PMM records the values of k, Z

mpli, ~ mpl?, ~ utili, and 2 mpli x utili, where k denotes

the number of times PMM is invoked.

3.2. Memory Allocation

As described above, queries like hash joins and exter-

nal sorts each have a maximum and a minimum memory

requirement. Given its maximum required memory, such

an operation can read its operand relation(s) and generate

1 An attemative to using this formula would have been to simply
choose the MPL value on the fitted line that corresponds to the desired
utilization level. However, due to workload fluctuations, the fitted line
may not reflect the true relationship between MPL and utilization very
well. This 1s especmtly a problem at the start, where few statMlcs are
available, and where, unfortunately, PMM has to rely on the RU heuristic
because it does not yet have sufficient statistical data to apply the miss ra-
tio projection method. We therefore ruled out this alternative.

223

results directly. Given only its minimum required

memory, which is typically much lower than its max-

imum, the operation instead has to process its operand

relation(s), write out intermediate results to temporary

files, and then read these files back for further processing

before the final results can be produced. The maximum

memory requirement of an external sort is the size of its

operand relation [Shap86], whereas it can run with as few

as three memory pages by doing multiple merge passes.

In the case of a hash join, the maximum memory require-

ment and the minimum memory demand for two-pass

operation are Flll?ll and w, respectively, where Ill?ll is

the inner (building) relation size and F is a fudge factor

that reflects the overhead of a hash table [Shap86].

When the total maximum memory requirement of the

admitted queries exceeds the available memory, the

memory allocation component is responsible for determin-

ing the amount of memory to allot to each query. As men-

tioned previously, the memory allocation decisions of

PMM are based on the ED policy, so queries that are more

urgent are always given buffers ahead of queries with

looser deadlines. At any given time, PMM adopts one of

two memory allocation strategies: the Max strategy or the

MinMax policy. With the Max strategy, queries are either

allocated enough memory to satisfy their maximum

demands or else they are given no buffers at all. When

operating in MinMax mode, however, PMM is able to

admit more queries by meeting the maximum memory

demands for only some of the more urgent queries, allow-

ing the rest of the queries to execute with their minimum

required memory. The reason for doing MinMax alloca-

tion, as opposed to simply dividing the available memory

proportionally among the admitted queries, is that Min-

Max leads to more effective use of memory then propor-

tional allocation (as was shown in [Corn89, Yu93]); this

will be verified quantitatively in Section 5.1.

The MinMax allocation process is conceptually carried

out in two passes. Starting from the highest-priority

query, PMM first gives each query just enough memory

for it to begin execution. If there are leftover buffers at

the end of this pass, PMM makes another pass through the

list of admitted queries, again beginning with the highest-

priority query. In the second pass, the allocation of each

query in turn is topped up to its maximum. The allocation

process terminates when either all of the available

memory has been allocated or all of the queries have

received their maximum allocations. Consequently, at the

end of this memory allocation process, the higher-priority

queries will have their maximum allocations while the

lower-priority queries just have their minimum. The only

possible exception is the query that gets the last few

memory pages in the second pass, which may receive an

allocation somewhere in between its minimum and max-

imum demands. In a running system, of course, queries

do not arrive all at once; rather, they come and go over

time. Since ED assigns priorities to queries according to

their urgency, the memory allocation of a query can there-

fore vary between maximum, minimum, or no allocation

as higher-priority queries enter and leave the system, but

over time it will settle on the maximum allocation as the

query’s deadline draws close. The initial variations are

the reason why we require the dynamic query processing

techniques described in Section 2.

The Max strategy, by insisting on the maximum

memory allocation, eliminates the thrashing problem that

can result when additional (lower-priority) queries are

admitted at the expense of requiring some of the higher-

pnority queries to run with less than their maximum

memory allocations. Consequently, PMM does not expli-

citly limit the MPL when it is in Max mode. Instead,

PMM admits as many queries at their maximum alloca-

tions as memory permits. A possible pitfall of Max is that

it may severely restrict the MPL if every query requires a

substantial amount of memory in order to run at its max-

imum allocation. In contrast, MinMax assigns to some or

all of the admitted queries as little as their minimum

memory demand, thus enabling the system to achieve the

target MPL that the admission control component sets

Whether Max or MinMax performs better depends on the

workload characteristics and the system configuration —

Max is preferable if memory is abundant and the

bottleneck resource type is CPU or disk, whereas MinMax

is more suitable for memory-constrained situations.

The PMM algorithm uses a feedback mechanism to

monitor the state of the system, and it revises its choice of

allocation strategy as necessay. Initially, the Max mode

is selected. After serving every SampleSize queries, PMM

checks the system state and switches to MinMax if all of

the following conditions are met (1) one or more queries

in this batch missed their deadlines; (2) the utilizations of

the CPU and disks are below Util~W, which indicates that

none of these resources are likely to be a bottleneck; (3)

there is a non-zero admission waiting time, suggesting that

there is memory contention; and (4) on the average, the

execution time of a query is shorter than its time constraint

(the difference between its deadline and its arrival time) so

that the longer execution times that will result from

switching to MinMax are likely to be feasible. In check-

ing for condition (3), PMM carries out a large-sample test

[Devo91] for the mean waiting time at a confidence level

of AdaptcOn@el. Condition (4) is tested in a similar

fashion, except that here the test is on the difference

between the execution time and time constraint. After

switching to MinMax, PMM then monitors the target

MPL. If it drops to or falls below the average MPL that

was realized in Max mode, PMM reverts to the Max stra-

tegy. This entire process is repeated continuously.

3.3. Dealing with Workload Changes

PMM attempts to minimize query miss ratios by tailor-

ing its MPL setting and memory allocation strategy to the

system’s workload and resource configuration. Conse-

quently, it is necessary for PMM to discard the statistics

that it has gathered and to re-adapt itself when the work-

load undergoes a significant change. In order to detect

workload changes, PMM constantly monitors the follow-

ing workload characteristics: (1) the average maximum

memory demand of queries; (2) the average number of

I/Os that each query issues to read its operand relation(s)

224

(the number of I/Os that are expended to write and read
intermediate results depends on memory allocation deci-

sions, and thus is not an inherent characteristic of the
workload); and (3) the average normalized time constraint,
defined as the ratio of the time constraint to the number of

I/Os needed to read the operand relation(s). After every
SampleSize query completions, PMM carries out a large-
sample test with a confidence level of ChangecOn@vel
[Devo91] on each monitored workload characteristic to
see if its present value differs significantly from its last
observed value. If so, PMM concludes that a workload
change has taken place. Since every workload change
prompts PMM to restart itself, ChangecO.fiuel is set to a

high value to reduce the chances of PMM wrongly react-
ing to inherent workload fluctuations.

3.4. An Example

Having presented the PMM algorithm in detail, we
now finish by illustrating it with a simple example. Sup-

pose that the first batch of SampleSize queries produces
point a in Figure 1(a) under the Max strategy, and suppose
that PMM concludes that Max is inappropriate and decides

to switch to MinMax. At this point, the RU heuristic sug-

gests a higher MPL, from which we derive the point b
after the next batch of query completions. Once more, the
RU heuristic leads PMM to raise its MPL setting, which
results in point c after the third batch of queries. Having
collected three observations, PMM can now apply the
miss ratio projection method. The quadratic equation that
is computed from the three points is shown by the Type 2
curve (see Section 3.1. 1) in Figure l(a). This curve causes
PMM to experiment with an even higher MPL, the conse-

quence of which is indicated by point d in Figure l(b).
Applying the projection method again, PMM now obtains
a Type 1 curve. Since the optimum of the curve is likely
to be near the optimal point, PMM adopts the MPL value
associated with this optimum for its next MPL setting. As
this process continues and more observations are gathered,
the fitted curve will gradually stabilize and lead PMM to

the best MPL for the given workload.

4. DATABASE SYSTEM SIMULATION MODEL

To aid in our ongoing research on real-time databases,
we have constructed a simulation model of a centralized
database system. The model, shown in Figure 2, has five

components: a Source that generates the system’s work-
load and collects statistics on completed queries; a Query
Manager that models the execution details of queries,
including hash joins and external sorts; a Buffer Manager
that implements an LRU replacement policy and the PMM
algorithm; and a CPU Manager and a Disk Manager that

mpld
MPL

mple
MPL

(a) (b)
Figure 1: Admission Control Decision-Making

are responsible for managing the system’s CPU and disks,
respectively. The simulator is written in DeNet [Livn90].

4.1. Database and Workload Model

Table 2 summarizes the database and workload param-
eters that are relevant to this study. Our objective is to
simulate a stream of external sorts and/or hash joins on

different relations. To facilitate this, the database consists
of NumGroups groups of relations, Each group i has
RelPerDiski clustered relations per disk. The size of the
RelPerDiski relations are chosen at equal intervals from

SizeRange,. For example, if RelPerDiskL = 5 and

SizeRangei = [100, 200] pages, group i will have 5 rela-
tions with sizes equal to 100, 125, 150, 175, and 200
pages, respectively, on every disk. To minimize disk head
movement, all relations assigned to the same disk are ran-
domly placed on its middle cylinders; temporary files are
allotted either the inner or the outer cylinders.

In this study, the workload comprises NumClasses

classes of queries. Each class j has the following charac-
teristics: It may be made up of external sorts, in which

case RelGroupl specifies a group of database relations
from which queries in class j draw their operand relations.

Alternatively, the class may consist of hash joins. In the

second case, every query in the class randomly chooses
two relations by taking one relation from each of the two

relation groups listed in RelGroupj. The smaller of the
two chosen relations is the inner relation, R, of the join,
while its outer relation, S, is the larger relation. The type
of queries that form the class (sort or hash join) is indi-
cated by the parameter Que~Typej. Query submissions
from the class follow a Poisson process with a mean

arrival rate of Ij. The Source module assigns a deadline
to each new query Q from class j in the following manner:

Deadline~ = StandAlone~ x SlackRatioQ +-ArrivalQ

where DeadlineQ, StandAloneQ, S[ackRatioQ and ArrivaiQ

are the deadline, stand-alone execution time, slack ratio

Source

LJ “ quev + reply ~ --’ I
page page c,. e

request, reply request

Figure 2: Database System Model

Database Meaning
NumGroups Number of relation groups in the database
RelPerDisk, Number of relations per disk for group i
SizeRanPe, Rarwe of relation sizes for mou~ I
TupleSi~e ‘ Tup~e size of relations in bites ‘
Wortcload Meaning

NumClasses Number of classesin the workload
QUecvUPe, Type of class j queries (hash join or ext. sort)
felGroupl Operand relation group(s) for class I queries

Shnterval,
Arrival ride of class j queries
Range of slack ratios for class j queries

F Fudge factor for hashjoins

Table 2: Database and Workload Model Parameters

225

and arrival time of query Q, respectively. The stand-alone
execution time of a query is the time it would take to exe-

cute alone in the system with its maximum memory allo-
cation, i.e., without experiencing any contention from
other queries. The slack ratio, SlackRatioQ, varies uni-

formly in the range specified by SRIntetvall, and it con-

trols the tightness of the query’s assigned deadline.

4.2. Physical Resource Model

The parameters that specify the physical resources of
our model, which consist of CPU, disks and memory, are
listed together with their default values in Table 3. The
CPU, which has a MIPS rating of CPUSpeed, is scheduled
by the Earliest Deadline (ED) discipline. Table 4 gives
the costs of the various CPU operations involved in the

execution of hash joins and external sorts.

Turning to the disk model parameters in Table 3, Num-

Disks specifies the number of disks attached to the system.

Every disk manages its own queue by the ED policy; any

disk requests that ED assigns the same priority to are ser-
viced according to the elevator algorithm. Each disk has a
256-KByte cache for use in prefetching pages. To keep
the per-page 1/0 cost low, all queries capitalize on this
facility, fetching BlockSize pages on each sequential I/O
that incurs a disk cache miss (except during the merge

phase of an external sort). Moreover, whenever queries
have enough buffers, they spool their outputs so that pages
are flushed to disk in blocks. The access characteristics of
the disks are also given in Table 3. The total time required
to complete a disk access is:

DiskAccess = Seek + RotateDelay + Transfer

As in [Bitt88], the time required to seek across n tracks is:

Seek Time (n) = SeekFactor x ~

Finally, the system has a total buffer pool size of M
pages. A reservation mechanism allows query operators,
including sorts and joins, to reserve buffers for use as
workspaces. These reserved buffers are managed by the

operators themselves, while page replacement for non-

reserved buffers is handled according to the LRU policy.

Parameter
CpU.$veed
NamD’lsks
SeekFactor
RotationTime
NurnCylinders
CylmderSiz,e
PageSize
BlockSize

M

Meaning
MIPS rating of CPU
Number of disks
Seek factor of disk
Time for one disk rotation
Number of cylinders per disk
Number of pages per cylinder
Number of bytes per page
Number of tra~esreauested
on each seq~e;tial I/”0
Total number of buffer pages

Default
40 MIPS

~!100617
16.7 msec
1500
90 pages
8 KBytes
6

2560 page

Table 3: Physical Resource Model Parameters

Op eration
Common Operations —
Start an 1/0 Zperatlon
Initiate a sort or join
Termmate a sort or]oin
Hash Joins —
Hash tuple and insert into hash table
Hash tuple and probe hash table
Hash tuple and copy to output buffer
External Sorts —
Copy a tuple to output bujfer
Compare two keys

Instructions

1000
40,000
10,000

100
200
100

64
50

Table 4: Number of CPU Instructions Per Operation

5. EXPERIMENTS AND RESULTS

In this section, our database system simulator will be
used to evaluate the performance of the Priority Memory

Management (PMM) algorithm. For comparison pur-
poses, we shall also examine three static memory alloca-
tion algorithms: Max, MinMax-N, and Proportional-N.

The Max algorithm always employs the Max strategy in

its memory allocation decisions. MinMax-N admits the N
highest-priority queries, dividing the available memory
among these N queries according to the MinMax policy.
A special case of MinMax-N is MinMax-~, which admits
as many queries as the available memory allows by not
explicitly limiting the MPL. We shall refer to MinMax-~

simply as MinMax, as it will be frequently used to com-

pare against PMM. Note that PMM is an adaptive algo-
rithm that dynamically chooses between the Max algo-
rithm and the MinMax-N algorithm, where N is the target

MPL setting. The final algorithm to which PMM will be
compared, Proportional-N, behaves like MinMax-N,
except that Proportional-N gives the N admitted queries
the same percentage of their maximum buffer require-
ments subject to the condition that the memory allocation
of an admitted query must at least equal its minimum
requirement. As in the case of MinMax, we shall simply
refer to Proportional-m as Proportional. For ease of refer-
ence, the various algorithms are listed in Table 5.

We will begin our evaluation of PMM with a baseline
experiment, with further experiments being carried out by
varying a few parameters each time. The performance

metric of interest here is the average query miss ratio,
which is the percentage of queries that fail to complete by
their deadlines. Unless stated otherwise, each experiment
was run for 10 simulated hours, allowing a minimum of
2000 query completions. We also verified that the size of
the 90% confidence intervals for miss ratios (computed

using the batch means approach [Sarg76]) was within a
few percent of the mean in almost all cases.

5.1. Baseline Experiment

In the first experiment, we simulate an environment
where, except for occasional overloads, there are abundant
CPU and disk capacities for the given workload; thus,
memory is the bottleneck resource. This is achieved by
letting CPUSpeed and NumDisks be 40 MIPS and 10,
respectively, and by setting M to 2560 pages (20 MBytes).
The workload consists of one class of hash join queries.

Each join has two operand relations, R and S, where IIRII
varies uniformly between 600 and 1800 pages and IISII is
selected from the range [3000, 9000] pages. Moreover,
the slack ratio interval is set to [2.5, 7,5]. The database
and workload parameters are summarized in Table 6,
while the rest of the resource parameters are kept at their
default settings of Table 3.

=
Proportional with an MPL limit of N

Table 5: Algorithms for Comparison with PMM

226

Table 6: Database and Workload Settings (Baseline Experiment)

Figure 3 plots the miss ratios for Max, MinMax, Pro-

portional, and PMM as a function of the arrival rate. The
figure shows that MinMax consistently delivers the lowest

miss ratio for this experiment, followed very closely by
PMM. Proportional performs satisfactorily initially,
achieving a near O% miss ratio at X = 0.04 querieslsecond.
As the arrival rate increases, however, the performance of

Proportional deteriorates rapidly until, at L = 0.08
querieslsecond, Proportional produces a hefty 25% miss
ratio, which is almost double that of MinMax and PMM.

The worst algorithm is Max, which matches the perfor-

mance of Proportional only under lighter load conditions.
As the workload mounts, Max degenerates even faster
than Proportional, missing four times as many deadlines as
MinMax and PMM. These observations clearly show that
the choice of memory allocation algorithm can have a very
significant impact on the system miss ratio. To understand
the behaviors of the four algorithms, we shall analyze each
in turn with the aid of Figures 4 and 5, which give the disk
utilizations and average observed MPLs (as opposed to the
target MPL set by PMM, which serves to limit the max-
imum MPL in the system) respectively, and Table 7,

which lists the admission waiting time, execution time and
total response time for the various algorithms.

Let us first examine the Max algorithm. This algo-
rithm admits queries only if they can be allotted enough

buffers to satisfy their maximum requirements. For the
workload used in this experiment, Max allows less than 2
queries to be admitted at the same time (see Figure 5)

since each query requires an average of 1321 buffers
(ZW1200 pages for R plus one I/O buffer). This makes

memory the bottleneck for Max, as evidenced by the high
admission waiting times recorded in Table 7. The tight
MPL limit imposed by Max prevents the RTDBS from

exploiting its disk and CPU resources to cope with the
heavier load as the arrival rate increases from 0.04 to 0.08
queries/second, which explains why, unlike the other three

I - Max ? I + Max. .

algorithms, Max’s disk utilization barely rises. This inef-
fective resource usage leads to the observed sharp growth
in the miss ratio of Max.

In contrast to Max, MinMax attempts to reduce query

miss ratios by increasing the MPL, This is achieved at the
expense of running queries with memory allocations that

are less than their maximum, which increases the demands

on the CPU and the disks. By giving queries their
minimum required memory, MinMax could admit up to an
average of 69 queries at the same time (on the avera e, the

?minimum memory requirement per query is FIIRII pages

+ 1 I/O buffer = 37 pages), thus allowing much higher
average MPLs as Figure 5 shows. Moreover, the
increased CPU and disk demands that result have little
harmful effect here, as the disk utilization barely exceeds
45% even at an arrival rate of 0.08 queries/second, indi-

cating that there are abundant CPU and disk capacities to
service all the admitted queries. The overall result is that
MinMax uses the system’s resources much more effec-
tively than Max. As shown in Table 7, the higher execu-

tion times that MinMax produces are more than compen-
sated for by the large reduction in admission waiting
times, thus resulting in total response times that are

significantly lower than the response times of Max. This
accounts for MinMax’s superior miss ratios in Figure 3.

Like MinMax, Proportional attempts to reduce query
response times by not insisting on maximum memory allo-
cation as an admission criterion. This is why Proportional

also produces higher MPLs than Max. The difference

between Proportional and MinMax is that Proportional

T
Arrival Rate 0.04

W%lg 12.4
Execution 39.5
Total 51.9

W&in~ 0.0
Execution 40.9
Totat 40.9
Proportionalu
S!!E-E3

0.05 0.0

36.4 81.4
35.4 32.9
71.8 114.3

0.0 0.0
45.5 53.1
45.5 53.1

0.0 0.0
61.2 75.8
61.2 75.8

3.3 3.7
45.1 52.5
48.4 56.23

0.7 .

107.3 117.3
25.9 22.4

133.2 139.7

6;:! 9!?
68.3 92.1

0.0 0.0
92.4 110.8
92.4 110.8

3.9 4.0
66.3 89.4
70.2 93.4

Table 7: Average Timings (seconds) for Baseline Experiment

P 97 + Max P
504 -A- MinMax /

Xl
1 + MinMax /J”. I -a- MinMax /

+ Proportional

A 40- + PMM

8

2 30-
2

.? 20-
2

lo-

0
0.04 0.05 0.06 0,07 0.08

Arrival Rate (Queries / See)
Figure 3: Miss Ratio (Baseline)

0--
0.08

Arrivat Rate (Queries/See)

Figure 4: Disk Utilization (Baseline)

+ Proportionat
- PMM

o--
0.08

Arrival Rate (Queries /See)
Figure 5: MPL (Baseline)

227

divides up memory among the admitted queries in propor-
tion to their demands, rather than running low-priority

queries with minimum allocations while giving high-
priority queries their maximum required memory (as in
MinMax). Unfortunately, the faster execution times that
the low-priority queries enjoy from receiving more than
their minimum required memory are overwhelmed by the
execution time penalty that the high-priority queries pay as
a result of being forced to run with less-than-maximum
memory allocations. The average execution time that Pro-

portional produces is therefore higher than that of Min-
Max. The longer query execution times also cause an

increase in the number of queries that are running con-
currently, as Figure 5 shows, which in turn reduces the
memory allocation of each query. This increases the
queries’ reliance on the CPU and disks, resulting in further
increases in the queries’ execution times. Consequently,
Proportional utilizes memory much less effectively than
MinMax. As mentioned earlier, similar observations

about the inferiority of Proportional-style policies were

made in [Corn89, Yu93] in a non-real-time context.

We now turn our attention to the PMM algorithm. In

order to understand how PMM adapts itself to the work-
load, we examine Figure 6, which traces the target MPL

settings of PMM over the initial 10 hours of operation at
an arrival rate of 0.075 queries/second. PMM starts with
Max, but it quickly detects that this allocation strategy is
not satisfactory because it leads to a very limited MPL
while leaving the CPU and disks grossly underutilized.
This causes PMM to switch to MinMax mode to make a
higher MPL possible. The target MPL is first set to 25,
following the suggestion of the Resource Utilization

heuristic. Once PMM has gathered three miss ratio obser-
vations, it invokes the miss ratio projection method, which

quickly steers the target MPL to the vicinity of 10 where it

stabilizes. This MPL is sufficiently loose to admit all of
the queries into the system most of the time, as the low 4-
second admission waiting time in Table 7 suggests.
Indeed, Figure 5 shows that PMM consistently achieves
high MPL settings, thus enabling it to behave like the Min-
Max algorithm. This is why PMM manages to closely
match the performance of MinMax, which offers the best
miss ratios for this experiment.

Having studied the performance trade-offs of the
memory allocation algorithms, we now briefly examine

the demand that these algorithms place on the system’s

underlying memory-adaptive query processing primitives.
Figure 7 shows, as a function of the arrival rate, the aver-
age number of times that a query’s memory allocation
changes under each algorithm. The Max algorithm either
executes queries with their maximum required memory or
it suspends them. In contrast, the other three algorithms
do expose executing queries to changes in their memory
allocations. Under MinMax (and hence PMM, since it
mimics MinMax in this experiment), the allocation of a
query may vary between its minimum and maximum
memory requirements initially, gradually stabilizing at the
maximum only as its deadline draws near. The algorithm
that generates the most memory fluctuations is

Proportional, which always distributes memory propor-
tionally among all admitted queries, therefore subjecting
them to memory changes throughout their lifetimes.

To summarize the results of this experiment, we can
derive the following conclusions about situations where
memory is the bottleneck resource of an RTDBS: First,
insisting on maximum memory allocation as an admission
criterion is undesirable. Instead, an RTDBS needs to be
willing to run queries at memory allocations that are
below their maximum requirements so that enough queries
can be admitted to take advantage of the RTDBS’s disk
and CPU resources. This is facilitated by memory-
adaptive query processing techniques (such as those of
[Pang93a, Pang93b]) that permit queries to execute
efficiently in the face of memory fluctuations. Among the
algorithms that do not insist on maximum memory alloca-

tions, Proportional allocation leads to very large miss
ratios and should be avoided. This is why PMM employs
MinMax allocation when it detects that running queries
with sub-maximal memory allocations is beneficial.

Finally, PMM seems to be capable of finding the right
MPL setting and memory allocation strategy within a few

iterations, achieving low query miss ratios by balancing

the load on the system’s various resources.

5.2. Moderate Disk Contention

In the next experiment, we investigate how PMM per-
forms when disk contention becomes more of a considera-
tion in memory allocation decisions, though memory
remains the bottleneck resource. The number of disks is
reduced here to 6, while the rest of the parameters remain
at their settings from the baseline experiment. We will
exclude the Proportional algorithm since it is inferior to

MinMax. The performance statistics for the remaining
three algorithms, Max, MinMax-N and PMM, are given in

Figures 8,9 and 10, which plot as a function of the arrival
rate their miss ratios, disk utilizations, and observed

MPLs, respectively. These figures show that the behavior
of Max is essentially the same as in the baseline experi-
ment. We shall therefore not discuss Max here, instead
focusing on MinMax and PMM, both of whose behaviors
differ significantly from those observed previously.

We first analyze the performance of the MinMax algo-
rithm. Figure 8 shows that MinMax no longer provides
the best performance. In fact, MinMax now misses many

more deadlines than PMM under heavy loads. The perfor-
mance deterioration of MinMax here is due to its unres-

trained admission policy. In this experiment, where disk
contention is not negligible, the system does not always
have enough disk capacity for all of the queries that Min-
Max admits. This is evidenced by the higher average disk
utilizations in Figure 9, which exceed 70% under heavy
loads, As a result, some of the low-priority queries remain
essentially inactive even after being allotted memory
because they do not get the opportunity to access the disks
under the priority scheduling policy. This unproductive
use of memory unnecessarily forces higher-priority
queries to run below their maximum memory allocations
and increases their dependence on the CPU and disks,
resulting in the observed rise in MinMax’s miss ratios.

228

:L
o 12000 24000 36000

Time (See)
Figure 6: PMM MPL (1 = 0.075)

75- + Mm

+ MinMax
- PMM

& -e- MinMax- 10
; 50-
.-
%
g
.-
5
A 25-
.’2
n

oo-
0.08

Arrival Rate (Queries / See)
Figure 9: Disk Util. (Disk Contention)

:-
0.08

Arrivat Rate (Queriw / See)
Figure 7: Memory Fluctuations (Baseline)

lo- + Max
-A- MinMax

8- - PMM
+ MinMax- 10

f

Z 6-
3
L
g 4-

6

2-

0 1 1 1 1
0.04 0.05 0.06 0.07 008

Arrivat Rate (Oueries / See)

50- + Max

-A- MinMax
- PMM

40- -o- MinMax- 10

~
.5 30-
%
ti
.; 20-

z

lo-

0
0.04 0.05 0.06 0.07 0.08

Arrival Rate (Queries /See)
Figure 8: Miss Ratio (Disk Contention)

75

l\

+ Max
+ MinMsx-N
- PMM

o-
20

N
Figure 10: MPL (Disk ‘~ontention)” Figure 11: MinMax-N, A = 0.07 (Disk Contention)

Since MinMax performs unsatisfactorily here, we must
examine other MinMax-N variants in order to explain
PMM’s performance. Figure 11 plots the miss ratios pro-

duced by MinMax-N as a function of N for an arrival rate
of 0.07 queries/second. The MinMax-N variants that are
included cover the entire spectrum of trade-offs. At one
end, the MinMax-N algorithms with low N values are
similar to Max, as every admitted query is able to nm with

maximum memory allocation due to the low MPL settings.
At the other end of the spectrum is MinMax-20, which

essentially performs like MinMax (not shown) 2. Figure 11
shows that the best performance for this workload is
achieved by MinMax- 10, which utilizes the CPU and
disks much more effectively than Max by admitting more

queries into the system — but not so many queries that
thrashing occurs, as is the problem with MinMax. We
also conducted a series of experiments like Figure 11 at
other arrival rates, and the results of those experiments
unanimously confirmed that MinMax- 10 indeed delivers
the best performance for the present workload.

Having identified MinMax-10 as the best MinMax-N
algorithm for this experiment, we now proceed to evaluate
PMM against MinMax- 10. The curves in Figure 10 show
that the observed average MPLs for PMM remain con-
sistently close to those of MinMax- 10. This indicates that

z Theoretically, MinMax allows up to an average MPL of 69 for
this workload. In practice, the chances of having more than 20 queries in
the system at the same time here is so rare that, for atl practicat purposes,
MinMax-20 is the same as MinMax.

PMM succeeds at bringing its MPL setting to the proxim-
ity of the best MPL value, which explains why PMM out-
performs both Max and MinMax. In fact, Figure 8 shows
that PMM manages to meet almost as many deadlines as

MinMax-10 over the entire range of arrival rates that we
investigate, delivering miss ratios that are worse than
those of MinMax-10 by at most 2%.

The results of this experiment show that, while Max
leads to under-utilization of the CPU and disks in
memory-constrained situations, MinMax can produce
thrashing when disk contention is not negligible. There-
fore, some trade-off between Max and MinMax, i.e., a
MinMax-N algorithm, is needed. Since the best
MinMax-N algorithm depends on the system configuration
and workload characteristics, which are usually not known

in advance, the right MinMax-N algorithm to employ has
to be dynamically selected. PMM demonstrated its ability
here to quickly find the appropriate MinMax-N algorithm
by steering itself to the best MPL setting.

5.3. Workload Changes

The first two experiments lead us to the conclusion that
PMM performs well for relatively stable real-time work-
loads. The objective of this experiment is to find out how
quickly PMM adapts to workload changes. This is
achieved by subjecting the various memory allocation
algorithms to a workload that alternates between two

classes of hash joins, Small and Medium, every 2 to 5
simulated hours. For the Small class, IIRII ranges between

229

Database
NumGrouzm
RelPerDi;k ~
SizeRange ~
RelPerDisk2
SizeRange z
RelPerDisk3
SizeRange ~
RelPerDi.rk.
SizeRange 4“

Value Workload
4 /1NumClasses

L
3 @?ryT’pt?M,d,um

[600, 1800] RelGroup~ed,Um
3 kJfed,Um
[3000,9000] ‘($RhterValMe&m
3 QueryType5mlL
[50, 150] RelGroupsmu
3 k?lall
[250, 750] SRInterval 7

a ue
2
Hash join
{1,2}
0.07
[2.5, 7.5]
Hash join
{3, 4}
2.8
[2.5, 7.5]

Table 8: Database and Workload Settings (Workload Changes)

50 and 150 pages, while IISII ranges from 250 to 750 pages.
The characteristics of the Medium class are the same as

those of the baseline workload. These two classes pose
different demands on the system’s resources. On one
hand, it takes an average of only 111 memory pages to
satisfy the maximum demand of each hash join from the

Small class. Thus the disks, rather than the memory, are
the bottleneck, and the Max algorithm is therefore

appropriate for this class. On the other hand, the system is
memory-constrained with the Medium class, making a

MinMax-N algorithm more desirable, as we saw previ-
ously. In order to highlight the performance trade-offs
between the various algorithms, the arrival rates of the two
classes are chosen so that the RTDBS is forced to operate
under relatively heavy load conditions. The database and
workload parameters are listed in Table 8. For this experi-
ment, the number of disks is again set to 6, with the rest of
the resource parameters set to the values listed in Table 3.

Figures 12, 13, and 14 display the miss ratios of the

three algorithms as a function of time, while Figure 15
traces the observed MPL under PMM. Figures 12 to 14
also give the average miss ratio over each interval along
the top of each figure. Comparing the two static algo-
rithms, we notice that MinMax’s unrestrained admission
policy again causes it to perform poorly: Whereas Max
produces average miss ratios of 16% and 33% for the

o 24&0 486W 72&30

Time (See)
Figure 12: Max Miss Ratio (Workload Changes)

I

Small and Medium classes3, respectively, MinMax pro-
duces average miss ratios of 37% and 23% for the two
classes. In contrast to MinMax, PMM is able to capitalize
on the system’s disk and CPU resources without suffering
from thrashing. By dynamically selecting its MPL setting
and memory allocation strategy, PMM outperforms both
Max and MinMax for the Medium class, missing only
15% of its queries on the average. Moreover, PMM suc-
cessfully detects workload changes, switching back to
Max mode for the Small class, so its average miss ratio for

Small queries is just as low as that of the Max algorithm.
Similar experiments under lighter loads revealed essen-
tially the same trade-offs between the three algorithms;
while the magnitudes of the differences were smaller
there, the relative performance of the algorithms was the

same as that seen here. We therefore conclude that PMM
not only performs well under stable workloads, but is also
capable of adapting to workload changes.

5.4. Desirable Resource Utilization Levels

One of the input parameters of PMM is the range of
desirable resource utilizations, [Util~w, UtilHi~h]. Up to
this point, all of our experiments have used the range

[0.70, 0.85] for this parameter. The choice of 0.85 for

Utii&h iS reasonable because, with resources being more
than 8590 utilized, the system most probably does not have
enough capacity to service all of the admitted queries, so
thrashing is likely to occur. The appropriate setting for

Utilhw is not as obvious, however. To study the sensi-

tivity of PMM to the Utilhw setting, we carried out an
experiment where Util~w was varied from 0.50 to 0.80.
The results showed that PMM delivers approximately the

3The average miss ratio of the Medium class is derived by averag-
ing the miss ratios over the three time intervals where the worktoad is
made up of Medium queries.

M dium
(25%)

Medium
tz$!j (24%)

Smatl
(37%) , W$$$’ ,

0 24tI00 48600 726Q0

Time (See)
Figure 13: MinMax Miss Ratio (Workload Changes)

Medium Small Medium Small Medium
--

6 24h3 48600 72600

Time (See)
Figure 14: PMM Miss Ratio (Workload Changes)

o IJ l— !
I I 1

0 24000 48000 72000

Time (See)
Figure 15: PMM MPL (Workload Changes)

230

same performance for the different UtilLow values. This is
not surprising, as PMM relies on the desirable resource

utilization levels to set its MPL only during the initial

period after startup. Since the precise value of Utilhw
does not matter, the default setting of 0.70 suffices.

5.5. Other Query Types

While we have demonstrated the capability of PMM
for handling workloads that consist of hash joins, the
PMM algorithm is designed to be a general memory

management algorithm for RTDBSS; it is not limited to

handling only hash joins. To verify that PMM is capable
of handling other types of queries, we repeat the baseline
experiment using external sorts. Each query in this new
workload sorts a single relation R, where I]RII ranges from
600 to 1800 pages. All of the other workload and resource
parameters (except arrival rates) remain as they were in
the baseline experiment. Here we include the Proportional
algorithm once again for completeness of our evaluation.

The miss ratios of Max, MinMax, Proportional, and
PMM for this workload are shown in Figure 16. Compar-
ing this figure with Figure 3, we notice that Max performs

much worse here. This is because the load that they place

on the disks and CPU is lighter here, while the memory
demands of the queries are about the same as before; on
the average, each external sort only has to read in a 1200-
page relation, whereas the average hash join in the base-
line experiment had to deal with a 1200-page inner rela-
tion plus a 6000-page outer relation. Consequently,
memory is a much more critical resource here, thus result-
ing in a situation that is even more favorable to the liberal
admission policies employed by the other algorithms.
Again, we see that PMM is able to select the appropriate

MPL setting and allocation strategy, achieving miss ratios
that are just about as low as those obtained by MinMax.

5.6. Multiclass Workload

Our last experiment is designed to study how PMM
performs when presented with a multiclass workload. We
again simulate a workload that consists of two classes of
hash joins, Small and Medium. The characteristics of the
two classes are as listed in Table 8. However, instead of
alternating between the two classes as in the “Workload
Changes” experiment, here we activate both classes

;Izg’% ii

.
together. We fix the arrival rate of the Medium class at

0.065 queries/second and vary the arrival rate of the Small
class. With the exception of the number of disks, which is
raised to 12 to accommodate the heavier load here, the
resource parameters remain as in the baseline experiment.

Figure 17 shows the overall system miss ratios pro-

duced by Max, MinMax, and PMM. Interestingly, here
the system miss ratio curve of PMM resembles that of
MinMax initially, but gradually switches to follow that of
Max as ks~dll increases. This behavior arises because
PMM chooses its MPL and memory allocation strategy

according to the average characteristics of the workload,
which naturally affords the class that has a higher arrival
rate a greater influence on its choices. Consequently,
PMM adopts the MinMax strategy, which is more suitable

for Medium queries, only when l~m[l is low, As X~Mall
rises, PMM allows the increasing influence of Small
queries to sway it to Max mode. While operating in this
mode is very effective in minimizing the system miss
ratio, as Figure 17 shows, it severely limits the MPL of the
Medium class and causes a disproportionally large number
of Medium queries to miss their deadlines. This bias is

clearly evident in Figure 18. Since such biased behavior
may not be acceptable for certain applications, we are now
working on augmenting PMM with a mechanism to allow
an RTDBS system administrator to specify the desired
relative class miss ratios to support applications that
require “fairer” real-time query services,

5.7. Scalability of Results

In order to limit simulation costs, we intentionally

chose to use small relation and memory sizes in our exper-
iments. This raises questions about the scalability of our

results to larger systems: How would larger memory and

relation sizes affect the performance of the various algo-
rithms? Would PMM still be able to choose appropriate
MPL settings and memory allocation strategies quickly?

To explore these issues, let us consider a scenario with the

memory and relation sizes of Experiment 2 (the moderate
disk contention case) scaled up by a factor of 10, and with
the arrival rates reduced by the same factor in order to
maintain the resource utilizations at their previous levels.

+ Max

--A-- MinMax

- PMM

‘2:U!k
0.04 0.06 0.08 0.10 0.12 0.0 0.4 0.8 1.2

Arrival Rate (Queries / See) Small Arrival Rate (Queries /See)
Figure 16: Miss Ratio (External Sort) Figure 17: System Miss Ratio (Multiclass)

:40
.2
2
%
~ 20

0

VA

;2
0.0 0:4 0:8 .

Small Arrival Rate (Queries /See)
Figure 18: Class Miss Ratio (Multiclass)

231

In the case of Max, these changes should have no
impact onthe miss ratios since themaximum allocation of
each query, Flll?ll, is unchanged relative to the memory

size. In contrast, the MinMax algorithm would be affected
by the larger sizes, This is because the average query’s

minimum required memory is only @ times larger than
before, while the maximum required memory and the sys-
tem memory have been increased by a factor of 10.
Admitting extra queries with their minimum allocations
would thus have a lesser impact on the memory alloca-
tions of high-priority queries. Consequently, the detri-
mental effect of MinMax would be reduced considerably,
leading MinMax to deliver miss ratios that are closer to
those of the best MinMax-N algorithm. However, as we
increase the arrival rate, the disadvantage of MinMax will
still eventually overwhelm its benefits. There is therefore
still a need for a mechanism to regulate query admissions.

Turning our attention to PMM, we first observe that
PMM will still decide against using Max, as the behavior

of the Max strategy is not affected by the larger sizes.
Once in MinMax mode, PMM will require roughly the
same number of query completions as before to find the
right MPL setting. Therefore, the qualitative behavior of
PMM should remain the same as in Experiment 2. To ver-

ify this, we carried out two different sets of experiments
— a set of medium-scale experiments, reported in this
paper, and a set of small-scale experiments that involved

database and memory sizes that were ten times smaller.
The two sets of experiments produced essentially the same
qualitative algorithm behavior. We therefore expect our
results to scale up to even larger memory and relation

sizes; PMM should be just as effective for larger systems
as it was for the workloads and configurations that we
have experimented with here.

6. CONCLUSION

In this paper, we have focused on the problem of

scheduling queries in firm real-time database systems
(RTDBS). As a solution to this problem, we have pro-
posed a Priority Memory Management (PMM) algorithm
that aims to minimize the number of missed deadlines by
adapting both the multiprogramming level (MPL) and the
memory allocation strategy of an RTDBS according to

feedback on system behavior. This eliminates the need for
any advance knowledge of workload characteristics or
query execution times, which is usually not available in a
database system. Instead, the setting of the MPL is deter-
mined primarily by a statistical projection method, called
miss ratio projection, which is supplemented by a resource
utilization heuristic when the statistical method fails.
PMM incorporates two memory allocation strategies — a
Max strategy under which each query receives either its
maximum required memory or no memory at all, and a
MinMax strategy that allows some queries to run with
their minimum required memory while others get their
maximum. Both strategies employ the Earliest Deadline
(ED) policy so that queries whose deadlines are more
imminent are given memory ahead of queries that are less
urgent. The choice of memory allocation strategy is based
on statistics about the workload characteristics that PMM

gathers; in order to ensure that its MPL setting and

memory allocation strategy choices remain appropriate,
PMM constantly monitors the workload for changes that
may necessitate adjustments to those decisions.

Using a detailed RTDBS simulation model, we studied
the performance of PMM under workloads that comprised
both hash joins and external sorts. For comparison pur-
poses, we also examined two static algorithms based

purely on the Max and MinMax allocation strategies. Our
experiments revealed that while the static algorithms per-
form satisfactorily under very light loads, neither algo-

rithm is adequate in overload situations. In contrast, PMM
is able to dynamically reach the right compromise
between Max and MinMax, consistently delivering low
miss ratios. Moreover, PMM achieves this quickly

enough so that it works well even for fluctuating work-
loads. While we only experimented with queries that per-
form either external sorting or hash join operations, PMM
is designed to schedule general query workloads effec-

tively by balancing their demands on the system’s
memory, CPU, and disks. In particular, PMM can be

extended to handle complex database queries that use

external sorting and hash joins as building blocks, such as
queries with aggregates, group-by clauses, andfor order-by
clauses. Therefore, we conclude that the admission con-
trol and memory allocation mechanisms of PMM should

be very useful for RTDBS query scheduling.

REFERENCES

[Abbo88] R. Abbott, H. Garcia-Molina, “Scheduling Red-Time Tmtr-
sactions: A Performance Evahration”, Proc. 1988 VLDB Conf
[Abbo89] R. Abbott, H. Garcia-Molina, “Scheduling Rerd-Time Trasr-
sactions with Disk Resident Data”, Proc. 1989 VLDB Conf
[Abbo90] R. Abbott, H. Garcia-Molina, “Scheduling I/O Requests with
Deadlines. A Performance Evahration”, Proc. 1990 RTS’S Syrrrp.
[Bitt88] D. Bitton, J. Gray, “Disk Shadowutg”, Proc. 1989 VLDB Conf
[Brow93] K. Brown, M. Carey, M. Livny, “Managing Memory to Meet
Multiclass Workload Response Time Goats”, Proc. 1993 VLDB Conf
[Care89] M.J. Carey, R. Jauhari, M. Livny, “Priority in DBMS Resource
Scheduling”, Proc. 1989 VLDB Conf
[Chen91] S. Chen, J.A. Stankowc, J.F. Kurose, D. Towsley, “Perfor-
mance Evacuation of Two New Disk Scheduling Algorithms for Reaf-
Time Systems”, Real-Time Systems Journal 3(3), 1991
[Corn89] D. Cornell, P. Yu, “Integration of Buffer Management and
$%; :~;rn in a Relational Database Environment”, Proc. 1989

[Devo91] J.L. Devore, Probability and StatZsticsfor Engineering and the
Sciences, Brooks/Cole Pub. Co., 1991, pp. 283-301, 326-335.
[Drap81] N.R Draper, H. Smith, Apphed Regression Analysi$, John
Wdey & Sons, Inc., 1981, pp. 70-136.
[Hari90] JR. Haritsa, M.J. Carey, M Livny, “On Being Optimistic
about Renl-Time Constraints”, Proc. 1990 PODS Symp.
[Huan89] J. Huang, J.A. Stattkovic, D. Towsley, K. Ramamrhham,
“Experimental Evahration of Rest-Time Transaction Processing”, F’roc.
1989 RTSS .$ymP.
[Klm91] W, Kim, J, Srivastava, “Enharrcing Rest-Time DBMS Perfor-
mance with Mrrltiversion Data and Priority Based Disk Scheduling”,
ProG, 1991 RTSS SyrWa

[Liu73] C. LIu, J. Laylarrd, “Scheduling Algorithms for Multiprogram-
ming in a Hard Rest-Time Environment”. ACM Journal, January 1973.
[Livn90] M. Llvny, “DeNet User’s Guide, Version 1.5”, Computer Sc/-
ences Department. University of Wisconsin, Madison, 1990
[Pang93a] H. Pang, M.J, Carey, M, Livny, “Partiatly Preemptible Hash
Joins”, Proc. 1993 SIGMOD Corrf
[Pang93b] H. Pang, M.J. Carey, M. Livny, “Memory-Adaptive Extenrat
Sorting”, Proc. 1993 VLDB Corr$
[Sarg76] R. Sargent, “Statistical Anatysls of Simulation Output Data”,
Proc. 1976 Symp. on Simulation of Computer Systems.
[Shap86] L.D. Shapiro, “Join Processing in Database Systems with
Large Main Memories”, Trans. on Database Systems 11(3), 1986.
[Yu93] P.S. Yu, D.W. Cornell, “Buffer Management Based on Return on
Consumption In a Multi-Query Environment”, VLDB Journal 2(1), 1993.

232

	Managing memory for real-time queries
	Citation

	tmp.1499754600.pdf.21CRl

