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Abstract

We consider an on-demand service platform using earning sensitive independent providers
with heterogeneous reservation price (for work participation) to serve its time and price sensitive
customers with heterogeneous valuation of the service. As such, both the supply and demand
are “endogenously” dependent on the price the platform charges its customers and the wage
the platform pays its independent providers. We present an analytical model with endogenous
supply (number of participating agents) and endogenous demand (customer request rate) to
study this on-demand service platform. To coordinate endogenous demand with endogenous
supply, we include the steady-state waiting time performance based on a queueing model in the
customer utility function to characterize the optimal price and wage rates that maximize the
profit of the platform (as well as the total welfare). We first analyze a base model that uses
a fixed payout ratio (i.e., the ratio of wage over price), and then extend our model to allow
the platform to adopt a time-based payout ratio. We find that it is optimal for the platform
to charge a higher price when demand increases; however, the optimal price is not necessarily
monotonic when the provider capacity or the waiting cost increases. Furthermore, the platform
should offer a higher payout ratio as demand increases, capacity decreases or customers become



more sensitive to waiting time. We also find that the platform should lower its payout ratio as
it grows with the number of providers and customer demand increasing at about the same rate.
We use a set of actual data from a large on-demand ride-hailing platform to calibrate our model
parameters in numerical experiments to illustrate some of our main insights.

Keywords: On-Demand Services, Endogenous Supply and Demand, Queueing Models.



1 Introduction

Recent advances in internet/mobile technologies have enabled the creation of various innovative on-

demand service platforms for providing on-demand services anytime/anywhere. Examples include

grocery delivery services (e.g., Instacart, Google Express), meal delivery services (e.g., Sprig, Blue

Apron), and food delivery services directly from restaurants (e.g., DoorDash, Deliveroo (U.K.),

UberEats, Yelp Eat24), consumer goods delivery services (e.g., UberRush), dog-walking services

(e.g., Wag), and ride-hailing services (e.g., Uber, Lyft, Didi). Furthermore, the adoption of mobile

applications as well as the availability of on-demand service platforms increase the expectations

and demands of impatient customers for quick services.

To meet dynamic customer demand anytime/anywhere, it is economical for on-demand service

firms to use independent providers (or agents) to fulfill customer requests quickly. However, us-

ing independent agents to deliver on-demand services can be challenging, as work participation of

independent providers is primarily driven by earnings. As independent agents do not get compen-

sated for idle times, earnings depends on wage rate and utilization, whereas utilization depends

on customer demand. At the same time, the demand associated with time and price sensitive

customers depends on two key factors: price and waiting time. Since customer’s waiting time is

highly dependent on the number of participating agents (which is a function of agent’s wage and

customer demand), the “supply” of participating agents and the “demand” of customer requests

are endogenously dependent on the wage and the price specified by the firm.

An on-demand service firm needs to analyze the underlying interactions between supply and

demand so as to select the optimal wage and price. The firm must carefully coordinate endogenous

supply and demand in different time periods by: (1) setting the right wage (i.e., compensation)

to get the right supply (i.e., the right number of earning sensitive participating agents); and (2)

charging the right price to control the right demand (i.e., the right number of time and price

sensitive customers). To elaborate, consider the simple case when the demand is fixed. If the firm

offers a higher wage, more agents will participate and customer satisfaction will increase due to

a quicker service. However, each participating agent will earn less due to low utilization. On the

other hand, if the firm offers a lower wage, fewer agents will participate and customer satisfaction

will decrease due to longer waiting times.
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In view of the intricate relationship between endogenous supply and demand through wage and

price selections, we develop an analytical framework to examine how an on-demand service firm

should set its price rate for the customers and its wage rate for the providers. In our framework,

we use a queueing model to capture the underlying waiting time where both supply (i.e., number of

providers) and demand (i.e., customer arrival rate) are “endogenously” dependent on wage, price

and other operating factors. Our model captures an operating environment where (1) time and price

sensitive customers are “heterogeneous” in their valuation of the service; and (2) earning sensitive

independent providers are “heterogeneous” in their reservation earning rate (i.e., the minimum

wage for work participation).

We only consider time-based pricing (instead of dynamic pricing) in our analytical framework,

i.e., the price rate can change across different time periods, but is known in advance to customers.

Also, we only consider time-based wages so that the wage schedule is known in advance to service

providers. Besides the fact that time-based pricing (and wages) is practical, it is considered to be

fairer than the dynamic pricing/wages that is not known to customers/providers in advance. For

instance, the behavior experiments conducted by Haws and Bearden (2006) reveal that consumers

viewed price changes within very short time periods as being more “unfair” than price changes over

a more extended period of time. Therefore, for practical reasons and for tractability, we focus on

time-based strategy in this paper.

We first use the analytical framework to construct a base model for a common situation in

which an on-demand service platform adopts a fixed payout ratio of wage over price to pay its service

providers. (Throughout this paper, we refer to “payout ratio” as the wage offered to the providers as

a percentage of the price paid by the customers.) By including waiting time performance based on

an M/M/k queueing model in the customer utility function, we analyze the optimal price and wage

rates that maximize the expected profit of the service platform. We conduct extensive numerical

experiments to generate managerial insights on how to select the optimal price and wage rates for

the platform. We further develop a good approximation of the steady-state waiting time function

to provide analytical results that support the insights derived from our numerical experiments.

For the base model, we find that the platform should increase the price rate (and the wage

rate accordingly) when customer demand increases. This result thus supports an on-demand ride-

hailing service platform that uses a fixed payout ratio (such as Uber) of charging a higher price (and
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offering a higher wage) during rush hours when the customer demand is high. Interestingly, we

find that the optimal price (and wage) rate is not necessarily monotonic in the maximum number

of available service providers.

We then extend our base model to analyze the general situation in which the on-demand service

platform can use a time-based payout ratio to pay the providers in order to maximize its profit. We

analyze the optimal price and wage rates and evaluate the potential benefit of using a time-based

payout ratio over a fixed payout ratio. Similar to the base model, we use an approximation of

the waiting time function to provide analytical results that support the insights derived from our

numerical experiments. We further extend our analysis to a more general setting under which the

objective is to maximize the platform’s profit plus the welfare of the consumers and providers.

For the general model (based on time-based payout ratio), we find that the optimal price and

wage rates increase as customer demand increases. Interestingly, the impact of service capacity on

the optimal price rate is more subtle. We find that the optimal price is not necessarily monotonic

as the maximum number of available service providers increases. Similarly, the optimal price is not

necessarily monotonic as waiting cost increases. This non-monotonic property can be explained by

the queueung effects captured in the customer utility function. We also find that, when the cus-

tomer’s valuation of the service and the provider’s earning reservation are uniformly distributed,

the optimal payout ratio increases when demand increases, service capacity decreases, or customers

become more sensitive to waiting time. In other words, the platform should increase its payout

ratio at time periods with high demand, but reduce its payout ratio when the number of regis-

tered independent providers increases. For urgent on-demand services with highly time sensitive

customers, the firm needs to increase its payout ratio to attract more service providers to handle

the increasingly impatient customers. We also find that the platform should lower its payout ratio

as it grows with the number of providers and customer demand increasing at about the same rate.

Our results also show that the profit can be greatly reduced if the platform uses a fixed payout

ratio that is far from the optimal time-based payout ratio, and that the optimal time-based payout

ratio can vary widely depending on specific operating characteristics. This implies that, while it is

simple for the platform to share a fixed percentage of its revenue with its independent providers,

the platform should adopt a time-based payout ratio to maximize profitability across different time

periods when the underlying operating characteristics can change significantly. We hope our results
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might motivate on-demand service firms adopting a fixed payout scheme to carefully re-evaluate

the effectiveness of such a fixed payout scheme.

This paper is organized as follows. We provide a brief review of related literature in Section

2. Section 3 presents our modeling framework of endogenous supply and demand along with

heterogeneous providers and customers. In Section 4, we develop our base model for analyzing

a common situation in which the on-demand platform adopts a fixed payout ratio. We analyze

the optimal price and wage rates that maximize the platform’s profit using extensive numerical

experiments. We further develop a good approximation scheme to provide analytical support of

the insights derived from the numerical experiments. In Section 5 we extend our base model to

analyze the general situation in which the platform can use a time-based payout ratio in order to

maximize its profit. We further extend our analysis to the case when the objective of the platform

is to maximize its own profit plus the welfare of the consumers and providers. In Section 6, we

construct some illustrative numerical examples based on actual data provided by Didi: the leading

on-demand ride-hailing service in China. We conclude the paper in Section 7. For ease of exposition,

all mathematical proofs for the results in the main text are provided in an Appendix A.

2 Literature Review

Our paper relates to pricing strategies in two-sided markets in the industrial organization literature.

Our framework is akin to the models developed by Rochet and Tirole (2003, 2006) and Armstrong

(2006) in the following sense. Our framework studies a service platform that maximizes its profit by

charging prices (wage can be viewed as a negative price) to both sides of the market, which captures

some positive “cross-group” externalities, i.e., the utility of an agent in one side increases with the

number of agents in the other side. However, our framework differs from their setting in two

important aspects. First, our framework incorporates a queueing model, which is a salient feature

of a ride-sharing platform. As such, our framework also captures the within-group effects in which

an increase in customer demand would reduce customer utility due to an increase in waiting time in

the demand side, and an increase in service providers would reduce provider earnings due to lower

utilization in the supply side. We shall further discuss how the non-linear queueing effect can affect

the structural results in Section 5.2. Second, our framework considers a different objective function.

Rochet and Tirole (2003, 2006) use the product of the difference in price and wage rate, supply and
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demand in the objective function. Hu and Zhou (2017) use the product of the difference in price

and wage rate and the minimum of supply and demand in the objective function. In contrast, our

framework uses the product of the difference in price and wage the “throughput rate”. Notice that

the throughput rate is a non-separable function of the arrival rate (or throughput) and the number

of servers in an equilibrium, and these two factors depend on the underlying price and wage rates.

Our paper belongs to an emerging stream of research that examines operations and pricing issues

arising from the sharing economy; see e.g., Benjaafar et al. (2015), Fraiberger and Sundararajan

(2015), and Jiang and Tian (2015) examined a customer’s decision to purchase or to rent assets in

the presence of “product sharing platforms” such as Airbnb. By crawling data from Airbnb, Li et

al. (2015) showed empirically that “professional” owners earned more. For many of such sharing

platforms, the owners set the price, the platforms set the payout amounts to the owners, and

customers often reserve the service in advance. In contrast, our paper studies on-demand service

platforms which provide time-sensitive service in an on-demand manner and addresses different

decision issues in managing the underlying service request mechanisms.

Recent developments of various on-demand service platforms such as Uber and DoorDash (see

Kokalitcheva (2015), Wirtz and Tang (2016), and Shoot (2015)) have motivated researchers to

explore various operational issues. First, there is an on-going debate regarding the definition of

independent contractors for various on-demand service platforms (e.g., see Roose (2014)). At the

same time, it is of interest to examine how dynamic wage affects supply, especially when indepen-

dent providers can freely choose whether and when to work. Chen and Sheldon (2015) examined

transactional data associated with 25 million trips obtained from Uber and showed empirically that

dynamic wage (due to surge pricing) could entice independent drivers to work for longer hours. Shel-

don (2016) analyzed data from a peer-to-peer ride-sharing firm to examine the supply elasticity

of individual contractors in the ride-sharing market. Moreno and Terwiesch (2014) also examined

empirically the independent contractor’s bidding behavior on freelancing platforms. Allon et al.

(2012) explored the process for matching providers to consumers when capacities were exogenous.

A number of researchers have recently studied the impact of wage and price on supply and for

on-demand services and examined whether it would be beneficial for an on-demand service firm to

adjust its prices and wages dynamically based on real-time system information including the current

number of customers requesting service and the number of providers in the system. Riquelme et al.
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(2015) and Cachon et al. (2015) compared the impact of static versus dynamic prices and wages.

When customers were heterogeneous in terms of valuation and the payout ratio was exogenously

given, Riquelme et al. (2015) found that static pricing performed well. On the other hand, Cachon

et al. (2015) found that surge pricing performed well when customers were homogeneous and

the payout ratio was endogenously determined. When the profit function of the platform is the

minimum of demand (a linear function of price) and supply (a linear function of wage), Hu and Zhou

(2017) showed that it is optimal for the platform to offer a constant payout ratio, which depends

on the price and wage sensitivity coefficients of the linear demand and supply functions. Moreover,

their main focus is to provide performance bounds for an endogenized fixed payout ratio. Gurvich

et al. (2015) developed a newsvendor-style model to examine the optimal price and wage decisions.

This stream of research has assumed that customer demand is independent of waiting time and

service capacity is independent of system utilization over time. In contrast, our model captures

the rational behavior of customers who are sensitive to waiting time (and price) and independent

providers who are sensitive to earnings which depend on the system utilization.

One research stream in the queueing literature has studied pricing decisions for services where

customers can incur waiting or delay costs. In particular, a number of research papers have ex-

amined an operating environment that uses a static uniform (non-discriminatory) pricing strategy

for heterogeneous customers. Afeche and Mendelson (2004) analyzed the revenue-maximizing and

socially optimal equilibria under uniform pricing for heterogeneous customers and found that the

classical result that the revenue-maximizing admission price was higher than the socially-optimal

price (e.g., see Naor (1969)) could be reversed under a more generalized delay cost structure. Zhou

et al. (2014) analyzed the structure of the optimal uniform pricing strategies for two classes of cus-

tomers with different service valuations and waiting time sensitivities. Armony and Haviv (2003)

and Afanasyev and Mendelson (2010) studied the competition between two firms under uniform

pricing for two classes of heterogeneous customers. All the above research papers were based on

the assumption that capacity was exogenously given. In contrast, our paper considers the situation

where service capacity is endogenously dependent on wage and system utilization.

Finally, our model is closely related to some recent work by Taylor (2016). To our knowledge,

Taylor (2016) is the first to examine pre-committed price and wage based on customer demand

and other operating factors in the context of on-demand services. He compared the optimal prices
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when the providers were independent contractors or regular employees, and examined the impact

of waiting time sensitivity on the optimal price and wage using a two-point distribution for both

the customer valuation of the service and the provider’s reservation earning rate. Our model allows

these two distributions to be continuous, and complements Taylor’s work in two important ways.

First, our focus is to examine the impact of demand rate, waiting time sensitivity, service rate, and

the size of available providers (who are on-reserve) on the optimal price, wage and payout ratio.

Second, in addition to maximizing its profit, we also consider the case when the firm maximizes

the sum of its own profit and the total consumer and provider surplus.

3 A Modeling Framework with Price and Time Sensitive Cus-
tomers and Earning Sensitive Service Providers

We consider an on-demand service platform that coordinates randomly arriving (price and time

sensitive) customers with (earning sensitive) independent service providers. To simplify our expo-

sition, we shall use on-demand ride-hailing service platforms (such as Uber) to illustrate our model

formulation and results throughout this paper. However, our model can also be used to study other

on-demand service applications.

Customers arrive randomly at the platform to request for service, and each service request

consists of an (random) amount of service units to be processed by a service provider (e.g., travel

distance in km). Throughout this paper, we assume that the requested service by any customer can

be met by any of the available service providers. The platform charges each customer a fixed price

rate p per service unit (e.g., dollar per km), and offers a fixed wage rate w per service unit to each

participating service provider. Here, we use “wage rate” per service unit so that the payout ratio

w
p is well defined. We shall compute “earning rate” per unit time later for providers who decide

whether to participate or not.

In the same spirit as in Taylor (2016), the price rate p and wage rate w are pre-committed, but

their values can vary across different time periods depending on the specific market characteristics

such as the average customer demand rate and the expected number of available providers. In

other words, we focus on time-based pricing/wage instead of real-time dynamic pricing/wage that

depends on real-time system status such as the number of customers requesting service and number
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of available providers in real time.1

Each customer decides whether to use the platform to request for service, and each independent

provider decides whether to participate. We assume that the price rate p and wage rate w are known

to the customers and the providers in advance so that they can make their informed decisions. For

each service request, the platform will assign one of the available participating providers to serve

the customer.2 The primary objective of the service platform is to select the optimal price rate and

wage rate, denoted by p∗ and w∗, so as to maximize its average profit.

3.1 Realized customer request rate λ and price rate p

Consider a certain time period (e.g., peak hours from 8am to 10am). The maximum potential

customer demand rate for the service during this time period is given by λ̄, each of which has

a valuation of the service that is based on a value rate v per service unit, where v varies across

customers. To model heterogeneous customers, we assume that there is a continuum of customer

types so that the value rate v spreads over the range [0, 1] according to a cumulative distribution

function F (.), where F (.) is a strictly increasing function with F (0) = 0 and F (1) = 1.

For a customer with valuation v and a service request of D units, the customer’s service surplus

is equal to (v − p)D.3 To simplify exposition, we assume that the service units requested D is

independent of the customer type v. (If D and v are dependent, we can still apply our analysis

by treating the random variable vD as the new “valuation”.) As our focus is on the steady state

analysis, it suffices to use the average service units requested by customers in our analysis. Let

d = E(D) denote the average service units requested by customers. To capture the notion of

waiting time sensitivity, we assume that the expected utility function of a customer of value rate

type v is given by

U(v) = (v − p)d− cWq, (1)

1As articulated in MacMillan (2015) and Taylor (2016), many customers resist real time dynamic pricing due
to fairness concerns and most on-demand service providers, other than Uber and Lyft, tend to adopt this form of
time-based pricing.

2Our model does not consider any specific assignment mechanism. For instance, the service platform can assign
an available participating provider based on certain specific criteria (e.g, Uber assigns an available driver closest to
the pickup location), or can announce a service request to all available participating service providers and assign the
request to the first respondent.

3By leveraging internet and mobile technologies, customer requests (e.g., pick up and drop off locations) and the
service operations (e.g., route) can be monitored or controlled by the on-demand platform. As such, we assume
that the number of service units (e.g., travel distance) in each requests is dictated by the customers, and the service
providers cannot manipulate or maximize their earnings by deliberately increasing the service units (e.g., travel
distance) due to information transparency and real-time location tracking capabilities.
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where c denotes the cost of waiting per unit time and Wq represents the expected waiting time for

the service. (For instance, Uber and Lyft provide estimated pick-up time to customers.)

Using (1) and assuming that a rational customer with valuation v will request for service only

if U(v) ≥ 0,4 the platform can use p and w to indirectly control the effective demand (i.e., the

realized customer request rate) λ so that

λ = Prob{U(v) ≥ 0} · λ̄ = Prob{v ≥ p+
c

d
Wq} · λ̄.

Define the “target” service level s = Prob{v ≥ p+ c
dWq}. Then, the realized customer request rate

λ is given by:

λ = sλ̄. (2)

Since v ∼ F (.), it follows from (1) that the price rate p satisfies the following equation:

p = F−1(1− λ

λ̄
)− c

d
Wq. (3)

Note that the price rate p decreases in the expected waiting time Wq and the unit waiting cost c.

3.2 Realized number of participating providers k and wage rate w

Let K be the (maximum) number of potential earning sensitive providers who may decide to

participate over the same time period, i.e., K represents the number of registered providers who are

eligible to participate. For any given (p, w), let k be the realized number of providers participating

in the platform, where k ≤ K. Also, let µ denote the average service speed (number of service units

processed per unit time; e.g., travel speed measured in terms of km per hour) of the service providers

so that µ/d represents the service rate of the providers (i.e., average number of customers served

per hour).5 Given the realized customer request rate λ and the realized number of participating

providers k, the utilization of these k participating providers is equal to λ
k·(µ/d) , where λd < kµ to

ensure system stability. The average wage per unit time of a participating provider (when working)

is equal to the wage per service unit w multiplied by the average service speed µ. Accounting

for the utilization, the average “earning rate” per unit time of a participating provider is equal to

wµ · λdkµ = w λd
k .6

4In other words, in equilibrium, only customers with value rate v ≥ p+ c
d
Wq will use the platform to request for

service, and customer requests with value rate v < p+ c
d
Wq will not use the platform to meet their service need.

5If the service units d are already measured in terms of time units, we can simply set µ = 1 in this case.
6For independent service providers, utilization and wage rate are the two key factors for their participation. For

example, DePillis (2016) reported that Uber drivers obtain higher earnings primarily because their utilization rate
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To model the notion of earning-sensitivity, we assume that each potential provider has a reser-

vation earning rate r per unit time (i.e., corresponding to his outside option), where r varies across

different providers. To model the heterogeneity among providers, we assume that there is a con-

tinuum of provider types so that the reservation rate r spreads over the range [0, 1] according to

a cumulative distribution function G(.), where G(.) is a strictly increasing function with G(0) = 0

and G(1) = 1. For a (potential) provider with reservation rate r, he will participate to offer service

only if his average earning rate w λd
k is at least equal to r.

Let β denote the proportion of providers who participate in the platform to offer service during

this time period. Then, β = Prob{r ≤ w λd
k } = G(w λd

k ), and the realized number of participating

providers k (i.e., supply) is given by

k = βK. (4)

Also, in equilibrium, β = G(w λd
k ) so that:

G−1(β) = w
λd

k
. (5)

From (4) and (5), we can express the wage rate w as a function of the number of participating

providers k:

w = G−1(β)
k

λd
= G−1(

k

K
)
k

λd
. (6)

3.3 Problem Formulation

Since the platform earns an average profit of (p − w)d for each customer request, the platform’s

average total profit is then equal to π = λ(p − w)d. By substituting (3) and (6) into the profit

function, we can express the profit function π as a function of (k, λ) below:

π(k, λ) = λd

[
F−1(1− λ

λ̄
)− c

d
Wq −G−1(

k

K
)
k

λd

]
. (7)

Considering the system stability condition λd < kµ, the optimization problem of the platform can

be formulated as

max
k,λ

π(k, λ) ≡ λd
[
F−1(1− λ

λ̄
)− c

d
Wq −G−1(

k

K
)
k

λd

]
, subject to

λd

kµ
< 1, (8)

(measured in terms of percentage of miles driven with a passenger) is much higher than that for taxi drivers. For
instance, Uber driver’s utilization is 64.2%, while taxi driver’s utilization is only 40.7% in Los Angeles.
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from which we can determine the optimal supply (i.e., the number of participating providers k∗)

and the optimal demand (i.e., the realized customer request rate λ∗). Then, we can use (3) and (6)

to retrieve the corresponding optimal price rate p∗ and optimal wage rate w∗ from k∗ and λ∗.

3.4 Notation

For ease of reference, we list below the basic notation used in the paper.

• K : Maximum number of potential service providers who may opt to participate;

• k : Realized number of participating service providers (k ≤ K);

• λ̄ : Customer demand rate who may opt to use the platform to request for service;

• λ : Realized customer request rate (λ ≤ λ̄);

• s : Target service level;

• D : Random amount of service units per service request;

• d : Average amount of service units per service request, i.e., d = E(D);

• µ : Average service speed of the service providers;

• v : Value rate per service unit of a customer;

• F (.) : Cumulative distribution of value rate of customers v;

• r : Reservation earning rate of service providers;

• G(.) : Cumulative distribution of reservation rate of service providers r;

• c : Unit waiting cost of customers;

• p : Price rate (price per service unit) charged to customers;

• w : Wage rate (wage per service unit) paid to service providers.

4 The Base Model with A Fixed Payout Ratio

A common practice for many on-demand service platforms is to set the wage rate as a fixed propor-

tion of the price rate, i.e., w = αp for some fixed α, 0 < α < 1. For example, Uber set α = 0.8 for

its first cohort of drivers in San Francisco (Huet (2014)). We can use our modeling framework to

analyze this common practice by imposing an additional constraint of w = αp in the optimization

problem as given in (8). We refer to this model as the base model with a fixed payout ratio, or

simply the “base model”, in our subsequent discussions.
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We model the expected waiting time Wq used in the customer’s utility function (1) based on

an M/M/k queue. For an M/M/k queue with arrival rate λ and service rate µ
d , it is well-known

(see e.g., Gross et al. (2008)) that the expected waiting time is given by

Wq =
1

1 + k!(1−ρ)
kkρk

∑k−1
i=0

kiρi

i!

[
ρ

λ(1− ρ)

]
, (9)

where ρ = λd/kµ represents the system utilization with ρ < 1.

To simplify our analysis here, we shall assume that the distributions of value rate v and reser-

vation earning rate r are uniformly distributed over the range [0,1] so that F (v) = v and G(r) = r

in our models for the rest of this paper. However, all our analytical and numerical results can be

directly extended to the more general case where the positive support of the uniform distribution

of F (.) or G(.) is within the range of [a, b] rather than [0, 1], as used in our illustrative numerical

examples in Section 6.

With the above assumptions, the respective price, wage and profit functions given in (3), (6)

and (7) can be expressed as follows:

p =

(
1− λ

λ̄

)
− c

1 + k!(1−ρ)
kkρk

∑k−1
i=0

kiρi

i!

[
ρ

λd(1− ρ)

]
(10)

w =
k2

Kλd
(11)

π(k, λ) = λd(p− w) = λd

(1− λ

λ̄
)− c

1 + k!(1−ρ)
kkρk

∑k−1
i=0

kiρi

i!

[
ρ

λd(1− ρ)

]
− k2

Kλd

 , (12)

where the system utilization ρ = λd
kµ < 1. Using (10) and (11), the fixed payout ratio constraint,

w = αp, can be written as

k2

Kλd
= α


(

1− λ

λ̄

)
− c

1 + k!(1−ρ)
kkρk

∑k−1
i=0

kiρi

i!

[
ρ

λd(1− ρ)

] ,

or equivalently,

k2 = Kα

λd
(

1− λ

λ̄

)
− c

1 + k!(1−ρ)
kkρk

∑k−1
i=0

kiρi

i!

(
ρ

1− ρ

) . (13)

Also, as w = αp, we can use (11) to rewrite the profit function (12) as

π(k, λ) = λd(p− w) = λd(
w

α
− w) =

k2(1− α)

Kα
. (14)
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Then, the optimization problem is to maximize the profit function (14) subject to the constraints

(13) and k ≤ K. It is easy to see that the optimal k∗ is given by the largest value of k, with k ≤ K,

that possesses a feasible λ to (13).

While it is difficult to derive tractable results using (13), it is straightforward to numerically

search for any feasible λ satisfying (13) for each fixed value of k. For each fixed value of k, with

k = 1, 2, ...,K, we search through all possible values of λ, with λd/kµ < 1, that would satisfy (13).

The optimal solution k∗ is given by the largest value of k with a feasible λ to (13), and the optimal

p∗ and w∗ are given by (10) and (11) accordingly.

The left panel of Table 1 provides a sample set of results in our numerical experiments. For

this set of numerical experiments, we set α = 0.5, c = 1, K = 50, µ = 1, and d = 1 with values of λ̄

ranging from 10 to 100. Table 1 shows that the optimal value of k∗ (and the optimal profit π∗) is

non-decreasing in λ̄, i.e., the optimal number of participating providers and the optimal expected

profit of the platform would increase (or remain the same) as the customer demand rate who may opt

to use the service increases. However, the optimal values of λ∗ and p∗ are not necessarily monotone

in λ̄.7 In particular, the optimal price could possibly decrease when the customer demand increases.

We shall provide an explanation of why this seemingly counter-intuitive result could occur in our

numerical results later.

Insert Table 1 about here

4.1 An Approximation Scheme

To obtain some analytical results that can enable us to understand why λ∗ and p∗ are not necessarily

monotonic in λ̄, we next develop an approximation scheme by using a simpler function for the

expected waiting time function Wq. The approximation scheme serves two purposes. It gives a

more efficient way of finding a near-optimal solution numerically and provides analytical results for

supporting the insights obtained from our numerical experiments.

Our approximation scheme is motivated by the following well-studied approximation for the

7With the integer constraint on k, there generally exists two feasible values of λ∗ corresponding to the optimal
integer solution k∗. For consistent comparisons, we always present the smaller value of λ∗. The larger value of λ∗

also shows similar non-monotonic property as well.
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expected waiting time of an M/M/k queue with arrival rate λ and service rate µ
d :

Wq =
ρ
√

2(k+1)

λ(1− ρ)
, (15)

where ρ = λd
kµ represents the system utilization. The approximation formula (15) is exact for an

M/M/1 queue, i.e., (9) reduces to (15) when k = 1, and it has been shown (see Sakasegawa (1977))

to provide a very good estimate of (9) when k > 1.

However, using (15) for Wq is still too complex for developing tractable results for the base

model. The decision variable k appears in both ρ = λd
kµ and the exponent of the expression given

in (15), which makes the first-order conditions of the optimization problem difficult to analyze.

Therefore, we use a simpler approximation for Wq by assuming that:

Wq =
ρ
√

2(n+1)

λ(1− ρ)
, (16)

where ρ = λd
kµ < 1 and n is some fixed positive number. By using (16) for Wq, the price and profit

functions given in (10) and (12) now become:

p =

(
1− λ

λ̄

)
− cρ

√
2(n+1)

λd(1− ρ)
(17)

π(k, λ) = λd

[
(1− λ

λ̄
)− cρ

√
2(n+1)

λd(1− ρ)
− k2

Kλd

]
, (18)

and the fixed payout ratio constraint given by (13) becomes

k2 = Kα

{
λd

(
1− λ

λ̄

)
− cρ

√
2(n+1)

1− ρ

}
. (19)

Then, for each fixed value of k, we now use (19) instead of (13) to find a feasible λ numerically,

and the optimal solution k∗ is given by the largest value of k, with k ≤ K, that possesses a feasible

λ to (19).

The only difference between (15) and (16) is that the exponent in (15) is based on the decision

variable k, whereas the exponent in (16) is based on a fixed parameter n. Thus, (16) would be

very close to (15) when n is close to k. We next provide an iterative procedure to determine the

parameter n in (16) such that the resulting optimal value of k∗ is equal to n itself. By setting

n = k∗, (16) can be approximated by (15) for k ≈ k∗, and so the approximation (16) would be

close to the exact formula (9) when k ≈ k∗.

An iterative procedure for determining n:
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1. Initialize n = 0.

2. Solve for the optimal k∗(n), and set n = k∗(n).

3. Repeat Step 2 until the values of n and k∗(n) converge.

Note that we allow both n and k∗(n) to be positive numbers rather than positive integers in the

iterative procedure. The next proposition shows that the above iterative procedure will always

converge to a (unique) fixed point, i.e., n∗ = k∗(n∗).

Proposition 1 There exists a unique fixed point n∗ = k∗(n∗), and the iterative procedure always

converges to n∗.

We performed a comprehensive set of numerical experiments to examine the performance of our

approximation scheme using (16) for Wq with n = n∗. For each numerical example, we find the

fixed point n∗ using the iterative procedure. As the decision variable k is required to be a positive

integer under the exact formula (9), we round n∗ down to the integer below and set k∗ = n = bn∗c,

for comparison purposes. (Rounding up n∗ would give an infeasible solution in our approximation

scheme.)

In our numerical experiments, we set α ∈ [0.4, 0.5, ..., 0.9], c ∈ [0.5, 0.75, 1], K ∈ [50, 60, ..., 150],

µ ∈ [1, 3, 5], λ̄ ∈ [10, 20, ..., 100] and d = 1 for a total of 5940 cases. The right panel of Table 1 pro-

vides the corresponding results for the same set of numerical experiments using our approximation

scheme. Note that the optimal solutions given by the approximation scheme exhibit similar pat-

terns as those using the exact formula; e.g., Table 1 shows that both k∗ and π∗ are non-decreasing

in λ̄, whereas p∗ and λ∗ are not necessarily monotone in λ̄.

Table 2 summarizes the performance of our approximation scheme, as compared with the re-

sults using the exact formula (9). The numbers in Table 2 represent the mean absolute percent

difference for the optimal values between using the approximation scheme and the exact formula.

For comparison purposes with the exact formula, n∗ is rounded down to an integer due to the in-

tegral constraint on k. Overall, our numerical experiments suggest that the approximation scheme

provides very good approximation results.

Insert Table 2 about here
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We next derive some analytical results for the base model using the approximation formula

(16) for Wq and allowing the decision variable k to take on positive numbers rather than positive

integers only. We can establish the following analytical results under the formal assumptions as

stated below:

Assumption 1: F (.) ∼ U [0, 1], G(.) ∼ U [0, 1], and Wq is given by (16) where n is a fixed positive

number. Also, the decision variable k is not restricted to positive integers only.

Proposition 2 Suppose that Assumption 1 holds and w
p = α, 0 < α < 1. Then,

(i) p∗ (and the corresponding w∗ = αp∗), k∗, λ∗ and ρ∗ increase in λ̄; and

(ii) p∗ (and the corresponding w∗ = αp∗), k∗ and ρ∗ increase in d, and λ∗ decreases in d.

We note that the monotonicity results given in Proposition 2 are established for any fixed

positive number n. In our approximation scheme, n is chosen such that n = k∗(n) using the

iterative procedure, which changes as the values of the model parameters change. However, the

monotonicity properties stated in Proposition 2 remain valid for all our numerical results using the

approximation scheme. For instance, our numerical results using the approximation scheme (when

k can take on any positive number) have confirmed that both the optimal price p∗ and realized

customer demand rate λ∗ increase in λ̄, as given in Proposition 2(i).

With the integer constraint on k, the results in Table 1 show that p∗ and λ∗ are not necessarily

monotone in λ̄. We can now explain this non-monotonic behavior of p∗ and λ∗ observed in Table

1 as follows. When k is restricted to be (positive) integers, it is not possible to increase k∗ by

any amount less than one. Consequently, with a small increase in λ̄, k∗ might stay the same, and

the optimal p∗ and λ∗ would then need to be reduced. Without the integer constraint on k, this

behavior will no longer occur. Any increase in λ̄ will cause k∗ to increase, and the resulting p∗ and

λ∗ will always increase, as shown in Proposition 2(i).

4.2 Main Insights

We performed an extensive set of numerical experiments using our approximation scheme (with k

being a continuous variable). Based on these numerical results, together with analytical support of

Proposition 2, we summarize below the main insights for the base model.
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First, the optimal price rate p∗ increases when the customer demand rate λ̄ is higher (or when

the average service unit d is higher). Note that the profit of the platform is equal to the product of

the realized customer request rate λ and the profit margin p(1−α). When λ̄ increases, the platform

can increase its price p∗ while sustaining a higher demand request rate λ∗, resulting in a higher

profit. A higher price rate p∗ also corresponds to a higher wage rate (as w∗ = αp∗), which attracts

more participating providers k∗ to handle the higher demand request rate λ∗. Thus, our results

suggest that an on-demand ride-hailing service platform using a fixed payout ratio should charge a

higher price to increase profitability during rush hours when the customer demand is high.

Second, while a higher customer demand rate λ̄ (or a higher d) would increase the optimal price

rate p∗ and wage rate w∗, the optimal price and wage rates are not necessarily monotone as service

capacity increases (with a higher K or µ). We can explain this contrast as follows. When the

number of available providers K (or service rate µ) increases, the platform can decrease its wage

rate w∗ while still attracting more participating providers k∗. Also, the corresponding decrease in

price rate p∗ would increase the realized demand request rate λ∗ as its capacity increases. However,

this does not necessarily increase the profit as the profit margin p∗(1 − α) would reduce. Overall,

the optimal price p∗ is not monotonic in K, but depends on the relative changes in demand request

rate λ∗ and profit margin p∗(1− α).

Similarly, the optimal price and wage rates are not necessarily monotonic in the unit waiting

cost c. As c increases, a direct effect is a decrease in demand request rate, and the platform needs

to adjust its price rate (and the corresponding wage rate) to reduce the adverse effect of a higher

waiting cost. If the platform increases its wage rate w to attract more participating providers to

reduce waiting time, the corresponding price increase p∗ would further reduce demand request rate

λ and possibly lead to a lower profit. On the other hand, if the platform reduces its price rate p to

stimulate demand request rate λ, the corresponding reduction in wage rate w would reduce supply

capacity k and profit margin p∗(1− α). Therefore, the impact of c on the optimal price and wage

rates are not necessarily monotonic, but depends on specific values of the model parameters.

5 The General Model with A Time-based Payout Ratio

Our base model is based on the situation where the platform uses a fixed payout ratio for its service

providers. While a fixed ratio payout scheme is easy to implement and widely adopted in practice,
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it raises an interesting question of whether a time-based payout ratio that depends on specific time-

based market characteristics could significantly improve the profitability of an on-demand service

platform. To answer this question, we now analyze the general situation where the optimal price

and wage rates are determined without imposing the constraint of w = αp in solving the decision

problem of the platform. We refer to this model as the general model with a time-based payout

ratio, or simply the “general model”, in our subsequent discussions.

For the general model, the decision problem is to find the optimal values (k, λ) that maximize

the profit function π(k, λ) given in (12) subject to the utilization constraint ρ = λd
kµ < 1. As for the

base model, the profit function (12) is too complex for conducting tractable analysis, but we can

solve the problem numerically. Specifically, we can perform an exhaustive numerical search for the

optimal λ that maximizes (12) for each fixed value of k, k = 1, 2, ...,K, and we then compare the

optimal profit for each value of k to select the optimal k∗ and the corresponding optimal λ∗.

The left panel of Table 3 provides the results for the same set of numerical experiments as

given in Table 1. Table 3 shows that k∗ and π∗ for the general model are also non-decreasing in

λ̄, i.e., both the optimal number of participating providers and the optimal expected profit of the

platform increase (or remain the same) as the customer demand rate increases. Furthermore, p∗

and w∗ generally (but not always) increase in λ̄, i.e., the platform would most likely increase price

and wage rates when the customer demand rate increases.

Insert Table 3 about here

We next illustrate in Table 4 how the optimal expected profit would be affected if the platform

uses a fixed payout ratio instead of the optimal time-based payout ratio. By using the parameters

associated with the numerical experiments discussed above, we conduct the following analysis. For

a given λ̄, we compute the ratio (in percentage) between the expected profit under a fixed payout

ratio α (value is given in the first row) and the expected profit under the optimal time-based ratio

α∗ (value is given in the second column). The results in Table 4 show that the expected profit can

be greatly reduced if α is substantially different from α∗. For example, when λ̄ = 10, the platform

can only obtain 31% of the expected profit under the optimal time-based payout ratio α∗ = .35 if

a fixed payout ratio α = .8 is used.

Insert Table 4 about here
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Table 5 provides the values of the optimal time-based payout ratio α∗ for the above set of

numerical experiments with λ̄ ranging from 10 to 100 and K ranging from 10 to 100. Observe

that the optimal dynamic payout ratio α∗ can vary widely depending on the specific values of the

model parameters. Thus, the combined results in Tables 4 and 5 suggest that, when the operating

characteristics (such as λ̄ or K) can change significantly at different time periods, it is not possible

to choose one single fixed payout ratio that would be close to the optimal payout ratios across

all time periods. Consequently, the platform using a fixed payout ratio scheme can achieve near-

optimal results for only certain time periods. Instead, the platform needs to adopt a time-based

payout ratio scheme to maximize profitability across different time periods.

Insert Table 5 about here

5.1 An Approximation Scheme

We can use (16) for Wq to develop a similar approximation scheme for finding near-optimal solutions

for the general model in which the price and profit functions are given by (17) and (18), respectively.

In this case, the optimal (k∗, λ∗) can be obtained from the following two first-order conditions:

∂π

∂k
= cµ

ρ
√

2(n+1)

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
− 2k

K
= 0 (20)

∂π

∂λ
= d

{(
1− 2

λ

λ̄

)
− cρ

√
2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)}
= 0. (21)

For each fixed value of n, we can use the two first-order conditions (20) and (21) to find the optimal

values of (k, λ), as denoted by (k∗(n), λ∗(n)). We can also use an iterative procedure to select the

parameter n given in (16) such that the resulting optimal value of k∗(n) is equal to n itself.

We can establish the following result under the approximation scheme for the general model:

Proposition 3 There exists a unique fixed point n∗ = k∗(n∗) for the general model.

We can use a simple bisection search to find the unique fixed point n∗ as follows:

1. Initialize l = 0 and u = K.

2. Set n = l+u
2 and solve for the optimal k∗(n). If k∗(n) > n, set l = n; otherwise set u = n.

3. Repeat Step 2 until the values of n and k∗(n) converge.
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We also performed numerical experiments to evaluate the performance of the approximation

scheme by comparing the optimal solutions with those using the exact formula (9) for Wq. For

consistent comparisons, we also restricted k to positive integers under the approximation scheme

by rounding up the value of n∗ obtained from the iterative procedure, i.e., n = dn∗e. We then set

the optimal k∗ = n and use the first-order condition (21) with k = k∗ to find the corresponding

optimal λ∗.

In our numerical experiments, we set c ∈ [0.5, 0.6, ..., 1], K ∈ [50, 60, ..., 150], µ ∈ [1, 2, ..., 10],

λ̄ ∈ [10, 20, ..., 100] and d = 1 for a total of 6600 cases. The right panel of Table 3 provides the

corresponding results for the same set of numerical experiments discussed earlier for the base model.

Observe that while k∗ under the exact formula (9) and approximation (16) are slightly different in

some cases (e.g., λ̄ = 40), λ∗ is adjusted accordingly to achieve near-optimal profit. Also, p∗ and

w∗ are mostly (though still not always) increasing in λ̄.

Table 6 summarizes the performance of our approximation scheme for the general model, as

compared with the results using the exact formula (9). The numbers in Table 6 represent the

mean absolute percent difference for the optimal values between using the approximation scheme

and the exact formula. Overall, our numerical experiments suggest that the approximation scheme

provides very good approximation results, even when k∗ is relatively small (i.e., k∗ > 10). Thus,

our numerical results show that our approximation scheme could provide near-optimal results for

most service platforms in practice.

Insert Table 6 about here

We can also establish the following monotonicity results for the general model using approxi-

mation (16) for Wq.

Proposition 4 Under Assumption 1, the optimal solution for the general model exhibits the fol-

lowing characteristics:

(i) When K or µ increases, w∗ decreases, π∗ increases, but p∗ is not necessarily monotonic.

(ii) When c increases, w∗ increases, π∗ decreases, but p∗ is not necessarily monotonic.

(iii) When λ̄ or d increases, w∗, p∗ and π∗ increase.

(iv) The optimal payout ratio α∗ = w∗

p∗ decreases in K and µ, and increases in c, λ̄ and d.
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It is important to observe from Proposition 4 that, even though the optimal price rate is not

necessarily monotonic in K, µ and c, the optimal time-based payout ratio α∗ is monotone in all

model parameters. In particular, the optimal time-based payout ratio α∗ decreases when the service

capacity increases (with a higher K or µ), but increases when the waiting cost c is higher or when

customer demand increases (with a higher λ̄ or d).

As shown in the proof of Proposition 4, we also obtain monotonicity properties for other system

performance measures as summarized in Table 7. The monotonicity properties given in Proposition

4 and Table 7 are established for a fixed value of n, whereas the value of n used in (16) in our

approximation scheme changes as the values of the model parameters change. We also performed

numerical experiments to validate these properties for the optimal solutions using our approxima-

tion scheme. Results from all our numerical experiments are consistent with the analytical results

given in Proposition 4. For example, Table 8 provides the optimal values of α∗ for the numerical

experiments discussed earlier, which is consistent with Proposition 4(iv) that α∗ generally decreases

in K and increases in λ̄. Consequently, Proposition 4(iv) provides analytical support that the op-

timal time-based payout ratio α∗ generally decreases in K and increases in λ̄, as observed in Table

5 using the exact formula (9) and in Table 8 using the approximation scheme.

Insert Tables 7 and 8 about here

Proposition 4 shows the impact on the optimal wage, time-based payout ratio and the profit of

the platform when either the number of providers K or the customer demand rate λ̄ increases. As

a platform grows, it is common that both K and λ̄ would increase at the same time. Therefore, it

would be useful to understand how these optimal results would change as both K and λ̄ increase.

It is clear from Proposition 4 that the optimal profit of the platform would increase when both K

and λ̄ increase. However, it is unclear as how the platform would adjust its wage and price rates as

well as its payout ratio as the platform grows, as both the optimal wage rate w∗ and the optimal

payout ratio α∗ would change in opposite directions with respect to the changes in K and λ̄.

It is intuitive that the changes in the optimal wage rate, price rate and payout ratio would

generally depend on the relative growth rates of the number of providers K and customer demand

rate λ̄. However, we can derive the following results for the special case when K and λ̄ increase

at the same rate. Specifically, suppose that the initial number of providers and customer demand
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rate are given by K̂ and λ̂, respectively. Let ε > 1 represent the (same) growth rate of number of

providers and customer demand rate, i.e., K = εK̂ and λ̄ = ελ̂. The following proposition shows

the effect of ε on the optimal wage and price rates, and the optimal payout ratio.

Proposition 5 Under Assumption 1, both w∗ and α∗ = w∗

p∗ decrease as ε increases. However, p∗

is not necessarily monotonic in ε.

Proposition 5 shows that, under Assumption 1, a platform should lower its wage rate and

payout ratio as both the number of providers and customer demand rate grow at the same rate.

We further performed some numerical experiments to confirm these monotonicity results using

our approximation scheme n = k∗(n). Table 9 provides some sample results of our numerical

experiments that also illustrate the monotonicity results. For this set of numerical examples, we

set K̂ = λ̂ = 10, c = 1, µ = 1 and d = 1, with ε increasing from 1 to 5. Observe that both w∗ and

α∗ decreases as ε increases, as supported by the analytical results of Proposition 5.

Insert Table 9 about here

5.2 Main Insights

Based on our numerical experiments, together with analytical support from Propositions 4 and 5

and Table 7, we summarize the main insights for the general model below.

First, the platform should reduce the wage rate w∗ as the number of available providers K (or

average service speed µ) increases. In addition, the optimal profit π∗ increases as K or µ increases,

which implies that it is beneficial for the platform to recruit more providers to join the platform

and to help providers increase their average service speed. However, the optimal price p∗ is not

necessarily monotonic in K.8 Our numerical results suggest that the optimal price could first

increase and then decrease in K, and we can explain this behavior using the well-known “queueing

effect” that the expected waiting time increases convexly in the system utilization as follows.

When K is small (relative to the customer demand rate λ̄), the constraint is on the supply side,

and the platform needs to operate in high utilization. In this case, an increase in supply capacity

from a higher K can significantly reduce the waiting time Wq (due to the non-linear queueing

8For a numerical example using the exact formula (9), set c = 5, µ = 1, λ̄ = 500 and d = 1. The optimal price p∗

increases as K increases from 50 to 70, but then decreases as K increases further from 70 to 150.
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effect), so the platform can afford to increase the optimal price p∗ to maintain a higher realized

customer request rate λ∗ and achieve a higher profit π∗. This explains why the optimal price p∗

could initially increase in K when K is small. On the other hand, when K is large, the constraint is

now on the demand side, and the system can operate in lower utilization. In this case, an increase in

K would only reduce the waiting time Wq slightly (due to the non-linear queueing effect), and the

platform now chooses to reduce the optimal price p∗ in order to stimulate a higher customer request

rate λ∗ and achieve a higher profit π∗. This explains why the optimal price p∗ would decrease in

K when K is large. Overall, we show that the queueing effect has caused the optimal price p∗ to

be non-monotonic in K.

Our results show that the optimal price and the optimal wage may move in the same direction or

opposite direction when the maximum number of service providers increases. This non-monotonic

property of the optimal price in our model is apparently due to the fact that our model captures

the nonlinear effect of utilization on waiting time. When the queueing effect on customer demand

is not captured in our model (i.e., c = 0), it is straightforward to show that both p∗ and w∗ decrease

in K, which provides a further justification that the non-monotonic property in the optimal price

rate is due to the queueing effect captured in the customer utility function (1) of our model.9

Second, we find that the platform should offer a higher wage rate w∗ as the waiting cost c

increases. This helps to attract more providers k∗ to participate, but will reduce the optimal

profit of the platform π∗. However, the optimal price p∗ is not necessarily monotonic in c.10 Our

numerical results suggest that the optimal price p∗ could first increase in c when c is small, but

then decrease in c as c increases. This non-monotonic behavior can be again explained by how the

queueing effect captured in our model.

When c is small (relative to the price p), the platform can operate in high utilization (with few

providers) since customers are less sensitive to waiting time than price. In this case, an increase in

c would reduce demand and decrease waiting time significantly at high utilization (due to the non-

linear queueing effect). Consequently, the platform can take advantage of the significant waiting

time reduction by increasing the optimal price p∗ to maximize its profit. On the other hand, when

9When the profit function is not a multiplicative form of demand and supply, Hu and Zhou (2017) show that the
optimal price has a U-shape relationship with the exogenous wage when the profit function of the platform is the
minimum of demand and supply.

10For a numerical example using the exact formula (9), set K = 50, µ = 1, λ̄ = 50, d = 1. The optimal price p∗

first increases as c increases from 10 to 80, but then decreases as c increases further from 80 to 100.
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c is large, customers are now more sensitive to waiting time than price, and the platform now needs

to operate at lower utilization. In this case, an increase in c would reduce demand, but would

provide only marginal waiting time reduction (due to the non-linear queueing effect). As a result,

the platform would now choose to reduce the optimal price p∗ in order to stimulate the customer

request rate λ∗ to maximize its profit. This explains why the optimal price p∗ would decrease in

c when c is large. Overall, we explain that the non-linear queueing effect has caused the optimal

price p∗ to be non-monotonic in c

Third, the platform should increase its price rate p∗ as customer demand rate λ̄ (or average

service units d) increases. At the same time, the platform should also increase its wage rate w∗in

order to attract more participating providers k∗ to handle the higher customer request rate λ∗.

Overall, the profit of the platform π∗ increases as λ̄ (or d) increases.

Finally, the platform should reduce its payout ratio α∗ when the service capacity (i.e., a higher

K or µ) increases. This implies that the platform can lower its payout ratio as it attracts more

providers to the platform. Also, the platform should increase the payout ratio when the customer

waiting cost c is higher or when customer demand increases (i.e., a higher λ̄ or d). One interesting

implication of this result is that an on-demand ride-hailing service platform should increase the

payout ratio to its participating drivers during rush hours when the customer demand rate λ̄ is

higher and/or the travel speed µ is lower. More interestingly, the platform should also reduce its

payout ratio as it expands with the number of providers and customer demand growing at about

the same rate. This result could provide an economic justification for Uber’s strategy as reported

by Huet (2014) of offering a payout ratio of 0.8 for its first cohorts of drivers in San Francisco

initially, but lowering its payout ratio to 0.75 for its second cohorts of drivers in 2014, as both the

number of registered drivers and customer demand rate had increased.

5.3 Extension to include consumer and provider surplus

Besides profit, the platform may have an interest in managing the welfare of its customers and

providers carefully, especially when the practices of some on-demand service platforms could be

potentially controversial. For example, Uber has been challenged by consumer rights group due to

concerns about public safety including sexual assaults, physical attacks, by independent drivers due

to their concerns about being treated as regular employees without benefits, by the government due
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to concerns over regulations, and by other taxi drivers due to their concerns over unfair competition;

see Rogers (2015) for a comprehensive list of social costs of Uber including public safety, privacy,

discrimination, and labor law violations. Our general model can be extended to incorporate the

welfare of the consumers and providers to help address these concerns.

In the same spirit as Cachon et al. (2015), we can extend the objective of our general model

to maximize the firm’s profit plus the total consumer and provider surplus. For a customer who

requests for service with a value rate of v ≥ F−1(1− λ
λ̄

), her surplus is given by {(v − p)d− cWq}.

Therefore, the total customer surplus is equal to

Cs = λ̄

∫ 1

F−1(1−λ
λ̄

)
[(v − p)d− cWq] dF (v) = λ̄

[(∫ 1

F−1(1−λ
λ̄

)
v dF (v)− λ

λ̄
p

)
d− λ

λ̄
cWq

]
. (22)

For a participating provider with a wage reservation rate of r ≤ w λd
k , his surplus is given by w λd

k −r.

Therefore, the total provider surplus is equal to

Ps = K

∫ G−1( k
K

)

0

(
w
λd

k
− r
)
dG(r) = wλd−G−1(

k

K
)k +K

∫ G−1( k
K

)

0
G(r)dr. (23)

Thus, the objective function of the platform for the general model can be expressed as

Π(k, λ) =(1− γ)π(k, λ) + γ(Cs + Ps)

=(1− γ)π(k, λ) + γ

{
λ̄

[(∫ 1

F−1(1−λ
λ̄

)
v dF (v)− λ

λ̄
p

)
d− λ

λ̄
cWq

]
+ wλd−G−1(

k

K
)k

+K

∫ G−1( k
K

)

0
G(r)dr

}

=(1− γ)π(k, λ) + γ

{
λ̄d

[∫ 1

F−1(1−λ
λ̄

)
v dF (v)− λ

λ̄
F−1(1− λ

λ̄
)

]
+K

∫ G−1( k
K

)

0
G(r)dr

}
,

(24)

where γ ∈ [0, 1] is the “equitable payoff” parameter which represents the willingness of the platform

to give up some of its profit for a more equitable (or fairer) outcome for its customers and providers

in setting price and wage rates; see Cui et al. (2007). For example, when γ = 1
2 , the platform

assigns equal weights on its profit and the total consumer and provider surplus. When γ = 0, the

platform completely ignores the consumer and provider surplus, and Π(k, λ) simply reduces to the

profit function π(k, λ) as given in (7).

For this extension, the decision problem is to determine the optimal values of (k, λ) that max-

imize the total welfare function Π(k, λ) subject to the system stability constraint of ρ = λd
kµ < 1.
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We can follow the same approach to analyze the general model for this extension. In particular,

we can establish the following results:

Proposition 6 Suppose that Assumption 1 holds and γ ≤ 2
3 . When the platform maximizes the

total welfare function (24), the optimal solution exhibits the following characteristics:

(i) All results as stated in Propositions 4 and 5 continue to hold.

(ii) When γ increases, the optimal wage rate w∗ increases (and both k∗ and λ∗ increase), but the

optimal price rate p∗ is not necessarily monotonic.

Proposition 6(i) shows that our results for the general model are robust even when we include

the total customer and provider surplus in the objective function as long as γ ≤ 2
3 . Proposition 6(ii)

further shows that when a higher weight γ is placed on the total consumer and provider surplus,

the platform would increase the wage rate w∗ to attract more participating providers k∗ and serve

more customers λ∗. However, the optimal price p∗ is not necessarily monotonic as γ increases.

We also conducted numerical experiments to illustrate the results for the extension of the general

model using the exact formula (9) for Wq. Table 10 shows the results for the case with the same set

of experiments given in Table 3 (with λ̄ = 100) for different values of γ. Observe that as γ increases,

the optimal wage rate w∗ increases (as supported by Proposition 6), and the optimal wage rate p∗

decreases (although Proposition 6 suggests that it is not necessarily monotonic in general). Also,

as γ increases, the optimal payout ratio α∗ increases, the platform’s profit decreases and the total

consumer and provider surplus increases. When the platform puts a larger weight on the total

consumer and provider surplus than its profit (i.e., γ ≥ 0.5), the optimal payout ratio α∗ exceeds

one, which implies that the platform is willing to increase the total consumer and provider surplus

at the expense of a profit loss. This observation suggests that the platform needs to select a low

“equitable payoff” γ to be financially viable in the long run, while an emerging service platform

might adopt the strategy of placing a higher weight on the welfare of the consumers and providers

initially in order to increase market share; e.g., this strategy was used by Didi during its early stage

of competition with taxis and other ride-hailing firms.

Insert Table 10 about here
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6 Numerical Illustrations Based on Didi Data

6.1 Background information

To calibrate our model parameters, we collected real data from Didi, the largest on-demand ride-

hailing service platform in China that was founded in June 2012.11 Our data was based on rides

that took place in Hangzhou, the capital city of Zhejiang province with an urban population of

over 7 millions, during the time periods between September 7-13 and November 1-30 in 2015.

In Hangzhou city, Didi offers different types of services including Taxi (traditional taxi service),

Express/Private (equivalent to UBER X/Black with on-demand drivers), and Hitch (equivalent

to UBER Pool)12. For our numerical illustrations here, we focus on the data associated with the

Express/Private service, which accounts for 60% of all rides provided by Didi in Hangzhou. Didi

had approximately 13,000 registered drivers for all services in Hangzhou, but the exact number of

Express/Private drivers was not known to us. So, we simply assume that 60% of Didi drivers were

Express/Private drivers so that the number of registered Express/Private drivers in Hangzhou was

assumed to be around 7, 800.

6.2 Number of rides and drivers across different hours

Figure 1 depicts the average number of Express/Private rides and drivers across different hours on

any given day. (Here, Hour 8 represents one-hour interval 8am-9am, Hour 19 for 7pm- 8pm, and

so on. Data for Hours 1-7 were omitted due to incomplete data in the database.) We observe from

the Didi data that the pattern depicted in Figure 1 is consistent throughout the weekdays (even

though the average number of rides and drivers were slightly lower on Saturdays and Sunday) and

that the peak hours are being Hours 9 and 19, and the slowest hours are being Hours 23 and 24.

For instance, during the peak Hour 19, there were an average of 1,211 drivers and an average of

2,006 Express/Private rides in a weekday. However, there were only an average of 597 drivers and

an average of 1,029 rides during the late night Hour 23. (The mean and standard deviation of the

number of drivers and number of rides over the weekdays are provided in the Appendix B.)

11http://www.xiaojukeji.com/en/company.html. Didi merged with Kuaidi (a major competitor) in February 2015
as a way to defend its market share when Uber officially launched its service in China in July 2014. In August 2016,
Uber decided to retreat from China and its China operations merged with Didi.

12Unlike Uber’s business model that aims to displace the traditional taxi services, Didi integrates taxi services into
its business model by providing its mobile hailing service to taxi drivers free of charge. Chen et al. (2017) have
recently used the data provided by Didi to analyze ridesplitting behavior of passengers using on-demand ride-hailing
services.
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6.3 Travel distance and travel speed

While the average number of rides and drivers vary substantially across different hours of the day,

Figure 2 shows that the average travel distance for each Express/Private ride was rather stable

across different hours. For example, the average travel distance d during the peak Hour 19 and

during the late night Hour 23 were 6.3 km and 6.6 km, respectively. The Didi database also provided

the average travel times µ across different hours from which we can estimate the average travel

speed across different hours. For example, we estimated that the average travel speeds were about

19 km/hour for Hour 19 and 26 km/hour for Hour 23. These numbers are consistent with the actual

expected traffic conditions, where traffic is much less congested during late night hours. (The travel

distance and travel time distributions across different hours are provided in the Appendix B.)

6.4 Price and wage rates

Didi’s price p for its service consists of two components so that p = p1 + p2, where p1 represents

the fare that is primarily based on the travel distance, and p2 represents surcharges (e.g., tolls).

Accordingly, Didi paid its drivers based on the following scheme. When a passenger pays a total fee

of p, the driver receives (p1 ∗80%−0.5)∗(100%−1.77%)+p2 ∗(100%−1.77%), but the driver needs

to cover the surcharges p2. Thus, the actual wage that Didi paid its drivers was approximately 80%

of the total price; i.e., w ≈ 0.8p.

Figure 2 also shows that the average price per km charged by Didi (excluding the surcharges)

was relatively stable across different hours of the day. Overall, the price per km had a mean of

3.07 RMB and a standard deviation of 1.45 RMB. In particular, the average prices per km charged

were RMB 3.13 for Hour 19 (peak hour) and RMB 2.76 for Hour 23 (non-peak hour). We also

observe from the Didi data that the average price per km p was highly correlated with the number

of rides λ over the peak (non-peak) hours, with a correlation coefficient of 0.81. In other words,

the price per km was usually higher during peak hours when the customer request rate is high, and

was lower during non-peak hours when the customer request rate is low. This pricing pattern is

consistent with the results obtained from our base model (see Proposition 2) that p∗ increases as

λ̄ increases. (The mean and standard deviation of the average price per km across different hours

are provided in the Appendix B.)
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6.5 Strategic factors and their implications

It is important to note that the observed price that Didi charged its passengers was heavily dis-

counted during the data collection periods for two strategic reasons: (a) Didi wanted to attract more

passengers by pricing its service below the traditional taxi services;13 and (b) Didi was engaged in

a price war with Uber by offering discount coupons to compete for market share. In addition to

offering heavily discounted price to attract passengers, Didi also provided extra “side payments” to

its drivers to entice drivers to join its platform due to the intense market competition. For instance,

Didi had offered an extra bonus if the number of rides provided by a driver exceeds a certain quota

within a 7-day period. BBC (2016) had reported that the extra payment can be as high as 110%

of the fare paid by the passengers. With such generous payments, more drivers reported to work

and Didi did not need to use surge pricing during peak hours, which explains why Didi was able

to offer relatively stable pricing in Hangzhou as depicted in Figure 2. Furthermore, the waiting

time for Didi’s service was reasonably short with an adequate supply of drivers. Specifically, the

average waiting time of all Express/Private rides over the aforementioned time periods was about

6 minutes, of which the waiting time for accepting a ride request was approximately 1 minute and

the waiting time for picking up a passenger was approximately 5 minutes.

In view of the heavily discounted price due to the above strategic reasons, the average price

per km p as reported in Figure 2 was biased and did not accurately represent the regular prices p

that the firm should quote and the actual wages w should offer in equilibrium. Nevertheless, we

use the data given in the Didi database to calibrate our model parameters for constructing realistic

numerical examples to illustrate some of our model results.

6.6 Numerical examples for illustrative purposes

We next provide some numerical results using parameter values calibrated from the Didi data. As

Hangzhou is a large urban area of over 5, 000 km2, it is not possible to assign any available driver to

serve a call request due to a long pickup time. Instead, only nearby drivers can be used to serve a

local request. For simplicity, we assume that the city is divided into 20 zones with equal passenger

and driver distributions such that only drivers and riders within the same zone would be matched.

13In Hangzhou, taxi charges RMB 11 initially and then RMB 2.6 per km. As a way to entice passengers to choose
Didi over taxi service, Didi had priced its service below taxi rates to increase market share. Based on our discussions
with passengers in China, there was an expectation that Didi’s price rate was lower than the taxi rate.
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As such, we simply re-scale the demand and number of available drivers by a factor of 20 and set

the maximum number of drivers K = 7, 800/20 = 390.

We examine the average income for taxi drivers in Hangzhou and the average major out-of-

pocket expenses borne by the Didi drivers (including car insurance, license, fuel cost, etc.). We

estimate that a minimum hourly wage of RMB 30 is required for a Didi driver to offer service.

Thus, the hourly wage reservation r is assumed to be distributed uniformly between RMB 30 to

RMB 40.

As discussed earlier, the data were collected during the time when Didi was offering large fare

discounts to attract riders such that riders expected that Didi price wound be around or even less

than the taxi rate of RMB 2.6 per km in Hangzhou. Thus, we use the taxi rate as a benchmark

and assume that the customer value per km v is distributed uniformly between RMB 2 to RMB 4.

As shown in Figure 2, the average travel distances did not vary significantly across hours, so we

simply set the average travel distance d = 6 km across all hours. It is difficult to provide an accurate

estimate of the waiting cost per hour c. Gomez-Ibanez et al. (1999) reported that the waiting cost

for a working class passenger in San Francisco is approximately 195% of the passenger’s after-tax

wages. Using this estimate and the fact that the average hourly wage of workers in Hangzhou is

approximately RMB 40 per hour (China Daily, 2016), one can argue that the waiting cost for an

average passenger in Hangzhou is approximately RMB 80 per hour. Accounting for the income

inequality and the impatient characteristics of most city dwellers in China (Li (2016)), we simply

choose the range of c from RMB 0 to RMB 1,000.

We use data from two specific time periods to illustrate our model results. In particular, we

use Hour 19 to represent peak-hour characteristics with high demand and travel congestion levels,

and Hour 23 to represent non-peak hour characteristics with lower demand and congestion levels.

For Hour 19, we set the average customer demand rate λ̄ = 200 with an average service speed µ =

19 km/hour so that the average demand request rate is equal to 100 (≈ 1969/20) when the price

rate is equal to RMB 3 to match the Didi data. For Hour 23, we set λ̄ = 100 and µ = 26 km/hour

such that the average request rate is equal to 50 (≈ 1033/20) when the price rate is equal to RMB

3. We summarize the parameter values used in our illustrative examples in Table 11.

Insert Table 11 about here
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In each numerical experiment, we solve for the optimal price and wage rates numerically for

the general model using the exact formula (9) for Wq. Figures 3 and 4 show the optimal number

of participating drivers k∗ (in each zone), price rate p∗ and wage rate w∗ for the peak hour and

non-peak hour scenarios, respectively, as the waiting cost c increases from 0 to 1, 000. Observe that

w∗ increase as c increases in both Figures 3 and 4, and that k∗ (scale on the left), p∗ and w∗ (scale

on the right) are all higher during the peak hour (Figure 3) than those during the non-peak hour

(Figure 4), which are intuitive as the peak hour period has a higher customer demand rate λ̄ and

a slower service speed µ than that during non-peak hour period. Also, k∗ increases and p∗ slightly

increases as c increases.

Figure 5 shows that the optimal payout ratio α∗ increases from 0.57 to 0.78 for the peak hour

scenario and increases from 0.45 to 0.70 for the non-peak hour scenario, respectively, as c increases

from 0 to 1, 000. Observe that the optimal payout ratio is always higher during the peak hour

than that during the non-peak hour. As the optimal payout ratio α∗ increases significantly when

c increases, this suggests that a fixed payout ratio would not perform well across different time

periods. To illustrate, Figure 6 shows the result for the peak hour scenario (Hour 19) that using

the optimal time-based payout ratio α∗ can substantially increase the profit of from using a fixed

payout ratio of 0.8, especially when c is small in which α∗ is much lower than 0.8. In particular,

when c = 0 (i.e., ignoring waiting cost), the optimal profit is equal to 843 with optimal payout

ratio α∗ = 0.57, as compared with an optimal profit of 479 with a fixed payout ratio of 0.8. Thus,

our numerical results suggest that the platform should deploy a time-based payout ratio scheme to

achieve a much higher profit across all time periods, especially when the waiting cost c is small.

7 Conclusion

Motivated by the increasing popularity of on-demand service platforms with independent service

providers and time sensitive customers, we develop an analytical framework to understand how such

platforms should set their optimal price and wage to match the needs of providers and customers

taking into account the underlying supply and demand characteristics. Our framework incorpo-

rates waiting time performance based on a queueing model in customer utility and captures some

important market characteristics including time sensitive customers and earning sensitive service

providers. We conduct extensive numerical experiments to illustrate the behavior of the optimal
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price and wage rates as predicted by our modeling framework. We further derive analytical results

to support the main insights observed in our numerical experiments. Our findings provide some

interesting implications in managing prices and wages for on-demand service platforms.

Using some actual data collected from a major on-demand ride-hailing company in China, we

calibrate our model parameters to construct realistic numerical examples to illustrate some impli-

cations on the optimal price and wage with respect to the underlying operating characteristics.

Although our framework does not capture certain important practical issues due to intense compe-

tition existed in China when the data were collected (and thus cannot be used to accurately predict

the actual behavior of the players in the market), our model results can help to illustrate and

explain some observations that are consistent with the actual data provided by the company. More

importantly, our model results can serve as a guideline for potentially increasing profitability when

the underlying market conditions were to evolve to be consistent with the operating environment

captured in our modeling framework. We also illustrate the potential benefits if the company were

to adopt a time-based payout ratio versus their current practice of using a fixed payout ratio.

Our results are obtained under the assumption that the customer’s valuation of the service and

the provider’s earning reservation are uniformly distributed. We also conducted some numerical

experiments using exponential distributions for both the customer’s valuation of the service and the

provider’s earning reservation, and the results are consistent with those under uniform distributions.

However, a comprehensive numerical study is needed to confirm the robustness of our results under

more general distributions.

Our model considers price and wage rates that are pre-committed, and we analyze the equilib-

rium behavior of the system. One future research direction is to study dynamic pricing strategies

in which the platform can offer dynamic prices and wages to customers and providers based on the

real-time status of the system. Specifically, one can develop a modeling framework that considers

the real-time interactions among the customers, providers and the platform where the customers

and providers need to make real-time decisions on whether to accept the dynamic prices and wages

offered by the service platform. Another possible future research direction is to study platform

competition so as to characterize the optimal demand-contingent price and wage strategies in a

competitive setting.
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Appendix

A Mathematical Proofs:

A.1 Proof of Proposition 1

When k∗ < K, it is clear that the right hand of (19) is increasing in n for any given fixed parameter

values. Since the optimal k is obtained by maximizing k subject to (19), we can conclude that k∗

increases in n, i.e., ∂k∗

∂n > 0. We next show that k∗ is concave in n, i.e., ∂2k∗

∂n2 < 0.

Let y = cρ
√

2(n+1)

1−ρ . Since s = λ
λ̄

, we can rewrite (19) as

k2 = Kα{sλ̄d(1− s)− y}.

Taking the derivative with respect to n on both sides, we obtain

2k
∂k

∂n
= Kα

[
λ̄d(1− 2s)

∂s

∂n
− ∂y

∂s

∂s

∂n
− ∂y

∂k

∂k

∂n
− ∂y

∂n

]
(25)

Also,

∂y

∂s
= λ̄dc

ρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
,

from which we can use (30) to deduce that

∂y

∂s
= λ̄d(1− 2s). (26)

We substitute (26) into (25) to obtain

(2k +Kα
∂y

∂k
)
∂k

∂n
= −Kα∂y

∂n
.

It is straightforward to show that ∂y
∂n < 0. Since ∂k

∂n > 0, we have

2k +Kα
∂y

∂k
> 0. (27)

We next take the derivative of (25) with respect to n and obtain

2(
∂k

∂n
)2+2k

∂2k

∂n2
= Kα

[
−2λ̄d(

∂s

∂n
)2 + λ̄d(1− 2s)

∂2s

∂n2
− ∂y

∂s

∂2s

∂n2
− ∂2y

∂s2
(
∂s

∂n
)2 − ∂2y

∂k2
(
∂k

∂n
)2 − ∂y

∂k

∂2k

∂n2
− ∂2y

∂n2

]
.

We substitute (26) into the above equation to obtain

(2k +Kα
∂y

∂k
)
∂2k

∂n2
= Kα

[
−2λ̄d(

∂s

∂n
)2 − ∂2y

∂s2
(
∂s

∂n
)2 − ∂2y

∂k2
(
∂k

∂n
)2 − ∂2y

∂n2

]
− 2(

∂k

∂n
)2. (28)
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It is straighforward to verify that ∂2y
∂s2

> 0, ∂2y
∂k2 > 0 and ∂2y

∂n2 > 0, which implies that the right side

of (28) is less than zero. Using (27), we can conclude that ∂2k
∂n2 < 0.

Clearly, we have k∗(0) > 0 when n = 0. Also, k∗(n) ≤ K for all n, as k∗(n) is given by the

largest value of k, with k ≤ K, that possesses a feasible λ to (19). Thus, k∗(K) ≤ K. Since we

have shown that k∗ is concave and increasing in n, we can conclude that there exists one unique

fixed point such that k∗(n∗) = n∗, and the iterative procedure will always converge to n∗.

A.2 Proof of Proposition 2

With the constraint that w
p = α, the objective function can be expressed as π = λd(p − w) =

λd( 1
α − 1)w. We can solve the constrained problem as an unconstrained Lagrange optimization

problem with the Lagrange function of L(p, w, z) = λd( 1
α − 1)w + zλd(αp − w), where z is the

nonzero Lagrange multiplier.14 We substitute the values of p and w given by (17) and (11) and

the fact that λ = λ̄s into the Lagrange function L(p, w, z), and can obtain the following optimality

conditions from the three first-order conditions, δL
δk = 0, δL

δs = 0, and δL
δz = 0, respectively:

(
1

α
− 1)

2k

K
+ z

[
cµα

ρ
√

2(n+1)

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
− 2k

K

]
= 0, (29)

(1− 2s)− cρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
= 0, (30)

α

[
1− s− c

kµ

(
ρ
√

2(n+1)−1

1− ρ

)]
− k2

Kλd
= 0. (31)

We next use the optimality conditions (30) and (31) to establish the following properties:

(i) ρ∗ and k∗ change in the same direction for any fixed n, α, K, c and µ;

(ii) λ∗ and k∗ change in the same direction for any fixed n, α, K, c, d and µ;

(iii) ρ∗ and w∗ change in the same direction for any fixed n, α, K, c and µ;

(iv) ρ∗ and
W ∗q
d change in the same direction for any fixed n, α, K, c and µ;

(v) ρ∗ and s∗ change in the opposite direction for any fixed n, α, K and c.

First, we can substitute (30) into (31) and use ρ = λd
kµ < 1 to obtain

α

2

[
1 + c

ρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ
− 2

)]
− k

ρKµ
= 0. (32)

14We ignore the constraints that 0 ≤ s ≤ 1 and 0 ≤ k ≤ K to simplify our exposition in the proof, but the analysis
can be easily adapted to include these constraints as well.
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We can show that the left side of (32) increases in ρ but decreases in k for any fixed n, α, K, c and

µ. Thus, ρ∗ and k∗ must change in the same direction, which prove (i).

Since λ = ρkµ
d , and ρ∗ and k∗ must change in the same direction as proved in (i), ρ∗, k∗ and λ∗

must all change in the same direction for any fixed n, α, K, c, d and µ. This prove (ii).

We can use (11) to rewrite (32) as

α

2

{
1 +

c

wKµ2(1− ρ)

[
ρ
√

2(n+1)−2
(√

2(n+ 1)− 2
)

+
ρ
√

2(n+1)−1

1− ρ

]}
− w = 0. (33)

The left side of (33) increases in ρ but decreases in w for any fixed n, α, K, c and µ. Thus, the

values of ρ and w at optimality must change in the same direction, which proves (iii).

We can use (16) to rewrite (32) as

ρ
(

1− c

d
Wq

)
− c

d
Wq(1− ρ)

[
(
√

2(n+ 1)− 2)
]

+
2dρ
√

2(n+1)−2

Kαµ2Wq
− 1 = 0. (34)

The left side of (34) decreases in
Wq

d but increases in ρ for any fixed n, α, K, c and µ. This shows

that the values of
Wq

d and ρ at optimality must change in the same direction for any fixed n, α, K,

c and µ, which proves (iv).

Finally, we can again use (16) to rewrite (30) as

(1− 2s)− c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ

)
= 0,

or equivalently,

s =
1

2

[
1− c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ

)]
.

We show in (iv) that the values of ρ and
Wq

d at optimality change in the same direction for any

fixed n, α, µ, K and c. It then follows that the value of ρ and s at optimality must change in the

opposite direction, which proves (v).

We can now rewrite (30) as

(1− 2
λ

λ̄
)− c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ

)
= 0. (35)

We have shown in (i), (ii) and (iv) that the values of λ,
Wq

d and ρ at optimality change in the same

direction for any fixed n, α, K, c, d and µ. We can deduce from (35) that the values of λ,
Wq

d

and ρ at optimality must all increase when λ̄ increases. It then follow from (iii) that w∗ (and thus

p∗ = w∗

α ) increases when λ̄ increases.
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We can also use ρ = λ̄s∗d
kµ to express d as d = ρkµ

λ̄s
. It follows from (i) and (v) that the value of

ρ at optimality must change in the same direction as k, but in opposite direction of s for any fixed

n, α, K, c and µ. Therefore, we can deduce that, at optimality, the values of ρ and k must increase

while the value of s must decrease when d increases. From (iii), we can also conclude that w∗ (and

thus p∗ = w∗

α ) increases when d increases.

A.3 Proof of Proposition 3

To prove that there is a unique fixed point, n∗ = k∗(n∗), we shall show that there exists only one

solution (λ∗, k∗) that can satisfy the two first-order conditions, (20) and (21), at the same time if

we set n = k in (20) and (21). As s = λ
λ̄

, we use s instead of λ in our analysis here.

First, observe that the left side of (20) decreases in k but increases in s (or λ). Therefore, for

any fixed s, there exists only one k, denoted by k(s), such that (s, k(s)) satisfies (20), and that k(s)

increases in s. Next, let

h(ρ, k) = c
ρ
√

2(k+1)−1

kµ(1− ρ)

(√
2(k + 1) +

ρ

1− ρ

)
,

so that we can espress the first-order condition (21) as

1− 2s− h(ρ, k) = 0 (36)

Taking the second derivative of (36) with respect to s, we obtain

−∂h
2(ρ, k)

∂ρ2

(
∂ρ

∂s

)2

− ∂h(ρ, k)

∂ρ

∂2ρ

∂s2
− ∂h2(ρ, k)

∂k2

(
∂k

∂s

)2

− ∂h(ρ, k)

∂k

∂2k

∂s2
= 0. (37)

We can further expand ∂2ρ
∂s2

= ∂2ρ
∂k2

(
∂k
∂s

)2
+ ∂ρ

∂k

(
∂2k
∂s2

)
and rewrite (37) as

−∂h
2(ρ, k)

∂ρ2

(
∂ρ

∂s

)2

− ∂h(ρ, k)

∂ρ

∂2ρ

∂k2

(
∂k

∂s

)2

− ∂h2(ρ, k)

∂k2

(
∂k

∂s

)2

−
[
∂h(ρ, k)

∂k
+
∂ρ

∂k

]
∂2k

∂s2
= 0. (38)

Since both ρ
√

2(k+1)−1

1−ρ and ρ
1−ρ are convexly increasing in ρ, we have ∂h2(ρ,k)

∂ρ2 > 0. Also, it is

straightforward to show that ∂h(ρ,k)
∂ρ > 0 and ∂2ρ

∂k2 = 2λd
k3µ

> 0. Furthermore, we can prove that both

ρ
√

2(k+1)−1

1−ρ and

√
2(k+1)+ ρ

1−ρ
k are convexly decreasing k, so that h(ρ, k) is also convexly decreasing

in k. Therefore, ∂h2(ρ,k)
∂k2 > 0 and ∂h(ρ,k)

∂k < 0. Finally, ∂ρ
∂k = − λd

k2µ
< 0. We can then infer from (38)

that ∂2k
∂s2

> 0. Thus, we have established that k(s) is convexly increasing in s, with k(0) = 0.
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For any (s∗, k∗) that satisfies both (20) and (21), we have

2k2

K
= λ̄d(1− 2s)s. (39)

Thus, for any fixed s, there exists only one k(s) satisfying (39). Furthermore, k(s) first increases

in s, and then decreases in s with k(0) = k(1
2) = 0 and ∂k

∂s |s=0 →∞.

Overall, we use (36) to show that k(s) is convexly increasing in s with k(0) = 0, and use (39) to

show that k(s) first increases in s, and then decreases in s with k(0) = k(1
2) = 0. Therefore, there

exists only one solution (s∗, k∗) that can satisfy both (36) and (39) when n = k. In other words,

there exists a unique fixed point, k∗(n∗) = n∗.

A.4 Proof of Proposition 4

To establish the analytical results for the general model with a dynamic payout ratio, we first

provide some preliminary result for a special case for the general model by imposing a fixed target

service level s. In particular, assume that the model parameter s (or equivalently, the customer

request rate λ because λ = sλ̄) is exogenously given and the optimization problem (8) is reduced

to:

max
k

π(k) ≡ λd

[
(1− s)− cρ

√
2(n+1)−1

kµ(1− ρ)
− k2

Kλd

]
, subject to

λd

kµ
< 1.

The results for this special case are based on the following more general settings than the

simplifying assumptions as stated in Assumption 1. Specifically, we assume that Wq, F (.) and G(.)

satisfy the following assumptions:

Assumption 2: The expected waiting time function Wq is convex and increasing in λ, and is

convex and decreasing in both k and µ. Furthermore, ∂
∂λ(

∂Wq

∂k ) < 0, ∂
∂d(

∂Wq

∂k ) < 0 and ∂
∂µ(

∂Wq

∂k ) > 0.

Observe that the convexity of the waiting time function Wq is valid for an M/M/k queueing

model with arrival rate λ and service rate µ
d ; e.g., see Lee and Cohen (1983). The three conditions,

∂
∂λ(

∂Wq

∂k ) < 0, ∂
∂d(

∂Wq

∂k ) < 0 and ∂
∂µ(

∂Wq

∂k ) > 0, basically require that the marginal decrease in

waiting time due to an additional service provider is larger at a higher system utilization level.

This assumption is reasonable, and is also supported by the waiting time function of an M/M/k

queuing system. However, we do not require any specific functional form of Wq.
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Assumption 3: The cumulative value distribution F (.) is strictly increasing. The cumulative wage

distribution G(.) is concave and strictly increasing.

Assumption 3 stipulates that the density of the reservation wage rate r is decreasing, which

implies that there are more service providers who would be willing to participate and offer service

at a lower minimum earning rate. Clearly, Assumption 1 implies Assumptions 2 and 3.

Under Assumptions 2 and 3 and with a fixed value of s, we can obtain the following result:

Lemma 1 The profit function π(k) given in (7) is concave in k. Also, the optimal number of

participating providers k∗ satisfies the following first-order condition:

−cλ∂Wq

∂k
= G−1(

k

K
) +G

′−1(
k

K
)
k

K
= G−1(β) + βG

′−1(β) =
∂(βG−1(β))

∂β
. (40)

Proof of Lemma 1: Differentiate the profit function given in (7) with respect to k and obtain

π′(k) = −cλ∂Wq

∂k
−
[
G−1(

k

K
) +G

′−1(
k

K
)
k

K

]
(41)

and

π′′(k) = −λc∂
2Wq

∂k2
−
[
2G
′−1(

k

K
)

1

K
+G

′′−1(
k

K
)
k

K2

]
. (42)

Assumption 3 implies that G−1(.) is convex and increasing. Together with Assumption 2, it follows

that π′′(k) < 0, which shows that π(k) is concave in k. Therefore, the optimal value of k is given

by the first-order condition π′(k) = 0, which is given in (40). This completes our proof.

The first-order condition given in (40) can be interpreted as follows. The left side of (40)

measures the marginal reduction in waiting cost for each additional service provider joining the

platform. In view of (5), the term G−1(β) = w · λdk represents the average earning rate of a

provider. Hence, by noting that β = k/K, the right side of (40) can be interpreted as the marginal

benefit associated with the increase in the average earning rate for each additional service provider

participating in the platform in terms of β. Therefore, the first-order condition (40) shows that the

optimal value of k is achieved when marginal cost equals marginal benefit.

By using the implicit function theorem to analyze the first-order condition (40), we can establish

the following proposition:

Proposition A1: Suppose that Assumptions 2 and 3 hold. Then,

(a) When K increases, both k∗ and p∗ increase, but the ratio β = k∗

K decreases.
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(b) When µ increases, both k∗ and w∗ decrease.

(c) When c increases, both k∗ and w∗ increase.

(d) When λ̄ (or s) increases, k∗ increases.

(e) When d increases, k∗ increases.

Proof of Proposition A1: (a) Suppose that k0 denotes the optimal value of k for K = K0. Using

the first-order condition (40) and expressing the profit π as a function of k, we have

π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K0
) +G

′−1(
k0

K0
)
k0

K0

]
= 0 (43)

Note that G
′−1(.) is an increasing function since G−1(.) is convex as G(.) is concave by Assumption

3, which implies that {G−1(k0
K ) +G

′−1(k0
K )k0

K } is decreasing in K. Therefore, for any K1 > K0,

−λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K1
) +G

′−1(
k0

K1
)
k0

K1

]
> 0.

Since the profit function is concave in k, the optimal k∗ must be greater than k0 for any fixed

K = K1 > K0, which shows that the optimal k∗ is increasing in K. Since the waiting time Wq is

decreasing in k, the optimal p∗ given in (3) is also increasing in K.

Let β0 = k0
K0

, and rewrite the derivative of the profit function (43) as

π′(k0) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k0 −

{
G−1(β0) +G

′−1(β0)β0

}
= 0, (44)

Let k1 be the optimal value of k when K = K1 > K0, and define β1 = k1
K1

. Then,

π′(k1) = −λc∂Wq(λ, k, µ, d)

∂k
|k=k1 −

{
G−1(β1) +G

′−1(β1)β1

}
= 0. (45)

Since k∗ is increasing in K, we have k1 > k0. Thus, −λc∂Wq(λ,k,µ,d)
∂k |k=k1 < −λc

∂Wq(λ,k,µ,d)
∂k |k=k0 .

From (44) and (45), we can obtain

G−1(β1) +G
′−1(β1)β1 < G−1(β0) +G

′−1(β0)β0.

Since G−1(β) +G
′−1(β)β is an increasing function in β, we can conclude that β1 < β0. Therefore,

β∗ is decreasing in K.

(b) Let k0 denote the optimal k when µ = µ0. Then,

π′(k0) = −λc∂Wq(λ, k, µ0, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0
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We have ∂
∂µ(

∂Wq

∂k ) > 0 from Assumption 2. Then, for any µ1 > µ0,

−λc∂Wq(λ, k, µ1, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
< 0,

Therefore, the optimal k∗ must be smaller than k0 for any fixed µ = µ1 > µ0, which shows that

the optimal k∗ is decreasing in µ. From (6), the wage rate is increasing in k∗, therefore, w∗ is

decreasing in µ.

(c) Suppose that k0 denotes the optimal value of k for c = c0. Then,

π′(k0) = −λc0
∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0

It is clear that for any c1 > c0,

−λc1
∂Wq(λ, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0.

Therefore, the optimal k∗ must be greater than k0 for any fixed c = c1 > c0, which shows that the

optimal k∗ is increasing in c. It is clear from (6) that the wage rate w is increasing in k. Therefore,

the optimal w∗ is also increasing in c.

(d) Since λ = λ̄s, it suffices to show that k∗ is increasing in λ. Let k0 denote the optimal k

when λ = λ0. Then,

π′(k0) = −λ0c
∂Wq(λ0, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0.

We have ∂
∂λ(

∂Wq

∂k ) < 0 from Assumption 2, which implies that −λc∂Wq(λ,k,µ,d)
∂k |k=k0 is increasing in

λ. Therefore, for any λ1 > λ0, we have

−λ1c
∂Wq(λ1, k, µ, d)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0.

Therefore, the optimal k∗ must be greater than k0 for any fixed λ = λ1 > λ0, which shows that the

optimal k∗ is increasing in λ.

(e) When d = d0, let k0 denote the optimal k. The first-order condition shows,

π′(k0) = −λc∂Wq(λ, k, µ, d0)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
= 0

Since from assumption 1, we know ∂
∂d(

∂Wq

∂k ) < 0. Therefore, for any d1 > d0, we must have,

−λc∂Wq(λ, k, µ, d1)

∂k
|k=k0 −

[
G−1(

k0

K
) +G

′−1(
k0

K
)
k0

K

]
> 0,
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The optimal k∗ must be greater than k0 for any d = d1 > d0, which shows that the optimal k∗ is

increasing in d.

We can now proceed to prove the results of Proposition 4. First. we shall show that the optimal

(λ∗, k∗) is given by the two first-order conditions (20) and (21). As s = λ
λ̄

, we use s instead of λ in

our analysis here. For easier reference, we provide the two conditions below:

∂π

∂k
= cµ

ρ
√

2(n+1)

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
− 2k

K
= 0 (46)

∂π

∂s
= λ̄d

{
(1− 2s)− cρ

√
2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)}
= 0 (47)

We can use the same argument in the proof of Proposition 3 to establish the result that for

any given n, there exists a unique solution (s∗, k∗) to (46) and (47). Furthermore, we shall show

that this unique stationary point is a global maximum. Suppose that this stationary point is not

a global maximum. Then, the maximum point must be at the boundaries, i.e., 1) s = 0; 2) k = 0;

3) ρ = 1; 4) s = 1; or 5) k = ∞. For the first three cases, the profit function (18) takes a value

of −∞. For s = 1, it is easy to verify that ∂π
∂s < 0, which implies that the platform can increase

profit by reducing s, and so s = 1 cannot be optimal. Finally, when k = ∞, ∂π
∂k < 0, which shows

that the platform can increase profit by reducing k, and so k = ∞ cannot be optimal. Therefore,

the unique stationary point must be a global maximum.

In the following, we shall use (47) to study the behavior of s∗, and use (46) to characterize the

behavior of k∗ as a function of s∗.

(a) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when K = K0 and K = K1, respec-

tively. Suppose that K1 > K0. We shall show that s1 ≥ s0 and k1 ≥ k0, which implies that both

s∗ and k∗ increase when K increases.

We use the notation k∗(K, s) to denote the optimal value of k for the general model with

parameter K and fixed service level s. In particular, k∗(K0, s0) = k0 and k∗(K1, s1) = k1. Since

K1 > K0, it follows from Proposition A1(a) that k∗(K1, s0) ≥ k∗(K0, s0) = k0. It is clear that the

derivative ∂π
∂s given in (47) is increasing in k. Since (s0, k0) satisfies the first-order condition ∂π

∂s = 0

and k∗(K1, s0) ≥ k0 , we have

(1− 2s0)− c

[
λ̄s0d

k∗(K1,s0)µ

]√2(n+1)−1

k∗(K1, s0)µ(1− λ̄s0d
k∗(K1,s0)µ)

√2(n+ 1) +

λ̄s0d
k∗(K1,s0)µ

1− λ̄s0d
k∗(K1,s0)µ

 ≥ 0.
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Therefore, the optimal value of s must be greater than s0 when K = K1, as π(s, k∗(s)) is concave

in s. Since (s1, k1) is optimal at K = K1, this proves that s1 ≥ s0. Also, it follows from Proposition

A1(d) that k1 = k∗(K1, s1) ≥ k∗(K1, s0) ≥ k0. Thus, we prove that both s∗ and k∗ increase in K.

Using (11), (46) and (47), we have

1− 2s = c
ρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
= 2w. (48)

This proves that w∗ decreases in K since s∗ increases in K.

We next show that W ∗q decreases in K. First, we can rewrite (47) as

λ̄sd(1−2s) = λd

[
c
ρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)]
= c

ρ
√

2(n+1)

1− ρ

(√
2(n+ 1) +

ρ

1− ρ

)
. (49)

Clearly, the right side of (49) is increasing in ρ. Also, the left side of (49) implies that 0 < s∗ ≤ 1
2 .

Suppose that 0 < s∗ < 1
4 . In this case, the left side of (49) increases in s. Since s∗ increases in K

as proved earlier, we can conclude that ρ∗ must also increase in K in this case. We can use the

first-order condition (47) and ((16) to deduce that

(1− 2s∗) = c
Wq

d

(√
2(n+ 1) +

ρ

1− ρ

)
. (50)

Since s∗ increases in K, the left side of (50) must be decreasing as K increases. On the other hand,

we have shown that ρ∗ increases in K in this case, which implies that ρ∗

1−ρ∗ must be increasing in

K in this case. We can conclude from (50) that W ∗q must be decreasing as K increases in this case.

Now suppose that 1
4 ≤ s

∗ ≤ 1
2 . In this case, the left side of (49) decreases in s. Since s∗ increases

in K, we can conclude from (49) that ρ∗ must be decreasing in K in this case. Also, we can deduce

from (16) that

W ∗q
d

=
ρ∗
√

2(n+1)−1

k∗µ(1− ρ∗)
. (51)

As K increases, k∗ increases and ρ∗ decreases. Since the right side of (51) decreases in k∗ but

increases in ρ∗, we can conclude from (51) that
W ∗q
d (or equivalently W ∗q ) must also be decreasing

in K in this case.

Furthermore,

π = λd(p− w) = λd(1− s− c

d
Wq − w) = λd(

1

2
− c

d
Wq), (52)
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where the last equality follows from (48). Since λ∗ increases in K and W ∗q decreases in K, we can

conclude that π∗ increases in K.

(b) Similarly, let (s0, k0) and (s1, k1) be the optimal values of (s, k) when µ = µ0 and µ = µ1,

respectively. Suppose that µ1 > µ0. Again, we use the notation k∗(µ, s) to denote the optimal

value of k for the general model with parameter µ and fixed service level s such that k∗(µ0, s0) = k0

and k∗(µ1, s1) = k1. We also use the notation ρ∗(µ, s) and W ∗q (µ, s) to denote the corresponding

optimal values of ρ and Wq for the general model with fixed µ and s.

Proposition A1(b) shows that k∗(µ, s) decreases in µ. We next show that ρ∗(µ, s) and W ∗q (µ, s)

also decrease in µ. We can rewrite the first-order condition (46) as

c
[ρ∗(µ, s)]

√
2(n+1)

1− ρ∗(µ, s)

(√
2(n+ 1) +

ρ∗(µ, s)

1− ρ∗(µ, s)

)
=

2[k∗(µ, s)]2

K
,

or equivalently,

k∗(µ, s) =

√
cK

[ρ∗(µ, s)]
√

2(n+1)

2[1− ρ∗(µ, s)]

(√
2(n+ 1) +

ρ∗(µ, s)

1− ρ∗(µ, s)

)
.

It is clear from the above equation that ρ∗(µ, s) increases as k∗(µ, s) increases. Since k∗(µ, s)

decreases in µ, ρ∗(µ, s) must also decrease in µ.

Using (16), we can also rewrite the first-order condition (46) as

c

[
µW ∗q (µ, s)

d

∗]2
1

ρ∗(µ, s)
√

2(n+1)−2

[
(
√

2(n+ 1)− 1)(1− ρ∗(µ, s)) + 1
]

=
2

K
.

This implies that µ
dW

∗
q (µ, s) increases as ρ∗(µ, s) increases. Since ρ∗(µ, s) decreases in µ, W ∗q (µ, s)

must also decrease in µ. Then, the function

H(µ) = c
ρ∗(µ, s)

√
2(n+1)−1

k∗(µ, s)µ(1− ρ∗(µ, s))

(√
2(n+ 1) +

ρ∗(µ, s)

1− ρ∗(µ, s)

)
= c

W ∗q (µ, s)

d

(√
2(n+ 1) +

ρ∗(µ, s)

1− ρ∗(µ, s)

)
decreases in µ.

Since (s0, k0) is the optimal solution when µ = µ0, they satisfy the first-order condition (47):

λ̄d

{
(1− 2s0)− c

W ∗q (µ0, s0)

d

(√
2(n+ 1) +

ρ∗(µ0, s0)

1− ρ∗(µ0, s0)

)}
= 0. (53)

Since H(µ) decreases in µ and µ1 > µ0, it follows from (53) that

λ̄d

{
(1− 2s0)− c

W ∗q (µ1, s0)

d

(√
2(n+ 1) +

ρ∗(µ1, s0)

1− ρ∗(µ1, s0)

)}
≥ 0.
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Therefore, the optimal value of s must be greater than s0 when µ = µ1, i.e., s1 ≥ s0. This proves

that s∗ increases in µ. It then follows immediately from (48) that w∗ decreases in µ.

Similarly, we then show that W ∗q decreases in µ. Suppose that 0 < s∗ < 1
4 . In (49), the left side

increases in s and the right side is increasing in ρ. Since s∗ increases in µ, therefore, ρ∗ must also

increase in µ. In (50), the left side decreases in µ, as s∗ is increasing in µ. Since ρ∗ increases in µ

in this case, ρ∗

1−ρ∗ must also increase in µ. We can conclude from (50) that W ∗q must be decreasing

as µ.

On the other hand, suppose that 1
4 ≤ s∗ ≤ 1

2 . In this case, the left side of (49) decreases in s.

As we have proved that s∗ increases in µ, it then follows from (49) that ρ∗ must be decreasing in

µ in this case.

Using (46) and (16), we obtain

c(
µWq

d

∗
)2 1

ρ∗
√

2(n+1)−2

[
(
√

2(n+ 1)− 1)(1− ρ∗) + 1
]

=
2

K
. (54)

The left side of (54) decreases in ρ∗ but increases in W ∗q . Since ρ∗ increases in µ in this case, we can

conclude that W ∗q must be decreasing in µ in this case. Since λ∗ = λ̄s∗ increases and W ∗q decreases

in µ, it follows from (52) that π∗ increases in µ. This proves part (i).

(c) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when c = c0 and c = c1, respectively.

Suppose that c1 > c0. Here, we use the notation k∗(c, s) to denote the optimal value of k for the

general model with parameter c and fixed service level s such that k∗(c0, s0) = k0 and k∗(c1, s1) = k1.

Since c1 > c0, it follows from Proposition A1(c) that k∗(c1, s0) ≥ k∗(c0, s0) = k0. Therefore,

ρ∗(c1, s0) = λ̄d
k∗(c1,s0)µ ≤ ρ

∗(c0, s0) = ρ0. Then,

c0
ρ

√
2(n+1)

0

1− ρ0

(√
2(n+ 1) +

ρ0

1− ρ0

)
=

2k2
0

K
≤ 2k∗(c1, s0)2

K

= c1
ρ∗(c1, s0)

√
2(n+1)

1− ρ∗(c1, s0)

(√
2(n+ 1) +

ρ∗(c1, s0)

1− ρ∗(c1, s0)

)
,

(55)

where the two equalities come from the first-order condition (46) and the fact that k0 and k∗(c1, s0)

are the optimal values of k for the general model with s = s0 when c = c0 and c = c1, respectively.

Since (s0, k0) is the optimal solution when c = c0, they satisfy the first-order condition (47):

(1− 2s0)− c0
ρ

√
2(n+1)−1

0

k0µ(1− ρ0)

(√
2(n+ 1) +

ρ0

1− ρ0

)
= 0. (56)

47



Combining (55) and (56), we obtain

(1− 2s0)− c1
ρ∗(c1, s0)

√
2(n+1)−1

k∗(c1, s0)µ[1− ρ∗(c1, s0)]

(√
2(n+ 1) +

ρ∗(c1, s0)

1− ρ∗(c1, s0)

)
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when c = c1, as π(s, k∗(s)) is concave in

s. This proves that s∗ is decreasing in c. It then follows from (48) that w∗ is increasing in c.

Also, we can use (6) to express ρ∗ =
√

λ̄s∗d
Kµ2w∗ , where ρ∗ = λ∗d

k∗µ and λ∗ = λ̄s∗. Since s∗ is

decreasing in c and w∗ is increasing in c, ρ∗ is decreasing in c. From (54) we know that W ∗q is

decreasing in c since ρ∗ is decreasing in c.

Since both s∗ and ρ∗ decrease in c, it follows from (50) that cWq increases in c. Since λ∗ = λ̄s∗

decreases in c, it follows from (52) that π∗ is decreasing in c. This proves part (ii).

(d) Now let (s0, k0) and (s1, k1) be the optimal values of (s, k) when λ̄ = λ̄0 and λ̄ = λ̄1,

respectively. Suppose that λ̄1 > λ̄0. Again, we use the notation k∗(λ̄, s) to denote the optimal value

of k for the general model with parameter λ̄ and fixed service level s. In particular, k∗(λ̄0, s0) = k0

and k∗(λ̄1, s1) = k1. We also use the notation ρ∗(λ̄, s) and W ∗q (λ̄, s) denote the corresponding

optimal values of ρ and Wq for the general model with fixed λ̄ and s.

Proposition A1(d) shows that k∗(λ̄, s) increases in λ̄. We can use the same argument as given

in part (b) to show that ρ∗(λ̄, s) and W ∗q (λ̄, s) also increase in λ̄. This implies that the function

H(λ̄) =
ρ∗(λ̄, s)

√
2(n+1)−1

k∗(λ̄, s)µ(1− ρ∗(λ̄, s))

(√
2(n+ 1) +

ρ∗(λ̄, s)

1− ρ∗(λ̄, s)

)
=
W ∗q (λ̄, s)

d

(√
2(n+ 1) +

ρ∗(λ̄, s)

1− ρ∗(λ̄, s)

)
increases in λ̄ since ρ

1−ρ is an increasing function in ρ.

Since (s0, k0) is the optimal solution when λ̄ = λ0, they satisfy the first-order condition (47):

λ̄0d

{
(1− 2s0)− c

W ∗q (λ̄0, s0)

d

(√
2(n+ 1) +

ρ∗(λ̄0, s0)

1− ρ∗(λ̄0, s0)

)}
= 0. (57)

Since H(λ̄) increases in λ̄ and λ̄1 > λ̄0, it follows from (57) that

λ̄1d

{
(1− 2s0)− c

W ∗q (λ̄1, s0)

d

(√
2(n+ 1) +

ρ∗(λ̄1, s0)

1− ρ∗(λ̄1, s0)

)}
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when λ̄ = λ̄1, i.e., s1 ≤ s0. This proves

that s∗ decreases in λ̄. Then, it follows immediately from (48) that w∗ increases in λ̄.
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Using (54), ρ∗ and W ∗q must change in the same direction as λ̄ increases. Also we can rewrite

(46) as

c
ρ
√

2(n+1)

(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
=

2k2

K
, (58)

Since the left side is increasing in ρ and the right side is increasing in k, ρ∗ and k∗ must change in

the same direction as λ̄ increases. Thus, we can conclude that k∗, ρ∗ and W ∗q must all change in

the same direction when λ̄ increases.

Since s∗ decreases in λ̄, the left side of (50) increases in λ̄, which implies that the right side of

(50) also increases in λ̄. Since W ∗q and ρ∗ must change in the same direction as λ̄ increases, we can

conclude that both W ∗q and ρ∗ increases in λ̄. As k∗, ρ∗ and W ∗q all change in the same direction

when λ̄ increases, we must have k∗ increases in λ̄ and that λ∗ = ρ∗k∗µ
d increases in λ̄.

Using (47) and (16), we obtain

s =
1

2

{
1− cρ

√
2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)}
=

1

2

{
1− c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ

)}
.

We substitute the above equation into (3) to obtain

p = 1− 1

2

{
1− c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ

)}
− c

d
Wq =

1

2

{
1 +

c

d
Wq

(√
2(n+ 1) +

ρ

1− ρ
− 1

)}
.

(59)

Since both W ∗q and ρ∗ increases in λ̄, it follows from (59) that p∗ increases in λ̄.

Let π∗1 and π∗0 denote the optimal profit when λ̄ = λ̄1 and λ̄ = λ̄0, respectively. Also, let π∗(λ̄, s)

denote the optimal profit for the general model with fixed values of λ̄ and s. For any (λ̄, s) with a

fixed value of λ = λ̄s, observe from (46) that the optimal values of k remain the same. Furthermore,

it follows from (11) and (16) that the corresponding values of W ∗q and w∗ are also the same. Using

(52), this implies that

π∗(λ̄1,
λ̄0s0

λ̄1
) = λ̄0s0d(1− λ̄0s0

λ̄1
− c

d
W ∗q − w∗) ≥ λ̄0s0d(1− s0 −

c

d
W ∗q − w∗) = π∗(λ̄0, s0),

when λ̄1 > λ̄0. Then,

π∗1 = π∗(λ̄1, s1) ≥ π∗(λ̄1,
λ̄0s0

λ̄1
) ≥ π∗(λ̄0, s0) = π∗0,

where the first inequality is due to the fact that (k1, s1) is the optimal solution when λ̄ = λ̄1. This

proves that π∗ increases in λ̄.
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(e) Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when d = d0 and d = d1 > d0,

respectively. We use the notation k∗(d, s) to denote the optimal value of k for the general model

with parameter d and fixed service level s such that k∗(d0, s0) = k0 and k∗(d1, s1) = k1. We also

use the notation ρ∗(d, s) and W ∗q (d, s) to denote the corresponding optimal values of ρ and Wq for

the general model with fixed d and s.

Proposition A1(e) shows that k∗(d, s) increases when d increases. We can use the same argument

as given in part (b) to show that ρ∗(d, s) and
W ∗q (d,s)

d also increase when d increases. Then,

H(d) =
ρ∗(d, s)

√
2(n+1)−1

k∗(d, s)µ(1− ρ∗(d, s))

(√
2(n+ 1) +

ρ∗(d, s)

1− ρ∗(d, s)

)
=
W ∗q (d, s)

d

(√
2(n+ 1) +

ρ∗(d, s)

1− ρ∗(d, s)

)
increases in d.

Since (s0, k0) is the optimal solution when d = d0, they satisfy the first-order condition (47):

λ̄d0

{
(1− 2s0)− c

W ∗q (d0, s0)

d0

(√
2(n+ 1) +

ρ∗(d0, s0)

1− ρ∗(d0, s0)

)}
= 0. (60)

Since H(d) increases in d and d1 > d0, it follows from (60) that

λ̄d1

{
(1− 2s0)− c

W ∗q (d1, s0)

d1

(√
2(n+ 1) +

ρ∗(d1, s0)

1− ρ∗(d1, s0)

)}
≤ 0.

Therefore, the optimal value of s must be smaller than s0 when d = d1, i.e., s1 ≤ s0. This proves

that s∗ decreases in d. It then follows immediately from (48) that w∗ increases in d.

We can use (54) to deduce that ρ∗ and
W ∗q
d must change in the same direction when d increases.

We can also use (58) to deduce that ρ∗ and k∗ must change in the same direction when d increases.

Thus, we can conclude that k∗, ρ∗ and
W ∗q
d must all change in the same direction when d increases.

Since s∗ decreases in d, we can use (50) and the fact that both ρ∗ and
W ∗q
d must change in the same

direction to conclude that both ρ∗ and
W ∗q
d increase in d, which implies that k∗ and W ∗q increase in

d. Also, it follows from (59) that p∗ increases in d.

Let π∗1 and π∗0 denote the optimal profit when d = d1 and d = d0, respectively. Also, let π∗(d, s)

denote the optimal profit for the general model with any fixed values of d and s. For any (d, s)

with a fixed ratio of ds in the general model, it is easy to check from (46) that the optimal values

of k remain the same, and from (11) and (16) that the corresponding values of W̃ ∗q =
W ∗q
d and w∗

are also the same. Then,

π∗(d1,
d0s0

d1
) = λ̄s0d0(1− d0s0

d1
− cW̃ ∗q − w∗) ≥ λ̄s0d0(1− s0 − cW̃ ∗q − w∗) = π∗(d0, s0),
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when d1 > d0. Then,

π∗1 = π∗(d1, s1) ≥ π∗(d1,
d0s0

d1
) ≥ π∗(d0, s0) = π∗0,

where the first inequality is due to the fact that (k1, s1) is the optimal solution when d = d1.

Therefore, π∗ increases in d. This proves part (iii).

Let α∗ = w∗

p∗ . As shown in (52), we can express

p∗ − w∗ = (
1

α∗
− 1)w∗ =

1

2
− c

d
W ∗q . (61)

We have shown in the proof of Proposition 4(c) that w∗ and cW ∗q increase in c and in Proposition

4(d) and (e) that w∗ and
W ∗q
d increase in λ̄ and d. We can then conclude from (61) that α∗ is

increasing in c, λ̄ and d. On the other hand, we have shown in the proof of Proposition 4(a) that

w∗ and W ∗q decrease in K and Proposition 4(b) that w∗ and W ∗q decrease in µ. Again, we can

conclude from (61) that α∗ is decreasing in K and µ.

A.5 Proof of Proposition 5

Suppose ε1 > ε0 ≥ 1. Let Ki = εiK̂ and λ̄i = εiλ̂, where i = 0, 1. Let (s0, k0) and (s1, k1) be the

optimal values of (s, k) when ε = ε0 and ε = ε1, respectively. We shall first show that s1 ≥ s0 and

k1 ≥ k0, which implies that both s∗ and k∗ increase in ε.

We use the notation k∗(ε, s) and ρ∗(ε, s) to denote the optimal value of k and ρ for the general

model with parameter ε and a fixed service level s. In particular, k∗(ε0, s0) = k0 and k∗(ε1, s1) = k1.

Since K1 > K0 and λ̄1 > λ̄0, it follows from Proposition A1(a)(d) that k∗(ε1, s0) ≥ k∗(ε0, s0) = k0.

We can rewrite (46) as

c
ρ
√

2(n+1)−1

kµ(1− ρ)

(√
2(n+ 1) +

ρ

1− ρ

)
− 2sλ̄d

Kµ2ρ2
= 0. (62)

It is clear that the left side of (62) increases in ρ but decreases in k. Note that λ̄1
K1

= λ̄0
K0

= λ̄
K .

Since k∗(ε1, s0) ≥ k∗(ε0, s0), we must have ρ∗(ε1, s0) ≥ ρ∗(ε0, s0).

We can use (62) to rewrite (47) as

∂π

∂s
= λ̄d

{
(1− 2s)− 2sλ̄d

Kµ2ρ2

}
= 0.

It is then clear that ∂π
∂s increases in ρ. Since (s0, k0) satisfies the first-order condition ∂π

∂s = 0 and

ρ∗(ε1, s0) ≥ ρ∗(ε0, s0), we must have

λ̄d

{
(1− 2s0)− 2s0λ̄d

Kµ2[ρ∗(ε1, s0)]2

}
≥ 0.
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Therefore, the optimal value of s must be greater than s0 when ε = ε1, which proves that s∗

increases in ε. Then, it follows immediately from (48) that w∗ decreases in ε.

We next prove that ρ∗ increases in ε by contradiction. Suppose that ρ∗ decreases in ε. Since

w∗ = (k∗)2

εK̂λ∗d
= k∗

εK̂µρ∗
decreases in ε, k∗

ε must be decreasing in ε. On the other hand, as ρ∗ = ελ̂ds∗

k∗µ

decreases in ε and s∗ increases in ε, ε
k∗ must be decreasing in ε. This contradicts with the fact that

k∗

ε must be decreasing in ε. Therefore, ρ∗ increases in ε.

Since s∗ increases in ε, the left side of (50) decreases in ε. On the other hand, we have shown

that ρ∗ increases in ε, which implies that ρ∗

1−ρ∗ increases in ε. Therefore, we can conclude from

(50) that W ∗q must be decreasing as ε increases. Since both w∗ and W ∗q decrease in ε, we can then

conclude from (61) that α∗ = w∗

p∗ decreases in ε.

A.6 Proof of Proposition 6

(i) Let us first adapt the proof of Proposition A1 to establish the same results to this extension. To

establish the result of Proposition A1(a), let k0 denotes the optimal value of k for K = K0. Under

Assumption 1, the first-order condition for Π(k) now becomes

Π′(k0) = −(1− γ)λc
∂Wq(λ, k, µ, d)

∂k
|k=k0 − (2− 3γ)

k0

K0
= 0, (63)

and we can show that, for any K1 > K0,

−(1− γ)λc
∂Wq(λ, k, µ, d)

∂k
|k=k0 − (2− 3γ)

k0

K1
> 0.

Therefore, the optimal value of k must be greater than k0 for any fixed K1 > K0, which implies

that k∗ is increasing in K. Using the same argument as before, we can show that p∗ is increasing

in K.

Let β0 = k0
K0

, we can rewrite the first-order condition (63) as

π′(k0) = −(1− γ)λc
∂Wq(λ, k, µ, d)

∂k
|k=k0 − (2− 3γ)β0 = 0, (64)

Let k1 denote the optimal value of k when K = K1 > K0, and define β1 = k1
K1

. Then,

π′(k1) = −(1− γ)λc
∂Wq(λ, k, µ, d)

∂k
|k=k1 − (2− 3γ)β1 = 0. (65)

As k∗ is increasing in K, we have k1 > k0. Therefore, −λc∂Wq(λ,k,µ,d)
∂k |k=k1 < −λc

∂Wq(λ,k,µ,d)
∂k |k=k0 .

Since (2 − 3γ) > 0, we can conclude that β1 < β0. Thus, β∗ is decreasing in K. This proves

Proposition A1(a).
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The results for Proposition A1(b),(c),(d) and (e) can be proved using the same arguments from

the proof of Proposition A1.

We next adapt the proofs of Propositions 4 and 5 to establish all the corresponding results to

this extension. To illustrate the adaptation, we next outline the proof of the results of Proposition

4(a). We can use similar arguments to prove the rest of the results, but omit the details here.

The two first-order conditions (46) and (47) given in the proof of Proposition 4 now become

∂π
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)}
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Let (s0, k0) and (s1, k1) be the optimal values of (s, k) when K = K0 and K = K1, respectively.

Suppose that K1 > K0. We use the notation k∗(K, s) to denote the optimal value of k for the

general model with parameter K and fixed service level s. Then, k∗(K1, s0) > k∗(K0, s0) in view

of Proposition A1(a). Furthermore, we can use the first-order condition to establish that

[(1− γ)− (2− 3γ)s0]− (1− γ)c

[
λ̄s0d

k∗(K1,s0)µ

]√2(n+1)
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k∗(K1,s0)µ

1− λ̄s0d
k∗(K1,s0)µ

 ≥ 0.

Therefore, the optimal value of s must be greater than s0 when K = K1, as π(s, k∗(s)) is concave

in s. Since (s1, k1) is optimal at K = K1, this proves that s1 ≥ s0. Also, it follows from Proposition

A1(d) that k1 = k∗(K1, s1) ≥ k∗(K1, s0) ≥ k0. Therefore, we prove that both s∗ and k∗ increase in

K.

Using (66) and (67), we can obtain

s+ w =
1− γ
2− 3γ

.

It then follows that w∗ decreases in K, as s∗ increases in K.

We next show that W ∗q decreases in K. We can rewrite (67) as

λ̄sd[(1− γ)− (2− 3γ)s] = (1− γ)

[
c
ρ
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ρ
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. (68)

Clearly, the right side of (68) is increasing in ρ. Also, the left side of (68) implies that 0 < s∗ ≤ 1−γ
2−3γ .

Suppose that 0 < s∗ < 1−γ
2(2−3γ) . In this case, the left side of (68) increases in s. Since s∗ increases in
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K as proved earlier, we can conclude that ρ∗ must also increase in K in this case. The first-order

condition (67) implies that

[(1− γ)− (2− 3γ)s∗] = (1− γ)
c

d
W ∗q

(√
2(n+ 1) +

ρ∗

1− ρ∗

)
. (69)

Since s∗ increases in K, the left side of (69) must be decreasing as K increases. On the other hand,

we have shown that ρ∗ increases in K in this case, which implies that ρ∗

1−ρ∗ must be increasing in

K in this case. We can conclude from (69) that W ∗q must be decreasing as K increases in this case.

Now suppose that 1−γ
2(2−3γ) ≤ s∗ ≤ 1−γ

2−3γ . In this case, the left side of (68) decreases in s. Since

s∗ increases in K, we can conclude from (68) that ρ∗ must be decreasing in K in this case. Also,

it follows from (16) that

W ∗q
d

=
ρ∗
√

2(n+1)−1

k∗µ(1− ρ∗)
. (70)

As K increases, k∗ increases and ρ∗ decreases. Since the right side of (70) decreases in k∗ but

increases in ρ∗, we can conclude from (70) that
W ∗q
d (or equivalently W ∗q ) must also be decreasing

in K in this case.

Furthermore, we can show that

π∗ = λ∗d(p∗ − w∗) = λ∗d(
1− 2γ

2− 3γ
− c

d
W ∗q ). (71)

Since λ∗ increases in K and W ∗q decreases in K, we can conclude that π∗ increases in K. Also,

p∗ − w∗ = (
1
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Since w∗ and W ∗q decrease in K, α∗ is also decreasing in K.

(ii) We first consider the case where s is fixed and show that the optimal k∗ is increasing in γ.

Let k0 denotes the optimal value of k when γ = γ0 ≥ 0. Then,
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Since Π(k) is concave in k, the optimal k∗ must be greater than k0 when γ = γ1 > γ0.
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Now consider the joint optimization problem of (s, k). Let (s0, k0) and (s1, k1) be the optimal

values of (s, k) when γ = γ0 and γ = γ1, respectively. Suppose that γ1 > γ0. The two first-order

conditions are given by
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Let k∗(γ, s) be the optimal value of k with fixed values of γ and s. As we have shown that the

optimal k∗ is increasing in γ for fixed s, we have k∗(γ1, s0) ≥ k∗(γ0, s0). As both
∂Wq(sλ̄,k,µ,d)

∂λ and

Wq(s0λ̄, k, µ, d) decrease in k, we have
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Therefore, the optimal value of s must be greater than s0 when γ = γ1, i.e., s1 ≥ s0. Also,

k1 = k∗(γ1, s1) ≥ k∗(γ1, s0) ≥ k∗(γ0, s0) = k0. Therefore, both s∗ and k∗ are increasing in γ.

We can use (66) and (67) to cancel out γ and obtain
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Since k∗ is increasing in γ and the right side of (73) is increasing in ρ, we can conclude that ρ∗ is

increasing in γ. Also, we can rewrite (73) as
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Since ρ∗ is increasing in γ, we can conclude that W ∗q is decreasing in γ.

Finally, we can use (11) and (66) to obtain
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Since ρ∗ is increasing in γ, the left side of (74) is increasing in γ. Since 2−3γ
1−γ is decreasing in γ, we

can conclude that w∗ is increasing in γ.
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B Some Detailed Statistics from Didi Data

Table 12: Mean and standard deviation of number of drivers, number of rides, and price per km
across differrent hours over weekdays.

Number of drivers Number of rides Price per km

Hour Mean Std.Dev. Mean Std. Dev. Mean Std. Dev.

8 879 26 1273 44 2.919 1.196
9 1196 24 2229 37 3.056 1.264
10 1099 31 1725 64 3.028 1.231
11 771 34 1170 69 2.953 1.191
12 707 40 1208 75 2.959 1.229
13 676 33 1210 88 2.915 1.221
14 699 20 1251 44 2.938 1.232
15 691 21 1173 19 2.994 1.240
16 738 79 1177 108 3.025 1.250
17 904 80 1426 138 3.066 1.255
18 1080 42 1713 93 3.134 1.275
19 1211 59 2006 60 3.214 1.319
20 992 56 1550 91 3.039 1.250
21 811 64 1452 97 2.855 1.183
22 752 67 1406 127 2.817 1.197
23 597 64 1029 99 2.799 1.213
24 348 53 552 83 2.727 1.124
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Figure 7: Travel distance distribution across all hours.

Figure 8: Travel time distribution across all hours.
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Table 1: Comparisons of results for the base model with exact formula (9) and approximation (16).

Wq is given by exact formula (9) Wq is given by (16) with n = n∗

λ̄ k∗ λ∗ p∗ π∗ n∗ k∗ λ∗ p∗ π∗

10 7 2.71 0.72 0.98 7.48 7 2.76 0.73 0.98
20 10 5.79 0.69 2.00 10.02 10 6.22 0.64 2.00
30 11 6.20 0.78 2.42 11.57 11 6.34 0.76 2.42
40 12 7.14 0.81 2.88 12.64 12 7.29 0.79 2.88
50 13 8.32 0.81 3.38 13.41 13 8.53 0.79 3.38
60 14 9.80 0.80 3.92 13.99 13 8.05 0.84 3.38
70 14 9.29 0.84 3.92 14.45 14 9.50 0.83 3.92
80 15 11.16 0.81 4.50 14.82 14 9.18 0.85 3.92
90 15 10.62 0.85 4.50 15.13 15 10.97 0.82 4.50

100 15 10.36 0.87 4.50 15.39 15 10.60 0.85 4.50

Table 2: Performance of the approximation scheme for the base model.

k∗ λ∗ p∗ w∗ π∗

k∗ (5940 cases) 2% 6% 6% 6% 2%

Table 3: Comparisons of results for the general model with exact formula (9) and approximation
(16).

Wq is given by exact formula (9) Wq is given by (16) with n = n∗

λ̄ k∗ λ∗ p∗ w∗ π∗ n∗ k∗ λ∗ p∗ w∗ π∗

10 6 3.32 0.613 0.217 1.32 5.48 6 3.28 0.603 0.220 1.25
20 8 5.14 0.677 0.249 2.20 7.90 8 5.11 0.663 0.259 2.11
30 10 6.87 0.706 0.291 2.85 9.61 10 6.86 0.692 0.292 2.75
40 12 8.61 0.723 0.335 3.34 10.87 11 7.82 0.722 0.310 3.22
50 13 9.55 0.745 0.354 3.73 11.90 12 8.74 0.742 0.330 3.60
60 14 10.47 0.761 0.375 4.04 12.70 13 9.65 0.756 0.350 3.92
70 14 10.55 0.780 0.372 4.31 13.38 14 10.55 0.767 0.371 4.18
80 15 11.44 0.789 0.393 4.53 13.91 14 10.61 0.782 0.369 4.38
90 15 11.49 0.802 0.392 4.71 14.43 15 11.50 0.789 0.391 4.58

100 16 12.39 0.807 0.413 4.88 14.84 15 11.55 0.799 0.390 4.73



Table 4: Ratio of expected profits between using a fixed payout ratio and using the optimal time-
based payout ratio.

α =
λ̄ α∗ .2 .3 .4 .5 .6 .7 .8 .9

10 .35 .55 .89 .82 .74 .65 .53 .31 .17
20 .37 .58 .76 .87 .91 .73 .56 .38 .20
30 .41 .45 .80 .85 .85 .79 .68 .45 .23
40 .46 .38 .68 .90 .86 .78 .66 .48 .27
50 .48 .34 .80 .97 .91 .80 .74 .54 .26
60 .49 .49 .74 .90 .97 .84 .77 .55 .29
70 .48 .46 .69 .84 .91 .89 .72 .56 .30
80 .50 .44 .66 .80 .99 .85 .76 .58 .31
90 .49 .42 .63 .92 .95 .92 .80 .56 .32

100 .51 .41 .61 .89 .92 .89 .78 .59 .31

Table 5: Values of the optimal time-based payout ratio α∗.

K =
λ̄ 10 20 30 40 50 60 70 80 90 100

10 .68 .56 .47 .35 .35 .29 .31 .28 .24 .22
20 .78 .57 .45 .46 .37 .35 .35 .30 .31 .28
30 .75 .62 .54 .46 .41 .38 .37 .36 .32 .31
40 .74 .59 .51 .48 .46 .42 .40 .38 .36 .33
50 .73 .58 .55 .50 .48 .43 .40 .40 .39 .35
60 .72 .57 .53 .52 .49 .44 .44 .41 .39 .37
70 .72 .63 .57 .51 .48 .46 .45 .41 .41 .39
80 .72 .63 .56 .54 .50 .47 .46 .42 .42 .40
90 .71 .62 .56 .53 .49 .49 .47 .43 .43 .40
100 .71 .62 .55 .52 .51 .48 .48 .45 .44 .41

Table 6: Performance of the approximation scheme for the general model.

k∗ λ∗ p∗ w∗ π∗

k∗ ≤ 10 (4495 cases) 11% 4% 2% 20% 3%
k∗ > 10 (2105 cases) 2% 1% 1% 3% 1%

Table 7: Impact of model parameters on s∗, k∗, W ∗q , λ∗ and ρ∗.

s∗ k∗ W ∗q λ∗ ρ∗

K ↑ ↑ ↓ ↑ ×

µ ↑ × ↓ ↑ ×

c ↓ × ↓ ↓ ↓

λ̄ ↓ ↑ ↑ ↑ ↑

d ↓ ↑ ↑ ↓ ↑

↑(increasing); ↓(decreasing); ×(non-monotonic)



Table 8: Optimal values of α∗ using the approximation formula (16) with n = n∗.

K =
λ̄ 10 20 30 40 50 60 70 80 90 100

10 .67 .49 .42 .36 .33 .30 .27 .25 .24 .22
20 .67 .52 .46 .41 .37 .34 .32 .30 .28 .27
30 .67 .54 .48 .44 .40 .38 .35 .33 .31 .30
40 .67 .55 .49 .46 .42 .40 .38 .36 .34 .32
50 .67 .56 .51 .47 .44 .42 .39 .38 .36 .34
60 .68 .56 .51 .48 .45 .43 .41 .39 .38 .36
70 .68 .57 .52 .49 .46 .44 .42 .40 .39 .37
80 .68 .57 .53 .49 .47 .45 .43 .41 .40 .39
90 .68 .57 .53 .50 .48 .46 .44 .42 .41 .40
100 .68 .57 .53 .50 .48 .46 .45 .43 .42 .41

Table 9: Impact of growth rate ε on p∗, w∗, α∗ and π∗.

ε p∗ w∗ α∗ π∗

1 0.64 0.43 0.67 0.15
2 0.71 0.37 0.52 0.86
3 0.73 0.35 0.48 1.71
4 0.74 0.34 0.46 2.63
5 0.74 0.33 0.44 3.60

Table 10: Numerical results for the general model to include the total consumer and provider
surplus.

γ p∗ w∗ α∗ π∗ C∗s + P ∗s Π∗ = (1− γ)π∗ + γ(C∗s + P ∗s )

0.0 0.81 0.41 0.51 4.88 3.33 4.88
0.1 0.80 0.43 0.54 4.84 3.77 4.73
0.2 0.79 0.46 0.58 4.75 4.25 4.65
0.3 0.78 0.50 0.64 4.42 5.28 4.68
0.4 0.75 0.59 0.79 3.11 7.67 4.93
0.5 0.68 0.76 1.12 -2.14 13.84 5.85
0.6 0.52 1.15 2.19 -27.17 34.52 9.84

Table 11: Summary of parameter values for our illustrative examples.

Parameters Peak hour Non-peak hour Data source

K 390 390 Didi data with assumption of 20 equal zones
λ̄ 200 /hour 100 /hour Didi data with assumption of 20 equal zones
d 6 km 6 km Didi data
µ 19 km/hour 26 km/hour Didi data
v U[2,4] RMB/km U[2,4] RMB/km Benchmarked against taxi rate
r U[30,40] RMB/hour U[30,40] RMB/hour Estimated from taxi driver wages
c 0 to 1,000 RMB/hour 0 to 1,000 RMB/hour Assumption for sensitivity analysis



Figure 1: Number of rides and drivers across different hours.

Figure 2: Average travel distance and average price per kilometer across different hours.



Figure 3: Optimal number of participating drivers, optimal price and wage rates during peak hours
(λ̄ = 200 and µ = 19 km/hour).

Figure 4: Optimal number of participating drivers, optimal price and wage rates during non-peak
hours (λ̄ = 100 and µ = 26 km/hour).



Figure 5: Comparisons of the optimal time-based payout ratio between peak and non-peak hours.

Figure 6: Comparisons of optimal profit between the optimal time-based payout ratio and a fixed
payout ratio for the peak hour scenario.
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