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Exploiting Contextual Information for Fine-grained Tweet Geolocation
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Abstract

The problem of fine-grained tweet geolocation is to link
tweets to their posting venues. We solve this in a learning
to rank framework by ranking candidate venues given a test
tweet. The problem is challenging as tweets are short and
the vast majority are non-geocoded, meaning information
is sparse for building models. Nonetheless, although only a
small fraction of tweets are geocoded, we find that they are
posted by a substantial proportion of users. Essentially, such
users have location history data. Along with tweet posting
time, these serve as additional contextual information for ge-
olocation. In designing our geolocation models, we also uti-
lize the properties of (1) spatial focus where users are more
likely to visit venues near each other and (2) spatial ho-
mophily where venues near each other tend to share more
similar tweet content, compared to venues further apart. Our
proposed model significantly outperforms the content-only
approaches.

Introduction
In fine-grained geolocation of tweets (Lee et al. 2014;
Li et al. 2011), we link tweets to the specific venues from
which they are posted, e.g. a restaurant. In this work, we
cast fine-grained geolocation as a ranking problem. Given
a test tweet, we rank venues such that high ranking venues
are more likely to be the posting venue. Tweet geolocation
is useful in applications such as location-based advertising,
venue recommendation, etc. However the problem is chal-
lenging as tweets are short and may not contain any location
names or location indicative words, e.g. airport. To mitigate
this challenge, we exploit additional contextual information
such as posting time and location history.

Empirically we show that while the proportion of
geocoded tweets in Twitter is small (Hong et al. 2012;
Ahmed, Hong, and Smola 2013), they are posted by a sub-
stantial proportion of users, ranging from 30% to 40%. Es-
sentially these users have location history which can be used
to personalize geolocation models. Furthermore, location
history is useful for incorporating the following user behav-
ioral characteristic that we observed: users are spatially fo-
cused and are more likely to visit venues that are near each
other.
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We also consider the property of spatial homophily, which
means that social media content from the same city/region
are more likely to share common words than content from
different cities/regions. Spatial homophily has been stud-
ied at coarse geographical resolution (Chang et al. 2012;
Ahmed, Hong, and Smola 2013). Based on the idea that dif-
ferent kinds of neighborhoods (Cranshaw et al. 2012) exist
within a city, spatial homophily may exist at very fine spatial
scale, i.e. venues near each other tend to share more similar
content than venues further apart in the same city. To account
for this effect, we include spatial smoothing in our model.

Henceforth, we propose a spatially smoothed model
which exploits posting time and user location history on
top of tweet content. We train this model in a learning to
rank framework. Over different datasets, our model achieves
ranking accuracy improvement from 6% to 60% over a base-
line approach using only tweet content.

Location History
We show that although the proportion of geocoded tweets
is small, they are posted by a substantial portion of users.
We randomly sample 50,000 Twitter users from Singapore
for 2014 and same number of users from Jakarta for June to
Dec 2016. Table 1 shows the statistics compiled. Clearly, the
proportion of geocoded tweets is tiny at 3.22% for Singapore
and 4.62% for Jakarta. However these are posted by a sub-
stantial proportion of users. For ease of discussion, we de-
note the set of users who posted at least one geocoded tweet
as {u}g . Table 1 shows that in Singapore, {u}g constitutes
30.34% of the sampled users. This is much larger than the
value of 3.22% if one does a naive inference based on the
fraction of geocoded tweets. Similarly in Jakarta, {u}g is
substantial at 41.97% of the users. Such proportion charac-
teristics arise because users in {u}g post both geocoded and
non-geocoded tweets, with the latter at much larger counts.
The last two rows of Table 1 illustrates this. On average,
a Singapore user in {u}g post 289.69 geocoded tweets and
4532.98 non-geocoded tweets. A similar bias in tweeting be-
havior can be observed for Jakarta.

In short, users in {u}g have location history which makes
it possible to build personalized geolocation models. With
appropriate personalization, one should be able to better ge-
olocate non-geocoded tweets posted by such users.



Table 1: Statistics for 50,000 sampled users from Singapore
(2014) and from Jakarta (June to Dec, 2016).

Singapore Jakarta
Total Tweets 136,548,216 20,466,019

Geocoded Tweets 4,394,378 946,432
(3.22%) (4.62%)

Users with 15,169 20,982
geocoded tweets, {u}g (30.34%) (41.97%)

Ave. geocoded tweets / user 289.69 45.11in {u}g
Ave. non-geocoded tweets / user 4532.98 157.48in {u}g

Spatial Focus and Spatial Homophily
Due to space constraints, we will present the empirical anal-
ysis of the two properties in a longer version of this paper.

Spatial Focus. Intuitively, an average user is constrained
by geographical, social or personal factors. This leads to
venue revisits or the conduct of much activities (e.g. work)
in geographically localized regions. For example, one may
frequent neighborhoods near the home or workplace. We say
that the user is spatially focused, i.e. he is more likely to visit
venues that are near his previously visited venues.

Spatial Homophily. Users in the same city/region gen-
erate more similar social media content when compared
to another city/region (Cheng, Caverlee, and Lee 2010;
Chang et al. 2012). We refer to this as spatial homophily
with respect to locations. In fact, spatial homophily exists
at very fine spatial scale as well. We have observed that
venues near each other tend to have more similar tweet con-
tent, compared to venues further apart in the same city. This
is partially contributed by the mentions of local spatial fea-
tures, e.g. a landmark, or neighborhood characteristics, e.g.
a nightlife area will have more tweets about clubbing and
partying.

Proposed Model
Let w be a test tweet posted by user u at time of day t. To
geolocate w, we rank candidate venues by:

p(v|w, t, u) ∝ p(v|t)p(u|v)
∏

w∈w
p(w|v) (1)

which is a product of probabilities modeling posting time,
location history and tweet content.

Posting Time. p(v|t) accounts for venue popularity at
time of day t. We model time of day t as a continuous vari-
able and estimate p(v|t) in an approach motivated by kernel
density estimation (KDE) (Lichman and Smyth 2014). For
time of day t, define a time interval of length T (t) which
covers t. Denote V as the number of distinct venues, f(v, t)
as the number of user visitations to venue v in the interval
T (t) and let f(., t) =

∑
v f(v, t). Given a test tweet with

time of day t, we have p(v|t) = f(v,t)+β
f(.,t)+V β where β is the

smoothing parameter.

Location History. To compute p(u|v) , we use the lo-
cation history of u. Since location history are specific to
users, it is more intuitive to compute p(v|u) instead of
p(u|v). p(v|u) can also be represented by 2-D distribu-
tions over geographical space, which is convenient for in-
terpretation and visualization. By Bayes rule, p(u|v) =
p(v|u)p(u)/p(v) and assuming constant p(u), p(v), we have
p(u|v) ∝ p(v|u). Thus the probability term p(u|v) in Equa-
tion (1) can be replaced by p(v|u). To model p(v|u), we re-
cap that users are spatially focused in that he is more likely
to visit venues spatially near any of his previously visited
venues. To capture this idea, we define p(v|u) as

p(v|u) ∝ exp(−S ·min(d(v,Vu))) (2)
where Vu is the set of venues in u’s location history, d(.)
measures spatial distances and S ≥ 0 is the spatial smooth-
ing parameter. For large S, p(v|u) decreases faster with in-
creasing distance between v and the nearest venue in Vu.
Equivalently the user is more spatially focused.

Tweet Content and Spatial Smoothing. Let W be the
vocabulary size of tweet words. We use c(w, v) as the
frequency of word w at venue v and c(., v) to denote∑
w c(w, v). We compute p(w|v) = c(w,v)+α

c(.,v)+Wα where α is
the smoothing parameter which can be tuned or set at 1 for
Laplace smoothing. To account for the presence of spatial
homophily, we spatially smooth p(w|v). For each word w
at the ego venue v, we extend the definition of p(w|v) with
word frequencies of v’s set of spatial neighbors, denoted by
nb(v). The spatially smoothed p(w|v) is defined as:

p(w|v) =
c(w, v) + α+ γ

|nb(v)|
∑

vi∈nb(v)
c(w, vi)

c(., v) +Wα+ γ
|nb(v)|

∑
vi∈nb(v)

c(., vi)
(3)

where 0 ≤ γ ≤ 1 is a weight factor to be set. When γ =
1, a word w found in every v’s neighbor will be equivalent
to a single w occurrence in v. Otherwise, the words from
neighbors are weighted less than the native words in v.

Learning to Rank
Given a tweet, one desires its posting venue to be ranked
high. Thus there is only one relevant venue and the Mean
Reciprocal Rank (MRR) is a suitable metric. Given tweet i,
let the rank of its posting venue be ri, where ri = 0 for the
top rank. MRR is defined as (1/N)

∑N
i=1(1/(ri+1)) where

N is the number of test cases.
We optimize our model parameters with respect to MRR

via Learning to Rank (LTR). However, it is infeasible to
maximize MRR directly (Christakopoulou and Banerjee
2015) via LTR. Instead, one has to approximate MRR max-
imization by minimizing a proxy loss function. Since maxi-
mizing MRR is equivalent to minimizing the sum of multi-
ple 0-1 loss functions, a good proxy should approximate the
0-1 loss well, while retaining sufficient gradient for learn-
ing. We thus introduce the log-log loss function from (Chris-
takopoulou and Banerjee 2015) into our models. This loss
function has been proposed as a better alternative to logis-
tic loss. For each model, we construct the loss function over
venue pairs for minimization.



Loss function. For a posting venue vi to be ranked high,
p(vi) should be large while p(vj) should be small for j 6= i,
i.e. non-posting venues. For computation convenience, we
use log probabilities for ranking. Let z(vi, vj) = ln p(vi)−
ln p(vj) andR(vi, vj) = ln(1+e−z(vi,vj)). The log-log loss
function for a tweet with posting venue vi is:

L(vi) =
∑

vj∈V-
ln(1 +R(vi, vj)) (4)

where V- is the set of non-posting venues. This can be all
venues, randomly sampled or selected based on heuristics.
To obtain the global loss function, one computes and sums
L(vi) over all tweets.

Re-parameterization. With the loss function defined, we
can perform gradient descent to minimize it. However there
are constraints on the parameters. The smoothing parameters
α, β and S are required to be positive. The spatial weight
factor γ has to satisfy the constraint 0 ≤ γ ≤ 1. Instead
of constrained optimization, we incorporate the above con-
straints by re-parameterizing the model as follows: α = x2α,
β = x2β , S = x2S and γ = (1 + e−xγ )−1. The new param-
eters are now easily learnt from unconstrained optimization.
In this paper, we use stochastic gradient descent.

Experiments
Data For model building and testing, we associate tweets
with their posting venues using:
• Shouts: Comments authored by users as they check-in to

venues in Foursquare, a popular location app. The com-
ments are also referred to as shouts. We process the shouts
(Cao et al. 2015; Li et al. 2011) to exclude the app-
generated portion.
• Pure tweets: Non-geocoded tweets posted by users

within 5 minutes of their check-ins. We assume these
tweets are being posted from the check-in venues.
We collect data for users from Singapore (SG) and Jakarta

(JKT). For Singapore, we collected 1,190,522 Foursquare
check-ins from 2014, of which 30% involve shouts. We re-
fer to this dataset as SG-SHT. We also collected 90,250 pure
tweets and designate the dataset as SG-TWT. For Jakarta,
the JKT-SHT dataset comprises 177,570 check-ins for the
period 2015 to mid-2016, of which 49% are shouts. Link-
ing the check-ins to pure tweets, we obtain only 1335 pure
tweets. This small number is possibly due to API changes of
the Foursquare platform which affected crawling.

Terminology. In this paper, ‘tweets’ refer to both pure
tweets and shouts. Where differentiation is required, we use
each term explicitly, i.e. pure tweets or shouts.

Setup. We split the datasets into training, tuning and test
sets. Model parameters are learnt from the training set to
minimize the loss on the tuning set. We include venues as
ranking candidates only if they have at least 5 tweets in the
training set. We also filter out stop words and rare words
(frequency <4). The test set consists of test cases of tweets,
each posted from some venue by a user with location history.
On inspection, we noticed ‘easy’ test cases, where a user re-
peatedly uses a highly unique word everytime he posts from

a certain venue. This makes the unique word highly indica-
tive of the posting venue, leading to high ranking accuracy
for such cases. To make the problem more challenging, we
filter them from the training set as follows: for each test case
with user u and posting venue v, we exclude u’s other tweets
posted at v from the training set. In other words, our training
set does not observe any postings of u from venue v.

For each dataset, we conduct 20 runs where for each run,
we sample 5000 tweets for testing/tuning and use the re-
maining for training. From the sampled set, we use 1000
tweets for tuning and the remainder for testing. Due to var-
ious filtering discussed above, the number of test cases per
run is less than 4000. The average number of test cases are
reported with the results for each experiment.

Models. We compare the following models:
• TFIDF: We represent venues and tweets as TFIDF vec-

tors in terms of content. Given a test tweet, we use cosine
similarity to retrieve and rank venues. This is very similar
to the method in (Yohei Ikawa and Tatsubori 2012).

• NB: The naive Bayes, content-only approach from (Lee
et al. 2014; Kinsella, Murdock, and O’Hare 2011).

• NB+S: This extends the NB model with spatial smooth-
ing. For spatial smoothing, we use k = 5 nearest neigh-
bors of each venue to smooth the word probabilities.

• NB+S+T: This uses content with spatial smoothing plus
the contextual information of posting time.

• NB+S+T+U: Our proposed model with spatial smooth-
ing, posting time and user location history.

We optimize each model with stochastic gradient descent. To
account for local optimal, we randomly initialize and train
10 instances per model. We then select the instance with the
highest tuning set Mean Reciprocal Rank (MRR) to apply
on the test set.

Results on Shouts. Tables 2 and 3 present results for Sin-
gapore (SG-SHT) and Jakarta shouts (JKT-SHT) respec-
tively. Both tables exhibit similar trends. TFIDF performs
the worst. From the NB model onwards, MRR improves
as we add spatial smoothing and additional contextual in-
formation to the models. For adjacent models, e.g. NB vs
NB+S, we have also conducted significance testing with the
Wilcoxon signed rank test. The differences between models
are statistically significant at p-value of 0.05, except for the
case of NB vs NB+S in Table 3 (p-value=0.067).

Comparing NB and NB+S, spatial smoothing improves
MRR slightly. The improvement is small but consistent
across different runs. This may be due to the limited strength
of spatial homophily at fine granularities. We also note that
prior work on coarse-grained geolocation (Cheng, Caverlee,
and Lee 2010) had reported limited improvement from spa-
tial smoothing. However another more probable explanation
is that even without smoothing, we are already capturing
much of the spatial homophily effect. Recall that this means
venues near each other have more similar content. In the NB
model, we are modeling the venue content directly anyway,
thus implicitly accounting for spatial homophily in a down-
stream manner.

For both cities, substantial improvement comes from
adding posting time and location history. For example,



Table 2: Ave. MRR for SG-SHT. On average, there are
2626.2 test cases and 10814.5 venues to rank per run.

Model MRR Improvement over NB
TFIDF 0.03571 -

NB 0.09592 -
NB+S 0.09622 0.31%

NB+S+T 0.09899 3.20%
NB+S+T+U 0.10224 6.59%

Table 3: Ave. MRR for JKT-SHT. On average, there are
975.9 test cases and 2713.75 venues to rank per run.

Model MRR Improvement over NB
TFIDF 0.04193 -

NB 0.13414 -
NB+S 0.13439 0.19%

NB+S+T 0.14564 8.58%
NB+S+T+U 0.14712 9.68%

NB+S+T provides 3.2% improvement over NB in Table 2.
For Jakarta in Table 3, the corresponding improvement is
8.58%. Thus venue popularity with time of the day plays
a role. Adding user location history helps to increase MRR
even more, with NB+S+T+U being consistently the best per-
forming model in both tables. This shows that location his-
tory is highly useful contextual information. Also recap that
our modeling approach captures the idea that users are spa-
tially focused in being more likely to visit venues that are
near each other. The experiment results further validate this.

Results on Pure Tweets. Table 4 displays the results for
training and testing on Singapore pure tweets (SG-TWT).
The trend is similar to previous experiment on shouts.
TFIDF performs poorly. Spatial smoothing again provides
only slight improvement over the NB model, although it is
statistically significant over 20 paired runs. The inclusion of
time and location history provides very sharp improvement.
NB+S+T+U again has the highest MRR with over 60% im-
provement from NB.

Typically, MRR is not compared across experiments that
rank different number of items. However here, we can make
certain statements by comparing Tables 4 and 2. In Table
4 for pure tweets, we rank fewer venues, but obtain mostly
lower MRR than Table 2 for shouts. Since we have fewer
venues to rank, the task should have been easier, resulting
in a higher MRR. The lower MRR thus implies that it is
more challenging to rank venues for pure tweets than shouts.
One possible reason will be that pure tweets are about more
diverse topics not related to the posting venue. Obviously
this will impact ranking accuracy.

If the contents of pure tweets are not highly indicative
of venues, then contextual information such as posting time
and user location history become relatively more important.
This is illustrated by the huge gains in MRR as we move
from model NB to NB+S+T / NB+S+T+U. The percent-
age improvement is much larger in Table 4 than the case
for shouts in Table 2.

Table 4: Ave. MRR for SG-TWT. On average, there are
2061.9 test cases and 2783.55 venues to rank per run.

Model MRR Improvement over NB
TFIDF 0.02059 -

NB 0.05539 -
NB+S 0.05565 0.46%

NB+S+T 0.07603 37.26%
NB+S+T+U 0.08986 62.24%

Conclusion.
We have proposed a model for fine-grained geolocation,
which exploits contextual information such as posting time
and location history. In addition for model design, we in-
corporate intuitive properties such as spatial homophily and
spatial focus. Our proposed model is able to achieve a large
improvement in ranking accuracy over baselines. Further
work can include other contextual information for model-
ing, e.g. relationships.
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