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20slo and Akershus University College of Applied Sciences
Email: {abhisheksh.2014,yuan.tian.2012,aguss.2014,davidlo} @smu.edu.sg, Aiko.Yamashita@hioa.no

Abstract—Developers often rely on various online resources,
such as blogs, to keep themselves up-to-date with the fast pace
at which software technologies are evolving. Singer et al. found
that developers tend to use channels such as Twitter to keep
themselves updated and support learning, often in an undirected
or serendipitous way, coming across things that they may not
apply presently, but which should be helpful in supporting
their developer activities in future. However, identifying relevant
and useful articles among the millions of pieces of information
shared on Twitter is a non-trivial task. In this work to support
serendipitous discovery of relevant and informative resources to
support developer learning, we propose an unsupervised and a
supervised approach to find and rank URLs (which point to web
resources) harvested from Twitter based on their informativeness
and relevance to a domain of interest. We propose 14 features
to characterize each URL by considering contents of webpage
pointed by it, contents and popularity of tweets mentioning it,
and the popularity of users who shared the URL on Twitter.
The results of our experiments on tweets generated by a set
of 85,171 users over a one-month period highlight that our
proposed unsupervised and supervised approaches can achieve
a reasonably high Normalized Discounted Cumulative Gain
(NDCG) score of 0.719 and 0.832 respectively.

Index Terms—Online Resources; Recommendation System;
Social Media for Software Engineering

I. INTRODUCTION

Software development is a field which evolves rapidly,
so software developers always need to keep themselves up
to date with new knowledge and methodologies. Learning
continuously and serendipitously may help them to solve new,
unseen and/or complex challenges that they may encounter
during their software development tasks. Storey et al. found
that keeping up with new technologies is a major challenge
faced by software developers today [19]. They also found
that developers use media such as Twitter to keep them up
to date with the latest trends and to extend their software
knowledge [18].

In this work, we present an approach to support the
serendipitous learning of developers by harnessing Twitter as
a knowledge repository. Past research has shown that Twitter
is used by software developers to share important information
with other fellow developers [3[], [18], [20]. Sharing links in
the form of URLs (Uniform Resource Locators) of various
software related articles and multimedia is a popular activity
in software engineering Twitter space [[17]. Twitter has been
found to be better at serendipitously exposing developers to
latest updates and developments in technology when compared

to search engines [[18]]. Also, consideration of the URLs on
Twitter allows us to reduce the search space for finding popular
and relevant URLs, and also to infer the social approval of
links shared. Unfortunately, even on Twitter, finding URLs to
relevant and useful articles for a particular domain of interest
(e.g., Java) is not an easy task. Developers need to identify
many relevant Twitter users to follow, and sieve through a
large amount of tweets that they may generate, which often
result in information overload. These challenges have been
validated by Singer et al. in their survey with developers [18].

To address the above mentioned challenges, we propose
an unsupervised and a supervised approach to harvest and
rank URLs linked to contents that are popular and relevant
to a particular domain of interest from Twitter. Both output
a sorted list of URLs sorted based on their likelihood to be
popular and relevant to the domain of interest, where domain
is characterized by a set of keywords (e.g., {“Java”}). The
supervised approach also requires as an input a small training
set, which contains URLs that are manually assigned with rel-
evance ratings ranging from O (highly irrelevant) to 3 (highly
relevant). Both of the two approaches characterize a URL
in terms of 14 features that are grouped into three families:
content features, popularity features, and network features.
Our unsupervised approach makes use of Borda count [1]],
a popular data fusion technique, to rank URLs based on their
features. Our supervised approach makes use of Learning to
Rank [8]], a popular information retrieval technique, to build
a ranking model from the labeled URLs, which can then be
applied to rank a set of URLs based on their likelihood to be
informative.

In this preliminary study, we evaluate the two proposed ap-
proaches on a dataset of 577 unique URLs found among 2,104
tweets posted by people potentially interested in software
development. These 2,104 tweets were filtered from about
3,980,397 tweets posted in Novemeber 2015 based on the con-
dition that they contain the keyword “Java”. We measure the
effectiveness of our approaches in ranking these URLs in terms
of Normalized Discounted Cumulative Gain (NDCG) []].
NDCG scores are computed based on the relevance ranks
of the URLs which were manually labeled by two study
participants. The participants label the data independently and
then resolve their differences in order to create the final ground
truth.

The contributions of this paper are as follows:



1) We propose an unsupervised and supervised approach to
support developer serendipitious learning using Twitter
by ranking URLs to online resources. To the best of
our knowledge, no prior study has helped developers in
this task. Our approaches sieve through a large number
of tweets to automatically extract and rank URLs rele-
vant to a particular domain of interest. Our preliminary
evaluation shows that they can achieve reasonably high
Normalized Discounted Cumulative Gain (NDCG) scores
on a dataset of 577 URLs related to the keyword ‘Java’.

2) We propose 14 features from three categories, i.e., con-
tent features, popularity features, and network features,
to comprehensively characterize a URL given a set of
keywords describing a domain of interest.

The structure of the remainder of this paper is as follows.
In Section [[I} we describe our proposed approach that extracts
and ranks informative URLs from Twitter. In Section we
present our experiment settings and results. Related work is
presented in Section We finally conclude and mention
future work in Section [V]

II. APPROACH

Our approach has four steps, i.e., Data Acquisition, Feature
Extraction, Unsupervised Recommendation and Supervised
Recommendation, as shown in Figure

Unsupervisedo
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Data
Acquisition

Tweets
from
Twitter

Feature
Extraction

Supervised o

Recommendation

Fig. 1: Approach Overview

Data Acquisition. We first identify some users on Twitter
who are potentially interested in software development. We
start with a set of well known software developers who are
also present on Twitter. We then process the profile of these
seed users to find all the other users who follow or are
followed by at least n of these seed users. The approach has
been used in several previous works [16]], [17], [21]. We then
download and process the tweets of these identified Twitter
users on a period of time, filtering tweets using keywords
that characterize a domain of interest. Next, we extract URLs
shared in these tweets. These URLs are typically shortened
by Twitter itself or by users using a URL shortening service,
e.g., https://goo.gl/. If a URL has been shortened by Twitter,
it maintains a reference of the expanded URL in the tweet’s
meta data. In case the Twitter user had used an external
service to shorten the URL, we use a browser to expand
the short URLs to their expanded forms. Then we remove
the duplicates among expanded URLs. We also remove URLs
which correspond to broken links and error pages. In the end,
we have a set of valid URLs along with the other associated
information such as tweet content and user data.

Feature Extraction. We extract features which help us to find
useful URLs w.r.t. a particular domain of interest represented
by a set of keywords. We have categorized the features into
three broad categories: Content Features, Popularity Features,
and Network Features. These are explained below.

Content Features. These features are based on the similarity
between the input keywords, which characterize the domain
of interest, and various textual contents that are linked to a
URL.

e CosSimT: This feature corresponds to the cosine similarity
between the keywords related to our domain of interest
and the combined text of all the tweets which mention a
particular URL.

o CosSimW: Through this feature, we measure the cosine
similarity score between the keywords and the text contents
on the webpage which a URL link resolves to.

o CosSimP: This feature measures the cosine similarity be-
tween the input keywords and the combined text from all
the profile data of users who posted a particular URL.

Popularity Features. These features measure the popularity of
a URL Link.

e« NumOfT: This feature counts the number of tweets or
retweets generated by a community of software enthusiasts
on Twitter (i.e., users tracked in the data acquisition step)
which contain a particular URL.

o NumOfU: This feature counts the number of unique users
in a community of software enthusiasts who have shared
a particular URL in their tweets. This feature differs from
NumOfT feature as a user may post the same URL link
in multiple tweets. For calculation of NumOfU we only
consider a user once.

o NumOfRT: This feature counts the sum of the retweet counts
of all the original tweets that contain the URL link.

o NumOfF: This feature counts the sum of the favourite counts
of all the tweets and retweets that contain the URL link.

Network Features. We take the network of all Twitter users in
our dataset who have posted at least a tweet containing the
domain related URL and then infer the network importance
of each user present, considering each user as a network
node. To measure the importance of user, we use popular
centrality metrics proposed in web and social network mining
communities [4]], [S, [9], [24]. We compute the features
by using Jung (http://jung.sourceforge.net/). We provide a
brief description below. (For a complete description please
refer [23]]).

o Barycenter Centrality: This feature is computed by taking
the reciprocal of the sum of shortest distance of a node to
each other node in a network.

« Betweenness Centrality: This feature counts the number of
shortest paths from all nodes to all others that pass through
a node.

o Closeness Centrality: This feature is computed by taking the
reciprocal of the average shortest distance of a node to all
the other nodes in a network.
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« Figenvector Centrality: This feature measures the impor-
tance of a node based on the importance of its neighboring
nodes. The values of eigenvector centrality for nodes in the
network is computed as follows:

oI — BR)"'R1

In the above equation, « is a scaling vector for normalizing

the score, [ is the identity matrix, R is the adjacency matrix
representing the network, g is the weighting factor for the
adjacency matrix, and R1 is a matrix where the contents of
all its cells are ones. Since the value of this metric is often
very small, in this work we compute the reciprocal of this
metric. We use the default values of o and 3 in Jung.

o Hubs and Authorities: Hubs and Authorities are two scores
to measure node importance in network. They are computed
based on the Hyperlink-Induced Topic Search (HITS) algo-
rithm proposed by Kleinberg [7]. These two scores of a
Twitter user u are computed as follows:

Hub(u) = i Auth(u),

Auth(u) = i Hub(u)

In the equation, n is the total number of users in a network,
Hub(u) computes the hub score for node u, and Auth(u)
computes the authority score for node wu.

« PageRank: PageRank (PR) is a node importance measure-
ment proposed by Brin and Page [9]. The PR algorithm
computes a probability to represent the likelihood of a
particular node being visited while randomly traversing
edges.

Unsupervised Recommendation. Based on the 14 feature
scores, we use Borda Count [1]] to arrive at a combined score
for a URL and then rank the URLSs based on this combined
score.

Borda Count works by first assigning a rank for each feature
score to a URL. For each feature score, we create a list of
all URLs that we have harvested in the data acquisition step,
and sort them in descending order of their feature scores. The
rank of a URL for a feature is then defined as the position
of the URL in the sorted list. Next, for each feature score,
after we have the rank of a URL, we can compute its ranking
point. It is calculated by subtracting the rank of the URL
from the total number of URLs. After we have the ranks and
ranking points for all URLs and features, we can compute
the URL’s combined score. Let wu; denotes the i™ URL and
rp;(u;) denotes the ranking point assigned to wu; for the j®
feature. Also, let Ny denotes the number of feature scores per
URL and N, denotes the total number of URLs in our data
set. The combined score of a URL wu; can be calculated as
follows:

> (rpj (ui))

BordaScore(u;) = N < N
f u

In the above equation, the combined score is the summation
of all the ranking points divided by the product of Ny and IV,,.
After obtaining the combined score, we rank the URLs in the
descending order of their combined scores. The URL having
the highest combined feature score is considered the most
relevant, and the URL having the lowest score is considered
as the most irrelevant.

Supervised Recommendation. We use Learning to Rank [8|]
approach to train a supervised model which is then used to
assign ranks to URLs. In the learning phase of our supervised
approach, we consider a set of URLSs as training data and based
on the feature scores of these URLs and their corresponding
manually assigned labels, we learn a ranking function f(u).
This function f(u) can be considered as the weighted sum of
all the features of a URL wu, and during the learning phase
it tries to learn these weights or parameters of the features
through optimization. This ranking function when applied to
unseen test URLs (also represented as their corresponding
feature vectors) assigns scores to the URLs. Based on the
scores provided by f(u), all the test URLs can be ranked
in the descending order. This sorted list is considered as
the recommended result. In this work, we make use of a
popular off-the-shelf implementation of a learning to rank
algorithm, SV M rank which is made available from https:
/fwww.cs.cornell.edu/people/tj/svm_light/svm_rank.html.

III. PRELIMINARY EXPERIMENTS AND RESULTS

In this section, we first present the process of creating
ground truth set. Next, we describe our experiment setting and
evaluation metric. Finally, we present our research questions
and the results of our experiments which answer the questions.

A. Dataset

In the data acquisition step, as the seed set of
Twitter users, we use a list of top 100 popular
developers on Twitter given in: http://noop.nl/2009/02/

twitter-top- 100-for-software-developers.html, We set n as 5
(i.e., we find all other users who follow or are followed by at
least 5 of these seed users). Moreover, we collect tweets made
on November 2015, and filter tweets using keyword “Java”.
We are able to extract 2,104 of such tweets and 577 unique
and valid URLs along with their associated information. More
URLSs could be gathered if we expand our Twitter user base
and the period of time the tweets were made. We leave the
gathering of an extended dataset for a more comprehensive
evaluation as future work.

Next, we manually assign relevance score labels on a scale
of 0 to 3 for each of the selected 577 unique URLs we
extracted. The data is labeled by 2 persons, both having more
than 4 years of professional programming experience in Java.
The labellers are provided with the 577 URLs and asked to
browse the websites pointed to by the URLs and then have to
assign a score to the URL, with a score of 3 being assigned
if the content linked with the URL is highly relevant and
shareable, 2 being assigned if the content is relevant but not
worth sharing, 1 being assigned if URL content was marginally
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relevant and not shareable, and 0 being assigned if the content
is highly irrelevant. For the URLs where the two labellers have
a disagreement, they have to sit down together to discuss and
agree to a final label. Table [[] shows the distribution of the
labels for the 577 URLs.

TABLE I: Distribution of Scores for the 577 URLs

Label Assigned 0 1 2 3 Total
#URLs 115 77 184 | 201 577

B. Experiment Setting and Evaluation Metrics

By default, we perform 10-fold cross validation to inves-
tigate the effectiveness of our approach. As an evaluation
metric, we make use of Normalized Discounted Cumulative
Gain (NDCG). NDCG measures the performance of a recom-
mendation system by evaluating its capability to recommend
more relevant URLSs as the top results and less relevant ones as
the bottom results. NDCG gives a score between 0 and 1 to the
recommender system it evaluates. The closer the NDCG score
of a system is to 1, the more effective it is at recommending
informative URLs. We use the following formula to calculate
NDCG:

DCG -WDCG
IDCG - WDCG

In the above formula, DCG is a Discounted Cumulative
Gain score [8] of the URL relevance, IDCG is the ideal DCG
score (i.e., informative URLs are listed before less informative
ones), and WDCG is the worst DCG score (i.e., all less
informative URLs are listed before more informative ones).
The following equation is used to compute DCG, where rel; is
the rating assessment for the URL at position ¢ in the ranking:

NDCG =

rel;
log (i)

The main concept of DCG is that relevant documents (in
our case, relevant URLs) appearing lower in a search result
list corresponds to a poorer result.

DCG = rel; + Z
1=2

C. Research Questions

RQ1: How effective are our unsupervised and supervised
approaches in recommending informative URLs?

In this research question, we investigate the effectiveness
of our two approaches based on the NDCG metric. Table
shows the NDCG scores of our approaches. The NDCG
score for the unsupervised approach is 0.719 while that for
the supervised approach is 0.832. The supervised approach
can outperform the unsupervised one by 15.71%. Table [II|
shows some examples of URLs that are recommended by our
approach.

TABLE II: NDCG Scores of Our Proposed Approaches

Approach NDCG Score
Unsupervised 0.719
Supervised 0.832

TABLE III: Some Examples of Recommended URLs

URL

"~ lwww.infoq.com/articles/Java- The-Missing-Features
http://github.com/zeroturnaround/java-fundamentals
www.adam-bien.com/roller/abien/entry/java_8_infinite_stream_of

RQ2: How sensitive is our supervised approach on the
amount of training data?

In this research question, we investigate the impact of
reducing the amount of training data on the effectiveness of
our supervised approach by performing k-fold cross validation
and varying the value of k from 2 to 10. From Table[[V] we can
see that the performance of our supervised approach remains
stable across various values of k. and is not overly sensitive.

TABLE 1V: NDCG Scores for Different k
[k [ NDCG [ k [ NDCG [ k | NDCG |

10 | 0.832 7 | 0.845 4 | 0.837
9 | 0.825 6 | 0.834 3| 0.847
8 | 0.833 5| 0.842 2 | 0.843

D. Threats to Validity

Threats to internal validity refer to experimenter biases. We
have tried to mitigate this threat by asking two persons to
independently rate the relevance of the webpages pointed to
by the URLs, and later meet to resolve their disagreements.
Threats to external validity refer to the generalizability of
our findings. For this preliminary work, we have considered
one domain of interest, namely Java programming language,
using the keyword “Java” to characterize this domain. In the
future, we plan to reduce this threat further by considering
other domains and/or keywords in addition to Java domain.
Threats to construct validity correspond to the suitability of our
evaluation metric. In this work, we make use of Normalized
Discounted Cumulative Gain (NDCG) which is a standard
information retrieval metric and has also been used in many
past software engineering studies, e.g., [6], [[15]]. Therefore,
we believe that threat to construct validity is minimal.

IV. RELATED WORK

In this section, we present studies that analyze Twitter
data from a software engineering perspective and studies on
recommendation systems for software engineering (RSSE).
Due to page limitation, the survey here is by no means
complete.

Twitter and Software Engineering. Singer et al. did a survey
about 271 developers from GitHub and found that Twitter is
used by developers to keep them updated with the latest devel-
opments in software engineering field [18]]. Other studies have
also reported that Twitter is utilized by software developers for
coordination of efforts, sharing of knowledge, etc. [3], [21],
[22]. Tian et al. have done a manual categorization of 300
tweets into 10 groups, which are commercial, news, tools and
code, question & answer, events, personal, opinion, tips, job,
and miscellaneous [20]. Several techniques to filter software
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relevant tweets have also been proposed [12]], [[16]. Different
from the above mentioned work, we propose an approach
that support developer serendipitious learning using Twitter
by ranking URLs to online resources.

Recommender Systems for Software Engineering. Bacchelli
et al. and Ponzanelli et al. have developed Eclipse plugins to
automatically recommend Stack Overflow posts based on the
context of the code being edited in the IDE [2], [10f], [L1].
Rahman et al. have proposed context based recommendation
and search engines for searching programming errors and
exceptions [13]], [14] For a detailed description of various
types of recommender systems for software engineering please
refer to the RSSE book [15]]. Our work is different from these
and many other RSSE works as we build a recommender
system that returns a list of URLs based on a set of key-
words characterizing a domain of interest by leveraging crowd
knowledge shared via Twitter.

V. CONCLUSION AND FUTURE WORK

Software developers using channels such as Twitter
serendipitously learn about new methodologies and keep their
skills and knowledge up to date. Unfortunately, given the
huge number of choices developers have at their disposal,
identifying which resources and channels to follow and what
to ignore is a major challenge for them [19].

We propose two approaches, one unsupervised and one
supervised, to search and rank URLs harvested from Twitter
which can support developers in their serendipitous learning
tasks. These approaches are based on 14 features which
characterize a URL’s relevance and informativeness from three
dimensions: 1) content features which capture similarity of the
input domain specific keyword with the textual contents of
tweets, webpages pointed to by the URLs, and user profiles,
2) popularity features which characterize the popularity of the
tweets containing the URL on Twitter, 3) network features
which characterize the importance of the user posting the URL
on Twitter. In our preliminary experiments, we evaluate the
two approaches on a set of 577 URLs. The experiments show
that our unsupervised and supervised approaches can achieve
a reasonably high Normalized Discounted Cumulative Gain
(NDCG) score of 0.719 and 0.832 respectively.

As a future work, we plan to improve the effectiveness of
our approach further by the incorporation of additional features
and the design of more sophisticated algorithms. We would
also like to enlarge the scale of our experiments to consider
more tweets collected over a longer period of time and also
to add more channels to mine URLs. Moreover, we plan to
build a site that shares URLs of informative resources that are
harvested by our proposed approach and gets continuously
updated in real time.
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