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Approximating the Performance of a “Last Mile” Transportation 
System 

Hai Wang and Amedeo Odoni 

Massachusetts Institute of Technology 
 
Abstract: The Last Mile Problem (LMP) refers to the provision of travel service from the 
nearest public transportation node to a home or office. We study the supply side of this 
problem in a stochastic setting, with batch demands resulting from the arrival of groups 
of passengers at rail stations or bus stops who request last-mile service. Closed-form 
bounds and approximations are derived for the performance of Last Mile Transportations 
Systems as a function of the fundamental design parameters of such systems. An initial 
set of results is obtained for the case in which a fleet of vehicles of unit capacity provides 
the Last Mile service and each delivery route consists of a simple round-trip between the 
rail station and bus stop and the single passenger’s destination. These results are then 
extended to the general case in which the capacity of a vehicle is an arbitrary, but 
typically small (under 10) number. It is shown through comparisons with simulation 
results, that a particular strict upper bound and an approximate upper bound, both derived 
under similar assumptions, perform consistently and remarkably well for the entire 
spectrum of input values and conditions simulated. These expressions can therefore be 
used for the preliminary planning and design of Last Mile Transportation Systems, 
especially for determining approximately resource requirements, such as the number of 
vehicles/servers needed to achieve some pre-specified level of service.  

Keywords: Last mile problem; queuing; batch demands; waiting time bounds; cyclic 
assignment. 

 
1. Introduction and Literature Survey 

The Last Mile Problem (LMP) refers to the provision of travel service from home or 
workplace to the nearest public transportation node (“first mile”) or vice versa (“last 
mile”). This public transportation node could be the nearest rapid transit rail station or a 
stop of a scheduled bus line. The unavailability of this type of service is one of the main 
deterrents to the use of public transport in urban areas, especially for certain demographic 
groups, such as schoolchildren, seniors and the disabled. Currently, the default solutions 
to the LMP are walking, taking a taxi, or driving a private vehicle. 

A conceptual Last Mile Transportation System (LMTS) is described schematically in 
Figure 1, which shows an urban area surrounding a public-transit rail station, where trains 
arrive and discharge passengers.  The passengers’ final destinations (homes, offices and 
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workplaces) are distributed in the area. A fleet of vehicles transports these passengers to 
their eventual destinations and empty vehicles return to the station to pick up waiting 
passengers or newly arriving ones.  We describe the setting in more detail in Section 2. 

 

 
Figure 1: Schematic of a Last Mile Transportation System (LMTS) 

 
Many issues must be addressed when designing and operating a LMTS.  On the 

supply side, it is essential to deal with difficult questions concerning the stochastic 
aspects of the system. The demand side requires an understanding and estimation of the 
potential LMTS loads as a function of demographic characteristics, nature of trip, level of 
service, cost, etc.  

The focus of this paper is solely on the supply side: given a probabilistic description 
of demand, design a LMTS that operates under dynamic and stochastic conditions 
according to certain guidelines and satisfies a set of Level of Service (LOS) requirements.  
This implies specifying such system characteristics as vehicle fleet size, service 
frequency, dynamically varying vehicle schedules, vehicle dispatching strategies, vehicle 
routing strategies, monitoring and control of operations, etc.  

Addressing these questions is difficult analytically, as the planning and management 
of a LMTS generally involves such complications as: stochastic travel times that may 
also change dynamically by time-of-day, according to traffic and weather conditions; 
batch arrivals of prospective passengers; partitioning of demands among vehicles; routing 
of the vehicles; queuing issues; and, obviously, numerous considerations concerning 
staffing and economic sustainability.  With the exception of staffing and economic issues, 
we address most of these complications in this paper in a static setting.     

An extensive literature in this general area has generated various models for a number 
of application contexts related to the LMP with early papers dating back to the 1970s. We 
mention here only a few that are among the most influential in the field, as well as 
relevant to the approach we have adopted. 
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The Dynamic Traveling Repairman Problem (DTRP) was introduced in two papers 
by Bertsimas and Van Ryzin. They consider the DTRP in the cases of a single-vehicle 
“fleet” [1] and of multiple vehicles [2].  The Dynamic Pick-up and Delivery Problem 
(DPDP) was studied by Swihart and Papastavrou [3], who derived bounds on the 
performance of several DPDP variants for light and heavy traffic. The Car Pooling 
Problem (CPP), introduced by Baldacci, Maniezzo and Mingozzi [4] also has features 
similar to the LMP – or, more exactly, to the First Mile Problem. This paper presents 
both exact and heuristic methods for solving the CPP based on integer programming 
formulations. Finally, a large number of papers have dealt with the Dial-a-Ride Problem 
(DARP) – see, e.g., Jaw, Odoni, Psaraftis and Wilson [15]. A fine critical review of the 
DARP literature by Cordeau and Laporte [5] underlines, among other points, the fact that 
this body of work does not address well some of the queuing aspects of the subject 
systems – a deficiency that this paper tries to remedy.  

It should also be noted that similarities exist between the LMP and various queuing, 
dispatching, routing, and resource allocation problems arising in entirely different 
contexts such as the design of manufacturing systems, the operation of elevator banks, 
and the scheduling of school-bus systems. 

The major difference between the LMP and the more “traditional” problems 
identified above is that, in the LMP, passengers arrive in (possibly large) batches, not 
singly. Moreover, the size of these batches is a random variable.  Queuing systems with 
batch arrivals are notoriously difficult analytically.  A further complication is that the 
“service times” of passengers are determined by the length (or the duration) of the routes 
traveled by the fleet of delivery vehicles. Thus, in designing a LMTS, it is necessary to 
consider simultaneously the problems of: allocating passengers among vehicles; routing 
the vehicles and estimating the lengths of the routes; and computing the queuing 
performance characteristics of the system.      

The main body of this paper is organized as follows.  In Section 2, we describe in 
more detail the version of the LMP problem that we are studying and discuss the 
associated fundamental assumptions.  It will be seen that the problem analyzed is quite 
generic and that by relaxing one or more of the assumptions, one can capture a broad 
range of interesting variations.  Section 3 then outlines the overall approach utilized to 
derive our results: we begin by deriving a set of queuing results by considering a fleet of 
vehicles with capacity for a single passenger ( = 1) and then extend the analysis by 
allowing the vehicle capacity to be arbitrary and by incorporating the resulting travel time 
estimates into the queuing expressions derived for the  = 1 case.  Section 4, presents our 
analysis and results for the single-capacity case.  We derive three different approximate 
expressions for queuing performance as a function of the design parameters of the LMTS 
and then identify, through a set of simulation experiments, the expression that performs 
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best – and, in fact, approximates very well the observed waiting times.  Section 5 first 
derives approximate analytical expressions for the travel times associated with fleets 
consisting of vehicles with a capacity of up to 20 passengers and then applies the queuing 
approximation derived in Section 4 to the multi-passenger capacity case. The results 
again compare well with those obtained from a simulation. Sections 4 and 5 contain only 
outlines of the lengthy derivations of our results.  A sequence of technical Appendices 
provides the details.  Finally, Section 10 contains a summary and concluding remarks. 

 

2. Problem Description and Assumptions 

We now describe in more detail the LMP scenario of Figure 1. The Last Mile 
Transportation System (LMTS) would operate as follows:  Let STA be the transit rail 
station served by the LMTS and consider a passenger, PAX, who will board a train at 
station ORIGIN for the purpose of traveling to STA and will then board a LMTS vehicle 
for transport to her home.  PAX will be required to provide advance notice to LMTS of 
her impending arrival at STA.  The time interval between the advance notice and the 
actual arrival of PAX at STA will be of the order of several minutes (e.g., at least 5 or 10 
minutes) to give the LMTS system sufficient time to plan the service of PAX. In practical 
terms, the advance notice could be generated by PAX in a number of alternative ways. 
For example, PAX could use a smart-phone when she arrives at ORIGIN or when she 
enters her train to STA; or, she could tap a smart card on a special-purpose screen, as she 
is entering ORIGIN or while aboard the train.  The resulting message to the LMTS will 
include the expected time of arrival of PAX at STA (easy to predict, once the passenger 
is at the ORIGIN station or aboard a train) and her ultimate destination, e.g., her home 
address.  (If the great majority of LMTS users will be subscribers whose home addresses 
will be pre-registered on a file, then the only information that PAX would have to provide 
will be an identification number.)  

Once the information about PAX is received the LMTS will assign PAX to one of the 
vehicles of the LMTS fleet, plan the route of that vehicle so it includes a visit to the 
ultimate destination of PAX, estimate the departure time of the vehicle from STA, and 
notify PAX accordingly. PAX will receive a message (on her smart-phone or by tapping 
her card on a screen when she arrives at STA) that indicates the vehicle she has been 
assigned to and the planned departure time of the vehicle from STA (e.g., “please board 
Vehicle 123 which will depart from STA at 4:26 PM”).  Once all the passengers assigned 
to a vehicle are on board, the vehicle will execute a delivery route, visiting the destination 
of each of the passengers and will then return to STA to pick up the passengers for its 
next delivery tour. 
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The LMTS described above may be difficult to implement due to many practical 
issues and considerations.  However, we have chosen to study it because it possesses the 
generic system features that we are most interested in:  arrivals of passengers in “batches” 
(groups) at STA; “real-time” clustering of passengers for assignment to a fleet of vehicles; 
“real-time” routing of the vehicles to deliver the passengers on board; and fast 
computation of waiting times and other performance parameters so that, for example, 
passengers can be notified in a timely way of the departure time of the vehicle they have 
been assigned to/  informed of the expected departure times and intended use of the 
LMTS.  Actual implementations would involve some simpler variants of the above 
features. 

Given the service region geometry, passenger demand rates, the spatial distribution of 
the passenger destinations, and the number, capacity and travel speed of the LMTS 
vehicles, examples of performance metrics that we eventually wish to compute include: 
the average waiting time until boarding a delivery vehicle, the average riding time of 
passengers, the average waiting time until delivery, the minimum number of vehicles we 
need to reach stable operation, vehicle productivity and workload, and eventually (but not 
in this paper) the general cost of operating the system and various service vs. cost trade-
offs. 

We now identify briefly the specifics of the model considered. With reference to 
Figure 1, we make the following assumptions: (i) headways, h, between arrivals of trains 
at the station (and discharges of passengers) are constant; (ii) passengers are discharged 
in batches after each train’s arrival; (iii) the batch size is a general random variable,  , 
with known expected value,  ( ) =  , and variance,    ( ) =    ; (iv) all passengers 
arriving in a single batch request service essentially simultaneously; (v) given the size of 
any particular batch,  =   , the destinations of the passengers in the batch are distributed 
in a service region according to a homogeneous spatial Poisson process with parameter   ; 
(vi) the service region is convex and compact with known dimensions; (vii) the delivery 
fleet (or pick-up fleet, in the case of “First Mile” service) consists of m vehicles, each 
with integer capacity, c.   

We believe that (i) – (vii) are adequately general assumptions for approximating, to a 
first order, the characteristics of many potential variations of LMTS. Note that our model 
includes the most difficult, from the analytical point of view, features that one might 
encounter in an LMTS: batch arrivals, stochastic demand, stochastic service times, and 
the presence of queuing phenomena interfaced with routing problems.   

To ensure that the mathematical expressions presented in Sections 4 and 5 below are 
adequately concise, we have also used the following three simplifying assumptions: (viii) 
the service area, where the destinations of the passengers are located, is a  ×   square, 
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with the train station, STA, located at the square’s center; (ix) the travel medium is 
continuous, homogeneous, and planar; and (x) the travel speed is constant throughout the 
service region and equal to 1.  We have studied a number of variants of assumptions (viii) 
and (ix), such as cases in which the region is not a square, or the travel metric is 
Euclidean or rectangular (“right-angle) or contains discontinuities (e.g., barriers to travel), 
and shown that such mild changes in the assumptions pose no particular challenges. 

 

3. Description of Overall Approach 

Sections 4 and 5 of the paper describe in detail our analysis and results.  In this 
section we provide a brief description of the overall approach we have followed to 
provide perspective for these detailed sections. We have adopted a perspective under 
which the LMTS is regarded as a spatially distributed queuing system in which the 
demands are as described in Section 2 (batch arrivals of passengers with a constant 
headway between the arrivals of successive batches). In line, with typical queuing 
terminology, we shall refer henceforth to passengers as “customers” of the spatially 
distributed queuing system. The m parallel servers (the vehicle fleet) serve customers in 
groups of c or smaller, where c is the capacity of each vehicle. The service time for each 
group is equal to the travel time associated with a vehicle tour that begins at the 
station/depot, visits each of the c (or fewer) customer destinations and returns to the 
station/depot to pick up a new group.  

 

 
Figure 2 Customer destinations and vehicles routes of the Unit-Capacity, Multi-Vehicle LMP 

 
Because queuing systems with batch arrivals (like the arrivals of passengers at STA) 

are notoriously difficult to analyze, we resort to a two-step approach. In Step 1, we 
assume that  = 1, i.e., that the delivery vehicles have unit capacity.  Thus, in this case, 
service times consist simply of the duration of a round-trip between STA and one 
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passenger’s destination (see Figure 2), with the destination being randomly and uniformly 
distributed within the service area per our assumption (v) in Section 2.  In this way we 
obtain a   / / /∞  system in queuing theory notation, where:    indicates batch 
arrivals at constant (“Deterministic”) intervals with the number of arriving passengers in 
each batch described by random variable  ; G denotes the fact that the distribution of 
service times (i.e., the duration of the round trips between STA and customer destinations) 
is “general”; and   and ∞ indicate, respectively, the number of service vehicles and the 
fact that no a priori limit is placed on the number of customers waiting for pickup at STA.  

As no closed-form expressions are available for the fundamental quantities the 
performance of a   / / /∞ system, we then attempt to obtain expressions that would 
help us estimate performance by studying similar queuing systems, which are simpler to 
analyze mathematically.  In this way, and through a series of simplifications, we derive 
one lower bound and two upper bounds for the mean waiting time associated with   / / /∞  queues.  We then carry out an extensive series of simple simulation 
experiments and conclude that one of these three approximations (an upper bound) 
provides very good estimates of the performance of the system under a broad range of 
system design parameters.  We therefore adopt this approximate expression for studying 
the general vehicle capacity case in which c can take on any (usually small) integer value.  

 Step 2 examines this general case, in which service times are equal to the duration 
of delivery tours consisting of  (> 1) or fewer delivery stops, as shown in Figure 3.  To 

 

 

Figure 3: Vehicle routes of the General-Capacity, Multi-Vehicle LMP 
 

apply to the general capacity case the queuing expressions that were derived in Step 1, we 
need to compute in Step 2, the approximate length and the variance of the length of the 
vehicle tours shown in Figure 3.  We accomplish this by using arguments from 
geometrical probability and from the literature on the Traveling Salesman Problem.  We 
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obtain several such approximate expressions in this way and compare them with the 
results of another series of simple simulation experiments to select the expressions that fit 
best the observed expected values and variances of the vehicle tour lengths.  We then use 
these expressions, along with the queuing-based approximation derived in Step 1, to 
complete the process of estimating the performance of the LMTS for the general case of 
arbitrary fleet size and arbitrary vehicle capacity. 

Sections 4 and 5 provide only an outline of the (occasionally lengthy) derivations of 
the results contained therein. The reader is referred to a set of 20 Appendices for details.  

 

4. The Unit-Capacity, Multi-Vehicle LMP 

In this section we consider the analysis of the Unit-Capacity, Multi-Vehicle case, 
described in Section 3 as Step 1, in which  = 1, and m is an arbitrary positive integer. As 
already indicated above (Figure 2), the length of the vehicle trips in this case is equal to 
two times the distance between the rail station and a customer’s destination.  For the 
purpose of keeping relatively simple the various expressions derived, and without loss of 
generality, we shall assume that travel in the rectangular region of interest [Assumption 
(viii) in Section 2] is according to the right-angle metric, with directions of travel parallel 
to the sides of the rectangle.  A typical route, for serving a particular customer P is 
indicated through a dashed line in Figure 2.  Because we have also postulated 
[Assumption (x)] constant and unit travel speeds, the expressions for travel times in the 
region are identical with those derived for travel distances. 

The basic notation is summarized as follows: 

h = the constant headway between arrivals of trains at the station STA (and 
discharges of customers);   = a random variable denoting the number of LMTS customers (“batch size”) 
discharged after the arrival of a train at STA – with the sizes of successive batches being 
mutually independent and with  ( ) =  , and    (ξ) =     denoting, respectively, the 
expected value and variance of  ;  

S = a random variable denoting the service time of any random LMTS customer with  ( ) =   and variance    ( ); 

Note that the successive service times by any given vehicle in the fleet are 
independent and identically distributed. The traffic load (or utilization ratio) is given by   =   / ℎ. Note that  /  is the service rate of the LMTS, while  /ℎ is the rate of 
customer arrivals per unit of time.  Appendix 1 presents some background results that are 
useful in the analysis of the Unit-Capacity, Multi-Vehicle case. 
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4.1 A Lower Bound 

We are particularly interested in the expected waiting time, W, of LMTS customers 
until they board one of the m vehicles to be transported to their eventual destination.  
Determining this expected waiting time, as a function of the LMTS design parameters is 
a critical step toward developing the means to design LMTS satisfying certain level-of-
service requirements.  We begin by obtaining a lower bound for W.   

Since no exact analytical solution exists for the complicated   / / /∞  queuing 
model, we consider a modified system in which, instead of having batch arrivals with 
average size  ( ) at constant intervals (headway = h), we have a single arrival of a 
customer every ℎ/ ( ) units of time. This modification transforms the original   / / /
∞  system into a  / / /∞  queuing system. The latter is characterized by a shorter 
average waiting time, W, than the original   / / /∞  system since the arrivals of 
customers are deterministic and evenly distributed, while the total expected number of 
customers served by the two systems is the same.  However, no exact analytical solution 
exists for the  / / /∞ model either. Therefore, we consider instead a  / /1/∞ model, 
which has identical customer inter-arrival times with the  / / /∞ model, while its 
single server works m times faster than each of the servers of the m-server system. 
Following the “remaining work inequality” principle of multi-server queuing models in 
[9] and applying the approximation of   / /1/∞ given in [7] (see Appendix 1) we can 
then obtain (Appendix 3) a lower bound as follows:  ≥  ( ) ( ) (  ) + ℎ (  ) − 2ℎ  ( )− ℎ (  )2 ( )  ℎ−  ( ) ( )                                                        ⑴ 

when the size of customer arrival batches,  , is drawn from a General distribution and the 
customer service time, S, is also drawn from a General distribution. 

For the special case (Appendices 2 and 4) in which the size of customer arrival 
batches is a Poisson random variable with intensity   and the service region is a  ×   
square:  ≥ −7  ℎ+ 7 ℎ+ 7   12( ℎ−   )                                                                                                  ⑵ 
 

4.2 Two Upper Bounds 

We next turn to obtaining an upper bound for W in the original Unit-Capacity, Multi-
Vehicle   / / /∞ model. To do this, we pre-assign customers to different vehicles and 
construct a corresponding single-server queuing model    / /1/∞  for each vehicle, 
where N is the random variable indicating the number of customers from a single train 
assigned to the same vehicle.  

With such an assignment policy, service inefficiencies exist since a customer is 
required to wait for his or her assigned vehicle, even when other vehicles may be 
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available. Thus, the average waiting time in this case will be larger than the average 
waiting time in the original model and provides an upper bound. The customer flow is 
shown schematically in Figure 4 below. 

 

 

Figure 4 Customer flow in the pre-assignment policy 

 
The   / /1/∞  model is still difficult to work with. To obtain approximate 

expressions for W, we decompose the problem into two parts (Appendix 5).  First, the N 
customers in some batch who are assigned to the same vehicle are treated as a single 
“macro-customer” P.  This reduces the   / /1/∞ model to the more tractable  / /1/∞ 
model and allows us to obtain an upper bound for   , the expected waiting time until the 
first customer in P receives service. In a second step, we then compute the additional 
expected waiting time,   , that the i-th customer in P suffers due to being preceded for 
service by i-1 other customers in P. Thus, the expected waiting time of a customer P is 
given by  =   +   .  In Appendix 5 we show that:   ≤  ( )   ( ) +   ( )   ( )2(ℎ−  ( ) ( ))  

  =  ( )   ( ) +  ( )  ( )−  ( ) ( )2 ( )  

 Thus the upper bound we seek is:  ≤  ( )   ( ) +   ( )   ( )2(ℎ−  ( ) ( )) +  ( )   ( ) +  ( )  ( ) −  ( ) ( )2 ( )                     ⑶ 

The bound (3) is valid under general assumptions about the probability density 
functions of the batch size,  , and the service times, S.  Moreover, (3) has been derived 
without considering how exactly customers are assigned to vehicles. We analyze next 
two different policies for customer assignment to vehicles. Each of these policies will 
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provide different modified   / /1/∞ models with different  ( ) and    ( ), leading to 
different expressions for    and   , and, ultimately, different upper bounds for W. 

4.2.1 Randomized Assignment Policy  

One possible policy is to assign all the customers randomly (with equal probability 1/m) 
and independently to the m different vehicles, with every vehicle serving individually the 
stream assigned to it.  This is illustrated in Figure 5 below: 

 

 

Figure 5 Randomized Assignment Policy 

 
The model corresponding to the randomized assignment policy led (Appendix 6) to 

the following strict upper bound for the case of a General distribution of customer batch 
sizes and a general distribution of customer service times:  ≤  ℎ ( ) (  ) − ℎ ( ) ( ) +   (  )  ( )−   ( )  ( )2   ℎ−  ( ) ( )  ( )                                     (4) 

When the customer batch size is a Poisson random variable and the service region is 
a  ×   square, the strict upper bound (4) becomes (Appendix 7):  ≤ 7    + 6   ℎ− 6    12 ( ℎ−   )                                                                                           (5)  

An approximate upper bound for the case of Poisson customer batch size and a 
square service region can also be derived. This last bound was obtained (also in 
Appendix 7) using an approximate expression for the average waiting time of the   / /1/∞ queuing model given in [8]:  ≤ 7   12( ℎ−   ) ∙ exp  −4( ℎ−   )7   +   2                                                                    (6)  

4.2.2 Cyclic Assignment Policy  

Another possible policy is to assign customers in cyclic order to the vehicles: the first 
customer in the batch is assigned to Vehicle 1, the second to Vehicle 2, …, the (m+1)-th 
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to Vehicle 1 again, and so forth. No jockeying of customers, after being assigned to 
vehicles, is allowed. Figure 6 illustrates this policy, which requires assigning an 
“identification number” to each vehicle to distinguish among them. 

 

 

Figure 6: Cyclic Assignment Policy 

 
The model corresponding to the cyclic assignment policy led (Appendix 8) to the 

following strict upper bound for the General distributions case:  ≤ 4   ( ) (  ) − 4  ( )  ( ) + 4 ℎ ( ) (  ) +   ℎ ( )− 4  ℎ ( ) ( )8   ℎ−  ( ) ( )  ( )        (7)  

For Poisson batch sizes and a square service region, the bound (7) becomes 
(Appendix 9):  ≤ 14     + 12    ℎ− 12    + 12   ℎ− 12    ℎ+ 3   ℎ24  ( ℎ−   )                              (8)  

An approximate upper bound can also be obtained (Appendix 9) for the same case as 
(8):   

 ≤ (2 + 12)   + 3    24 ( ℎ−   ) ∙ exp  − 8( ℎ−   ) (2 + 12)  + 3    + 4   + 4  +    − 4   8                                                                                     (9) 

A special case of (9) is also of interest in some applications. This is the case in which  /  is large, i.e., the number of vehicles in the fleet is large relative to the rate at which 
customers arrive. This can be the situation during off-peak periods or when the vehicle 
fleet consists of a large pool of bicycles available for shared use.  In such cases (9) 
becomes (Appendix 10):    ≤ 7    − 6    12 ( ℎ−   ) ∙ exp [−4( ℎ−   )7  − 6  ]                                                                      (10) 
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The approximate upper bound (10) has the desirable property of becoming more 
accurate as   approaches 1. Since   =   / ℎ , a large  /  means a large   /ℎ  when   approaches 1. This corresponds to situations in which the service region is large and/or 
the train frequency is low.   

 

4.3 Numerical Experiments for the Unit-Capacity, Multi-Vehicle LMP 

To assess the performance of the many approximate expressions obtained in Sections 4.1 
and 4.2 under a broad range of conditions, a simple simulation of the Unit-Capacity, 
Multi-Vehicle LMP was carried out with a program written in java. We consider a square 
service region with geometry   /  =  /  = 2.5    = 150    , headway of  ℎ =10    = 600    , and Poisson-distributed batch sizes of  = 20, 40, 60, 80. We selected 
these parameters so that the system would make sense physically. The respective 
simulation results are shown in Figures 7, 8, 9, and 10. 

 

 

Figure 7: Simulation results and cyclic upper bounds of average waiting time when  = 20 

 

 

Figure 8: Simulation results and cyclic upper bounds of average waiting time when  = 40 
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Figure 9: Simulation results and cyclic upper bounds of average waiting time when  = 60 

 

 

Figure 10: Simulation results and cyclic upper bounds of average waiting time when  = 80. 
 

The figures plot the simulation results and our estimates for the average waiting time 
per customer W (in seconds) against the utilization ratio =   / ℎ . Since the simulated 
system has Poisson customer batch size and a square service region, and  /  is not large, 
only expressions (2), (5), (6), (8), and (9) from Sections 4.1 and 4.2 are applicable and 
considered here.  

Comparison with the simulation results led to two initial observations: first, the strict 
lower bound (2) is not useful, as it provides poor estimates of W, often including negative 
values; and, second, the strict randomized assignment upper bound (5) and the 
approximate randomized assignment upper bound (6) is also unreliable as it often 
generates very high estimates of delays. The values obtained from (5) and (6) have 
therefore been omitted from Figures 7-10, which only show the strict cyclic upper bound 
(8), the approximate cyclic upper bound (9) and the simulation results. 
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As can be seen in the figures, the strict cyclic upper bound, (8), is a consistently 
reliable upper bound for W, while the approximate cyclic upper bound, (9), provides a 
very good approximation for the entire range of parameter values explored, which span 
the full set of conditions under which the LMTS remains stable. In a practical system, it 
would be desirable to achieve values of 1 to 5 minutes, for the average waiting time until 
passengers to board a vehicle. Note from Figures 7-10 that for this range of values (60 to 
300 seconds) the difference between the approximate cyclic upper bound and the 
simulation results stays small in both absolute and percentage terms.  For example, when  = 20 (Figure 7), this difference never exceeds 30 seconds and 15% for values of W 
between 2 and 4 minutes. For a queuing system as analytically complicated as   / / /
∞ , expression (9) performs remarkably well.  

We also note that it is not surprising that (9), the approximate cyclic upper bound, 
performs much better than (6), the approximate randomized upper bound. This is because 
the customers are more evenly distributed among the vehicles under the cyclic 
assignment policy than under the randomized assignment policy and, consequently, the 
variance of the service times under the former policy is much smaller than under the 
latter for instances of practical interest.  

In conclusion, given the train frequency (batch inter-arrival times), customer arrival 
intensity (batch size), geometry of the service region (shape and size), distance metric 
(right-angle, Euclidean) and vehicle speed, we can use expressions based on the strict 
cyclic upper bound, (8) and the approximate cyclic upper bound, (9), to estimate LMTS 
system performance for any given number of unit-capacity vehicles. Section 4.4 will first 
demonstrate the robustness of (8) and (9) to mild changes in the assumptions under which 
they were obtained. In Section 5, we shall seek to extend our findings to the general case 
in which vehicle capacity can be greater than 1. 

 

4.4. Sensitivity Analysis: Unit-Capacity, Multi-Vehicle LMP 

In this section, we relax the assumptions concerning the shape of the service region and 
the continuity of the travel medium to derive expressions for W, analogous to (2), (5), (6), 
(8), and (9), for three specific cases: a rectangular service region; a diamond-shaped 
region; and a service region that includes a barrier to travel. We then repeat our 
simulation experiments to test the performance of the new expressions and conclude that 
the strict cyclic upper bound and the approximate cyclic upper bound continue to 
outperform the other bounds and to provide accurate approximations to W under a wide 
range of conditions.     

4.4.1 Rectangular Service Region ( =   , > 1) 
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The service region is now assumed to be a rectangle with length of a miles and width of b 
miles, as illustrated in Figure 11.  Travel is according to the right-angle metric in 
directions parallel to the sides of the rectangle. 

 

 

Figure 11: Rectangular service region 

 
The expressions for the five strict and approximate bounds for this case are derived in 

Appendix 11. For the simulation experiment, we considered two examples:  

(i)   /  = 3 min = 180 sec, /  = 2 min = 120 sec ; 

(ii)   /  = 4 min = 240 sec, /  = 2 min = 120 sec ;  

The headway h is set at 600 sec and the batch size of arriving customers at the train 
station is assumed to be Poisson-distributed with  = 20, 40, 60, 80.  

A typical instance of the results and comparisons for just one case (Example (i) with  = 20) is shown in Figure 12.  As in Figures 7-10, the theoretical estimates shown are 
limited to those obtained through the best performing expressions, namely the strict 
cyclic upper bound and the approximate cyclic upper bound. 

 

 

Figure 12: Simulation results and cyclic upper bounds when  = 180   ,  = 120   , = 20  
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For Example (i), i.e., for k = 1.5, and for values of the average waiting time of the 
order of 1 to 4 minutes, the percent difference between the approximate cyclic upper 
bound and the simulation results was of the order of 10-25% for the entire range of values 
of    (= 20, 40, 60, 80). For Example (ii), i.e., for k = 2,  = 240   ,  = 120   , this 
increased to 20-35%.  Thus, as k becomes larger and the service region more elongated, 
the approximate cyclic upper bound becomes less accurate. This is because this 
approximate bound is sensitive to the variance of the service times which, in turn, 
increases as the region becomes more elongated and resembles a rectangular strip. The 
bound’s accuracy is, however, relatively insensitive to the customer demand intensity  . 

4.4.2 Diamond Service Region with Side of Length b 

In the next sensitivity test, the service region is assumed to be a perfect four-sided 
diamond with side equal to b miles, as illustrated in Figure 13. The theoretical results for 
this case are derived in Appendix 12.  

 

Side=b miles

Rail Station

Passenger 
destination

 

Figure 13: Four-sided diamond service region 

 
In the simulation and numerical comparisons we considered a service region such that   /  =  /  = 2.5 min = 150 sec, with a headway of ℎ = 10 min = 600 sec, and Poisson-

distributed customer batch sizes with  = 20, 40, 60, 80. Comparisons with the simulation 
results, when  = 20, are shown in Figure 14. 
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Figure 14: Simulation results and cyclic upper bounds of diamond service region when  =150   ,  = 20  
 

For average waiting times of the order of 1 to 4 minutes, the percent difference 
between the approximate cyclic upper bound and the simulation results was of the order 
of 10-20%.  The accuracy of the bound is insensitive to the customer demand intensity  . 

4.4.3 Rectangular Service Region with Barrier 

The service region is next assumed to be rectangular service region that contains an 
impenetrable barrier to travel. The geometry of the barrier is shown in Figure 15. 
Appendix 13 contains the theoretical derivations for this case. 

 

 

Figure 15: Rectangle service region with barrier inside 

 
In the simulation and numerical comparisons we considered a service region such that   /  = 2.5    = 150    ,  /  = 2 min = 120 sec ,  /  = 0.625 min = 37.5 sec ,  /  = 0.5 min = 30 sec ,  /  = 0.25 min = 15 sec, with headway of  ℎ = 10 min = 600 sec, 

and Poisson-distributed passenger batch sizes of  = 20, 40, 60, 80. The simulation results 
when  = 20 are shown in Figures 16. 
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Figure 16: Simulation results and cyclic upper bounds, rectangle service region with barrier, 
when  = 20. 

 
For average waiting times of the order of 1 to 4 minutes, the percent difference 

between the approximate cyclic upper bound and the simulation results was again of the 
order of 10-20%, and the accuracy of the bound was insensitive to the customer demand 
intensity  . 

Overall, the sensitivity analysis of this section, suggests that the strict cyclic upper 
bound and the approximate cyclic upper bound remain valid and provide good estimates 
of performance for a wide range of customer demand rates and for differently shaped 
compact and convex service regions. 

 

5.  General-Capacity, Multi-Vehicle LMP: Upper Bounds and Approximations 

In this section we consider the General-Capacity, Multi-Vehicle LMP, in which both the 
vehicle capacity, c, and the number of vehicles, m, are arbitrary positive integers. The 
vehicles will now travel along more complicated routes than in the  = 1 case to deliver 
customers to their destinations. In practice, one would expect the vehicle capacity to be a 
small number of the order of 4 to 10 customers – unless the LMTS fleet consists of bus-
size vehicles, in which case the methodologies laid out in this paper are less applicable.  

As explained in Section 3, the General-Capacity, Multi-Vehicle LMTS will be 
viewed as a spatially distributed queuing system in which the service times are equal to 
the amount of time it takes to complete a customer delivery tour and return to the train 
station – see also Figure 3. Vehicle routing and path choice issues must therefore be 
addressed in this connection.  This is done in this section, which also summarizes the 
bounds and approximations we have obtained.    

The approach to be described consists of the following three steps: (i) customers are 
partitioned into clusters with the size of each cluster no larger than the vehicle capacity, c; 
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(ii) each cluster is assigned to a vehicle and a delivery route is designed for each vehicle; 
(iii) using the service times (i.e., tour durations) computed in the previous step, the 
(appropriately modified) queuing results from the Unit-Capacity model of Section 4 are 
then applied to estimate system performance. The performance measures we shall 
concentrate on include average waiting time until boarding a vehicle and average time 
until delivery to destination, i.e., the sum of the time spent waiting to board a vehicle and 
of the time spent riding until delivery. 

 

5.1 Approximating the Expectation and Variance of Tour Lengths 

Since we are looking for widely applicable approximations and bounds on system 
performance and not for exact expressions, we have selected a “greedy” partitioning 
strategy for assigning customers to vehicles. Specifically, we partition customers in each 
arriving batch simply according to their order of arrival at the station.  In other words, 
Vehicle 1 serves customers 1, 2,…, c in a single tour, Vehicle 2 serves customers c+1, 
c+2,…, 2c in a single tour, and so on. If we consider the c customers served by one 
vehicle as a single request for service, the number of service requests after the arrival of 
each train is given by  / , when the size of an arriving batch is  . 

For the routing step, we also use a “greedy routing strategy” – which, however, is 
refined subsequently, in the manner described later in this section. Upon leaving the rail 
station with c customers on board, the vehicle will first deliver the customer whose 
destination is closest to the station, denoted as Point A in Figure 17, then the customer 
whose destination is closest to point A (i.e., Point B in Figure 17) and so forth.  Finally, 
after delivering the last customer (Point F) the vehicle will return to the rail station. Thus, 
we construct a vehicle tour using essentially a “Nearest Neighbor” (NN) heuristic 
approach.  The reason for following this sub-optimal routing strategy is that it is 
mathematically feasible to compute approximately both the expected length and the 
variance of the length of a NN tour that delivers c customers and returns to the rail station. 
Both of these quantities (expected length and variance of the length) are necessary if one 
is to apply the queuing expressions derived in Section 4.   

A better alternative would have been to find the Hamiltonian tour, i.e., the optimal 
“Traveling Salesman” tour (TST), through the c + 1 points (customer destinations plus 
rail station) to be visited. However, we are not aware of any simple explicit expressions 
for the variance of the length of TST tours. We have therefore opted for the NN-based 
routing approach.  We have, however, attempted to correct the expressions for “expected 
length” and “variance of length” derived through the NN-based approach, by comparing 
these with corresponding estimates (expectation and variance) obtained through many 
numerical experiments. 



 21 

 

 

Figure 17: Greedy routing strategy for the General-Capacity, Multi-Vehicle LMP 

 
The tour shown in Figure 17 consists of one First Leg, c-1 Middle Legs, and one Last 

Leg. The expected length of the entire route is then given by   (  ) =           +        ,   +⋯+        , +                                                        (11) 
where the notation            and           denotes, respectively, the expected length of the 
first and last legs of the tour, while        ,   denotes the expected distance between the 
destination of the last customer delivered and the nearest destination of k remaining 
customers still to be delivered. For example,        ,    denotes the distance between the 
first of the customers delivered (i.e., the nearest one to the rail station) and the nearest 
destination among the destinations of the remaining c-1 customers still to be delivered.   

The variance of the length of the entire service route can be similarly approximated as     =             +          ,   +⋯+          , +            ,                         (12) 

where     denotes a variance and the subscripts can be interpreted in exactly the same 
way as the subscripts of the expectations, s, above.  Finally, the second moment of the 
length of the entire service tour is given by    =  (   ) =     + ( (  )) . 

The above estimates of the moments and variance of the service tour can be converted 
into time units, if one is given information about the speed of travel in the region of 
interest.  To simplify this conversion, we shall continue to assume here that travel speed 
is constant throughout the region.  

We have derived approximate expressions for  (  ),      , and     assuming a 
right-angle travel metric and a rectangular service region of size  ×  . With the NN 
(“greedy”) routing strategy, the length of the first leg of the delivery tour is the distance 
from the rail station to the nearest of c random points (c random customer destinations), 
while the last leg is the distance from another (approximately) random point (the 
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destination of the final customer served in the tour) back to the rail station. It is not 
difficult to derive the expectation and variance of these distances as shown in Appendices 
14 and 15, respectively.  

The length of any middle leg is equal to the distance between a random point (the 
destination of the most recently delivered customer) and the nearest destination of anyone 
of the customers who still remain on the vehicle. Computing the expected value and 
variance of this distance is a far more complicated and tedious problem due to the effects 
of the region’s boundaries. We pursued two different approaches for approximating these 
quantities using: (a) a Crofton Approximation (Appendix 16) that computes the expected 
distance and variance of the distance between a random point and the closest of N (N=1, 
2, 3,…, c-1) other random points on a linear segment using Crofton’s Method[7] and then 
treats the distances in the horizontal and vertical directions, as if they are independent; 
and (b) a Center Approximation (Appendix 17) that relies on computing the expected 
value and variance of the distance between the center of the rectangular service region 
and the closest of N (N=1, 2, 3,…, c-1) random points in the rectangle.  

We then tested the analytical expressions derived through (a) and (b) by means of an 
extensive series of numerical experiments, described in Appendix 18.  The experiments 
indicated that the expressions performed equally well, but we have chosen to use the 
Crofton Approximation henceforth because of its simpler form. We have also used a 
linear regression model to correct the Crofton and Center expressions, so they fit better 
with the numerical observations. It was found that, again, both of the corrected 
expressions perform roughly equally and will use henceforth the Crofton Approximation 
with the regression correction because of its simpler form.  

In conclusion, our best estimates for the first and second moments of the length of a 
middle leg of the delivery tour, given that N customers remain to be delivered, are given 
by the following expressions:        , ≈   ,              = ( + 3)( +  )2( + 1)( + 2)                                                              (13) 

        , ≈    ,              = ( + 7)(  +   )2( + 1)( + 2)( + 3) + 2(  + 32( + 1)( + 2))     (14) 

After correcting these expressions through regression, they become:        , ≈   ,              ≈ (1.13047 + 0.099945 ) ∙ ( + 3)( +  )2( + 1)( + 2)                     (15)          , ≈    ,              ≈ (0.525751 + 0.372122 ) ∙ ( ( + 7)(  +   )2( + 1)( + 2)( + 3)+ 2   + 32( + 1)( + 2)                                                                          (16) 
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The detailed mathematical derivation of (13) and (14) is in Appendix 16 and of (15) 
and (16) in Appendix 18.  

 

5.2 Completion of the Queuing Model 

In this subsection, we incorporate the results of the above Section 5.1 into the previously 
(Section 4) derived results for the Unit-Capacity queuing model to obtain approximations 
of system performance for the General ( > 1) Capacity case.   Specifically, we use the 
expressions for the length and duration of customer delivery tours when  > 1 , to 
estimate the service times for the General Capacity model and use these estimates in the 
various expressions for the expected waiting time until boarding a vehicle that were 
obtained in Section 4.2.2 under the cyclic assignment policy.  As was demonstrated in 
Section 4.3, these latter expressions approximate best the observed (through simulation) 
system performance.  

For the case of a General distribution for the size of customer batches and of General 
service times the strict cyclic upper bound [cf. expression (7)] and the approximate cyclic 
upper bound [cf. expression (9)] for the waiting time until boarding a vehicle (see 
Appendix 19 for details) is then given by:         ,       ≤ 4   (  )      − 4  (  )  (  ) + 4 ℎ (  )      +   ℎ (  ) − 4  ℎ (  ) (  )8   ℎ−  (  ) (  )  (  )  

                                                                                                                                          (17) 

      ,      ≈      +       (  )2(1 −  ) ∙ exp  −2(1 −  )(1−    ) 3     +       
+  (  ) ∙  4      +  − 4  (  ) 8  (  )                                                      (18) 

When the size of customer batches has a Poisson distribution, and the duration of the 
delivery service tour is approximated through Crofton’s method (without using the 
regression correction), the various terms of (17) and (18) above take the following values:  (  ) ≈  ( ) ,    (  ) ≈ 4   ( ) +   4  ,    = 0,  =  (  ) (  ) ℎ , 
  (  ) =  (  ) (  ) ,     = 4  (  )   (  ) + 4  (  )   (  ) +   (  )  4  (  )  (  ) ,  
Hypergeometric2F1 =   ( , ;  ;  ) =  ( ) ( ) ( ) ⁄    !⁄ 
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 (  ) = 2     (1 + (1 + 2 )Hypergeometric2F1[1,−1 −  , 12 ,−1])1 + 3 + 2  + ( + 3) ( + 1)( + 2)   
   +  2 

      = 2      (1 + 2 + 2    )1 + 3 + 2  − 2       (1 + (1 + 2 )Hypergeometric2F1[1,−1 −  , 12 ,−1]) (1 + 3 + 2  ) +    + 11  + 19 + 12( + 1) ( + 2) ( + 3)     
   + 7  24  

Note that in (17) and (18) we have used the notation       ,      and       ,       for 
the expected waiting time until a customer will board a vehicle, while in (7) and (9) we 
used the notation W in (7) and (9) for the same quantity.  This is because we also want to 
introduce here another quantity,        , which is defined as the expected time a 
customer will spend riding on the vehicle before being delivered to his destination.   
Considering the riding component of the trip, the total expected time from the instant a 
customer arrives at the rail station until she is delivered at her destination is given by           =       +         

where 

       = 2     (1 + (1 + 2 )Hypergeometric2F1[1,−1−  , 12 ,−1])1 + 3 + 2  +  − 1 + 1  

as shown in Appendix 19. 
 

5.3 Simulation and Comparisons for the General-Capacity, Multi-Vehicle LMP 

To assess the validity of the expressions developed in Section 5.2, a simple simulation of 
a General-Capacity, Multi-Vehicle LMTS was carried out with a program written in java. 
We consider a square service district with geometry  /  =  /  = 2.5    = 150    , 
headway between train arrivals of ℎ = 10    = 600    , vehicle capacity c = 3, 5 or 9 
and customer arrivals with batch size described by a Poisson distribution with   = 40, 80 
and 120. These parameters were selected so that the system would make sense physically. 
Near-optimal vehicle tours were generated by using a Traveling Salesman algorithm. 
Specifically, the simulation generated sets of c points, randomly and independently 
distributed in the square according to a uniform distribution, and a Traveling Salesman 
tour through these points was drawn through an algorithm that is known to generate near-
optimal solutions. The algorithm implements a tour-improvement heuristic that begins 
with an initial solution and then improves that solution through arc exchanges (“2-
exchange” heuristic) and through changes in the sequencing of the nodes in the tour 
(“node insertion” heuristic).  More details are provided in Appendix 20 that describes the 
simulation experiments.   
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Figures 18 through 22 present a sample of comparisons between the simulation 
results and the analytical approximations of Section 5.2 for the following respective cases:  = 3,  = 40;   = 3, = 80;   = 3, = 120;   = 5, = 80; and  = 9, = 120. 

 

 

Figure 18 Simulation and analytical results when  = 3 and  = 40 

 

 Figure 19 Simulation and analytical results when  = 3 and  = 80 

 

 Figure 20 Simulation and analytical results when  = 3 and  = 120 
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 Figure 21 Simulation and analytical results when  = 5 and  = 80 

 

 Figure 22 Simulation and analytical results when  = 9 and  = 120 

 
The horizontal axis in Figures 18-22 shows the utilization ratio  =  (  ) (  )/ ℎ, 

while the vertical axis shows the expected waiting time until boarding a vehicle and the 
expected total time spent between arrival at the station and delivery at customer’s 
destination. A comparison of the simulation results with the estimates generated through 
the analytical expressions of Section 5.2 indicated that the expressions that do not include 
a correction for the length of delivery tours (see (13) and (14)) actually perform better 
than the expressions that include the correction (see (15) and (16)). The explanation for 
this seemingly surprising observation lies in the fact that, in the absence of the correction, 
(13) and (14) will underestimate the expected service time (= duration of delivery tour 
and its second moment).  This compensates for and balances out other parts of the 
analysis that overestimate the service time and leads to a more accurate overall 
approximation. Following our practice of showing only the best-performing 
approximations, Figures 18 – 22 therefore show only the estimates obtained through the 
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strict cyclic upper bound (expression (17)) and the approximate cyclic upper bound 
(expression 18) that do not include a correction term.  

When it comes to the expected waiting time until boarding a vehicle, both the strict 
cyclic upper bound and the approximate cyclic upper bound perform very well for small 
vehicle size. For instance, when  = 3 and  = 5 and customer arrival intensity of 40, 80, 
and 120, the difference between the simulated average time until boarding and the 
analytical expression is of the order of 15% or less for values between 1.5 and 4 minutes, 
which are the most reasonable waiting time to aim for in practice. Even when the average 
waiting time is smaller the difference typically stays below 25%, or less than 20 seconds. 

As vehicle size increases, the accuracy of the approximation of expected waiting time 
until boarding declines. The reason is that, when the capacity of the vehicles is large, the 
performance of the system becomes increasingly unstable: for example, a change of even 
1 in the number of available vehicles, from some value m to m+1, may result in a system 
transition from being nearly-saturated to being underutilized. 

Turning to the estimation of expected total time until delivery, the analytical 
expressions work well for both small and large vehicles and for the broad range of 
customer arrival intensities (  = 40, 80, and 120) examined. This can be seen in all the 
Figures 18 – 22. The approximation accuracy decreases somewhat as vehicle capacity 
gets larger, but is still good (difference less than 30% for reasonable values of total time 
to delivery even when  = 9). 

 
6.  Conclusion 

This paper has developed a set of fully analytical expressions to support the approximate 
estimation of the performance of a quite general version of a Last-Mile Transportation 
System (LMTS). Given a lengthy list of inputs about the system’s characteristics 
(headways between arrivals of trains at the rail station, size of “batches” of customers on 
each train, number of vehicles in the service fleet, capacity of each vehicle, dimensions 
and travel-related properties of the urban district served), the expressions we have 
developed estimate the expected waiting time until a customer can board a vehicle, and 
the expected time between arrival at the rail station and delivery to the customer’s 
destination.  A number of simple simulation experiments suggest that the best-performing 
of the expressions we have developed approximate remarkably well the expected 
performance of LMTS under a broad range of conditions typical of what one may 
encounter in practice. 

On the methodological side, the principal contribution of this research is the 
development of several alternative approaches for bounding and approximating the 
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performance of a very difficult type of queuing system involving batch arrivals and 
requiring the simultaneous consideration of routing and queuing issues and the use of 
geometrical probability arguments. On the practical side, we believe that the analytical 
expressions we have developed can be very useful in designing LMTS, specifically in 
determining resource requirements for these systems, such as how many vehicles would 
be necessary to achieve a specified level of service and how many kilometers per day 
these vehicles would travel. 

Future work will focus on improving the approximation accuracy for General-
Capacity, Multi-Vehicle LMTS, by using a more sophisticated demand clustering and 
partitioning strategy and by expanding the range of the simulation inputs so that a broader 
range of conditions can be observed. A second area is to develop a simple set of unified 
guidelines for LMTS design and operation and apply these guidelines to the planning of a 
small actual experimental system, possibly to be implemented in a part of Singapore.  
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