
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

2-2017 

CLCMiner: Detecting cross-language clones without CLCMiner: Detecting cross-language clones without 

intermediates intermediates 

Xiao CHENG 
Singapore Management University, xcheng@smu.edu.sg 

Zhiming PENG 

Lingxiao JIANG 
Singapore Management University, lxjiang@smu.edu.sg 

Hao ZHONG 

Haibo YU 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Software Engineering Commons 

Citation Citation 
CHENG, Xiao; PENG, Zhiming; JIANG, Lingxiao; ZHONG, Hao; YU, Haibo; and ZHAO, Jianjun. CLCMiner: 
Detecting cross-language clones without intermediates. (2017). IEICE Transactions on Information and 
Systems. E100-D, (2), 273-284. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3644 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Xiao CHENG, Zhiming PENG, Lingxiao JIANG, Hao ZHONG, Haibo YU, and Jianjun ZHAO 

This journal article is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/3644 

https://ink.library.smu.edu.sg/sis_research/3644


IEICE TRANS. INF. & SYST., VOL.Exx–D, NO.xx XXXX 200x
1

PAPER
CLCMiner: Detecting Cross-Language Clones without
Intermediates∗

Xiao CHENG†a), Zhiming PENG††, Lingxiao JIANG††b), Hao ZHONG†, Haibo YU†††, Nonmembers,
and Jianjun ZHAO††††, Member

SUMMARY The proliferation of diverse kinds of programming lan-
guages and platforms makes it a common need to have the same function-
ality implemented in different languages for different platforms, such as
Java for Android applications and C# for Windows phone applications. Al-
though versions of code written in different languages appear syntactically
quite different from each other, they are intended to implement the same
software and typically contain many code snippets that implement similar
functionalities, which we call cross-language clones. When the version of
code in one language evolves according to changing functionality require-
ments and/or bug fixes, its cross-language clones may also need be changed
to maintain consistent implementations for the same functionality. Thus, it
is needed to have automated ways to locate and track cross-language clones
within the evolving software. In the literature, approaches for detecting
cross-language clones are only for languages that share a common interme-
diate language (such as the .NET language family) because they are built
on techniques for detecting single-language clones. To extend the capabil-
ity of cross-language clone detection to more diverse kinds of languages,
we propose a novel automated approach, CLCMiner, without the need of
an intermediate language. It mines such clones from revision histories,
based on our assumption that revisions to different versions of code im-
plemented in different languages may naturally reflect how programmers
change cross-language clones in practice, and that similarities among the
revisions (referred to as clones in diffs or diff clones) may indicate actual
similar code. We have implemented a prototype and applied it to ten open
source projects implementations in both Java and C#. The reported clones
that occur in revision histories are of high precisions (89% on average) and
recalls (95% on average). Compared with token-based code clone detection
tools that can treat code as plain texts, our tool can detect significantly more
cross-language clones. All the evaluation results demonstrate the feasibil-
ity of revision-history based techniques for detecting cross-language clones
without intermediates and point to promising future work.
key words: cross-language clone, code clone, revision, diff, similarity

1. Introduction

With diverse programming languages available on different
platforms catering to varieties of users, it is a common need
for the same functionality and even a whole software project
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to be implemented in different programming languages. A
sample case is the availability of a mobile application that
is implemented in three languages, Java for Android, C#
for Windows phones and Objective-C for iPhones. Such re-
implementations of a software project in different languages
are also common for desktop applications. For example,
Antlr [1], a parser generator, has versions implemented in
Java, C#, JavaScript and Python. For another example,
Lucene [2], a text search engine, has implementations in
Java and C#. When implementing or changing a functional-
ity in one version of such projects, it is naturally needed to
change another version in a different language to maintain
consistencies. It is also reasonable, in order to save cod-
ing efforts, for programmers to copy their modifications for
one version into another version and adapt the copies to fit
the different language. Even when the syntactic structures of
two languages differ a lot, there should still be pieces of code
in different languages having similar semantics for a similar
functionality. As a result, projects in different languages
can have similar code snippets in different programming
languages too. In the literature [3], such code snippets are
referred to as cross-language code clones.

Code clones may be considered harmful and remov-
able [4] or useful and should be kept [5] depending on their
usages. For cross-language clones, we take the view that
they are often inevitable, and cannot be removed, based on
our experiences and diverse landscape of available program-
ming languages and platforms. Instead of removing clones,
we thus need automated techniques to help programmers lo-
cate and maintain cross-language clones to save costs and
improve developer productivity. For example, a developer
D1 develops a cross-language project at the beginning, and
later another developer D2, who is not so familiar with the
source code takes over the project. WhenD2modifies a code
snippet in one programming language, all relevant code snip-
pets in other languages may require similar modifications to
maintain consistencies. In particular, when a bug is found
and fixed in one programming language, D2 needs to check
versions in other programming languages to fix similar bugs
too. It would be rather tedious and error-prone for D2 to lo-
cate such cross-language clones manually, especially when
their programming languages are quite different.

Many approaches have been proposed for detecting
clones within one programming language [6–9]. A number
of researchers [3, 10] have started to detect cross-language
code clones too. However, their approaches are limited to

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
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1 @@ -129,11 +129,11 @@ public class MachineProbe {
2 if (!t.isEpsilon() && !t.label.getSet().and(label).isNil() &&

next.contains(t.target)) {
3 if (p.associatedASTNode != null) {
4 - antlr.Token oldtoken = p.associatedASTNode.token;
5 + Token oldtoken = p.associatedASTNode.token;
6 CommonToken token = new CommonToken(oldtoken.getType(), oldtoken.getText());
7 token.setLine(oldtoken.getLine());
8 - token.setColumn(oldtoken.getColumn());
9 + token.setCharPositionInLine(oldtoken.getCharPositionInLine());
10 tokens.add(token);
11 break nfaConfigLoop; // found path, move to next
12 // NFAState set
13 ……

(a) MachineProbe.java

1 @@ -143,11 +148,11 @@ namespace Antlr3.Analysis
2 {
3 IToken oldtoken = p.associatedASTNode.Token;
4 CommonToken token = new CommonToken(oldtoken.Type, oldtoken.Text);
5 - token.Line = (oldtoken.Line);
6 - token.CharPositionInLine = (oldtoken.CharPositionInLine);
7 + token.Line = oldtoken.Line;
8 + token.CharPositionInLine = oldtoken.CharPositionInLine;
9 tokens.Add(token);
10 - goto endNfaConfigLoop; // found path, move to next
11 - // NFAState set
12 + // found path, move to next NFAState set
13 + goto endNfaConfigLoop;
14 }
15 ……

(b) MachineProbe.cs
Fig. 1 A Pair of Matched Diffs

detect clones in the .NET language family that share a com-
mon intermediate language. In practice, many projects are
implemented in other programming languages that may not
be addressed by the existing approaches. Without a common
intermediate language, we need to overcome the following
challenges to detect cross-language clones:

Challenge 1. For different languages that do not share
a common intermediate language, it is no longer feasible to
reduce source code to an intermediate language and detect
similar code based on the intermediates. We need to find a
new way to represent code so that the similarity among code
snippets can be measured.

Challenge 2. For different programming languages that
have different grammars and APIs, it is much less likely to
measure code similarity through syntactical structures, since
evenwhen code snippets in different programming languages
implement the same functionality, their syntactical structures
can be quite different. We need to find a code similarity
measure that can be applied to code in different languages.

In short, we need design a language-agnostic way to
represent code and measure code similarity for detecting
clones across languages. In this paper, we propose a new
approach, named CLCMiner, that can detect cross-language
clones without intermediate languages. CLCMiner works
by comparing revision histories recorded as diffs in software
repositories. Here, diff refers the change-log tool widely
used in Version Control Systems (VCS) such as Git and SVN
to identify the differences between files; a diff also refers to
the differences produced by the diff tool.

The key assumption for our approach is that in multi-
language projects, versions in different languages can have
similar diffs since developers may need to change all ver-
sions in similar ways to implement the same functionalities
in the versions. Also, when diffs are relatively small, the
syntactic differences among diffsmay not be that significant;
instead, lexical appearances, such as identifier names, may
give more hints whether two code snippets are implement-
ing similar functionalities. Based on these intuitions, our
approach detects cross-language clones by comparing the
similarity among pieces of diffs in different languages and
aligning each diff with the most similar one. We call this
process diff matching. As a diff contains both the changed
lines of code and their surrounding code, matched diffsmake

it easy to determine whether the involved lines are cross-
language clones.

This paper makes the following contributions:
• To the best of our knowledge, we propose the first
approach that detects cross-language clones for pro-
gramming languages that do not have an intermediate
language. Our approach is based on comparing code
change histories, and thus reduces cross-language clone
detection into a diff matching problem.

• We conduct an evaluation on 10 open source projects
that have versions implemented in both Java and C#.
Our results show that our approach achieves a high
precision and recall. For the 10 projects, the average
precision is 89.1% and the average recall is 95.0%

• To improve our previous work [11], this paper intro-
duces a sliding window into our diff matching algorithm
and has increased the precisions and recalls greatly.

• We further demonstrate the capability of CLCMiner for
detecting significantly more cross-language clones by
comparing it with token-based clone detection tools,
CCFinder [7] and ConQAT [9], because those tools
can treat code in different languages as plain texts and
try to detect clones in plain texts.

Different from other clone detection techniques that aim
to find all clones in a set of code, CLCMiner is designed to
detect only clones in code that has ever been changed in the
revision history (which are referred to as diff clones in this
paper) because CLCMiner technically detects clones based
on the diff s. Such clones may naturally overlap with each
other or disappear along the project history in its latest ver-
sion (Sections 4 and 5 will provide more statistics about
diff clones). Despite the difference, detected clones in code
change history can still help maintainers to understand the
correspondence between code in different programming lan-
guages and facilitate many software engineering tasks that
involve changing code clones, such as tracking and studying
clone genealogies, refactoring code, detecting potential bugs
from consistent and inconsistent clone changes [12–15].

The rest of this paper is organized as follows: Section 2
gives an example to illustrate the whole picture of our new
idea. Section 3 presents the detail of our approach. Section 4
evaluates our approach. Section 5 discusses related issues.
Section 6 presents related work. Section 7 concludes.
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Fig. 2 Approach Overview

2. An Example

An example of two matched diffs in Java and C# code snip-
pets is shown in Figure 1. The matched diff pair indicates a
cross-language clone which has a similar functionality. The
diff on the left-hand side records two lines of changes in
an if-block in Java class MachineProbe, while the one
on the right records four lines of changes in a block in C#
class MachineProbe. This example is used to illustrate the
problem and how our approach works. It is also used in the
later part of the paper to explain the algorithm details.

In the example, both of the code snippets in the diffs in-
tend to set the fields (i.e., line and charPositionInLine)
of the object pointed to by the reference token. The Java
code achieves this through invoking the object’s methods
(i.e., setLine() and setCharPositionInLine()), while
the C# code achieves this through assigning them directly.
In addition, the Java jumps out of the if-block through a
break statement, while the C# code uses a goto statement.

Our approach is able to detect cross-language clones
from such diffs in Figure 1, since it reduces cross-language
clone detection to a diff matching problem. It extracts all
the diffs from the project (in both Java and C#), and matches
each diff in Java code to a diff in C# code according to
the filename without extension (e.g., MachineProbe) and
the vocabulary similarity (e.g., the tokens of the identifier
names and the words). The detailed algorithm to match the
diffs will be presented in Section 3.

3. Approach and Implementation

The similar functionality implemented in different program-
ming languages may diverge in the syntax, but the code
snippet in one language (e.g, Java) can be used as a refer-
ence for implementation in another language (e.g., C#). As a
result, similar variable or method names can be used in such
cases. To detect cross-language clones, CLCMiner adopts
Natural Language Precessing (NLP) techniques to calculate
the similarity among pieces of diffs in different programming
languages and selects the most similar one for each diff as
a pair of matched diffs. Each pair of matched diffs refers
to a pair of potential clones. Finally, CLCMiner ranks the
matched pairs of diffs according to their diff similarity and
reports top ones as cross-language clones.

Figure 2 shows the overview of CLCMiner. Each rect-
angle in blue represents a processing step, and each rounded
rectangle in red represents an entity of each step. The in-
put of CLCMiner is git logs, and its output is a ranked list

Table 1 Attributes of Example Diffs
FN MachineProbe.java MachineProbe.cs
CID 7288ec. . . 36ed66 e589c6. . . 3b1d56
CA Sharwell Sharwell
CD Mon Mar 28 15:33:44 2011 -0800 Tue May 3 20:16:15 2011 -0800

CM
Convert all Tool grammars to ANTLR v3.
The only remaining dependency on v2 is the
StringTemplate 3.2’s use of the v2 runtime

(C# 3) Code cleanup

TS

if t is epsilon t label get set and label is
nil next contains t target if p associated ast
node null antlr token oldtoken p associated
ast node token token oldtoken p associated
ast node token common token token new
common token oldtoken get type oldtoken get
text token set line oldtoken get line token set
column oldtoken get column token set char
position in line oldtoken get char position in
line tokens add token break nfa config loop

i token oldtoken p associated ast
node token common token token
new common token oldtoken type
oldtoken text token line oldtoken
line token char position in line old-
token char position in line token line
oldtoken line token char position in
line oldtoken char position in line
tokens add token goto end nfa con-
fig loop goto end nfa config loop

of detected potential cross-language clones. The approach
includes four main steps:
1. LogParsing. This step extracts diffs and their attributes

from revision logs.
2. Normalizing. This step normalizes diffs and prepares

for the comparison in the next step.
3. Diff Matching. This step matches diffs in different

languages by comparing their distance. For each diff,
its matched one is the nearest one.

4. Ranking & Reporting. This step ranks matched diffs
based on similarity and reports cross-language clones.

3.1 Log Parsing

In a Version Control System (VCS), repository logs record
the evolution history information. For example, the structure
of git logs is organized as follows: a git log consists of several
commits; each commit is related to one or more files; each
file is related to one or more diffs; each diff records one or
more change hunks that occur in a code fragment [16].

Log parsing is a preparation process to extract useful
information from repository logs. CLCMiner parses a repos-
itory log into a list of diffs and attaches each diff with a set
of attributes, including commit date (CD), commit author
(CA), commit ID (CID), filename (FN), and commit message
(CM). For example, Table 1 lists the attributes of the diffs in
Figure 1. Some attributes (e.g., FN) are useful for matching
diffs, and others (e.g., CID) help to uniquely locate the code.

3.2 Normalizing

Normalizing is a process to remove uninteresting contents
from the diffs and transform the rest into normalized com-
parison units. CLCMiner chooses the token streams of the
diffs as the comparison unit, and normalizes the diffs into
token streams as follows:
1. Removing Comments. To relieve the impact of the

comments in natural language, CLCMiner first removes
the comments from the code snippets in the diffs.

2. Lexing. CLCMiner lexes the code snippets in the diffs
without comments into a token stream.

3. Removing Punctuations. Punctuations and numbers
are removed from the token stream, as they often do not
indicate significant semantics.
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4. PostProcessing. CamelCaseTokens andtokens_with_
underscores are split by uppercase letters and the un-
derscore to reduce differences between programming
styles. At last, all letters are transformed to lowercase.

Row “TS" in Table 1 shows the token streams of the
diffs in Figure 1. Such token streams will be compared with
each other to detect clones.

3.3 Diff Matching

Diff matching is a process to align a diff in a language (e.g.,
Java) to a diff in the other language (e.g., C#), according
to their similarity. In our approach, we define a distance
between diffs to measure their similarity.

3.3.1 Distance between Token Streams

Since the distance between diffs is based on the distance
between their token streams, we first define the distance
between token streams.

CLCMiner adoptsBag ofWords (BOW) [17], a text rep-
resentation technique widely used in NLP, which represents
a piece of text as a bag of its words disregarding gram-
mar and the ordering of words, to represent token streams
as characteristic vectors. Each dimension of the character-
istic vector denotes the number of a specific token in the
token stream. CLCMiner defines the distance between two
token streams through comparing the characteristic vectors.
For two vectors,Vi (vi1, vi2, . . . , vin ) andVj (v j1, v j2, . . . , v jn ),
their distance is defined as follows:

Dt s (Vi, Vj ) =

∑n
k=1

���vik − v jk
���∑n

k=1 (vik + v jk )
(1)

3.3.2 Distance between Diffs

A straightforward way to calculate the distance between two
diff s is tomeasure the distance between the two token streams
of the diffs as we did previously [11]. However, we found in
quite a few cases the length of two token streams are greatly
different. As a result, the distance between the two token
streams is so large that the two diffs are excluded from the
clone reports. However, for these cases, the token stream
of the shorter diff is in fact similar to a subsequence of the
token stream of the longer one. It may help to detect more
clones if we can measure the distance between subsequences
of token streams. Thus, we improve our previous distance
measurement by utilizing sliding windows to select a number
of subsequences of token streams from the longer one to
compare with the token stream for the shorter one.

CLCMiner sets the size of sliding window the same as
the length of the shorter token stream and moves the sliding
window along the longer token stream. Considering the
accuracy, CLCMiner slides the sliding window one token
per step. At each stop, a characteristic vector for the token
stream in the sliding window is built. CLCMiner calculates
the distance between it and the characteristic vector of the

Table 2 Characteristic Vectors
Token Vi Vj

���Vi −Vj
���

add 1 1 0
antlr 1 0 1

associated 2 1 1
ast 2 1 1

break 1 0 1
. . . . . . . . . . . .

token 11 10 1
tokens 1 1 0
type 1 1 0
Total 59 59 36

shorter token stream. Among all such calculated distances,
the shortest distance is used as the distance between the two
diffs. Formally, supposing diff d1 and diff d2 have m and
n tokens in their own token streams respectively. If m > n,
the length of sliding window will be set as n and the sliding
window will be moved along the token stream of d1. Then,
m − n + 1 characteristic vectors (V11,V12, . . . ,V1(m−n+1)) of
diff d1 will be built. If m < n, the length of sliding window
will be set as m and the sliding window will be moved along
the token stream of d2. Then, n−m+1 characteristic vectors
(V21,V22, . . . ,V2(n−m+1)) will be built. If m = n, there will
be no sliding window. In brief, the distance between diffs d1
and d2 is defined as follows:

Dd (d1, d2) =




min1≤i≤m−n+1 Dt s (V1i, V2) m > n

Dt s (V1, V2) m = n

min1≤i≤n−m+1 Dt s (V1, V2i ) m < n

(2)

For the example in Section 2, the lengths of Java and
C# token streams (in Table 1) are 80 and 59 respectively.
Therefore, the length of sliding window is 59 as the C# one.
CLCMiner moves the sliding window along the Java token
stream, builds characteristic vector for each token stream in
the sliding window. When the sliding window stop at the
end of the Java token stream (the sliding windows contains
the underlined tokens in Table 1), it has the shortest distance
with the C# one. Table 2 shows the characteristic vectors,
which have the shortest distances. Column “Token” lists the
words appearing in the token streams. Columns “Vi” and
“Vj" list the vector of token stream in the sliding window
in MachineProbe.java and the vector of token stream in
MachineProbe.cs respectively. Column “���Vi − Vj

���” lists
the absolute value of the difference between the values of
the corresponding dimension of the vectors. For example,
token “break” appears in the sliding window of the Java token
stream but does not appear in the C# one, and the difference
is 1 (|1 − 0|). In this way, the distance between two diffs is
0.305 (36/(59 + 59)).

3.3.3 Matching Algorithm

Algorithm 1 shows the details for matching diffs. It takes as
input two lists of diffs. The output is a list of matched diff
pairs, each of which is from different input lists.

CLCMiner compares the sizes of the two diff lists and
sets the smaller one and the larger one as source and target
respectively (Lines 1–2). The diffs, whose file names are the
same (filename extensions are ignored), are called neigh-
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Algorithm 1: Diff Matching
Input: List dList j dListcs
Output: List dPair

1 source = minList (dList j , dListcs );
2 target = maxList (dList j , dListcs );
3 foreach ds ∈ source do
4 distance ← 1;
5 foreach dt ∈ target do
6 if dt . f ileName().equals(ds . f ileName()) then
7 if Dd (ds, dt ) == distance then
8 pair s .add(ds, dt );
9 end

10 if Dd (ds, dt ) < distance then
11 pair s .clean();
12 pair s .add(ds, dt );
13 distance ← Dd (ds, dt );
14 end
15 end
16 end
17 dPair .addAll (pair s);
18 end
19 return dPair ;

bors of each other. For each diff in source (ds), CLCMiner
searches in target for its nearest neighbors by comparing
the distances from ds to all of its neighbors in target (Lines
3–18). The shortest distance indicates the nearest one. As
long as there exists a neighbor in target for ds , ds can be
matched; otherwise, it cannot.

For projects that have multiple implementations in dif-
ferent languages, code in one language is often used as a
reference for the implementation in another language and the
same functionality is likely to be encapsulated in a file with
the same name, especially for object-oriented languages (e.g.
Java and C#). With this heuristic, CLCMiner only matches
a diff with its neighbors having the same file name.

CLCMiner by default only matches a diff to its nearest
neighbor to report a clone pair (or clone pairs if there are
more than one nearest neighbors having the same shortest
distance), instead of reporting all its top-k nearest neighbors
to form a clone group. This takes into consideration that,
with the nearest neighbor, the other top-k nearest neighbors
and even clones in files with different names can be detected
by a single-language clone detector to build more compre-
hensive clone groups.

3.4 Ranking and Reporting

For each pair of matched diffs, the code fragments can be
located via their attributes (e.g., FN and CID). These pairs
of code fragments are considered as potential clones, which
are called clone candidates. CLCMiner ranks all such pairs
according to their diff distances. The pairs whose diff dis-
tances are lower than a distance threshold are to be reported
as clones. The distance threshold is empirically determined,
which will be explained in detail in Section 4.1.

4. Evaluation

In order to justify the effectiveness of CLCMiner in detect-
ing clones in code change history and in comparison with

Table 3 Characteristics of subject projects

Projects #LOC #Rev. Logs #Commit #Diffs #Cand. #Spl.(MB)

Antlr3 Java 49,617 576 32 572 2,954 9,502 471C# 97,304 648 31 648 19,372
cordova-android 5,350 3,535 45 3,277 9,275 1,549 75cordora-wp8 2,235 1,251 79 1,161 3,461

DataStax Java 66,131 3,047 32 2,917 25,974 9,997 196C# 56,641 1,349 56 1,330 20,410

Factual Java 3,668 307 2 279 1,535 577 112C# 4,080 178 1 178 823

FpML Java 17,810 329 244 329 2,919 4,602 454C# 16,548 183 227 183 2,278
Log4j 30,287 3,561 46 2,644 21,032 3,620 359Log4net 30,885 977 36 925 7,909

Lucene Java 867,110 41,081 821 24,988 308,421 72,321 718C# 434,577 2,911 883 1,320 45,165

Spring Java 551,475 14,094 335 11,971 171,090 7,237 356C# 224,807 1,752 316 1,747 20,672

ua-parser Java 839 34 0.1 34 99 31 31C# 850 50 0.8 50 129
jeromq 23,621 504 5 504 5,242 6,605 326netmq 21,836 1,679 30 1,705 13,515

related work, we perform empirical evaluation to answer the
following research questions:

• RQ 1. How accurate is CLCMiner? How do sliding
windows help improve CLCMiner accuracy?

• RQ 2. How effectively does CLCMiner detect cross-
language clones comparedwith other token-based clone
detection tools thatmay detect cross-language clones by
treating code as plain texts?

• RQ 3. What is the impact of the other code-related
attributes on cross-language clones?

4.1 RQ1. Accuracy

With respect to the previous version of CLCMiner that does
not use sliding windows [11], we further evaluate the ac-
curacy of the improved CLCMiner for more projects with
sliding windows. In the paper, CLCMiner detects cross-
language clones from 10 open source projects implemented
in both Java and C#. For each project, CLCMiner reports a
ranked list of cross-language clone pairs.

4.1.1 Setup

Table 3 shows the projects and lines of code (LOCs without
comments in the latest revision), numbers of revisions, log
sizes, numbers of commits and numbers of diffs. Column
“#Cand." lists the numbers of clone candidates, which are
the numbers of matched diff pairs. Since some diffs have
more than one nearest neighbors, the number of matched diff
pairs may be greater than the number of diff s. Due to the
large number of clone candidates and limited manpower, we
randomly sampled, in a uniform way, a small percentage of
the candidates in the ranked lists (cf. Column “#Spl").

Two co-authors manually labelled whether they were
actual clones separately based on the clone definition of
Bellon [18] and the functionality equivalence. If there exists
a difference between the labels given by them, it will be
labelled and decided by a third co-author. We calculated the
clone ratio and its distribution w.r.t. the distances, where the
clone ratio is defined as CR = #clones

#candidates × 100%.
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(b) Accumulated Clone Distribution

Fig. 3 Clone Ratio Distribution

4.1.2 Result

Figure 3 shows the clone ratio distribution and the accumu-
lated clone ratio w.r.t. the diff distances calculated by the
algorithm with sliding window. The clone ratio distribution
in Figure 3(a) indicates:

• almost all the candidates whose diff distance is lower
than 0.3 are clones;

• almost none of the candidates whose diff distance is
larger than 0.7 is clone;

• with the distance increasing from 0.3 to 0.5, the clone
ratio decreases gradually;

• with the distance increasing from 0.5 to 0.7, the clone
ratio decreases greatly.

The accumulated clone ratio in Figure 3(b) also de-
creases with the increasing of the diff distance. Intuitively,
when the diff distance is lower than 0.5, the clone ratio de-
creases slowly and when the diff distance is larger than 0.5,
the clone ratio decreases greatly.

In order to choose a threshold distance to determine
cross-language clones, we plot a Receiver Operating Char-
acteristic (ROC) curve for the 10 projects in Figure 4. The
curve plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold settings. The slope
(k) of the curve reflects the relative increasing speed between
TPR and FPR w.r.t the increase of threshold setting value:
k > 1 means TPR increases more greatly than FPR; k < 1
means FPR increases more greatly than TPR.

In Figure 4, the black solid curve is the average ROC
curve of the ten projects, the red dashed one is the best one
(i.e., Lucene) among them and the orange dotted one is the
worst one (i.e., ua-parser) among them. We can find that the
slope of the curve decreases with the increase of TPR and
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Fig. 4 ROC Curve

FPR. We can see for all of them the slope decreases w.r.t the
increase of threshold setting value. When the slope is around
1, the corresponding threshold is the proper threshold. In
our experiment, it is 0.5. If the diff distance is lower than
0.5, its related clone candidate is considered as a clone; if
the diff distance is larger than 0.5, its related clone candidate
is not considered as a clone.

In this experiment, we use precision and recall to mea-
sure the accuracy of CLCMiner. For the distance threshold
0.5, CLCMiner reports as clones the pairs of code fragments
in the ranked list whose diff distance is lower than 0.5. In
this way, the precision and recall are defined as follows:

precision =
TPd≤0.5

TPd≤0.5 + FPd≤0.5
(3)

recall =
TPd≤0.5
TPd≤1.0

(4)

Since it is unknown how many actual cross-language
clones in the projects, we use the “relative” recall (Equation
(4)) to reflect the capability that CLCMIner detect cross-
language clones from the repository logs. The precision and
recall for the 10 projects are listed in Table 4. The average
precision and recall are 89.1% and 95.0% respectively.

Previously [11],CLCMiner does not use slidingwindow
and is evaluated on projects Antlr, FpML, Log4j/Log4net,
Lucene and Spring. The precision and recall are listed in
Column “No Sliding Window" in Table 5. Column “Sliding
Window" lists the corresponding precision and recall with
sliding window. We can see that with the sliding window, the
average precision is improved greatly from 87.4% to 96.1%
and the recall is improved from 93.2% to 93.6%.

4.1.3 Discussion

The results in Table 5 showCLCMiner with sliding windows
always achieves higher recall (i.e., detecting more clones)
than without. In terms of precisions, most results with slid-
ing windows also happen to be higher, except one case for
the project Log4j/Log4net. We investigatemore clone candi-
dates in Log4j/Log4net manually, and find that there do exist
many diff pairs whose token streams are greatly different; us-
ing sliding windows helps to reduce the calculated distance
among various subsequences of the token streams, leading to
many more reported clone pairs within the similarity thresh-
old. However, those similar subsequences are significantly
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Table 4 Precision and Recall
Projects Antlr cordova DataStax Factual FpML Log4j/4net Lucene Spring ua-parser zeromq Average
Precision 87,9% 82.4% 60.0% 85.2% 96.6% 67.8% 95.0% 71.2% 62.5% 83.1% 89.1%
Recall 90.0% 77.8% 96.0% 97.9% 98.8% 81.6% 98.6% 90.8% 83.3% 86.3% 95.0%

Table 5 Improvement

Projects No Sliding Window Sliding Window
Precision Recall Precision Recall

Antlr 86.3% 89.9% 87.9% 90.0%
FpML 90.3% 96.7% 96.6% 98.8%

Log4j/4net 71.4% 71.4% 67.8% 81.6%
Lucene 90.0% 97.8% 95.0% 98.6%
Spring 68.6% 69.2% 71.2% 90.8%
Average 87.4% 93.2% 96.1% 93.6%

smaller than the whole token streams and are not sufficient
in determining whether the whole token streams are similar,
leading to more false positives in our reports sometime.

4.2 RQ2. Comparison with Token-Based Clone Detection

The existing clone detection tools aim at single-language
clones, but a few token-based clone detection tools [19] can
treat inputs as plain texts without language-specific lexical or
syntactical information to detect some cross-language clones
(e.g., CCFinder [7] and ConQAT [9]). In this experiment,
we compare CLCMiner with CCFinder and ConQAT.

4.2.1 Setup

We set all the diffs of 10 projects as the input for the clone
detection tools and compare the cross-language clones that
they detect from the diffs. We configure the tools as follows:

CLCMiner. The threshold distance of CLCMiner is
set as 0.5. CLCMiner is set to report a diff and its neighbor
as a clone pair if their diff distance is equal to or less than
0.5 no matter whether the neighbor is the nearest one or not.
To speed up the diff matching, CLCMiner is set to slide the
sliding window 10 tokens per step.

CCFinder. The arguments of CCFinder is set as de-
fault. That is the minimum number of tokens is 50 and that
the minimum number of kinds of tokens in code fragments
(metric TKS) is 12. The diffs are divided into two groups
(i.e., Java group and C# group). CCFinder is set to detect
code clones between diffs from the distinct diff groups but
not to detect code clones between diffs in the same group.

ConQAT. The gapped ratio of ConQAT is set as 0.2,
which can make the number of clones reported is twice as
that when the gapped ratio is set as 0. The minimum number
is set as 5 and the max errors are set as 3. Instead of clone
pairs, ConQAT reports clone groups, which may include
more than two diffs. In order to facilitate the comparison,
we separate each clone group into clone pairs, in which one
is a Java diff and the other is C# one.

In addition, we run CCFinder and ConQAT to detect
cross-language clones from files having the same name only
as CLCMiner does (cf. Line 6 in Algorithm 1).

4.2.2 Result

Table 6 lists the number of cross-language clones reported

by each tool. We can see that totally CLCMiner can de-
tect 1,403,069 pairs of cross-language clones from the 10
projects, while CCFinder and ConQAT can detect 10,153
and 93,833 pairs respectively. Note that the numbers of the
reported clone pairs are much larger than that of the diffs
because, based on the above tool configurations, each diff
may appear in more than one clone pair.

The number of clone pairs reported by both CLCMiner
and CCFinder (∩12) is 9,730, which means 9,730 out of
10,153 (95.8%) clones reported by CCFinder are also re-
ported byCLCMiner. The number of clone pairs reported by
both CLCMiner and ConQAT (∩13) is 91,244, which means
91,244 out of 93,833 (97.2%) clones reported by ConQAT
are also reported by CLCMiner. The number of clone pairs
reported by both CCFinder and ConQAT (∩23) is 5,463 and
the number of clone pairs reported by all the three tools
(∩123) is 5,418, which means 5,418 out of 5,463 (99.1%) of
clone pairs reported both byCCFinder andConQAT are also
reported by CLCMiner. The result indicates that CLCMiner
can detect the cross-language clones in the diffs effectively.

4.2.3 Discussion

Why does CLCMiner detect more cross-language clones?
Token-based single-language clone detection tools lex each
line of source files into token sequence and utilizes certain
stringmatching algorithm to search for similar subsequences,
while CLCMiner splits each camel case identifier (e.g., vari-
able names and method names) and utilizes the statistical
method to calculate the distance between diffs and search
for similar diffs. In this way, CLCMiner does finer grained
comparison than these tools.

Although CLCMiner can detect most of the ones re-
ported by CCFinder and ConQAT, some are still missed
by CLCMiner. We investigate those clones missed by
CLCMiner and summarize potential causes as follows:

• Since the sizes of our sliding windows are fixed to be
the same as the shorter of the two diff token streams,
CLCMiner can miss clones that are only a small part of
the two diffs. On the contrary, CCFinder and ConQAT
are able to report any subsequences of the token stream
as clones as long as they are bigger than the minimum
number of tokens required.

• CLCMiner uses the distance threshold 0.5 to report
potential clones; it will miss cross-language clones
whose distances are large than 0.5 (cf. Figures 3 and
4). CCFinder and ConQAT may be able to catch some
of the CLCMiner’s false negatives.

• For performance issues, our sliding windows are moved
forward 10 tokens at each step, which may miss the
shortest distance that should have been less than 0.5.
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Table 6 No. of Cross-Language Clones Reported
Projects CLCMiner CCFinder ConQAT ∩12 ∩13 ∩23 ∩123

Antlr 63,337 1,099 321 1079 314 81 81
codorva 4,863 290 147 127 144 0 0
DataStax 21,927 70 192 57 168 31 31
Factual 2,228 0 2 0 2 0 0
FpML 43,525 1,587 2,096 1,571 2,051 676 663

Log4j/4net 6,251 12 256 12 90 8 8
Lucene 1,197,108 6,830 88,756 6,631 86,607 4,531 4,506
Spring 32,927 38 753 34 667 16 16

ua-parser 82 0 0 0 0 0 0
zeromq 30,821 227 1,310 219 1,201 120 113
Total 1,403,069 10,153 93,833 9,730 91,244 5,463 5,418

∩12: intersection results of CLCMiner and CCFinder;
∩13: intersection results of CLCMiner and ConQAT;
∩23: intersection results of CCFinder and ConQAT;

∩123: intersection results of CLCMiner, CCFinder and ConQAT

4.3 RQ3. Impact of More Attributes of Diffs

For matching diffs, BOW as used in Section 3.3.2 may not
be the only choice. We identify the following attributes that
may have an impact on the similarity among diffs too: commit
author (CA), commit date (CD), and commit message (CM))
of the diffs. In this subsection, based on the sampled and
labelled clone candidates, we analyze the potential impact of
these attributes and discuss how to improve the effectiveness
of matching cross-language clones in future work.

4.3.1 Setup

Intuitively, the attributes CA, CD and CM of diffs tend to
have some correlations with the diff similarity. As a devel-
oper may have a programming style that may persist even
across different languages, a pair of similar diffs from dif-
ferent language versions of a project may be more likely to
committed by the same developer. As the functionalities in
different language versions of a project are likely to remain
consistent, changes in one language version may induce sim-
ilar changes in another within a short interval. As a commit
message often summarizes the changes in the commit, a pair
of similar diffs may be more likely to share similar commit
messages. Based on the intuitions, here we aim to test the
(in)validity of our null hypotheses as follows:

• Ha0: Similar diffs and dissimilar diffs have the same
probability to be committed by the same author.

• Hd0: The interval between the commit dates of similar
diffs is likely to be as long as that of dissimilar ones.

• Hm0: The distances between the commit messages of
the similar diffs is likely to be as large as that of the
dissimilar ones.

To investigate these hypotheses, we look into the labels
for the clone reports of the 10 projects sampled in the way
mentioned in Section 4.1.1. For each hypothesis, we build
two variables: one is a label (l) indicating whether the diffs
are similar, and the other is the value of the corresponding
attribute (ca, cd or cm). For variable l, l = 1 means the
pair of diffs is similar and l = 0 means it is not. For variable
ca, ca = 1 means the pair of diffs is committed by the same
author and ca = 0 mean it is not. Variable cd is the interval

Table 7 T-test Result
Hypothesis Ha0 Hd0 Hm0
Label (l) 0 1 0 1 0 1

Observations 1,553 1,541 1,553 1,541 1,553 1541
Mean 0.077 0.296 790 585 0.806 0.623

t-statistic -16.272 -8.211 18.452
p-value < 0.0001 < 0.0001 < 0.0001

between the commit dates of two diffs. Variable cm is the
distance between commit messages of two diffs.

4.3.2 Result

Table 7 lists the t-test statistics of the three hypotheses. Based
on the t-statistic for each hypothesis, all the null hypotheses
are rejected (p-value < 0.0001). This means the attribute
CA, CD, CM have some correlation ship with the similarity
of their corresponding diff pair.

We find that about 29.6% pairs of similar diffs are com-
mitted by the same author, but only 7.7% pairs of dissimilar
diffs are committed by the same author. Therefore, pairs
of similar diffs tend to be committed by the same author.
For Hd0, pairs of similar diffs are committed 585 days after
one another on average, while pairs of dissimilar diffs are
committed 790 days after one another on average. There-
fore, similar diffs tend to be committed between a shorter
period of time. For Hm0, the distances between the commit
messages of similar diffs tend to be shorter.

In addition, the Pearson’s correlation coefficient be-
tween l and ca is 0.28, which indicates that the diffs com-
mitted by the same author are more likely to be clones than
those committed by different authors. The coefficient be-
tween l and cd is -0.14, which indicates that diffs committed
between a shorter period of time are more likely to be clones
than those committed between a longer period of time. The
coefficient between l and cm is -0.31, which indicates that
diffs with similar commit messages are more likely to be
clones than those with dissimilar commit messages.

4.3.3 Discussion

The above statistics are aggregated from 10 projects which
can differ from one to another. The correlations between the
attributes and the diff similarity are weak, indicating none of
the attributes is a deciding factor for diff pairs to be clones.
Whether a diff pair is clones could be a combined effect of
all the attributes and even some contexts beyond diff s.

In our future work, we plan to investigate whether the
combination of more attributes, together with additional
ones discussed in Section 5, can be used to improve cross-
language clone detection in code change histories.

5. Discussion and Future Work

We realize that our approach is subject to various threats to
validity in its algorithm design, experimental settings, and
generalizability. In the following, we discuss several of such
threats and propose possible mitigations.
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Mapping clones in change histories to the latest re-
vision. Since CLCMiner detects clones in diffs and the code
corresponding to some of the diff clones may be changed
repeatedly or even deleted along software evolution, it will
cause some deleted code to be reported as clones or the
same piece of code to be reported repeatedly in many dif-
ferent diff clone pairs. On one hand, clones occurred re-
peatedly or deleted in history may still be useful for the
purpose of studying code evolution, refactoring, and consis-
tency (e.g., [12–15]); on the other hand, developers working
on the latest revision of a project may not need deleted or
overlapping clones, and removing such clones from the clone
reports can improve the usefulness ofCLCMiner for such de-
velopers. To address the concern on different use cases for
diff clones, we further track them to check whether they still
exist in the latest revision. We compare the historical file
containing each diff clone with the file in the latest revision,
by the diff tool, to build an existence mapping for all lines of
code in the diff clone. Based on the mapping, we classify diff
clones into 5 categories: 1) the clones whose containing
files no longer exist in the latest revision (NF); 2) the clones
none of whose lines of code exists in the latest revision (R1);
3) the clones less than 50% of whose lines of code are still
in the latest revision (R2); 4) the clones over 50% but not
all of whose lines of code are still in the latest revision (R3);
5) the clones all of whose lines of code are still in the latest
revision (R4).

We categorize all the clones reported in Table 6 into
Table 8. It shows that, along software evolution, on average
65.8% (NF and R1) of the diff clones no longer exist in the
latest revision, while 34.2% (R2, R3 and R4) still exist or
partially exist. In particular, over 50% of lines of code in 7%
(R3 and R4) of the diff clones still exist.

Furthermore, totally the 10 projects have 3,602,358
lines in their latest revisions (including comments), 805,960
(about 22.4%) of which can be mapped from diff clones,
which may be used as an alternative way to detect many
clones in the latest revisions. Column “LR LOC" shows the
number of lines in the latest revision that can be mapped
from at least one diff clone, and Column “DC LOC" shows
the total number of lines from the diff clones in R2, R3 and
R4. We use the ratio (OR=“DC LOC”

“LR LOC” ) as an estimate for the
average number of reported diff clones (6.3 on average) that
overlap with each clone pair mapped to the latest revision.

In brief, many of detected diff clones remain and can
help find similar code in different programming languages
in the latest revisions; many others are deleted or overlapped
with others, but can be useful for tasks related clone changes.

Using comments in code. In diff normalization (Sec-
tion 3.2), code comments were removed as we hypothesized
that comments in natural language may be too high-level and
appear similar even for non-clones and thus are not accurate
enough for clone detection. However, during the manual
labelling of the sampled diff pair reports, we noticed that
many clone pairs either contain quite different comments for
different parts of the two code fragments in the pair or con-

Table 8 Distributions of diff Clones in the Latest Revision

Projects NF R1 R2 R3 R4
LR LOC DC LOC OR(Java + C#) (Java + C#)

Antlr 2.4% 0.7% 49.1% 32.3% 15.4% 55,295 198,649 3.6
codorva 100% 0 0 0 0 0 0 NA
DataStax 25.5% 9.2% 56.2% 7.1% 1.9% 14,949 96,337 6.4
Factual 5.9% 3.3% 66.2% 18.6% 5.9% 3,096 11,849 3.8
FpML 22.2% 2.3% 36.9% 19.1% 19.6% 54,724 247,839 4.5

Log4j/4net 26.9% 5.0% 51.8% 12.9% 3.4% 22,160 114,209 5.2
Lucene 40.9% 31.1% 24.5% 2.8% 0.7% 570,582 3,944,655 6.9
Spring 55.9% 3.5% 26.7% 10.2% 3.8% 65,397 345,958 5.3

ua-parser 100% 0 0 0 0 0 0 NA
zeromq 32.7% 12.7% 52.2% 2.0% 0.4% 19,757 140,594 7.1
Ave. 38.6% 27.2% 27.2% 4.9% 2.1% 805,960 5,100,087 6.3

NF: No Files; R1: [0, 0]; R2: (0, 50%); R3: [50%, 100%); R4: [100%, 100%];

tain almost exactly the same comments (which may indicate
an actual copying-pasting operation). In our future work,
we plan to more systematically investigate how comments in
code are related with clones.

Relaxing filenames. Diff matching (Section 3.3.2)
used a requirement that potentially matched diffs should be
from files of the same name, and thus all code in every
reported clone pair has the same file name. However, cross-
language clones can appear in files with different names,
especially if they are from different projects. The setting
was added based on the heuristic that implementations of
similar functionalities in different languages within the same
project are likely to be in files of the same name and to re-
duce the pair-wise comparison time for projects involving
too many commits; it is a trade-off between detection effi-
ciency and recall. In the future work, we will optimize our
matching algorithm and analyze how the file names impact
cross-language clones that may be from different projects.

Detecting clone groups and change propagation.
CLCMiner matches a diff in one language to its nearest
neighbors in another language only, as we focus on the fea-
sibility of using diffs for detecting cross-language clones.
We can change the setting to return all the neighbors of a
diff whose distance is within a small threshold, which can
enable us to detect cross-language clone groups, in addition
to pairs. Also, by linking clone groups based on clone tran-
sitivity within a threshold and complemented with a single-
language detector, we will be able to study how changes
are propagated even through different languages, extending
similar studies within the same language [20].

Detecting clones beyond revisionhistories. CLCMiner
is based on revision histories; it is limited to detect cross-
language clones that have been changed in the past in the
same project. For clones that are never changed, we can
explore more language attributes that can identify clone re-
lations (e.g., using deep learning to build vector representa-
tion of programs [21]) across languages. We also believe this
limitation can be compensated by a single-language detector
that can detect cross-project and same-language clones based
on certain clone transitivity across projects and languages.

Crossing more languages. Increasing demands for
cross-platform mobile applications (e.g., iOS and Android)
raise the need for quick development that can reuse code
across more diverse kinds of languages (e.g., Objective-C,
Swift, and Java). Since functionalities implemented in one
programming language can be used as a reference for the
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implementation in another language, code fragments imple-
menting similar functionalities in different languages would
be changed in a similar way. We believe there exist some
alignments between the changed code as long as the changes
in different languages use similar lexical features, such as
identifier names. In our future work, we plan to adapt
CLCMiner to more languages and explore more attributes
that can identify similar changes and be used to detect clones
and facilitate code reuse across different languages.

Handling false positives. Although the precisions of
the results reported by CLCMiner are relatively high, there
is still space for improvement. We investigated the false
positives and found they may have various characteristics
causing “accidental similarity” among diffs: 1) a short
method is defined in one diff but invoked in the other diff ;
2) the diffs contain code that handles exceptions or errors;
3) the diffs contain a number of same string constants used
differently; 4) the diffs contain a number of different numeric
values which were excluded by our normalizing step; 5) the
diffs contain code that uses the same set of library functions
(e.g., File I/O, HttpHeaders) in different ways. In our future
work, we will refine CLCMiner to handle such cases.

6. Related Work

Cross-language clone detection. The number of vari-
ous software systems implemented in multiple languages is
increasing considerably [22], but cross-language clone de-
tection is limited. Kraft et al. [3] conduct the first study on
code clones that span over multiple languages. They imple-
mented a tool called C2D2 based on the CodeDOM library
in the Microsoft .NET framework, which uses NRefactory
Library to generate the Unified CodeDOM graph for both
C# and VB.NET. Al-omari et al. [10] present a clone de-
tection approach for the .NET language family too, based
on the Common Intermediate Language (CIL). It can detect
cross-language clone pairs in C#, J#, and VB.NET. Com-
pared with these work, our approach focuses on detecting
cross-language clone detection on different platforms with-
out common intermediate languages. Nakamura et al. [23]
detect interlanguage clones that are clones whose code may
be in more than one programming languages (e.g., a web
page containing both HTML and Javascript), while each of
our cross-language clones is still code in one language only.

Vocabulary similarity. Vocabulary similarity is an ef-
ficient way for semantic similarity. Marcus et al. [24] apply
Latent Semantic Indexing (LSI) to source code and its as-
sociated internal documentation (e.g., comments) and could
detect high-level concept clones with low costs. Kuhn et
al. [25] introduce Semantic Clustering, which is also based
on LSI to group source artifacts that use similar vocabulary.
Semantic clustering captures topics regardless of class hi-
erarchies, packages, and other structures. Lucia et al. [26]
leverage information retrieval techniques such as VSM, LSI,
and LDA to pick terms from specific parts of source code
and comments for source code labeling. They can efficiently
identify and cluster topics in the source code. Since it is dif-

ficult to analyze diffs for different programming languages
by traditional program analysis tools, our approach applied
vocabulary similarity to measure the diff similarity.

Data mining in VCS. There are considerable studies
of data mining in Version Control Systems (VCS). Zimmer-
mann et al. [27] apply data mining on version histories to
recommend related syntactic changes. Gîrba et al. [28] apply
concept analysis on VCS to identify groups of co-changes.
McIntosh, et al. [29] mine source and test code for accom-
panying build changes. We apply data mining on VCS for a
different purpose, detecting cross-language clones.

7. Conclusion

This paper proposes a novel approach, CLCMiner, that de-
tects cross-language clones without common intermediate
languages. Our key new idea is to utilize diff similarity. We
have implemented and evaluated its prototype on 10 open
source projects. The results show that our approach can de-
tect many cross-language code clones that appear in diffs in
the revision histories with a high precision of 89.1% and a
high recall 95% on average.

To improve CLCMiner in our future work, we plan to
refine the handling of false positives, detect more cross-
language clones not captured in revision histories by in-
corporating in single-language clone detectors, and detect
more clone groups across more languages (e.g., Objective-
C, Swift, and Java) as described in Section 5.
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