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Measuring Centralities for Transportation
Networks Beyond Structures

Yew-Yih Cheng, Roy Ka-Wei Lee, Ee-Peng Lim and Feida Zhu

Abstract In an urban city, its transportation network supports efficient flow of peo-
ple between different parts of the city. Failures in the network can cause major
disruptions to commuter and business activities which can result in both significant
economic and time losses. In this paper, we investigate the use of centrality mea-
sures to determine critical nodes in a transportation network so as to improve the
design of the network as well as to devise plans for coping with the network failures.
Most centrality measures in social network analysis research unfortunately consider
only topological structure of the network and are oblivious of transportation factors.
This paper proposes new centrality measures that incorporate travel time delay and
commuter flow volume. We apply the proposed measures on the Singapore’s subway
network involving 89 stations and about 2 million commuter trips per day, and com-
pare them with traditional topology based centrality measures. Several interesting
insights about the network are derived from the new measures. We further develop
a visual analytics tool to explore the different centrality measures and their changes
over time.
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1 Introduction

Motivation Transportation network is an important part of a complex urban city
system. Each transportation network is expected to support efficient flow of people
between different parts of the city. Failures in the network can cause major disruptions
to commuter and business activities which result in both significant economic and
time losses. As the transportation network continues to grow and interact with other
parts of urban city, it is imperative to study how the network can cope with increase in
human flow, new network nodes and connections, as well as new city developments.

One way to study the transportation network is to identify the centralities in the
network which represent the more critical nodes whose degrees of reliability have
major impact to the network efficiency. Network centrality is a concept introduced in
social science to analyze important nodes in social networks [8, 13]. The key exam-
ples of network centrality measures include degree centrality, closeness centrality,
betweenness centrality [7], and pagerank [3]. In a recent study by Derrible [5] on
metro networks represented by transfer stations, terminal stations and their connec-
tions only, it was shown that betweenness is more evenly distributed among stations
when the metro network is large. This hopefully will allow the stations to share
commuter load more equally.

All the above traditional network centrality measures nevertheless consider net-
work topology only but not factors associated with transportation. A node identified
to be important topologically does not need to be important from the commuter
flow and delay perspective. Consider the network example in Fig. 1, node A has the
highest degree, closeness and betweenness values by topology. If we know that the
commuter flow between B and D far exceeds those of other connections, B and D
should be deemed to be more central than the other nodes. If we further know that
many commuters will take much longer travel time should B fails, one may even
consider B to be more central than D.

Research Objectives and Contributions In this paper, we therefore aim to devise
new centrality measures that incorporate commuter flow and travel time delay, the two
transportation related factors. The objective of our research is to determine critical
nodes in a transportation network so as to improve the design of the network as well
as to devise plans for coping with the network failures. Unlike network topology,
commuter flow and travel time delay may change dynamically with time, allowing
us to study the evolving node importance. This time-dependent approach to measure
node importance permits us to study a transportation network system in a much finer
time granularity. As a result, the insights gained can also be readily associated with
time in addition to topology.

Fig. 1 Example network
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In the following, we summarize the contributions of this paper:

• We propose Commuter Flow, Time Delay and DelayFlow centrality measures
that incorporate commuter flow and travel time delay unique to transportation
networks. To compute these measures, we develop methods to compute commuter
flow and travel time delay from a network with trip transaction data and a public
web service that offers travel time information respectively.

• We apply the proposed measures on the Singapore’s subway network involving
89 stations and more than 2 million commuter trips per day, and compare them
with traditional centrality measures. Both time-independent and time-dependent
analyses of the various centrality measures are conducted.

• We derived several interesting insights about the network using the new measures.
Our experiments show our proposed centrality measures are different from the tra-
ditional centrality measures. The commuter flow and DelayFlow centrality values
of stations can vary a lot throughout a day. They can also be very different between
weekdays and weekends. This also justifies the usefulness of the new measures.

• Finally, we have developed a visual analytics tool to evaluate the newly proposed
centrality measures and other traditional ones. The tool allows users to select
centrality measure, time of the day and other factors to be analyzed easily. The
visual presentation gives users a very friendly and quick way to examine and
compare the different centrality measures.

Paper Outline The rest of the paper is organized as follows. Section 2 describes
several works related to our study. Section 3 introduces our proposed centrality mea-
sures. We describe the Singapore subway network dataset in Sect. 4. Our experiments
on the various measure are covered in Sect. 5. We present our visual analytics tool
in Sect. 6 before concluding the paper in Sect. 7.

2 Related Work

Transportation network analysis has been an active area of research. De Montis et
al. [4], conducted an analysis of an interurban transportation network involving 375
municipalities and 1.6 million commuters. In their work, a weighted network is used
to model the traffic flow between municipalities and several properties, e.g., weighted
degree distribution, cluster coefficients, heterogeneity of commuter flows, etc., about
the network are derived. Berche et al. also studied the resilience of transportation
networks due to attacks on nodes [1]. In the context of air transportation, Guimera
et al., found the worldwide air transportation network demonstrating scale-free small
world properties [11]. This finding is interesting as this illustrates that transportation
networks may evolve in an organic way similar to social networks [12].

For the purpose of city planning and building design, Sevtsuk and Mekonnen
proposed a set of network centrality measures including Reach, Gravity Index, and
Straightness in addition to the traditional ones to determine how easy one can reach
other locations in a city from a given location [15]. In this paper, we however focus
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on centrality measures relevant to transportation networks where time delay and
commuter flow are the major factors.

There are very few works on applying network centrality measures to analyze
transportation networks. Derrible studied the betweenness centrality in several sub-
way networks of different countries [5]. His work however focuses on transfer and
interchange stations and does not introduce new centrality measures considering
transportation related factors. Our work is quite similar to that of Scheurer et al. [14],
who also proposed a set of centrality measures for transportation networks. Unlike
ours, their measures do not consider commuter flow and travel time of alternative
means between stations.

In the literature, there is a large body of works on the robustness of networks which
include transportation networks [2]. Goh et al. [10], found out that the betweenness
centrality of scale-free networks follows power law distribution with an exponent
that determines the robustness of the network. Gao et al. [9], proposed to use graph
energy to measure robustness of very large networks in an efficient way. These
works however do not use network centrality to identify important stations when
failures occur.

3 Centrality Measures

In this section, we first provide the definitions of the traditional network centrality
measures. This is followed by our proposed centrality measures which take two
factors into consideration: (i) commuter flow of the node, and (ii) the amount of time
delayed that will incur due to failure of the node.

3.1 Overview of Network Centrality

We model a transportation network as an undirected graph 〈V, E〉 with node set V
representing stations and edge set E representing the connections between stations.
Every node i ∈ V is associated with two numbers, in(i) and out (i), that refers to the
number of commuters entering and exiting the station of node i respectively. Given
that the total numbers of commuters entering and exiting the stations of the network
are the same, the equality

∑
i∈V in(i) = ∑

i∈V out (i) holds.
We now review the definitions of some existing network centrality measures used

in social network analysis.

Degree Centrality The degree centrality of a node i , Cdeg(i), is defined as:

Cdeg(i) = |{(i, j)|(i, j) ∈ E}|
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Closeness Centrality We denote the shortest path distance between two nodes i and
j by d(i, j). The closeness centrality of a node i , Ccls(i), is defined as:

Ccls(i) = 1

d(i)

where d(i) = ∑
j∈V, j �=i d(i, j).

Betweenness Centrality Let g jk denote the number of shortest paths between nodes
j and k, g jk(i) denote the number of shortest paths between nodes j and k through
node i . The betweenness centrality of a node i , Cbtw(i), is defined as:

Cbtw(i) =
∑

j∈V

∑

k∈V,k> j

g jk(i)

g jk

3.2 DelayFlow Centrality

Commuter Flow Centrality The commuter flow centrality of a node i , Cf (i), is
defined as the number of commuters affected per hour when node i is down. We
classify the affected commuters into three categories:

• Commuters traveling from node i to other nodes;
• Commuters traveling from other nodes to node i ; and
• Commuters traveling through node i .

Hence, we define the commuter flow centrality of a node i to be:

Cf (i) =
∑

j∈V

hi j +
∑

j∈V

h ji +
∑

j∈V, j,k �=i, j �=k

h jk(i)

where hi j denotes the number of commuters from node i to node j per hour, and
h jk(i) denotes the number of commuters from node j to node k through node i per
hour. In Sect. 4, we will describe how the two sets of commuter flow data can be
derived from trip transactions.

Time Delay Centrality Time delay is incurred for commuters to find alternative
means to reach destinations when a node is down. To determine the extent of delay
caused to the people affected, we consider the following:

• texp(i, j): The expected time taken to travel from node i to node j ;
• talt (i, j): The time taken to travel from node i to node j using an alternative means

of transportation (e.g. bus) which varies by the hour.

Assuming that commuters do not receive advance notice about node failures in
the transportation, they have to find alternative routes from the failed node to their
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final destinations, or from the origins to the failed nodes. Let n be the number of
nodes in the network. The time delay centrality for a node i Cdel(i) is thus defined as:

Cdel(i) =
∑

j∈V, j �=i li j + ∑
j∈V, j �=i l j i

2(n − 1)

where

li j = talt (i, j)

texp(i, j)

In the above definition, we assume that texp is static and talt varies throughout
the day. The time delay factor li j is asymmetric as both texp(i, j) and talt (i, j) are
asymmetric. When the time delay factor li j equals to 1, it signifies no delay. When
li j is greater than 1, commuters will take a longer than expected time to reach their
desired destinations. The larger the li j value (>1), the greater the time delay. li j < 1
means an improvement of the alternative means of transportation, which is an unlikely
scenario when disruptions occur to the network.

Notice that time delay centrality Cdel(i) does not take commuter flow into con-
sideration in determining time delay. For example, a commuter may incur a long
travel time from node i to node j when using an alternative means of transport over
the network (i.e., li j is large), but only a small number of commuters are actually
affected by it. Thus, there is a need to combine time delay factor with the underlying
commuter flow volume. We therefore propose the DelayFlow centrality by summing
the product of commuter flow and average time delay factor of all paths traveling to,
from and through a node.

DelayFlow Centrality The DelayFlow centrality of node i , Cdflow(i), is defined as:

Cdflow(i) =
∑

j∈V, j �=i hi j li j + h ji l j i + ∑
j∈V, j,k �=i, j �=k h jk(i)l jk(i)

∑
j∈V in( j)

where
∑

j∈V in( j) is the total commuter flow of the transportation network. li j and
l j i have been earlier defined and

l jk(i) = talt ( j, k)

texp( j, i) + texp(i, k)

4 Datasets

The Singapore’s mass rapid train (MRT) network consists of 89 stations in four
train lines. Figure 2 depicts these train lines (in different colors) and stations. The
node color represents the different train lines: red for North-South line (NSL), green
for East-West line (EWL), purple for North-East line (NEL), orange for Circle line
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Fig. 2 Singapore MRT Network

(CL), and blue for the interchange stations. We use two datasets about MRT network.
The first dataset MRTDB consists of nearly 2 millions commuter trip transactions
per day. In our experiment, we used three days worth of trip transaction data from
November 26 (Saturday) to November 28, 2011 (Monday) to derive the commuter
flow information. The second dataset GoThereDB provides data about the travel
time information.
MRTDB Dataset Each trip transaction consists of the origin station, destination
station and the timestamps at the two stations. We use the trip transactions to derive
commuter flow hi j ’s. We compute the overall hi j by dividing the total number of
trips between stations i and j (not necessarily the origin and destination stations) by
the number of MRT operating hours, i.e., 19 h (from 0500 to 0000 h). In a similar
way, we compute h jk(i) from trips between j and k through i .

To study commuter flow centrality and DelayFlow centrality at different time of
the day, we divide the trip transactions into 19, one-hour long disjoint segments from
0500 to 0000 h. A trip is assigned to a time segment if its origin station’s timestamp
falls within the time segment. We can then compute the time specific commuter flow
numbers hi j ’s and h jk(i)’s for each time segment.

To determine the path a commuter takes to travel from one station to another for
determining hi j ’s and h jk(i)’s, we first assume that all commuters with the same
origin and destination stations take the same path and the path should be the shortest
among all other path options. We use Dijkstra’s algorithm to compute these shortest
paths [6]. To represent delays at interchange stations, create k separate proxy stations
for an interchange station for k train lines and

(k
2

)
edges to connect these pairs of

proxy stations. Each edge is assigned a 2 min transfer time at the interchange station.
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Fig. 3 Commuter flow
(weekday)
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Fig. 4 Commuter flow
(weekend)

Figures 3 and 4 show the number of commuters at different 1 h time segments on
a weekday and weekend day respectively. They show that the number of commuters
peaks on both the morning and evening rush hours on weekdays, but peaks only in
the evening on a weekend. The weekday trend indicates that many commuters use
MRT trains to get to their work places in the morning, and return home from work
in the evening. At the peaks, we have more than two millions commuters using the
train network, representing about 2

3 of the Singapore’s population. On weekends,
commuters clearly show a late start of their travel which peaks at around 5pm. For
the rest of this paper, we shall just focus on the weekday data.

GOTHEREDB Dataset To determine the expected travel time and travel time using
alternative routes, we made use of a third-party route suggestion service known as
“gothere.sg”.1 The gothere.sg API’s allow us to determine the travel time by MRT
train (expected) or bus (alternative) for each origin and destination station pair. Bus
is chosen as it is the next most commonly used mode of public transportation. Given
that we have altogether 89 stations in the MRT network, we use the APIs to derive
texp(i, j) and talt (i, j) time for all 89·88 = 7832 station pairs. To keep things simple,
we assume that texp(i, j)’s and talt (i, j)’s are independent of the time of the day.

1http://gothere.sg.

http://gothere.sg
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5 Comparison of Centrality Measures

Distribution of Degree, Closeness and Betweenness Centralities Figures 5, 6 and
7 show the distribution of the degree, closeness and betweenness centrality values
of the stations in MRT network. As shown in Fig. 5, most nodes have degree = 2 or
1 as they are non-interchange stations. There are only 10 interchange stations with
degrees ranging from 3 to 5. The closeness centrality values, as shown in Fig. 6, con-
centrate within the small range between 0.06 and 0.14. This suggests that the shortest
paths between stations have relatively short length. Figure 7 shows the betweenness
centrality is well spreaded between 0 to 1300. Only very few stations have between-
ness greater than 1000 serving in the middle of many shortest paths between other
stations.

Fig. 5 Degree centrality
Cdeg distribution

Fig. 6 Closeness centrality
Ccls distribution

Fig. 7 Betweenness
centrality Cbtw distribution



32 Y.-Y. Cheng et al.

Distribution of Commuter Flow Centrality Figure 8 shows the commuter flow
centrality distribution on a weekday. The centrality values can be as large as 29,362.
Most stations (90 %) have relatively small commuter flow centrality values with val-
ues in [0,20000). Only 9 stations (10 %) have larger commuter flow centrality values
with values in [20000,30000). Not surprisingly, these are mainly the interchange
stations with high volume of commuters. The only exceptions are two stations which
are located in densely populated township and highly popular shopping area.

Figure 9 shows the commuter flow centrality distribution at different time dura-
tions of a weekday as the centrality. The figure shows that there are more stations
having higher commuter flow centrality values in the [0800,0900) and [1800,1900)
time segments due to larger concentration of commuters using these stations dur-
ing that time. Otherwise, most stations have commuter flow centrality values in the
[0,20000) range, consistent with what we observed in Fig. 8.

Fig. 8 Commuter flow
centrality Cf distribution
(weekday)

Fig. 9 Commuter flow
centrality distribution at
selected time segments
(weekday)
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Fig. 10 Time delay centrality Cdel distributions at selected time segments (weekday)

Distribution of Time Delay Centrality Figure 10 depicts the time delay centrality
distribution at different time durations of a weekday as the centrality. The centrality
ranges between 1.5 and 3.4 showing that the alternative means of transportation can
take between 50 to 240 % more than the expected time required. This result shows
that the alternative means of transportation for the stations with high time delay cen-
trality can be further improved. The average time delay centrality is 2.395.

Distribution of DelayFlow Centrality Figure 11 depicts the distribution of
DelayFlow centrality on a weekday. There are a cluster of stations with small
DelayFlow centrality values between 0.0 and 0.1. Another major cluster of stations
have DelayFlow centrality values between 0.2 and 0.4. There are very few stations
with high centrality values. Figure 12 shows the distribution of DelayFlow centrality
at different selected time segments of a weekday. We observe that the two peaks of
the overall centrality distribution are contributed largely by more busy stations during
the busy morning and evening hours (i.e., [0600,0700), [0900,1000), [1800,1900),
and [2100,2200) h). During the non-peak hours, there are more stations with smaller
DelayFlow centrality values making the two peaks less obvious.

Correlation Between Centrality Measures Table 1 shows the Pearson Correlation
scores between the different centrality measures. The table shows that among the
traditional centrality measures based on network topology, degree centrality and
betweenness centrality are more similar than with closeness centrality. The nodes
with high closeness are more likely be near the center of the network while high
degree and betweenness nodes may be located away from the center.

Among the new centrality measures based on travel time and commuter flow, the
commuter flow and DelayFlow centrality are more similar with degree centrality and
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Fig. 11 DelayFlow centrality Cdflow distribution (weekday)

Fig. 12 DelayFlow centrality distributions at selected time segments (weekday)

betweenness centrality with correlation scores above 0.5. The time delay centrality
is quite different from the rest except closeness centrality. This suggests that those
station that have large time delay to other stations are likely to be those near the
center of the network. This is later verified by the top 10 stations of each centrality
measure in Table 2. We also observe that DelayFlow centrality is highly similar to
commuter flow centrality measure with a correlation score of 0.97. Again, we can
also see this in Table 2.



Measuring Centralities for Transportation Networks Beyond Structures 35

Table 1 Pearson correlation between centrality measures

Cdeg Ccls Cbtw Cf Cdel Cdflow

Cdeg 1.0 0.42 0.67 0.63 0.41 0.64

Ccls – 1.0 0.62 0.40 0.57 0.39

Cbtw – – 1.0 0.57 0.45 0.52

Cf – – – 1.0 0.28 0.97

Cdel – – – – 1.0 0.38

Cd f low – – – – – 1.0

Table 2 Highest centrality stations

Rank Cdeg Ccls Cbtw Cf Cdel Cdflow

1 S10 S3 S3 S11 S110* S10

2 S3 S106 S106 S10 S106 S11

3 S11 S203* S20 S15 S203* S24

4 S12 S10 S35 S3 S10 S3

5 S15 S205* S203* S12 S201* S15

6 S20 S11 S10 S24 S4* S12

7 S35 S4* S15 S20 S3 S106

8 S106 S107* S64* S21* S107* S2*

9 S24 S113* S201* S31* S111* S20

10 S34 S201* S21* S35 S103* S5*

In Table 2, the top stations ranked by most centrality measures are usually the
interchange stations. The non-interchange stations are annotated with “*”. Only the
time delay centrality gives highest score to a non-interchange station, S110. It also
ranks several other non-interchange stations highly. These stations are expected to
have large delay factor values compared with other stations.

6 Visual Analytics of Centrality Measures

In this research, we also develop a visual analytics tool to feature the stations with
different centrality measures, and to explore the changes to centrality value over time.
Figure 13 shows the main web interface of the visual analytics tool. The figure shows
the layout of station nodes of the Singapore’s MRT network. We show the nodes with
size proportional to the selected centrality values of the nodes—the bigger the node,
the higher the centrality. User can select one of the six centrality measures to be
analyzed, namely, Degree Centrality, Closeness Centrality, Betweeness Centrality,
Commuter Flow Centrality, Time Delay Centrality and DelayFlow Centrality. For
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Fig. 13 Visualization of centralities

the three new centrality measures, we can also visualize them for a selected day of
the week and for specific hour of the day.

The visual analytics tool can also show a parallel plot to depicts different centrality
values of every station represented by a polyline as shown in Fig. 14. One can explore
and compare the DelayFlow centrality against the other centrality measures. In addi-
tion, information pertaining to the respective train stations will also be displayed on
the top right-hand corner when the end-user performs a mouse-over action on the
corresponding line in the parallel plot. Lastly, the table on the bottom right-hand
corner shows the top 20 train stations with the highest DelayFlow centrality values.

To visualize the dynamic changes of commuter flow and DelayFlow centrality,
the tool provides a continuous rendering of the centrality values for the network from
0500 to 0000 h. In this way, a quick overview of the importance of stations over time
can be obtained. As shown in Fig. 15, in a selected weekday, stations in the west
have higher DelayFlow values (or more importance) as commuters begin to travel
to the central and east areas for work around 0600 h. Failures at these stations can
also cause major delays. At around 0900 h, stations in the central area gain higher
DelayFlow values due to increased activities in the area, while stations in the west
see their DelayFlow values reduced. At around 1200 h, all stations appear to have
smaller DelayFlow values. At around 1800 h, commuters begin to travel to the west
causing some increase to the DelayFlow of relevant stations. These stations see their
DelayFlow values return to normal at around 2100 h. The above dynamic changes of
centrality are very useful when developing response plan for network failures as the
stations give different impact to the transportation system at different time of the day.
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Fig. 14 Parallel plots of centrality

Stations with high 
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Stations with 
increasing 

centrality values 
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centrality values 
centrality 
decreases

centrality 
remains 

unchanged

Stations with 
increasing 
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Stations with 
decreasing 
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Fig. 15 Dynamic change of DelayFlow centrality
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7 Conclusion

In our paper, we have demonstrated the importance of considering transportation
factors such as commuter flow and time delay in measuring network centrality of
transportation network. When incorporating trip data and time information, we derive
three new centrality measures which can dynamically vary with time. These dynamic
centrality measures allow us to generate unique insights giving better guidance to the
design and improvement of the transportation network. They can also be extremely
useful for optimizing travel schedules for commuters and increasing the standard
of transportation services. Compared with the network topology based centrality
measures, our new centrality measures are more relevant to the transportation domain
in identifying critical nodes. A visual analytics tool has also been developed to
illustrate the efficacy of the new centrality measures.

With this foundation research, we plan to apply the measures on other transporta-
tion networks to explore some common properties among the network centralities.
We have so far assumed that the expected and alternative travel times are independent
of the time of the day in our centrality definitions. This assumption will be relaxed
in the future by computing the travel times at different time of the day. Relationship
between the new centralities and the underlying population distribution, as well as
extensions to consider other modes of transportation are also among the interesting
topics for future research.
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