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Can Instagram Posts Help Characterize Urban
Micro-Events?

Kasthuri Jayarajah, Archan Misra
School of Information Systems, Singapore Management University

kasthurij.2014@phdis.smu.edu.sg, archanm@smu.edu.sg

Abstract—Social media content, from platforms such as Twitter
and Foursquare, has enabled an exciting new field of “social
sensing”, where participatory content generated by users has
been used to identify unexpected emerging or trending events. In
contrast to such text-based channels, we focus on image-sharing
social applications (specifically Instagram), and investigate how
such urban social sensing can leverage upon the additional
multi-modal, multimedia content. Given the significantly higher
fraction of geotagged content on Instagram, we aim to use such
channels to go beyond identification of long-lived events (e.g., a
marathon) to achieve finer-grained characterization of multiple
micro-events (e.g., a person winning the marathon) that occur
over the lifetime of the macro-event. Via empirical analysis from
a corpus of Instagram data from 3 international marathons, we
establish the need for novel data pre-processing as: (a) semantic
annotation of image content indeed provides additional features
distinct from text captions, and (b) an appreciable fraction of the
posted images do not pertain to the event under consideration.
We propose a framework, called EiM, that combines such
preprocessing with clustering-based event detection. We show
that our initial prototype of EiM shows promising results: it is
able to identify many micro-events in the three marathons, with
spatial and temporal resolution that is less than 1% and 10%,
respectively, of the corresponding ranges for the macro-event.

I. INTRODUCTION

Social media channels, such as Twitter and Instagram, pro-
vide a powerful crowd-sourced, participatory sensing channel
for urban event detection and understanding. Most existing
research has focused on the automated identification of such
transient or unexpected events (e.g., Twitcident), typically
using either statistical clustering [1] or generative models [2]
on textual content from Twitter. In this paper, we focus
on the opportunities and challenges of using multi-modal
content from Instagram (a social image-sharing application)
to characterize such urban events.

Instagram represents a rapidly growing and globally dis-
tributed image & video-centric social media channel (close
to 500 million users). Instagram offers an interesting new
modality for urban social sensing because of two factors: (a)
its dominant content type is image-based (as opposed to the
dominance of text in Twitter), thus offering new possibilities
for applying image processing for content understanding, and
(b) a significantly higher percentage of the Instagram posts
are geo-tagged (with the coordinates of the user at the time
of posting the image), providing easier and more reliable
indicators of an event’s spatial distribution. Moreover, content
posted on Instagram is inherently multi-modal with posts

Fig. 1. Multimodal social network information for event understanding—a
marathon example. The numbers 1 through 4, each represent a different stage
in the race as the event progresses spatially, temporally and semantically.

containing short textual “captions” (a combination of regular
words and hashtags) accompanying the images.

Our work in this paper explores the possibility of using
multi-modal fusion on such Instagram content to understand
the spatiotemporal distribution of urban events. We specifi-
cally focus on characterizing the when and where of transient
sub-events that are part of a large macro-event, rather than
the macro-event itself. Figure 1 illustrates this concept: a
marathon macro-event can be viewed as comprising multiple
micro-events. At the initial stage (marked “1”), spectators
and family members of the runners share images of the start
line/runners with captions wishing the runners good luck. The
race progresses to stage 2 where a lead runner emerges from
the pack, while unexpected disruptions are caused by runner
injuries at stage 3. A heavy downpour slows down the race at
stage 4. We refer to this separation of stages 1 through 4 as the
problem of detecting and characterizing micro-events. To focus
specifically on this problem of micro-event characterization,
we assume that the macro-event in question has a well-
defined set of keywords/hashtags (e.g., #lamarathon for the
Los Angeles marathon), and restrict our analysis to the corpus
of Instagram posts whose captions contain these hashtags (and
thus can be viewed as potentially related to the actual event).

Such micro-event characterization, especially if performed
in near-real time, is extremely valuable for better understand-
ing of macro-events, with applications in anomaly determi-
nation (e.g., inferring that the speed of runners has slowed
down dramatically near a landmark, indicating likely human
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congestion causing the event trajectory deviate from the norm
(Fig. 1)), targeted emergency response (e.g., dispatching law
enforcement personnel to the specific street corner where
vandalism seems to have broken out during a large music fair)
and causal understanding (e.g., understanding that the sudden
slowdown in pedestrian movement on a street is due to an
overturned oil tanker).

Our technical objective in this paper is the development
of a processing pipeline for extracting and characterizing such
micro-events, from a combination of Instagram-related images
and captions. A key aspect is the use of available image-
analysis tools to provide semantic annotation of the image
data, and use this to build a set of features defined over both
the data and the meta-data.

Empirical analysis of Instagram posts related to 3 distinct,
well-known marathon events help us to establish the following
key Research Challenges:
• Post Relevancy: A significant fraction of images posted

using an event’s hashtag or keyword may either (a)
be stock images (and thus do not really capture the
real occurrences at the event) or (b) have only indirect
affiliation to the event (e.g., someone posting an image
of a past marathon event while watching the LA marathon
on TV). It is thus important to filter out such extraneous
content, prior to more careful content analysis.

• Multi-modal Consistency: The presence of both image
and text content in a single Instagram post raises the
question of consistency of whether the text labels and
image content are semantically consistent–i.e., they refer
to the same micro-event. For example, consider a post
with the caption “good luck runners” but a picture of
“having breakfast in a cafe”. Our framework must thus
associate event semantics with a post, based on both its
text captions and the image.

• Micro-event Separability: Micro-events often occur si-
multaneously or with little spatiotemporal spacing. More
interestingly, at least in our representative “marathon”
events, the same micro-event can have significant spatio-
temporal spread-e.g., different categories of runners start
at different times and spectators stand dispersed along
the entire route, causing the “marathon start” event to
effectively span several hours before and after the actual
start time (about 15 hours in our data). We will need
to build improved discrimination/clustering techniques to
account for such heterogeneity in the spatiotemporal span
of individual micro-events.

In this paper, we present the initial version of our Events-
in-Motion (EiM) framework for such micro-event extraction
and characterization from image-centric social media channels.
Using an Instagram data corpus captured from 3 distinct
marathons in 2015 (Boston, London and LA), we make the
following Key Contributions:
• Pipeline for Post Relevancy, Semantic Extraction and

Micro-event Detection: To tackle the challenges men-
tioned earlier, we develop a framework that first performs
pre-processing on the data (to eliminate irrelevant or
unrelated posts), and then applies multiple data mining

techniques on a broad set of metadata+ data features to
identify events and their spatiotemporal boundaries.

• Empirical Insights on Relevancy and Semantic Extrac-
tion: We show that stock and non-relevant images can
constitute around 30% of all event-related posts, and
develop an image-similarity based method for extracting
the likely set of original events posted from an event’s
location. Likewise, we also show that, in contrast to non-
event related posts on topics such as “food”, Instagram
captions for events tend to have very little immediate
semantic overlap with the semantics of the corresponding
image. This observation underlines the importance of
considering both caption-and-image based features for
Instagram-based event analytics.

• Empirical Evaluation of Alternative Micro-event Detec-
tion Schemes: We formulate event detection as a problem
of identifying distinct clusters over a multi-dimensional
feature space, and evaluate two approaches–one that
defines a vector space over all words+metadata, while
the other considers LDA-based topic distribution over
distinct spatio-temporal clusters. We then show that these
approaches are quite promising: e.g., in the case of
London Marathon in 2015, we detect the start of the race
from Greenwich Park with a location error of 0.79 km
within 30 mins. We also detected the winning moment of
Wilson Kipsang with a location error of 2.70 km within
60 mins of his victory. The average spatial Euclidean
distance error of 0.059 degrees across all micro-events
is a substantial improvement over the macro-event (i.e.,
Earthquakes) detection error of 3.01 degrees reported
in [3] using Twitter data. Overall, EiM achieves spatial
and temporal resolutions of less than 1% and 10%,
respectively, of the correponding ranges of the macro-
event. Moreover, this approach also helps identify fine-
grained nano-events–ones that have very few associated
posts.

We emphasize that this work should be viewed as exploratory
in nature–while our results are confined to the case of
marathon events, we believe that our proposed EiM approach
is promising and will be increasingly adopted to tackle various
facets of urban event detection.

II. DISSECTING AN EVENT

We first introduce the formal notion of our micro-event
characterization problem, given a corpus of posts that are
associated with a specific, well-defined macro-event. Typically,
the macro-event has a fairly large spatiotemporal spread–e.g.,
Instagram posts related to the micro-event of cheering the
runners spanned a total of approx. 15 hours. Our goal is to
discover and specify (as tightly as possible) the spatiotemporal
range of uncertainty for an unknown number of micro-events–
i.e., significant happenings that occurred, at different time
instants, as the marathon gradually progressed from start to
finish.

A. Problem Definition
Let P be the set of all posts containing a known, specific

keyword that identifies a real world macro-event E. We
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Fig. 2. Space-Time-Semantic Space of an Event. Each Ei is a micro-event
bounded by space Si, time Ti and semantics Wi.

consider each post p∈ P as a tuple (sp, tp,wp) where sp is the
latitude, longitude pair from where the content was posted, tp
is the time at which the content was posted and wp is a bag-
of-words representation of the semantics of the content. The
content can be both the caption accompanying the post or a
label representing the meaning of the image itself. Then Ei is
a cluster (Si,Ti,Wi) where Si ⊆ S is a set of coordinates in the
universe of coordinates S, Ti ⊆ T is a set of timestamps in the
universe of timestamps T and Wi ⊆W is a set of words in the
universe of words W that describes a meaningful, micro-event
Ei ⊆ E, for i=0, . . . , n-1, where there are n such micro-events.
We illustrate this in Figure 2.

B. Key Challenges
Leveraging crowd-sourced, multi-modal content for this

problem encompasses several key challenges that we enlist
below.

Spatio-temporal-semantic boundaries are not uniform:
In order to describe events in motion as a sequence of micro-
events, the boundaries of such need to be determined along
the three dimensions. However, due to the varied nature of
such events, this is not straightforward. For example, marathon
events typically last for 2 to 5 hours over a total distance
of 42 kilometers. However, an earth quake could shatter a
large part of a country and the evolution of the event (from
earthquake to disaster recovery to rehabilitation) could take
several months. In this work, we mitigate this challenge by
choosing unsupervised clustering and topic models to identify
the most appropriate boundaries.

Relevancy: Social media content is noisy – not all posts
shared by users, as pertaining to an event, in fact are relevant.
As we describe in Section III-A, about 30% of the posts
contain previously shared content such as stock photos and
memes that aren’t original.

Extracting Semantics of Images: Multimodal platforms
are semantically richer as they provide both textual and image
information about an ongoing event. We automatically extract
labels representing the meaning of images using state-of-the-
art computer vision techniques and show that the captions
don’t explain the content of the image and that it justifies
the need to consider both (Section III-B).

Fig. 3. High-Level Architecture of EiM Micro-Event Detection and Charac-
terization.

Credibility: Of all the content shared, not all can be
considered as “truthful representations” of the event. For
example, a marathon enthusiast could be posting updates of
progress on a race from a different part of the world altogether.
The social relationships between users of the platform could
also influence the credibility of a post – a user could simply
reshare a friends’ post without being physically there. We defer
addressing this challenge as future work.

C. Our Approach

The following steps describe our overall approach in EiM
for detecting micro-events.

Step 1: Relevancy Filter –First, of all the event-related
posts, posts that contain images that are irrelevant or unorig-
inal, are discarded.

Step 2: Semantic Extraction –Using an existing deep
learning library, the semantic labels of the incoming images
are extracted which are then represented as a bag-of-words
similar to captions.

Step 3: Feature Extraction –Each post is associated with
metadata (coordinates in space and a time stamp) and content
(bag-of-words) which form the set of all features (STA). For
Step 4B, we consider the spatio-temporal features only (ST).
For comparison purposes, we also consider STL which consists
of space, time and bag-of-words from labels alone. The posts
are preprocessed following the standards of tokenization, stop
word removal and background words (words that are too
frequent) removal.

Step 4A: Clustering –We represent each post as a word
vector using the Vector Space Model with T F− IDF weights
in addition to the metadata dimensions. The features are scaled
and normalized before clustering with either k-means (with
Euclidean distance) or hierarchical clustering (with cosine sim-
ilarity as affinity measure and average linkage). In Section IV,
we refer to clustering using ALL features as STA.

Step 4B: Topic Modeling –As an alternative approach, we
consider the topic distribution (using TwitterLDA [4]1) over
spatio-temporal clusters (k-means or hierarchical over ST) and
refer to this approach as ST+LDA.

We illustrate this process in Figure 3.

D. Dataset Description

In this paper, we use three datasets pertaining to three
different marathons events that happened in 2015 using which

1We use the implementation available from https://github.com/minghui/
Twitter-LDA.
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we evaluate our approaches. We consider ALL posts with the
keywords listed in Table I. Table II lists the number of total
posts collected and the percentage posts with accompanying
geotags (at roughly 50%, significantly higher than that of
Twitter which is typically less than 1%).

In addition, a secondary dataset consisting of a non-
marathon event, and different categories of popular posts
according to the taxonomy described in [5] is used to quantify
the relationship between user-generated captions and auto-
generated image labels. The dataset consists of 2000 randomly
sampled posts from each category originating from Singapore.

Category Observation
Period Keywords Used for Filtering

Marathon Events
Boston April 2015 “bostonmarathon”, “baa”
LA March 2015 “lamarathon”
London April 2015 “londonmarathon”, “vmlm”

Other Event
F1 SGP September 2015 “f1 ”,“race(s) ”,“racing ”, “formula”

Non-Events
Food September 2015 “food”,“yummy”, “recipe”, “delicious”
Pets September 2015 “dog(s) ”, “cat(s) ”,“puppy ”,“doggy”
Fashion September 2015 “fashion”, “style”,“trend”,“outfit”
Selfies September 2015 “selfie”,“friend”,“fun”

TABLE I
SUMMARY OF THE DATASETS USED IN THIS WORK

III. EMPIRICAL OBSERVATIONS

In this section, we provide early insights into two of the
key challenges we identified: establishing relevancy of a user-
posted image and whether the image provides additional
information orthogonal to the user-provided captions.

A. Establishing Relevancy in Images

We have observed user posts that carry images that are
generic (e.g., memes), or were available from similar events
in the past, although they may contain keywords specific to a
contemporary event. It is also common for users to share/re-
share images from blogs and news media; although these
images may be relevant, they are less reliable as they are not
the original thought/experience of the poster. To discard such
images from further analyses, we propose a technique that
consults a large corpus of images to identify whether a user-
posted image is an already available image on the Internet by
comparing its syntactic similarity against those available in the
corpus. In this work, we use Google Search2 as our primary
corpus. We describe the steps in brief below.

1) For each user-posted image, or query image, qk, a
reverse image search is performed programmatically
against the search engine. The search results page is
then systematically scraped. In our implementation, we
perform an X-path search on the DOM of the page
returned.

2) The results returns pages that contain the image (if a
match is found) and a set of visually similar images. If
a page is found, then the user-posted image is deemed
as a “stock” image with a reality− score = 0.

3) If matched pages are not found, then for the top-k visu-
ally images returned, we compute the Perceptual Hash

2https://images.google.com/

Fig. 4. CDF of reality− score. About 20-30% of the posts were found to
have exact matches (reality− score = 0) against the search engine.

[6] of both the query and result images and then compute
the respective Hamming distances between the images.
The perceptual hash is robust against simple image
manipulations (e.g., rotation, scaling, borders, cropping,
etc.). For a 64-bit hash, we take the reality− score as
h
64 where h is the minimum distance.

Dataset # Posts # Posts with
Geotags

# Posts Detected
as Original

LA 4640 2652 (57.15%) 3846 (82.88%)
Boston 7742 4176 (53.94%) 5523 (71.34%)
London 8474 4022 (47.46%) 6192 (73.07%)

TABLE II
Marathon DATASET SUMMARY.

In Table II, we list the percent posts that contained original
images at a reality− score = 0 – i.e., exact matches. Further,
in Figure 4, we plot the CDF of the reality− score for each
dataset. We observe that about 30% of the posts have a
score equal to 0. To evaluate the effectiveness of the scoring,
(1) we randomly sample 100 images from each set and (2)
and two annotators manually labeled whether the images are
stock or not. We report the average precision/recall values in
Table III along with the κ coefficient. Overall, we observe
very high precision (close to 1) and moderate to substantial
agreement between the annotators. We attribute the drop in
recall to the non-negligible number of false negatives. Further
investigation revealed that such misclassification was caused
by: (1) images with popular landmarks in the background
(e.g., Big Ben during the London marathon), (2) images with
specific products as the main subject (e.g., Adidas merchandise
during the Boston marathon), and (3) aggregation sites which
provide summary versions of Instagram posts for popular
hashtags.

B. Do captions convey what’s in the image?

Each post consists of two modes of content – text from
the captions and the image content itself. In this section,
we attempt to quantify the relationship between the two. In
order to extract the semantic meaning of images, we use
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Dataset Recall Precision Cohen’s κ

LA 0.906 1.000 0.535
Boston 0.769 1.000 0.682
London 0.776 0.985 0.674

TABLE III
ACCURACY OF DETECTING ORIGINAL CONTENT IN THE Marathon

DATASET WITH reality− score = 0. THE LOSS OF RECALL IS ATTRIBUTED
TO THE NON-NEGLIGIBLE NUMBER OF FALSE NEGATIVES. THE κ VALUE

SHOWS MODERATE TO SUBSTANTIAL AGREEMENT BETWEEN THE
ANNOTATORS.

a multimodal recurrent neural network, NeuralTalk [7]3. It
combines both object detection and the inter-object spatial
relationship to generate sentence-like labels.

In understanding the relationship, we compute the following
measures of similarity between the caption and the correspond-
ing label:

Lexical Similarity (Sw): We measure this as the Jaccard
similarity between the two bags-of-words in the sources:
caption and label for each of the post.

Semantic Similarity (Ss): We represent each word by
its word sense (i.e., synsets from WordNet 4). Then, the
semantic similarity between the two short phrases/sentences
is calculated based on the path similarity between individual
synsets (i.e., “based on the shortest path that connects the
senses in the is-a taxonomy”) and word order similarity in
a sentence, as proposed in [8].

In Table IV, we tabulate the size of vocabulary (Vc for
captions and Vl for labels), mean and standard deviation of
lexical similarity, and the mean and standard deviation of
semantic similarity, for the three marathon datasets, the non-
marathon event (F1 SGP), and the four categories of popular
Instagram posts. We make the following observations:

1) Lexical vs. Semantic similarity: across all datasets, we
see that the semantic similarity is at least 100 times more
than when considering plain word-to-word overlap.

2) Food vs. other categories: The class of Food shows the
highest agreement between the captions and labels even
thought its vocabulary is much richer (63, 736 distinct
words in captions).

3) Marathon vs. non-marathon event: The F1 SGP dataset
shows the lowest degree of agreement. We believe
that this particular event would lack diversity in image
content with most images containing the track, cars and
crowds whereas the captions would be diversified.

4) However, we still note that the overall similarity between
captions and labels is low (≈ 7− 12%) justifying the
need to consider both captions and labels for accurate
analyses of semantics.

5) We also note that the low similarity values could be
attributed to the discrepancy in the language forms;
posts may contain casual words with colloquial terms,
abbreviations, hashtags with multiple words appended
together, etc. in contrast to the formal structure of the
auto-extracted labels.

3We use the implementation available from https://github.com/karpathy/
neuraltalk.

4http://www.nltk.org/howto/wordnet.html

Dataset Vc Vl Sw Ss
LA 14652 350 0.0017 (0.014) 0.1135 (0.099)
Boston 21147 362 0.0015 (0.013 ) 0.1233 (0.101)
London 18027 363 0.0021 (0.015) 0.1289 (0.104)
F1 SGP 12767 299 0.0002 (0.004) 0.0714 (0.072)
Food 63736 275 0.0167 (0.021) 0.1663 (0.087)
Pets 7613 302 0.0115 (0.023)) 0.1207 (0.084)
Fashion 34009 361 0.0015 (0.008) 0.1075 (0.077)
Selfies 41897 330 0.0015 (0.009) 0.1094 (0.082)

TABLE IV
SIZE OF THE VOCABULARY AND LEXICOGRAPHIC AND SEMANTIC

SIMILARITY BETWEEN THE CAPTIONS AND AUTO-GENERATED LABELS
FOR EACH OF THE DATASET. ‘FOOD” CATEGORY SHOWS THE HIGHEST

OVERLAP DESPITE ITS RICHER CAPTION VOCABULARY. WITH AN
AVERAGE SEMANTIC OVERLAP OF ONLY 12% ACROSS THE MARATHON

DATASETS, WE USE BOTH CAPTIONS AND LABELS IN EIM.

IV. EVALUATION

In this section, we provide insights into the choice of
parameters and our observations from evaluations using the
two approaches described in Section II. In particular, we seek
to understand the following:

1) Choice of clustering algorithms and number of clusters
that offer the greatest clustering quality

2) The average case location and time estimation accuracy
of micro-events

A. Parameter Selection

In formulating a clustering problem, the number of clusters
and the quality of the resulting clusters are key concerns. To
choose the optimal number of clusters for each of the marathon
events, we varied the number of clusters k, and observed the
Silhouette coefficient which is a measure of cluster quality. In
our analyses, we used two fundamentally different clustering
algorithms, namely, k-means and hierarchical clustering. Fur-
ther, we observed these values for the different sets of features
described previously (i.e., ST, STL and STA).

In Figure 5, we plot the Silhouette Coefficient (on the y-
axis), for varying number of clusters (on the x-axis). We make
the following observations: (1) across all three feature sets,
hierarchical clustering outperforms k-means – this is likely
due to the nature of k-means which favors spherical clusters,
whereas in our case, it is not necessary that the clusters
maintain this shape, and (2) the STA (all features) features
perform the worst lending to its sparse, high-dimensional form.
For the remainder of the analyses, we choose the hierarchical
clustering algorithm with k set to 200 and 300 for ST (spatio-
temporal features only) and STA, respectively.

B. Results

We evaluate the two approaches STA and ST+LDA, in terms
of known start times of the marathon events 5, and calculated
finish times based on the winners’ run time 6. We assert
that the ground-truth location coordinates and timings are
only approximate. For each cluster, we first find the most
representative bag-of-words and then for chosen clusters (that
are contain specific keywords indicating that they represent a

5http://is.gd/boston15, http://is.gd/la2015, http://is.gd/london15
6http://is.gd/bostonwinners, http://is.gd/lawinners, http://is.gd/

londonwinners
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Apprx. Apprx. Location Error in km Time Error in mins
Micro-Event Location Time ST+LDA STA ST+LDA STA
Boston

Cheering Hopkinton 8:50 - 11:15 5.22 (0.066) 13.03 (0.151) 66.93 68
Winners Public Library 11.56 - 12:09 5.49 (0.062) 3.89 (0.047) 50.03 332.18

London
Start of race Greenwich Park 9:00 - 10:10 0.79 (0.027) 5.77 (0.079) 31.37 185.55
Winners The Mall 11:43 - 12:14 2.70 (0.007) 5.44 (0.071) 57.03 56.46

LA
Cheering Dodger Stadium 6:30 - 6:55 3.62 (0.039) 3.88 (0.035) 93.01 99.53
Winners Santa Monica 9:05 - 9:17 10.48 (0.094) 10.65 (0.098) ) 333.85 34.24

TABLE V
ERRORS IN ESTIMATING LOCATION AND TIME OF known MICRO-EVENTS OF THE THREE Marathon EVENTS. THE VALUES WITHIN BRACKETS ARE THE

EUCLIDEAN DISTANCE ERRORS IN DEGREES.

Fig. 5. Cluster Quality vs. Number of Clusters – hierarchical clustering
outperforms k-means across all three feature sets. A common k value of 300
is chosen for the remainder of the analyses.

start or win micro-event of the race), we compute the location
and time estimation errors based on the ground-truth.

1) Representative Bag-of-Words of Clusters: In the case of
ST+LDA, each cluster consists of several posts each assigned
to a specific topic. Each such topic has a pre-computed
distribution (called proportions) over the universe of words.
Hence, to arrive at the most dominant bag of words for that
cluster, we choose the top-k words with the highest cumulative
proportion within that cluster. If topic(i) is the topic of post
i, and topic(i) has proportion pi, j over word w j, then the
cumulative weight of the word in that cluster is ∑i pi, j. Then,
the dominant words of that cluster are those with the highest
such sum.

In the case of STA, each post in each cluster has a vector
form. Hence, we take the centroid of this cluster as the most
representative vector for that cluster, and choose the top-k
words with the highest weights as the dominant bag of words.
In both cases, we choose k = 10.

2) Error estimation: We manually selected clusters that
semantically match the ground-truth micro-events (based on
generic keywords such as “elite”, “cheer”, etc. for race starts
and “finishline”, “finish”, etc. for race ends), and computed
location and time errors as the haversine distance and absolute
distance from the cluster centroid(s), respectively.

In Table V, we tabulate the observed errors for the cheer-
ing/start and win/finish micro-events (for which it was possible
to infer approximate ground-truth). In Table VII, we provide
top keywords retrieved by the two approaches for some
interesting micro-events. Overall, we achieve a Euclidean

distance error of 0.059 degrees across all micro-events with a
substantial improvement over the 3.01 degree error reported in
[3] using Twitter data. We make the following observations:

Cheering along the route: The cheering micro-events are
the most common and largest clusters observed in our datasets
(e.g., in the Boston set, 35 clusters with an average size of
94 with the term “luck”). As such, they are also the least
discriminative. For instance, spectators along the entire route
of the marathon post content indicative of cheering or wishing
the runners good luck. Also, the wishing and cheering from
the anticipating crowd starts well before the stipulated start
time and continues as the race progresses. Hence, we see high
variability in both space and time.

In particular, we observed the spatio-temporal variation of
the terms “luck” (top keyword for cheering) and “desisa” (a
top keyword for winning) and fit a Gaussian models along the
three dimensions latitude, longitude and time after removing
outliers. In Table VI, we list the standard deviations seen in
latitude, longitude and time and observe the estimation errors
with respect to this variability. For example, ST+LDA has
a best case location error of ≈ 5.22km and time error of
≈ 66.93mins in the case of the Boston Marathon. However,
compared to the variability, this translates to only 0.15%
- 0.35% in location error. Interestingly, in the case of the
London marathon, discriminative keywords (e.g., “Greenwich”
and “charity” – the race had three separate start points and
some charity runs started at specific points) results in a
dramatic drop in location errors down to ≈ 1− 6km. The
time performance also improves – the improvement is more
significant in ST+LDA.

Similarly, in the case of finishes, spectators use generic
keywords such as “finish line” from the beginning of the race
and well after the winning time (which is our ground-truth),
and not necessarily towards the end or when a winner emerges.
This is apparent in the case of the LA marathon where the best
case location error is ≈ 11km. As noted earlier, with the use
of discriminative keywords indicating the actual winner (e.g.,
“Lelisa”, “Desisa”), we see that the error reduces significantly
(≈ 5km for both Boston and London).

Highly Discriminative Sub-Events: We observe a number
of rare clusters that represent interesting micro-events. Due
to the lack of reliable ground truth, we are unable to provide
error estimates. Inspirational posts of the first ever woman
runner in the Boston Marathon (in 1967), Kathrine Switzer,
was detected along with keywords suggesting her audacity
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(“fearless”, “adversity”) and women empowerment. Another
interesting cluster emerged as Tatyana McFadden emerged as
winner in the wheelchair runners category. Rebekah Gregory,
a survivor from the 2013 bombings, completed the race on
prosthetic legs which was also picked up as a small cluster.

Late Finish: Maickel Melamed completed the Boston
Marathon in 20 hours, well after the spectators and organizers
had dispersed. This story first emerged as a news article 7, and
not surprisingly, the location estimates and time estimates are
far from ideal. We observe a average error of 1162 km and a
standard deviation of 732.28 km.

We conclude that with the presence of discriminative key-
words, the two approaches are able to detect micro-events
with less than 5km error and an hour delay, on average. We
also realize the need for solutions to the orthogonal problems
of automatically (1) identifying which words represent which
micro-event (micro-event classification) and (2) identifying the
most likely cluster for each micro-event (in the presence of
multiple clusters). We defer this for future work.

Micro-
Event

Keyword SDlat SDlon SDtime Elat Elon Etime

Cheering “luck” 7.81 17.12 875.95 0.15% 0.35% 7.64%
Winning “desisa” 5.47 13.02 802.98 0.17% 0.50% 6.23%

TABLE VI
SPACE AND TIME CHARACTERISTICS OF KEYWORDS FROM THE BOSTON
MARATHON. THE STANDARD DEVIATIONS OF LATITUDE AND LONGITUDE

ARE IN DEGREES AND OF TIME IS IN MINS. SD-STANDARD DEVIATION,
lat-LATITUDE, lon-LONGITUDE, E-ERROR AS PERCENTAGE OF STANDARD

DEVIATION.

V. DISCUSSION AND FUTURE WORK

Current Limitations and Future Work: In detecting
non-stock images, we observed that most errors resulted from
misclassification of original content as stock content due to the
presence of “landmark” objects or backgrounds. To improve
the performance (reduce the misclassification of event images
as stock photos), we intend to investigate the use of time-
distance based filtering – i.e., if two pictures were posted close
together in time, although sharing the same background, due to
their proximity in time, they could both be in fact original. An-
other possible approach is to introduce additional background
metadata (e.g., whether the day in concern was cloudy or
sunny) in the classification process. Moreover, in Section III-B,
we show that the vocabulary of the auto-generated labels is
much smaller than the size of the captions. This is an inherent
limitation of the training corpus of images and sentences used
in extracting the labels – hence, a larger scale training with
diverse images and multiple human annotators could help in
significantly improving the richness of the labels.

Given our focus on establishing some baseline measures in
this paper, we have intentionally limited ourselves to relatively
simple clustering and topic modeling techniques. In future,
we plan to expand on the topic model (to include both space
and time as additional variables) which will then allow us to
estimate the geotags of untagged posts (which is about 50%
of the total number of posts). By using such spatiotemporal

7http://is.gd/maickelarticle

distance features, we can then include the untagged posts in
the processing pipeline, instead of simply discarding them.
We anticipate that this will let us recursively fine-tune the
model for better performance. Further, in dealing with very
high dimensional data, we also intend to consider dimension-
ality reduction and covariance between word dimensions to
understand its effect on performance.

Open Problems: In our current work, we attempted to
tackle the challenge of establishing credibility in user posts
using a outlier detection approach. We identified local outliers
of every micro-event cluster using the Local Outlier Factor [9]
algorithm. However, the initial results did not show promise.
In our discussions of semantic similarity between captions and
labels, although we assert that the two are different, we did not
consider whether the two statements corroborate each other or
are in conflict. This remains an interesting question on whether
such contradictions hint at a lack of credibility in the post.

In Section IV, we introduce two orthogonal problems. In
evaluating the location and time accuracy, first, we manu-
ally identified which bag-of-words represents which micro-
event (e.g., cheering vs. winning). Here, the development of
domain-specific ontologies and knowledge representations can
automate the process by classifying or labeling the micro-
event based on the bag-of-words. Second, we manually chose
the best cluster amongst the set of clusters that identifies a
micro-event (i.e., one that minimizes the errors). This can be
formulated as a path estimation problem to identify the best
cluster for each micro-event to find the set of clusters that
maximizes the overall probability of the event trajectory.

VI. RELATED WORK

Event Detection and Tracking using Social Media:
Event detection from user-generated social media content (e.g.,
Twitter feeds) is a widely studied topic. Events are detected
primarily by identifying changes in the frequency distribution
of usage of hashtags or keywords (i.e., volume of usage)
using a combination of machine learning techniques [3]. In
Walther [1], spatially localized events such as house fires
or parties are detected by first setting up spatial filters to
identify clusters of tweets and then using a combination of
topic and semantic analyses to identify events. In contrast,
Twitcident [10] focuses on monitoring events; here, it is
assumed that events to be monitored are known a priori and
Twitter data are then mined to monitor those events. Some
work, such as [11], focused on the classification and tracking
of such events. While many solutions rely on pre-computed
vocabularies for such classification, practical systems should
develop and update their vocabulary autonomously, which
remains an important research challenge.

Spatio-Temporal Topic Discovery: Previous work in text
analysis research have demonstrated the use of techniques such
as Space-Scan-Statistics ([12]) and topic models involving
space, time, user attributes and semantics[13] in uncovering
spatio-temporal topics. Their focus was mainly on detecting
large-scale events.

Complementary to the above work, we envision to dissect-
ing such events to uncover micro-events or event stages to
understand the evolution of the event.
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Micro-Event Type Keywords from STA Keywords from ST+LDA
Starts “elite”, “cheering”, “elitemen”, “nearlythere” “elite”, “cheering”, “big”, “day”, “amazing”, “luck”
Finishes “finish”, “finishline”, “congrats”, “personalbest”, “desisa” “finish”, “finishline”, “lelisa”, “desisa”, “rotich”

Last runner “maickelmelamed”, “venezuela”, “muscular”, “dystrophy” “maickelmelamed”, “venezuela”, “boylston”, “spirit”,
“story”

First woman runner “kathrine”, “switzer”, “adversity”, “women” “switzer”, “women”, “kathrine”, “fearless”
Wheelchair runner “tatyana”, “womens”, “wheelchair”, “mcfadden” Not picked up as a dominant word/topic

TABLE VII
OBSERVATIONS FOR DIFFERENT TYPES OF MICRO-EVENTS FROM THE BOSTON MARATHON.

Multimedia in Social Sensing: Although there has been a
flurry of research in leveraging crowdsourced textual content
for a variety of applications, the same does not hold true
for multimodal platforms such as Instagram. Early works in
exploiting Instagram have primarily focused on two areas:
(1) characterization of posts and workload and (2) empirical
analyses on cultural and travel aspects due to the higher avail-
ability of geo-coded information as opposed to its text-based
counterparts (e.g., Twitter). In [14], the authors characterize
user posting behavior, spatially and temporally, over a large
dataset of 2.3 million images, and demonstrate the use of
such characterization by building a tool for recommending
regions of interest. While [5] looks at developing a taxanomy
of the user posts, [15] tries to answer key questions related
to what makes a post more popular. While [14] employs
only the associated metadata, [5], [15] analyze the image
content similar to our work. Our work differs in the fact
that we combine both metadata and multimodal semantics to
understand urban events and their evolution.

In this work, we expand on our initial vision [16] for a
multimodal, social signal processing framework.

VII. CONCLUSION

In this paper, we have introduced and discussed the problem
of characterizing micro-events (i.e., transient occurrences that
occur within a larger event, and that are highly localized to
specific neighborhoods and time intervals) via social sensing
of image-sharing social networks–specifically, Instagram. Our
proposed EiM framework includes novelties at both the data
preprocessing and subsequent event detection stage. During
data preprocessing, image similarity based measures are used
to weed out irrelevant or non-live photos, while tools from
image semantic labeling are used to provide a richer feature
set for Instagram posts (quite distinct from the captions used in
such posts). Subsequently, we use both a generative model and
a statistical clustering based approach to identify such micro-
events. Results show that the generative model, ST+LDA,
is able to bound events with spatial errors that are less
than 1-2% of the reported location tags and less than 10%
of the reported time interval. While more work is clearly
needed to improve the localization of such events (perhaps
by considering semantics-based inter-event relationships), our
work establishes the importance of including semantics of
image content in using Instagram feeds as a social sensor
channel for event characterization.
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