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a b s t r a c t

To promote energy-efficient operations in residential and office buildings, non-intrusive
load monitoring (NILM) techniques have been proposed to infer the fine-grained power
consumption and usage patterns of appliances from power-line measurement data. Fine-
grained monitoring of everyday appliances (such as toasters and coffee makers) can not
only promote energy-efficient building operations, but also provide unique insights into
the context and activities of individuals. Current building-level NILM techniques are unable
to identify the consumption characteristics of relatively low-load appliances, whereas
smart-plug based solutions incur significant deployment and maintenance costs. In this
paper, we investigate an intermediate architecture, where smart circuit breakers provide
measurements of aggregate power consumption at room (or section) level granularity. We
then investigate techniques to identify the usage and energy consumption of individual
appliances from such measurements. We first develop a novel correlation-based approach
called CBPA to identify individual appliances based on both their unique transient and
steady-state power signatures. While promising, CBPA fails when the set of candidate
appliances is too large. To further improve the accuracy of appliance level usage estimation,
we then propose a hybrid system called AARPA, which uses mobile sensing to first
infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs
to effectively reduce the set of candidate appliances that potentially contribute to the
aggregate readings at any point. We evaluate two variants of this algorithm, and show,
using real-life data traces gathered from 10 domestic users, that our fusion of mobile and
power-line sensing is very promising: it identified all devices that were used in each data
trace, and it identified the usage duration and energy consumption of low-load consumer
appliances with ∼87% accuracy.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is widespread interest in developing solutions that provide knowledge of the fine-grained usage and power
consumption of everyday appliances (such as coffee makers and televisions) in residential buildings. Such interest is
primarily driven by recent interest in energy-efficient building operations, especially as empirical evidence suggests that
empowering consumers with greater awareness of their energy consumption patterns can result in 5%–20% reduction in
electricity usage [1,2]. However, we believe that, besides this energy-related benefit, the ability to precisely capture the
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usage profile of everyday consumer appliances also provides insight into an individual’s context, at a fine granularity that
existing approaches (typically based onmobile sensing [3]) simply cannot provide. For example, while past approaches such
as [4–6] can help classify activities such as ‘‘making dinner’’ or ‘‘watching TV’’, appliancemonitoring can additionally indicate
that the ‘toaster was used today’ (revealing details about the food items consumed) or ‘the specific TV channel watched’ [7].

This paper thus explores the technical feasibility of a visionwhere the sensing capabilities of body-wornpervasive devices
are combined with the power-line sensing of appliance usage to provide significantly greater insight into the daily activities
(formally called Activities of Daily Living or ADLs) of individuals, especially in their residential environments. While the
empirical investigations carried out in this paper utilize smartphones (that may or may not be always carried around inside
a home), an eventual embodiment will likely rely on wearable devices (e.g., smart-watches [8], smart-bracelets [9]) that are
now gaining wider market acceptance and that a user will likely wear almost-continuously [10].

Themost common technique for capturing appliance usage is Non-Intrusive LoadMonitoring (NILM) [11], where a-priori
knowledge of the power signatures of individual electrical devices is used to infer the activation and de-activation of such
devices from an observation of the aggregate power consumption signal. Present NILM techniques however operate at two
extremes. The most commonly deployed solution involves the use of Smart Energy Meters, installed outside the building,
which provide only the total sum of power consumed by all the appliances belonging to that house or consumer [12].
Given such an aggregated observation, we can identify only the major loads in the house (e.g., the HVAC unit or the
Washer/Dryer) [13], not the myriad ‘‘low-load’’ appliances (e.g., toasters, TVs, etc.). The other extreme involves the use of
wireless ‘‘Smart Plugs’’ [14,15], inserted into individual electrical sockets, and thus providing powermeasurements at much
finer, individual appliance-level granularity. The disadvantage, of course, is that this approach requires the provisioning of
such smart plugs in every individual power outlet, resulting in fairly steep deployment challenges and increasedmonitoring
cost.

Motivated by these limitations, our research attempts to answer two questions: (a) is there a meaningful alternative,
in between the extremes of total vs. individual power consumption monitoring, that helps us in our quest to infer individual
appliance consumption patterns?, and (b) can the sensing capability of pervasive mobile/wearable devices be exploited to improve
the accuracy of detecting such appliance usage, thereby providing finer-grained context monitoring?

More specifically, we propose and utilize the Smart Circuit Breaker approach: here each room (or possiblymultiple rooms)
of a residential or office building is equippedwith an instrumented circuit breaker (which we have implemented in ongoing
work) which helps measure the aggregate room-level granularity [16]. Such circuit-breakers provide, for example, the total
power consumed in the kitchen,without necessarily separating out the concurrent use of one ormore appliances, such as the
fridge, coffee maker, microwave or toaster. The challenge then is to devise an analytics technique that can help disaggregate
such measurements to infer the use of even relatively low-power appliances.

In this paper, we first use real-life measurement studies to develop an enhanced Correlation-Based Power Analytics
algorithm, called CBPA, that applies correlation over both macroscopic and microscopic power consumption features, to
identify the total usage duration, and the total energy consumption, of individual devices, from such circuit-breaker level
aggregated data. While CBPA helps to successfully disaggregate room-level power data into individual devices in some
practical cases of interest, its accuracy diminishes if the candidate set of possible low-load devices becomes modestly large.
Accordingly, we then explore a joint sensor fusion approach, that combines mobile plus power-line sensing data, to first
obtain a smaller, filtered set of candidate appliances whose cumulative power consumption is reflected in the reading of
the smart circuit breaker. We provide two different variants of this ADL-driven approach, called Activity-Aware Room-level
Power Analytics (AARPA), one rule-based and the other probabilistically-weighted, and then use real-world usage traces to
establish their efficacy. Our work thus establishes how a joint fusion of mobile-sensing based ADL recognition and room-level
power-line consumption data can provide a practical solution that (a) helps capture the energy consumption characteristics
of low-load, commonly-used domestic appliances and (b) provides useful additional context about the lifestyle habits and
context of an individual.
Key Contributions:
• Our key contribution lies in the proposed AARPA approach, that jointly fuses the ADL recognition capabilities of pervasive

mobile sensing with the practical power-line sensing offered by Smart Circuit Breakers, to reliably identify the usage and
energy consumption profile of relatively low-load daily-use appliances (such as toasters,microwave ovens and treadmills).
AARPA provides a practical way to achieve such fine-grained discrimination of appliance usage, without incurring the
prohibitive operational overheads of per-device power monitoring via Smart Plugs.

• As a secondary contribution, we suggest CBPA, an enhanced power analytics algorithm, that utilizes correlationmeasures
over long-term traces of both microscopic (transient) and macroscopic (longer-term) power consumption features, to
identify the use of such low-load daily-use appliances.While CBPA’s accuracy is not adequatewhen applied in isolation, it
performs better than prior approaches [13,17], which are based solely on longer-term ‘steady-state’ power consumption
features. More importantly, when used as part of AARPA, CBPA proves very useful in disambiguating appliance use.

• We evaluate the quantitative benefits of AARPA using real-life activity traces from 10 domestic users, collected over
several weeks. Our results show that, given normal everyday patterns of domestic living, AARPA can provide very high
accuracy in identifying device usage (AARPA identified 100% of all devices used in our studies), and significantly increase
the accuracy (by approx. 45%) of estimating per-device energy consumption. This is achieved even under realistic limits
of at-home activity recognition (accuracies of ≈90%). These results demonstrate the viability of the AARPA approach, for
both finer-grained context/activity recognition and appliance-level energy consumption monitoring.
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The rest of the paper is organized as follows. Section 2 discusses the related work in this area. Section 3 presents the logical
steps of our proposed AARPA framework. Section 4 highlights our initial findings on the power signature analysis. Section 5
presents CBPA, a correlation-based power analytics technique. Section 6 describes an appliance-usage based activity model
in combinationwith the correlation-based power signature analysis. Section 7 presents our detailed experimental results on
identifyingmultiple appliances energy consumption footprint based on an TinyOS smart plug testbed alongwith an Android
smartphone-based real activity data traces. Section 8 identifies future research directions and concludes our work.

2. Related work

Buildings are responsible for at least 40% of energy use in most countries [18], with efficient and usage-aware
consumption of electricity by households viewed as a major driver for reducing energy consumption. There has been a
significant amount of research on greater visibility of such energy consumption in residential and office buildings [19]. Our
work touches on several areas starting from context-aware power signature analysis to building energymanagement based
on plug load meters.

Appliance Power Signature Analysis: Non-intrusive load monitoring (NILM) algorithm was initially proposed by
Hart [11] for discerning individual appliance power consumption from total power measurements. The initial technique
proposed a cluster analysis approach, over a two-dimensional signature space of real and reactive power. However, the
data acquisition system required for the obtaining and storing reactive power measurements is costly. The heuristic end-
use load profile algorithm proposed in [20] records the occurrence, timing, and magnitude of large spikes in powerline
and disaggregates only relatively large loads, e.g., air conditioners, using a 15 min sampling dataset, which inevitably
limits the range of other consumer appliances that could be detected. An appliance-specific decision rule to detect large
appliances such as water heaters and refrigerators has been proposed in [13] with an estimated detection accuracy of
about 80%; this approach however, requires excessive training. The appliances connected through a socket in household
are detected by monitoring the electrical noise in a socket for the transient signals [21]. The FFT of the noise was used
as a feature, and the system has required training for each appliance and their combinations. This work, however, incurs
significant computational expense of capturing and analyzing the transient noise and needs to be trained on each household
appliances. More recently, the authors proposed a newmethod for detection based on switch mode power supplies (SMPS)
and electromagnetic interference (EMI) on the power line [22]. There are several other approaches which address the power
signature analysis at higher frequency. A voltage–current trajectory based load signatures has been proposed along with
hierarchical clusteringmethod to classify and construct the taxonomyof the household appliances [23]. Several classification
models for device identification and load signature extraction are investigated using harmonic signature analysiswith neural
networks [24]. A discriminative sparse coding based approach has been proposed for load disaggregation in contrast to
above high frequency approaches that usually rely on special purpose sensors [25]. A template-based matched filtering
approach has been proposed for disaggregating water consumption from a single source [26,27]. Deep neural networks
based energy disaggregation has been investigated in [28]. In [29], EMI noise is used to detect the operating states of the
appliances, for example, the surface on which vacuum cleaner is being used to improve energy disaggregation. Acoustic
noise of appliances have been captured to identify the micro-states of the appliances which help in fine-grained appliance
energy enumeration [30].

Green Building Energy Management using Plug Load Meters: A building energy auditing network based on Wireless
AC plug-load meter [14] smart plugs has been proposed in [31]. The MIT plug power meter platform provides apparent
power measurements for profiling a load over a short or long time scales [32]. A growing interest for building energy
monitoring system has been noticed recently in industry as well due to the several startups, such as EnergyHub [33] and
Greenbox [34]. A non-intrusive approach that employsmachine learning on data collected from infrastructure sensors, such
asmagnetic sensors, has been proposed to infer fine-grained power usage in home [35]. PowerPedia enables users to identify
and compare the consumption of the plug-level domestic appliances through a smart phone app [36].

Smartphone and Sensor based Energy Prediction: An iPhone App called Beware [37] provides the user information
on energy consumption of entire home. It can detect the electricity consumption of different devices and notify the user
if the devices use more energy than expected. Energy Lens [38] provides deeper real time visibility of plug-load energy
consumption in buildings. It uses the mobile phone to provide a consumer with real-time energy analytics. [39] proposed
an ad hoc sensor system that can monitor appliance power usage by exploiting multi-sensor fusion and unsupervised
machine learning algorithms. In summary, plug-load meter based approaches can easily achieve a detailed device-level
energy footprint but for a steep deployment, operating and maintenance costs [40]. Single sensor-based systems are
easier to deploy, but usually have the undesirable properties of requiring custom hardware and extensive appliance-
specific training [41]. A circuit-level power measurements and probabilistic level-based disaggregation algorithm to
separate aggregate data of a limited number of devices has been proposed in [42]. Recently [43] proposed a novel energy
disaggregation algorithm alongwith smartphone based appliance-usage labeling techniques to simplify the training process
for identifying appliance-specific power signatures. Our approach is synergistic with studies in [4], which employed activity
recognition, principally using infrastructural sensors, to estimate the aggregate energy consumption in a smart home
environment. In EnergyLens [44], human activity is inferred form energy consumption based on specific electrical appliance
usage, usage duration and location information. The system intelligently combines electricity meter data with sensors
on smartphones, WiFi radio and microphone to infer which appliance is being used, when and where it is being used in
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Fig. 1. Functional overview of the AARPA framework.

the home, and who is using it. In [45], a lightweight human activity classification has been performed to identify human
activities using smartphones and iBeacon sensor. Multi-user energy consumption monitoring and anomaly detection has
been proposed in [46] augmenting the users and environmental contextual information. Disaggregated smart meter data
has been employed to detect the ADLs and health status of older adults using a log Gaussian Cox process [47]. In contrast,
we focus on using mobile sensing for more practical recognition of Activities of Daily Living (ADL), and focus on estimating
the energy consumption at a finer, individual appliance-level, granularity.

3. The overall AARPA framework

We now introduce the overall AARPA framework, whose logical steps are illustrated in Fig. 1. The framework assumes
that a load monitoring device is embedded into the Circuit Breakers associated with each individual room (or often, some
logical grouping of rooms), such that this circuit breaker canmonitor and provide real-timemeasurements of the total power
consumed by all appliances that draw electrical power through this circuit breaker. The AARPA framework then applies
independently to each such circuit breaker. The left-hand portion of the figure operates only on power consumption data
and is conceptually similar to past work on NILM-based appliance usage-detection techniques. The algorithmworks by first
requiring the operation of each individual appliance to be profiled (note that this is a one-time ‘‘fingerprinting’’ process and
can even utilize manufacturer-supplied device profiles as an alternative), to build up an appliance-specific power signature.
Subsequently, during regular operation, we assume that we obtain the total power consumed, for a specific room, by an
(unknown) subset of each appliances that have already been profiled.

In the base implementation of our framework, we simply apply our correlation-based technique, called CBPA, over this
total power consumption data, using all the appliances in the room as the potential set of candidates. However, as we shall
see, even a modestly large set can cause CBPA to perform fairly poorly. This is where the use of ADL recognition via mobile
sensing comes in. Wemonitor the sensors on the mobile device in our current implementation, we restrict ourselves toWi-
Fi measurements and accelerometer data, but the concept can be generalized to include a broader array of both mobile and
infrastructural sensors as shown in [48], and then apply a two-tier activity detection algorithm on this sensor data. In the
first-tier, we detect the micro-context of the individual (e.g., the person is walking in the kitchen), and then apply another
classifier over this sequence of micro-activities to infer the person’s semantic activity—e.g., the ‘‘person is preparing dinner’’.
As the next step, this inferred activity is then used to filter down the total set of appliances in the room to a smaller activity-
specific set of appliances. (This smaller activity set itself is derived in a supervised fashion from training data, by observing
which appliances the user has used during a specific semantic activity.) As the final step in the AARPA approach, the CBPA
algorithm is now applied to the measured total power, with this smaller activity-specific set of candidate appliances, to
discern the usage pattern and energy consumption of individual appliances.
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Fig. 2. Refrigerator power consumption.

4. Appliance signature analysis

Given our focus on identifying relatively low (or medium) load devices, we first present a brief empirical study of the
power consumption characteristics of some typical devices. The goal here is to establish that even everyday appliances
with seemingly similar power profiles often possess unique temporal characteristics, that we can hope to leverage while
attempting to disambiguate the consumption of multiple devices. The absolute values of the instantaneous power readings
are not of prime relevance, as: (i) precise readings, aswell as temporal patterns,will clearly vary across devicemanufacturers
and models, and (ii) individual absolute values are hard to tease out from a power consumption measurement that is a sum
of a large number of individual appliances/devices.

More specifically, we study the similarities and differences in the power consumption pattern of two device pairs with
relatively quite similar behavior:

1. Refrigerator vs. steam iron: While seemingly quite different in their operation (and role in a consumer’s daily life), both
exhibit a cyclic pattern of power consumption: the fridge due to duty cycling of its compressor, with the iron due to
intermittent deactivation by the thermostat.

2. Table fan vs. fluorescent lamp: While one is a motorized andmechanical device and the one is purely non-mechanical one,
both exhibit a relatively steady power consumption pattern when they are on.

Accordingly, our comparison deliberately looks at worst-case scenarios where device pairs have highly similar behavior—
other pairings of these 4 devices will be much easier to identify and separate. The measurements are conducted using
Moteware Smart Plugs (ACMe) [14], running in a TinyOS environmentwith an Ubuntu 12.04.3 LTS system (additional details
of our measurement experiments will be provided in experimental section).

4.1. Refrigerator vs. steam iron

Figs. 2 and 3 plots the power consumption pattern of the fridge against that of the steam iron. It should be clear that the
consumption behavior exhibits the following similarities: (i) both devices exhibit a very cyclical consumption pattern, with
each device being duty cycled for a significant fraction of the time (the fridge having its compressor turned off, while the iron
having its heating coil turned off); (ii) both devices having significantly lower (at least 80%) power consumption during the
‘‘off’’ period of each duty cycle, and (iii) both devices have a longer transient duty cycle (with the fridge’s compressor being
active to initially reach the pre-set temperature and the iron’s heating coil warming up to reach the desired temperature),
as they ramp up from an initial state.

However, a finer-grained inspection of the patterns reveal some clear and insightful differences:

• The time period for the duty cycle is nearly constant for the fridge, while it exhibits irregular variation in the case of the
steam iron. However, the ‘‘on’’ period for each duty cycle is fairly constant for both the fridge and the iron. This is really
an artifact of the irregular pattern of human usage of the iron, in contrast with the fridge where human interaction is
much less frequent and the behavior of the compressor is much more ‘regular’.

• Besides the variability, the average value of the time periods are markedly different. The time period for one cycle of the
fridge is approx 38–40 min, while it is much shorter in the case of the iron (1–1.5 min).



6 N. Roy et al. / Pervasive and Mobile Computing ( ) –

Fig. 3. Steam iron power consumption.

Fig. 4. Table fan power consumption.

• Finally, the power consumption during the ‘‘off’’ period of the duty cycle is quite different — it is essentially about 0.5 W
for the fridge, but around 3 W for the iron.

The readings suggest that employing a technique that looks not just at initial transients, but over the regular operation
cycle of each device, should be able to discriminate between these two devices, by taking advantage of their different
temporal evolution patterns.

4.2. Table fan vs. fluorescent lamp

Figs. 4 and 5 plot the power consumption of the table fan and the fluorescent lamp. We can see that both of these
eventually have a steady (as opposed to a cyclical) power consumption pattern and that the power consumption ‘jumps’
to a noticeably large value fairly rapidly. However, more careful inspection also reveals the following key differences:

• While the table fan’s transient is nearly negligible (less than 2 s), the lamp has a pronounced transient phase, takingmore
than one minute to reach its steady state.

• The readings for the fan show three different ‘‘levels’’. These three levels correspond to the three different speed levels
associated with the fan. So, if the consumer actually adjusts the speed level of the fan, the consumption signal will show
three different levels (approx 37 W, 41 W and 47 W).
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Fig. 5. Fluorescent lamp power consumption.

Like the previous case, the plots and observations suggest that a temporal pattern matching technique may prove useful
in identifying and separate the power consumed by different devices. Note that the measurement plots correspond only to
the active power (as the reactive power measurements are not available from the commercial Smart Plug). Had the reactive
power readings been available, we would have been able to additionally exploit differences in the amplitude and phase
relationship of the reactive component as well. Based on these insights, we now present our proposed CBPA algorithm,
which seeks to utilize such temporal signatures in the power consumption characteristics of each individual device.

5. Correlation-based power analytics

The CBPA algorithm proposes to identify both the set of devices/appliances being used, and their individual power
consumption, by exploiting both the microscopic and macroscopic features present in the time series of the total power
consumption.Microscopic refers to the specific temporal nature of the signalwaveforms and harmonics (e.g., as used in [49]),
whereasmacroscopic refers to power changes, etc. as studied in [11]. However, capturing suchmicroscopic features can itself
present challenges—for example, to accurately capture harmonics, the Circuit Breaker needs to utilize a higher sampling rate,
which in turn poses data transmission bandwidth and storage challenges. Similarly, monitoring the reactive power from
the appliances is also a computationally intensive task [49]. To alleviate these problems, [49] proposed to use only transient
signals for harmonic analysis. However, we are interested in not just detecting appliances via analyses of their transients,
but also estimating their total energy consumption, implying that we need to analyze the steady-state operations as well.

To utilize the signatures present in both transient and steady-state phases of power consumption, our proposed
CBPA utilizes a signal waveform analysis technique based on Cross-correlation [50], which captures the similarity of two
waveforms as a function of a time-lag applied to one of them. Cross-correlation analysis is oftenused to detect the presence of
a short-duration time serieswithin a longer-duration signal. Mathematically, the cross-correlation (xcorr) sequence, defined
between two jointly stationary random processes, xn and yn, with −∞ < n < ∞, is represented as:

Rxy(m) = E{xn+my∗

n} = E{xny∗

n−m} (1)

where E{.} is the expected value operator and asterisk represents the complex conjugation. xcorr(x,y) returns the cross-
correlation sequence as a vector of size (2×N−1) vector, where x and y are lengthN vectors (N > 1). For continuous-valued
signals, xcorr is computed via the convolution of two signals x(t) and h(t), by integrating as follows:

y(t) =


∞

−∞

x(τ )h(t − τ)dτ = x(t) ∗ h(t) (2)

where y(t)denotes the convoluted signal of two signals. h(t−τ) represents a t amount time shifted function h(−τ) assuming
the axis is τ . The convolution integral y(t) is calculated at each time shift t by multiplying and taking the integration of
x(τ ) × h(t − τ); ∀t ranging from −∞ to +∞. h(t) acts as an impulse response function filter. The convolution procedure
is described as follows. (i) reverse the function h(τ ) in time generating h(−τ), (ii) shift the function h(τ ) by an amount t to
have h(t − τ), (iii) multiply the shifted h(t − τ) by x(τ ) yielding x(τ )h(t − τ), (iv) integrate x(τ )h(t − τ) for all positive and
negative values of t considering the overlap to obtain the value of the convolution.

We apply the correlation technique mentioned above to try and identify each individual appliance from the total load
measurements. A key aspect of our methodology lies in our modeling and use of both the transient and steady-state phases:



8 N. Roy et al. / Pervasive and Mobile Computing ( ) –

Fig. 6. Mobile charger load model.

in particular, peaks in the correlation function often help to identify distinct ‘events’ associated with each appliance (e.g., a
fridge’s compressor turning off or on); such peaks correspond to key transient characteristics. However, having isolated
these peaks, we then model the steady state load as well to compute the energy consumed over the entire steady-state.

5.1. Generating individual power signatures

In our approach, we first individually measure the load behavior (i.e., the characteristic power consumption curve)
for each appliance, and thus create a device-specific model or signature of the power consumption. For obtaining the
characteristic power consumption of a device or appliance, the device was plugged into an ACMe plug load meter, and
monitored for a duration long enough to capture both transient and steady-state phases. We wrote a generic code to collect
the relevant characteristic information from thesemeasurements. For example, for the case of amini-refrigerator, the fridge
was left on for at least three compressor ON cycles. In this case, the characteristic information retrieved includes (i) the
characteristic energy value when the compressor is ON, (ii) average energy consumption value when the compressor is OFF,
(iii) time period of one cycle comprising both successive compressor ON and OFF states, and (iv) the energy consumption
during the transient period of the compressor turning OFF.

Similarly, generic codes are implemented for collecting characteristic power curves from other respective devices. To
generate accurate characteristic curves, it is important to not only measure for a sufficiently long duration (e.g., to capture
the long transient phase observed previously for the case of the fluorescent lamp), but to also avoid usage artifact during
the measurement phase. For example, during the power drawn by the Mobile Charger, it is desirable that no phone calls
or messages are sent or received. If such communication occurs, the resulting load model will contain peaks (as shown in
Fig. 6), as opposed to the exponentially decaying behavior that we expect to see ideally. To overcome such undesired spikes
and signal ‘‘glitches’’, ourmeasurement techniques perform signal clipping above a certain threshold and then smoothen out
the clipped portion of the curve by using interpolation to approximate missing samples. Fig. 7 represents such a smoothed
load modeling curve.

5.2. Feasibility of the CBPA approach

To test the possible use of the correlation-based CBPA approach, we utilize a real dataset collected using the Smart Plug
over a 10 hours time period (614 min) as shown in Fig. 8 from the appliances described below. To generate the ground
truth about the device usage, we also collected the precise usage times of each device. (a) Mini-Refrigerator is ON from 0 to
614 min, (b) Fluorescent lamp is ON from 104 to 448 min, (c) Mobile charger is ON from 145 to 344 min, (d) Steam Iron is
ON from 396 to 440 min, (e) Table Fan is ON at level 1 speed from 416 to 494 min, at level 2 speed from 495 to 531 min, at
level 3 speed from 532 to 573 min.

Fig. 8 plots the aggregate load, as measured by the plug load meter. To evaluate the effectiveness of our proposed CBPA
technique, we start by trying to separate out the energy consumptions of refrigerator. The general flow chart of our method
is shown in Fig. 11. For this we use correlation between the aggregate dataset and characteristic curve generated by one
of the load modeling function corresponding to refrigerator. Wherever there is a close enough match of aggregate dataset
curve (Fig. 8) and refrigerator characteristic power consumption curve (Fig. 9), peaks are generated at those points (Fig. 10).
These peak points represent the locationwherever refrigerator’s Compressor ON state’s consumption is present.Accordingly,
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Fig. 7. Mobile charger characteristic curve.

Fig. 8. Aggregated power consumption.

we simply retrieve the consumption profile from the refrigerator’s signature and align the consumption curve to those
specific time instances; we then subtract the refrigerator’s resulting estimated consumption pattern from the total power
measurement to get the aggregated consumption of the residual devices, namely the steam iron, the mobile charger, the
lamp and the fan. By similarly applying the correlation-based technique iteratively, we recover the energy consumption for
both the steam iron and for the mobile telephone charger. Finally, we repeat the process to separate out the consumption
patterns of the lamp and the fan. This approach proved to be fairly successful for this somewhat arbitrary mix of appliances,
enabling us to recover the energy consumption and usage times for each appliance fairly accurately. As an illustration (to
provide a unified view, detailed numerical results are deferred to experimental section), Fig. 12 shows the ground truth
total energy consumption excluding the refrigerator, whereas Fig. 13 shows the total energy consumption excluding the
CBPA-computed energy consumption of the fridge.

While this approach is successful in some cases, it turns out to be incapable of accurately estimating the energy
consumption for many other combinations of appliances—in general, larger the set of possible appliances, the poorer the
result. Motivated by these empirical observations, we next look into the AARPA approach of first using mobile sensing to
infer an individual’s ADL context, and using such context to reduce the set of appliances likely being used.

6. Activity-aware room-level power analysis

Our key idea is to leverage upon the large body of work on pervasive/mobile sensing, for inferring both low-level
locomotive context [51,52], aswell as high-level ADLs [53]. To be clear, this paper does not attempt to innovate in the domain
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Fig. 9. Refrigerator characteristic power curve.

Fig. 10. Refrigerator correlation analysis curve.

Fig. 11. Flowchart of correlation-based power signature analysis.
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Fig. 12. Total power consumption excl. refrigerator (ground truth).

Fig. 13. Total power consumption excl. refrigerator (CBPA).

of activity recognition, but instead borrows prior techniques that (i) apply a hierarchical classification model [54] to detect
various ADLs and (ii) uses Wi-Fi measurement data to determine an individual’s location at room-level granularity [55].
Mobile phones themselves have also been used as part of systems for energy attribution in green buildings (e.g., [38]), but
more as an information presentation platform, rather than a sensing device.

In particular, for activity recognition studies that we conducted, we assume that an individual carries a smartphone
on her body, which provides both an accelerometer sensor stream and a room-level indoor location stream. From the
accelerometer data, we first infer a stream of postural states. Consequently, mobile sensing provides us a sequence
of (micro-activity, location, timestamp) tuples, where micro-activity refers to an individual’s postural state (such as
{walking, sitting, standing, . . . , }), location refers to the set {bedroom, bathroom, kitchen, . . .}, and time refers to {hh : mm :

ss AM, hh : mm : ss PM}. Subsequently, we extract new features over these tuples (following the SAMMPLE classification
approach [54]), and use these features to classify higher-level individual semantic activities (or ADLs), such as {making
breakfast, watching TV, ironing clothes, . . . }. In general, let M represent the set of micro-activities and A represent the set of
higher-layer ADLs. (In future, we expect wearable devices such as smart-watches to provide such continuous, and arguably
more accurate, sensing in homes and offices.)

6.1. Appliance-aware activity model

As the second-stage of the AARPA framework, we then attempt to derive the set of appliances associated with each such
ADL. More specifically, we use a-priori training data to associate each element e, e ∈ A, with a set of appliances that the
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Fig. 14. The AARPA algorithm.

Table 1
Deployment logistics.

ID Style/floorplan/built-in-year Size (sqft)/no. of floors No. of test apls No. of users involved

A1 Apartment/2-bed-2-bath/1990 1100/1 flr. 9 1
T1 Townhome/2-bed-1-bath/2001 1940/2 flrs. + basement 15 2
A2 Apartment/2-bed-1-bath/1985 1200/1 flr. 10 1
T2 Townhome/2-bed-2-bath/1995 1300/2 flrs. 15 2
A3 Apartment/2-bed-1-bath/1980 780/2 flrs. 9 1
A4 Apartment/2-bed-1-bath/1974 1420/1 flr. 10 3

individual is likely to use (or, more generally, have the appliance be turned on for at least a portion of the overall activity
duration) while engaging in that activity. Accordingly, the key element of AARPA involves a mapping from each element
e → S(e), where S(e) is a subset of the overall set of appliances S = {microwave, toaster, steam iron, TV . . .}. Once we
have the smaller set S(e), we then apply the CBPA technique described earlier, using this set S(e) and the overall power
consumption data obtained from the corresponding Smart Circuit Breaker. In this paper, we propose and explore two-
variants of AARPA, that differ in the way the set S(e), for each ADL e, is represented and used:

• Rules based: In this approach, called RPA, we collect the total set of appliances used (over the training phase) by an
individual when engaging in a specific ADL. More specifically, the set S(e) for any ADL e consists of all the appliances
used during any instance of e, even if the appliance may have been used only in a small set of such instances, or for a very
small duration.

• Usage Weighted: In this approach, called WPA, we compute the probability (or likelihood) w(e, i) of a specific appliance
i being used during a specific instance of ADL e, by observing and computing the average fraction of time that i is
observed to be used during each instance of e. In this case, the CBPA algorithm is modified to use not just the absolute
maximum correlation value described previously, but instead multiplies the correlation value of each appliance with its
corresponding likelihoodw(e, i). TheWPA technique can be viewed as a Bayesian analogue of RPA,with the identification
of a specific appliance being weighted by the a priori likelihood of that appliance being used during a specific ADL.

Fig. 14 provides the high-level pseudocode for the overall AARPA technique, summarizing both the RPA andWPAvariants.
(For RPA, thew(e, i) values are all set to 1.) Next we shall use empirical investigations to study the benefits and performance
characteristics of these two AARPA variants, and compare them with the baseline version of CBPA (which includes in the
candidate set any appliance attached to the circuit breaker from which the total power consumption details are obtained).

7. Experimental setup and results

In this section, we report on our experiments that investigate the benefit of the proposed (AARPA) techniques. Our
experiments are conductedwith real-life data traces of (i) appliance power consumption and (ii) smartphone sensor readings
while participating in ADLs, collected from 10 users living in typical apartments and town home complexes. Table 1 shows
the summary of the homes used in our evaluations.
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7.1. Smart plug setup and data collection

The Moteware ACMe [14] was used as a plug load meter in this work. The ACMe is based around a Texas Instruments
MSP430 microcontroller where power is monitored by an SPI-controlled Analog Devices ADE7753 power monitoring IC,
attached with a Hall Effect sensor. The ACMe was plugged into an electrical wall socket; while an individual device was
then directly plugged into this plug, an extension cord was used to connect multiple devices. The plug load meter measured
and transmitted the power consumption data in watts (volt–amps), along with a timestamp, at a frequency of 16 Hz, both
through a serial and wireless interface to the basestation, which generated a corresponding.csv file for subsequent analysis.

7.2. Android-based app development and data collection

We designed an application to collect accelerometer and gyroscope data from an Android based Google Nexus smart
phone device for monitoring the activity and appliance usage behavior of a typical user. It also asks the user to manually tag
the semantic name of the location (such as bedroom, kitchen, living room etc.) and the specific activity being performed to
aid in labeling the data, as well as the (start, stop) times of individual appliances. The resulting data was stored in ARFF file
format, for subsequent processing using the Weka toolkit [56].

Activities and Data Processing: We collected samples of ten users from six homes as shown in Table 1 performing a
variety of both kitchen-related ADLs (such as making breakfast, preparing dinner and washing dishes) and living-room
related ADLs (watching TV, etc.). We collected samples for time periods between five to sixty minutes based on a specific
activity, with sensor data collected at 80 Hz. While conducting each ADL, the users were free to place the smartphone in the
on-body position of their choice.

7.3. Enumeration of activities

Consistent with our proposed two-tier architecture [48], the activities we monitored consist of two types:

(i) Low-level (or micro): The set of postural micro-activities consisted of 6 different labels: {sitting, standing, walking,
running, lying, bending}.

(ii) High-level (ormacro): These consisted of semantically meaningful high-level ADLs associated with a specific room, and
included the following 6 labels (the first 3 labels are for the kitchen area and latter 3 labels for living room area):
• Preparing Dinner: Subject prepared dinner using the microwave, oven, and stove;
• Making Breakfast: Subject made breakfast using microwave, coffee-maker and toaster;
• Washing Dishes: Subject washed dishes in Dishwasher;
• Working@Desk: Subject worked at computer desk using laptop, monitor, phone charger, mouse, and lamp;
• Watching TV: Subject watched the TV using TV, DVD player, and a lamp;
• Pressing Clothes: Subject pressed clothes using a steam iron, fluorescent lamp, and table fan with a mini refrigerator

and mobile charger on in living room.

Note that each instance of the ADL had definite (start, end) times,manually annotated by each subject. Thus, in this paper, we
assume that we have a priori knowledge of the exact mapping between an instance of a macro activity and the underlying
set of micro-activities.

7.4. Activity-aware power signature analysis

We investigate the issue of whether this activity-aware power signature analytics approach really helps to improve the
detection and measurement of multiple appliances’ power consumption. In particular, we experimented with 3 different
strategies, which differ in whether or not, and how, they use of the additional room-level activity information to reduce
the set of candidate appliances used in the CBPA algorithm. For each algorithm, we computed both the duration error (the
difference between the ground-truth usage duration and that reported by AARPA), and the energy consumption error (the
difference between the ground-truth and the AARPA output).

1. Exhaustive Power Analysis (EPA): In this approach, we consider all appliances in a particular location as members of
the candidate set, without regard for their use during a specific ADL. For example, for the kitchen area, the set consists
of all of the appliances: {microwave, toaster, coffee maker, boiler, hand mixer, and a grinder}, even if the user is ‘‘making
breakfast’’ and has never used a hand mixer during this ADL. For this set of appliances, we note that the characteristics
of the hand mixer were very similar to that of the coffee-maker, making disambiguation via CBPA very difficult. Overall,
the EPA approach resulted in fairly high errors (see Table 3 for details), with average (across all appliances) duration and
energy consumption errors of ≈35% and 36% respectively.



14 N. Roy et al. / Pervasive and Mobile Computing ( ) –

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 15. Micro-activity (bending, sitting, standing, walking, running, lying) classification accuracy.
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Fig. 16. Appliance specific macro-activity (preparing breakfast, making dinner, washing dishes, working@desk, watching TV, pressing clothes)
classification accuracy.

2. Rule-based Power Analysis (RPA): In this approach, as explained earlier, the candidate set of appliances was defined
a-priori for each separate ADL. For example, using ground-truth data about usage patterns, the ‘‘making breakfast’’ ADL
is associated with the smaller appliance set: {microwave, toaster, coffee maker, and boiler}, and excludes the {hand
mixer, grinder} devices. Figs. 15 and 16 respectively presents the micro and macro activity recognition accuracy using
10-fold cross validation for well known classification algorithms such as J48, LogitBoost, Random Forest, NaiveBayes, and
BayesNet. Except for NaiveBayes all other classifiers had similar classification accuracy above 90%. A confusionmatrix for
macro-activity classification using Random Forest algorithm is also shown in Table 2. The resulting duration and energy
consumption errors are lower than that achieved by EPA (about 31% and 22%) respectively.

3. Weighted Power Analysis (WPA): In this weighted-based approach, we additionally compute a usage weight for each
candidate appliance (identified by the RPA process), as shown in Line 1.1.1 of Algorithm in Fig. 14, and use this weight to
boost the correlation value. In this case, the average errors in duration and energy consumption are sharply reduced, to
approx. 12% and 13% respectively, attesting to the promise of this approach.

Fig. 17 represents the aggregate power consumption resulting from the appliances used—namelymicrowave (121–421 s),
coffee maker (2–433 s), toaster (360–472 s) and oven (38–372 s) associated with macro-activity ‘making breakfast ’. Fig. 18
presents correlation coefficientsmultiplied by theweighting factor as calculated at Line 7 in Algorithm Fig. 14 formicrowave
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Fig. 17. Aggregated power consumption microwave, coffee maker, toaster and oven.

Fig. 18. Correlation of microwave.

Fig. 19. Aggregated power consumption without microwave.
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Table 2
Confusion matrix for appliance specific macro activity.

Macro-activity a b c d e f

Preparing dinner = a 127 98 0 0 17 0
Making breakfast = b 47 458 1 0 25 0
Working@desk = c 0 0 486 79 0 19
Watching TV = d 0 0 82 522 0 28
Washing dishes = e 36 81 0 0 91 0
Pressing clothes = f 0 1 45 68 0 136

Table 3
Performance metric.

Power analytics methods Start/end time error (%) Total energy consumption (J) error (%)

EPA 34.78 36.17
RPA 31.25 22.12
WPA 11.74 13.27

Table 4
Activity-based appliance usage identification results.

Appliance usage detection R M C T CBPA AARPA
Methods/users Used Used Used Used Detection accuracy Detection accuracy

User 1 ✓ ✓ ✓ ✓ 75% 100%
User 2 ✓ ✓ ✓ × 100% 100%
User 3 ✓ ✓ × ✓ 100% 100%

Fig. 20. Aggregated power consumption without microwave, coffee maker.

after performing the xcorr on aggregate data. Fig. 19 shows the residual total power consumption without the microwave
and Fig. 20 shows the residual total power consumption without the microwave and coffee maker as obtained using WPA
technique.

We have also considered the power usage datasets for 3 users for a specific macro-activity ‘making breakfast ’ associated
with a set of appliances such as Refrigerator (R), Microwave (M), Coffee-maker (C) and Toaster (T). We have employed our
CBPA and AARPAmethods on these power consumption traces to find out what specific appliances the users have used for a
specific activity. Table 4 (which summarizes the appliance usage and detection accuracies for all 3 users) corroborates that
User 1 has made use of all 4 appliances which is detected by CBPA with 75% and AARPA with a 100% accuracy. User 2 and
User 3 did not make use of toaster and coffee-maker respectively for ‘making breakfast ’ activity, respectively. In this case the
usage and non-usage of all the appliances have been detectedwith a 100% accuracy by both CBPA andAARPA basedmethods.
Inference of such appliance usage provides deeper insights into the context, habits and preferences of an individual and can
help in making contextual recommendations for life style changes (e.g., eating habits).
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Fig. 21. Aggregated power consumption using WPA (correlation + probabilistic Bayes).

Fig. 22. Aggregated power consumption using Bayes.

Table 5
Performance comparison results.

Power analytics methods Start/end time error (%) Total energy consumption (J) error (%)

Naive Bayes CNILM [42,17] 8.34 53.43
RPA 7.4 16
WPA 5.47 9.8

7.5. Comparison with existing approaches

Circuit level energy disaggregation algorithms have been proposed comprising two methods—heuristic and
Bayesian [42]. A probabilistic Bayesian approach rounding the energy consumption of different appliances to a so called
‘steady state’ has been considered which either truncated the variability in the power consumption of steady-state
appliances or ignored the appliances which have periodic nature of their power footprints [17]. Also estimating the
probability of a distinct edge by extensive profiling of appliances’ changing states is computationally expensive, and as
well as error prone given that some of the appliances may have similar edge curves like the refrigerator and steam iron
(≈50 W) as shown in Figs. 2 and 3 respectively. The Bayesian approach of [42,17] was applied on our power consumption
traces with a set of appliances (refrigerator (periodic), lamp and fan) and resulted in errors of≈54%, an error rate that is much
higher (for this limited study) than our proposed WPA approach. Fig. 21 shows the predicted power consumption curve
resulted from applying the correlation and probabilistic Bayesian approach jointly and Fig. 22 represents the predicted
power consumption curve where the Bayesian based CNILM (circuit-level non-intrusive load monitoring) method has been
employed solely. Table 5 summarizes the performance comparison results of Naive Bayes with respect to our proposed RPA
and WPA based methods.
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8. Conclusion

In this work, we have advocated an intermediate approach for NILM-based monitoring of both the usage episodes
and energy consumption of relatively low-load domestic appliances, that utilizes smart circuit breakers to measure the
total power consumption at room (or sections) level granularity. We have developed a novel correlation-based analytics
algorithm, CBPA, to identify the precise usage duration of, and the overall energy consumed by, appliances such as table fans
and coffee makers based on both their steady-state and transient power characteristics. To overcome CBPA’s limitations
when the set of candidate appliances becomes moderately large, we then propose an analytics approach, called AARPA,
that fuses pervasive/mobile sensing and high-level ADL recognition with such circuit breaker-level power readings. AARPA
employsmobile sensing to first obtain a reduced set of candidate appliances likely to be used during an ongoing ADL episode,
before applying the CBPA technique. Results from a set of 10 users show that a probabilistically-weighted variation of
CBPA shows great promise in identifying the usage of such everyday appliances very accurately (every appliance usage
episode was correctly inferred), and provides fairly accurate estimates (average error of around 13%) of both their usage
duration and energy consumption. Future work will explore two challenging aspects: (i) whether additional pervasive
sensors (e.g., ambient acoustic sensors) can help improve the accuracy of ADL recognition, thus disambiguating the set
of candidate appliances even further; (ii) how AARPA can be extended to work in multi-inhabitant settings, where different
users engage in different concurrent ADLs.
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