
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2016

Mining and clustering mobility evolution patterns from social Mining and clustering mobility evolution patterns from social

media for urban informatics media for urban informatics

Chien-Cheng CHEN
National Chiao Tung University

Meng-Fen CHIANG
Singapore Management University, mfchiang@smu.edu.sg

Wen-Chih PENG
National Chiao Tung University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Numerical Analysis and Scientific Computing Commons, Social Media Commons, and the

Urban Studies and Planning Commons

Citation Citation
CHEN, Chien-Cheng; CHIANG, Meng-Fen; and PENG, Wen-Chih. Mining and clustering mobility evolution
patterns from social media for urban informatics. (2016). Knowledge and Information Systems. 47, (2),
381-403.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3631

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1249?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3631&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/436?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3631&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Knowl Inf Syst (2016) 47:381–403
DOI 10.1007/s10115-015-0853-4

REGULAR PAPER

Mining and clustering mobility evolution patterns
from social media for urban informatics

Chien-Cheng Chen1 · Meng-Fen Chiang2 ·
Wen-Chih Peng1

Received: 2 September 2014 / Revised: 24 February 2015 / Accepted: 13 June 2015 /
Published online: 2 July 2015
© Springer-Verlag London 2015

Abstract In this paper, given a set of check-in data, we aim at discovering representative
daily movement behavior of users in a city. For example, daily movement behavior on a
weekday may show users moving from one to another spatial region associated with time
information. Since check-in data contain both spatial and temporal information, we propose a
mobility evolution pattern to capture the daily movement behavior of users in a city. Further-
more, given a set of daily mobility evolution patterns, we formulate their similarity distances
and then discover representative mobility evolution patterns via the clustering process. Rep-
resentative mobility evolution patterns are able to infer major movement behavior in a city,
which could bring some valuable knowledge for urban planning. Specifically, mobility evo-
lution patterns consist of segments with the spatial region distribution and the corresponding
time interval. To measure good segmentation from a set of check-in data, we formulate the
problem of mining evolution patterns as a compression problem. In particular, we compute
the representation length of the patterns based on the Minimum Description Length prin-
ciple. Since the number of daily mobility evolution patterns is huge, we further cluster the
daily mobility evolution patterns into groups and discover representative patterns. Note that
we use the concept of locality-sensitive hashing to accelerate the cluster performance. To
evaluate our proposed algorithms, we conducted experiments on the Gowalla and Brightkite
datasets, and the experimental results show the effectiveness and efficiency of our proposed
algorithms.

Keywords Mobility pattern · Data mining · Pattern clustering · Urban planning

B Wen-Chih Peng
wcpeng@cs.nctu.edu.tw

1 National Chiao Tung University, Hsinchu, Taiwan

2 Singapore Management University, Singapore, Singapore

123

Published in Knowledge and Information Systems, 2016 May, Volume 47, Issue 2, Pages 381-403
http://doi.org./10.1007/s10115-015-0853-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-015-0853-4&domain=pdf

382 C.-C. Chen et al.

1 Introduction

With the development of mobile networks and the popularity of smart phones, it is easy for
users to share geographic information in location-based services. For example, users could
check in their visiting places and share them with their friends via Foursquare or Facebook.
They can also upload photos with GPS information to Flickr. Note that check-in data and
geo-related photos can reflect users’ movement behavior. By analyzing these check-in data,
one could understand how and when people move around in a city. An understanding of the
moving behavior of users would be helpful in urban planning [18] and for mobile advertise-
ment services. Moreover, a city government can understand better how the inhabitants move
and how to plan city transportation.

With geographic data, investigating the mobility of users has been widely studied. For
example, prior works in [14,15,21] have proposed some algorithms to mine user moving
patterns. The authors in [12,28,30] proposed methods of location recommendation. Most of
these works focus on exploring the movement patterns of users. Movement patterns refer to
frequent sequences of regions where regions are spatial areas in which most users frequently
stay. Note that those movement patterns only reflect spatial regions of users and sequential
relationships among regions. We claim that mobility behaviors of users should indicate not
only spatial regions but also time information. In addition, with the popularity of location-
based social networks, a considerable amount of check-in data is generated every day. Thus,
in this paper, we aim at mining mobility evolution patterns that capture daily movement
behaviors of users in a city. Mobility evolution patterns indicate where and when users
stay in a city and how users move around a city within a day. Moreover, given a set of
daily mobility evolution patterns, we further cluster mobility evolution patterns to extract
representative patterns. Such patterns are more concise and represent major daily mobility
evolution patterns.

Since mobility evolution patterns consist of segments with spatial region distribution and
the corresponding time interval, one naive way is to order the check-in records by their
timestamp. Then, we can get a sequence of check-in records in the spatio-temporal domain.
However, this approach is too detailed for mobility evolution patterns. The reason is that a
check-in record is a point of place with the precise location and timestamp. Hence, we use the
concept of feature region to transform the point level to the region level. The region level is to
show people who come to a region rather to a specific place. To derive feature regions, we use
the OPTICS algorithm [3] to cluster the check-in records with spatial proximity. The reason
for using this OPTICS algorithm is that the cluster results can depict many check-ins in the
cluster regions and represent the activities around an area. In Fig. 1, we have three feature
regions A, B, and C in the left map. After extracting these regions, we can mark the check-in
records to the feature regions. In Fig. 1, we represent the mobility evolution pattern of the
day with feature regions of A, B, C, and D at the bottom of the graph. Thus, we get the basic
daily mobility evolution patterns by ordering feature regions according to their timestamp.

After processing the spatial factor of the mobility evolution pattern, we need to determine
the time factor of the pattern. Because the timestamp is too detailed to cluster daily mobility
evolution patterns, we need to replace the timestamp of the patterns with time intervals.
Intuitively, the easy way is to divide check-in records into a set of segments by a specific
time interval. The mobility evolution patterns can now be recognized as a series of segments
with feature regions. In order to represent the feature regions of the segments, we compute
the distribution of the feature regions as the spatial model in each segment. Therefore, every

123

Mining and clustering mobility evolution patterns from social. . . 383

24

16

8

3/6/20103/4/2010 3/5/2010

Representative Pattern 1 Representative Pattern 2Hour

Fig. 1 An example of mobility evolution patterns

segment has its distribution of feature regions, and the mobility evolution pattern becomes a
series of segments with feature region distribution.

With a large number of mobility evolution patterns, we may encounter the problem of
loading a huge amount of mobility pattern data to memory for clustering the mobility evo-
lution patterns. Therefore, we want to reduce the pattern size while still preserving mobility
information. To solve this problem, we propose an algorithm GreedyMDL to compress the
size of the mobility evolution pattern. Our algorithms combine the segments until we get
good segmentation results. To measure good segmentation from a series of segments, we
formulate the problem as a compression problem. We use the compression technique of the
Minimum Description Length (MDL) principle [23], which has demonstrated its effective-
ness in trading off accurate and concise data representations [25,26], for segmentation. By
the MDL principle, we can merge segments with the shortest representative length. After
segmentation, we would get the mobility evolution patterns of smaller size while preserving
mobility for each day.

In light of the mobility evolution patterns of each day, we further cluster the daily mobility
evolution patterns into groups, and for each group, we select one representative mobility
evolution pattern. For example, in Fig. 1, we have two representative patterns from two
clustering results. As can be seen in Fig. 1, the first 2days have similar mobility evolution
patterns so they would be grouped together. To cluster daily mobility evolution patterns, we
derive a mobility evolution pattern distance function (MEPD) to measure the distance of the
patterns. However, we may encounter performance issues in calculating all pair similarities
in clustering when the number of days is huge. Therefore, we explore the locality-sensitive

123

384 C.-C. Chen et al.

hashing (LSH) [1,9,11] idea to speed up the cost of deriving similarities, which improves the
clustering performance. Based on the features of mobility evolution patterns (i.e., the spatial
and temporal information hidden in segments of the mobility evolution patterns), we propose
themultiple level hash family.With the LSHmethod, the clustering process is efficient.When
we cluster daily mobility evolution patterns to many groups, we can extract the representative
mobility evolution patterns from each pattern group. Thus, we can have the representative
mobility evolution patterns as the urban informatics around a city.

The main contributions of this paper are as follows:

– We formulate the problem of mining and clustering mobility evolution patterns from
check-in data.

– We define mobility evolution patterns based on the MDL principle.
– We propose a distance function to measure the similarity in mobility evolution patterns

and use this function for clustering mobility evolution patterns.
– We use the LSH concept to accelerate the performance of clustering mobility evolution

patterns.
– We extract the representative mobility evolution patterns from the clustering result for

the urban informatics in a city.
– We conduct experiments on real datasets to demonstrate the effectiveness and efficiency

of our proposed algorithms.

The remainder of this paper is organized as follows: Sect. 2 reviews the related work.
Section 3 presents the background information of our work. Section 4 describes the pro-
posed methods of mining mobility evolution patterns. Section 5 illustrates the approach of
clustering for representative mobility evolution patterns. Section 6 reports the performance
of our algorithms. Section 7 concludes this paper.

2 Related works

Prior studies have elaborated on mining mobility patterns [19,22,29], mining trajectory pat-
terns [4,7,10,13–15,21], recommending attractive locations [12,28,30] from collective GPS
trajectories, and developing location searches [5,6,8,27].

In mining mobility patterns, the study in [22] extracted the movement features from
check-in datasets to model the mobility pattern. Our method is different from this works
in terms of handling the temporal factor. We use the MDL principle to determine the time
variation. Moreover, the authors in [29] proposed fine-grained sequential patterns, and the
[19] was to mine the periodic behaviors of moving objects. The authors in [7] studied the
relation between human geographic movement, its temporal dynamics, and the ties of the
social network. However, they did not handle the similarity issues of pattern clustering that
proposed in our work.

In trajectory patternmining, those studies onmining trajectory patterns focus onmodeling
mobility from GPS trajectories by exploring discrete Markov models [15] or spatio-temporal
association rules [31]. The authors in [20] proposed mining periodic behaviors from moving
trajectories. A periodic behavior is a statistical description of the periodic movement for one
specific period. The study in [10] investigated the movement of objects from a sequence
of spatio-temporal locations. However, the dataset of trajectory is high-sampling rate. Their
methods cannot be applied to the low-sampling rate dataset of check-in records that we use.

Recently, location-representative information such as Travelogue has provided rich and
useful user-generated content. The analysis of location-representative information enables

123

Mining and clustering mobility evolution patterns from social. . . 385

several application scenarios including destination recommendation and location summariza-
tion. For example, the authors in [30] proposed a location-aware recommendation framework
that recommends interesting locations (e.g., Birds Nest) and possible activities (e.g., sight-
seeing) from geographic databases, GPS logs and Web data. The authors in [12] proposed
a location-topic model that extracts location-representative knowledge from Travelogue.
[28] proposed a location recommendation service that incorporates user preferences, social
influence, and geographic influence which are integrated for Point of Interest (POI) recom-
mendations in location-sharing services such as Foursquare, Facebook, etc. In these works,
they focus on recommending location and are relevant to the feature regions we used in
mobility evolution patterns. But, their purposes were not to extracting mobility patterns.

In summary, while the existing studies show promising results, the prior works did not
address the problem of the clustering of mobility evolution patterns. Moreover, the methods
of the prior works could not be applied to our work in pattern clustering for these three
reasons. First, our mobility evolution patterns are different from the patterns of the previous
works. For example, the work [22] did not consider the time factor, and the time factor
of [7] is continuous. However, our patterns contain time factor, and the time is discrete.
Second, previous works, such as [19], did not propose of similarity function for the patterning
clustering. Third, dataset is not compatible because the trajectory data are high-sampling rate
in some works such as [10]. In our work, we use the check-in dataset which is low-sampling
rate. Therefore, we propose new mobility evolution patterns based on the MDL principle to
solve the temporal issue, and this pattern can be apply to check-in records. In addition, for
mobility evolution pattern clustering, we also propose a distance function to measure the
similarity of the patterns.

3 Preliminary

In this section, we first describe our framework for mining and clustering mobility evolution
patterns. Second, we define the mobility evolution patterns. Finally, we describe the objective
function of mining mobility evolution patterns.

3.1 Framework

Our framework is illustrated in Fig. 2. The proposed framework consists of three components:
feature region extraction, mobility evolution pattern extraction, and pattern clustering. In the

Fig. 2 Overview of the
framework for mining and
clustering mobility evolution
patterns

Check-in Records

Feature Region Extraction

Mobility Evolution Pattern Extraction

Pattern Clustering

Representative mobility evolution patterns

input

output

123

386 C.-C. Chen et al.

feature region extraction component, we group check-in records with location proximity to
obtain the important areas in a city. Moreover, the mobility evolution pattern extraction is to
mine themobility patternwith the spatial and temporal factors, and it is used to reveal the daily
movement in a city. For pattern clustering, we cluster the similar daily mobility evolution
patterns to extract representative mobility evolution patterns. In the following sections, we
describe the methods and definitions used in this framework.

3.2 Mobility evolution patterns and clusters

In this section, our goal is to define mobility evolution patterns. From a set of check-in data
records, mobility evolution patterns depict the changes in moving behaviors with time. The
following are some terms used in this paper.

Definition 1 (Check-in records) A check-in record gi ∈ G is a place with a timestamp and
latitude and longitude location that is recorded by a user.

We first cluster check-in records to feature region set R by using the latitude and longitude
attributes of the records.

Definition 2 (Feature regions) A feature region ri ∈ R is a cluster of locations derived by
OPTICS [3]. It represents the location attribute of a check-in at the region level. Figure 1
shows four feature regions A, B, C, and D.

We mark these check-in records according to their feature region and divide the records
by a time interval to get into a sequence of segments S.

Definition 3 (Segments) A segment si ∈ S contains a set of check-in records in a time
interval δt . For example, si = {g1, g2, . . . , g|Gi |}. Each check-in record gi ∈ si belongs to a
feature region, where f (gi) = r j and Gi is the check-in records in segment i . The f (g) is
the mapping function to get the check-in record’s feature region, and ri is one of the feature
regions. For instance, Fig. 3 shows one segment with four check-in records, where two belong
to the brown feature region, one belongs to the dark green feature region, and one is in the
green feature region.

To formally describe the spatial aspect of a segment, we use a model to represent it.

Definition 4 (Model) Amodelmi ∈ M is the distribution of the feature regions in a segment
which is represented as the probability sequence pi (r1), . . . , pi (r|R|), where pi (r1) indicates
the occurring probability of r1 and |R| is the number of feature region types. In Fig. 3, the
model m1 is {p(brown) = 0.5, p(darkgreen) = 0.25, p(green) = 0.25}.
Definition 5 (Change point) In two consecutive segments, if their models are different, the
dividing point is called the change point. In Fig. 3, one change point is between s2 and s3.

With the above definitions, we compress segments into mobility evolution patterns using
the MDL principle.

Definition 6 (Mobility evolution patterns) A mobility evolution pattern ei ∈ E is a
sequence of consecutive segments with models with the shortest representation length. We
define the shortest representation length later. In Fig. 3, we can compress the twelve segments
with three models. The three models form the mobility evolution patterns.

123

Mining and clustering mobility evolution patterns from social. . . 387

m1 m2 m3

s1 s12s11s10s9s8s7s6s5s4s3s2

Change Point Change Point

Fig. 3 Illustration of segments and models

Given a set of mobility evolution patterns of users, we can cluster the similar patterns
together for urban planning.

Definition 7 (Mobility evolution pattern clusters) A mobility evolution pattern cluster is
a set of similarity mobility evolution pattern. For example, Fig. 4a is shown the mobility
evolution patterns of five users. In Fig. 4b, we can observe that two clusters (U1, U2) and
(U3, U4, U5) are extracted.

3.3 Representation length of the MDL

We have mentioned that the representation length is the way to determine the mobility
evolution pattern. In this section, we introduce our objective representation length function
based on the MDL principle [16,23,26]. To use the MDL principle, we need to introduce
Kraft’s inequality [24]. Using Kraft’s inequality, we can identify the relationship between a
code length and a probability. The relationship can be defined in the formula:

L(z) = �− log p(z)� (1)

where p(z) is the probability of a random variable z, and L(z) is the code length of p(z).
In our mobility evolution pattern, by the MDL principle, the representation length is divided
into two parts. One is model length, which is used to measure the code length of each model.
The other is the segment description length, which is the code length of the segment that is
described by the models.

3.3.1 Model length

We now formulate the model length and the segment description length. Given the model set
M , for each model mi ∈ M , mi is the probability sequence pi (r1), . . . , pi (r|R|) according

123

388 C.-C. Chen et al.

7 1918171615131211109 148
Time of A Day

U1

U5

U4

U3

U2

(a)

7 1918171615131211109 148
Time of A Day

U1

U5U4U3

U2

(b)

Fig. 4 Mobility evolution patterns and clusters. a Mobility evolution patterns. b Mobility evolution pattern
clusters

to feature regions R. As a result, the model length of the model mi is formulated as follows:

L(mi) =
∑

r j∈R

− log pi (r j). (2)

We could further derive the model length of the model set M as follows:

Lmodel(M) =
∑

mi∈M
L(mi) =

∑

mi∈M

∑

r j∈|R|
− log pi (r j). (3)

3.3.2 The description length

Here, we introduce how to describe a segment using a model. Given one segment si and its
corresponding model mi = (pi (r1), . . . , pi (r|R|)), the description probability is as follows:

p(si |mi) =
|R|∏

j=1

pi (r j)
N (r j ,si) (4)

where N (r j , si) is the number of times that r j occurs in si . Then, we can get the description
length of mi describing si below:

L(si |mi) = −logp(si |mi) =
∑

r j∈|R|
−N (r j , si) log pi (r j). (5)

Consequently, we acquire the segment description length of a sequence of segments S as
follows:

Lsegment(S|M) =
|S|∑

i=i

L(si |mi) =
|S|∑

i=i

∑

r j∈|R|
−N (r j , si) log pi (r j). (6)

123

Mining and clustering mobility evolution patterns from social. . . 389

3.3.3 Representation length

Given model set M , segment set S, and feature region set R, the objective function designed
to measure the representation length equals:

Q(M, S, R) = Lmodel(M) + Lsegment(S|M). (7)

4 Mining mobility evolution patterns

According to the objective function derived for mobility evolution patterns, we propose two
greedy algorithms to efficiently discover the mobility evolution patterns.

4.1 Design concept

Given a set of check-in data, our first step is to extract the feature regions. As pointed out
earlier, a feature region is a group of the check-in records with proximity. Once the feature
regions have been extracted, the next step is to use the feature regions to discover the mobil-
ity evolution patterns for each day. The term evolution is used to describe how the mobility
changes as time goes by. Moreover, the mobility evolution patterns are a series of segments
where each segment has a sequence of the probability distribution of feature regions with
a time interval. The naive way of discovering the mobility evolution patterns is to partition
the check-in records with a specific time interval. For example, we can partition a day into
twenty-four segments by a 1-h time interval. In this work, we use 1-h time interval according
to the time feature of previous work [19]. The check-in records in each time interval would
form a segment. Each segment would have a sequence of probability distribution of feature
regions. The twenty-four segments form a mobility evolution pattern representing the mobil-
ity over time. However, with a big dataset, wemay need a large amount of space to store every
segment when using the naive method. We want to reduce the data size of mobility evolution
patterns with fewer segments. In addition, when decreasing the size of the mobility evolution
patterns, these patterns should still preserve the mobility information of the original patterns.
To achieve this purpose, we borrow the concept of the Minimal Description Length (MDL)
principle to compress the mobility evolution patterns. As we know, theMDL principle can be
used to determine the regularity of the data. By this property we can compressmobility evolu-
tion patterns without losing much mobility information. To compress the mobility evolution
patterns, we propose the representation length function Eq. 7 based on the MDL principle to
merge segments. With the MDL principle, we can compress mobility evolution patterns with
mobility information preserving. Thus, the compressed mobility evolution patterns would
be small and would preserve the mobility information of the original data. According to the
design concept, we propose two methods to mine mobility evolution patterns. One is the
algorithm GreedyKL (standing for a greedy method based on KL divergence) and the other
is GreedyMDL (standing for a greedy method based on MDL principle).

4.2 GreedyKL

Given a set of check-in records, we partition the records into a sequence of segments by a
specific time interval, and we get a baseline mobility evolution pattern. Then, we use the
GreedyKL algorithm to merge the similar segments until we reach the error threshold. The
error threshold is the upper bound of error for compressing mobility evolution patterns. The

123

390 C.-C. Chen et al.

error is defined as follows:

ERROR(A, B) = 1

|T |
|T |∑

i=0

H(Ati , Bti) (8)

where A and B are models of mobility evolution patterns, T is the set of initial time intervals,
and H is the Hellinger distance. The Hellinger distance is defined as follows:

H(P, Q) = 1√
2

√√√√
k∑

i=1

(
√
pi − √

qi)2 (9)

where P and Q are the probability distributions of the feature regions. The GreedyKL algo-
rithm is to determine the segments that can be merged. To decide the segments to be merged,
we need to formulate the similarity measurement among the segments. Each segment has
its own model that depicts the probability distributions of feature regions. Thus, given two
check-in segments, we use the Kullback-Leibler (abbreviated as KL) divergence as the simi-
larity measurement. Without loss of generality, given two segments with their models P and
Q, the distance between two probability distributions P and Q over feature regions is as
follows:

KL(P ‖ R) =
|R|∑

i=1

p(Ri) ln
p(Ri)

q(Ri)
. (10)

Because the KL divergence is asymmetric, we define the distance for these two segments
SP and SQ through the following equation:

D(SP , SQ) = max {KL(P ‖ Q),KL(Q ‖ P)} . (11)

The equation enables us to search for the most similar segment SQ for the segment SP .
As we get the two most similar segments, we, then, merge the segments and execute the
second take to compute the new representation length. When GreedyKL reaches a minimum
representation length, it stops and returns the mobility evolution pattern.

Here, we formally introduce our pattern extraction algorithm, GreedyKL, to compress
the mobility evolution patterns with error threshold. Specifically, given initial segments,
GreedyKL computes the segments’ initial model from the check-in records. Iteratively,
GreedyKL selects the best pair of segments to merge according to the KL divergence Eq.
11. The merging of the best pair of segments in each iteration would have a new error rate
from the original data. The algorithm would merge the segments until it reaches the error
threshold. When reaching the error threshold, the algorithm terminates, and the current seg-
ment and model sets are returned as the mobility evolution result. Algorithm 1 summarizes
the main idea of GreedyKL. First, GreedyKL assigns each segment with associated feature
region distribution in its own segment (S1, M1) (Line 1). At each iteration of the algorithm,
the most similar segments of KL divergence are selected and merged. Once the selected pair
of segments have been merged, the segmentation result Sm and the set of models Mm at the
m-th iteration are updated accordingly (Lines 15-16). If it reaches the error threshold, the
segmentation result (Sm, Mm) is returned.

Time and space complexity: Let the number of models be k and the number of iterations
be i . Given a sequence of n segments, it requires O(n2) space to store the spatial distances
between each pair of segments in an iteration. On the other hand, it takes O(n2 ∗ i) time in
general as there are i iterations, each of which requires at most O(n2) operations to determine
the best pair of segments.

123

Mining and clustering mobility evolution patterns from social. . . 391

Algorithm 1: GreedyKL

Input: S1: initial segments;
M1: initial models;
errorth : error threshold;
errorcur : current error;

Output: (Sm , Mm): m-iteration segments and models;

m = 1;1
errorcur = 0;2
while errorcur <= errorth do3

lmin = lcur ;4
Initialize dist as zero;5
for j = 1 to |Sm | − 1 do6

for k = j + 1 to |Sm | do7
if D(Smj , Smj+1) < dist then8

l = j ;9
r = k;10
dist = D(Smj , Smj+1);11

end12

end13

end14

Update Sm+1 by merging Sml , Smr ;15

Update Mm+1 by merging Mm
l , Mm

r ;16

m = m + 1;17

errorcur = ERROR(Mm+1, M1);18

end19
return (Sm , Mm) ;20

4.3 GreedyMDL

We introduce our algorithm GreedyMDL in this subsection. Unlike the compressing pattern
with KL divergence of GreedyKL, the GreedyMDL method is to merge segments based on
theMDLprinciple. TheGreedyMDLmethodwould greedilymerge the segments if it gets the
shortest representation length after merging. Specifically, given initial segments and an error
threshold, the GreedyMDL computes the change points in a bottom-up fashion. Iteratively,
GreedyMDL selects the best pair of segments to merge according to the objective function
Eq. 7. The best pair of segments in each iteration is the one for which the merging has the
shortest represented length. After merging, we get the error rate from the original data, and
the current set of change points is returned. The algorithm would terminate if the error of
the new pattern is larger than the error threshold. With the set of change points, we can
easily get the segmentation results. Algorithm 2 summarizes the main idea of GreedyMDL.
First, GreedyMDL assigns each segment with associated feature region distribution in its
own segment (S1, M1). At the m-th iteration of the algorithm, the best pair of segments that
satisfies the objective function is selected and merged. Once the selected pair of segments
have been merged, the segmentation result Sm and the set of models Mm at them-th iteration
are updated accordingly (Lines 18–19). Then, it computes the new error rate from the original
data. If the new error rate exceeds the error threshold, the segmentation result (Sm, Mm) based
on the current set of split points is returned.

Time and space complexity: Let the number of models be k and the number of iterations
be i . The complexity of GreedyMDL is analogous to the agglomerative clustering algorithm,

123

392 C.-C. Chen et al.

as GreedyMDL starts with initial segments and iteratively merges selected pairs of segments
to merge until one or k segments are left. Therefore, for a sequence of n initial segments,
it requires O(n2) space to store the spatial distances between each pair of segments. On the
other hand, it takes O(n2 ∗ i) time in general as there are i iterations, each of which requires
at most O(n2) steps to update the spatial distance among segments and determine the best
pair of segments.

Algorithm 2: GreedyMDL

Input: S1: initial segments;
M1: initial models;
errorth : error threshold;
errorcur : current error;

Output: (Sm , Mm): m-iteration segments and models;

m = 1;2
errorcur = 0;3
while errorcur <= errorth do4

Initialize dist as zero;5
for j = 1 to |Sm | − 1 do6

for k = j + 1 to |Sm | do7

S′: combine Smj and Smk in Sm ;8

M ′: combine Mm
j and Mm

k in Mm ;9

if Q(M ′, S′, R) < dist then10
l = j ;11
r = k;12

dist = Q(M ′, S′, R);13

end14

end15

end16

Update Sm+1 by merging Sml , Smr ;17

Update Mm+1 by merging Mm
l , Mm

r ;18

m = m + 1;19

errorcur = ERROR(Mm+1, M1);20

end21
return (Sm , Mm) ;221

5 Clustering mobility evolution patterns

Given a set of daily check-in records, we already present two algorithms, GreedyKL and
GreedyMDL, to extract the mobility evolution patterns of each day. Thus, the daily mobility
evolution patterns from check-in records in an area are derived. In this section, we further
cluster the daily mobility evolution patterns into groups, and for each group, one representa-
tive mobility evolution pattern is derived.

5.1 Hellinger distance and LSH

Before we describe the method of pattern clustering, we introduce the technique of the
Hellinger distance and the locality-sensitive hash (LSH) that are used in our clustering
method. The Hellinger distance is used to measure the similarity of the probability sets.

123

Mining and clustering mobility evolution patterns from social. . . 393

Equation 9 is the distance function of the Hellinger distance. Because the mobility evolution
patterns are represented with the probability distribution of feature regions, we can use this
distance function to measure the similarity of the patterns. Another advantage is that the
Hellinger distance can be taken as the Euclidean norm [17]. Because an optimal locality-
sensitive hash family exists within the Euclidean distance [1], it can be used to improve the
similarity performance by eliminating the dissimilar patterns. Therefore, we can exploit LSH
to improve the performance of the clustering algorithm.

5.2 Distance function of mobility evolution patterns

To perform pattern clustering, we need to measure the similarity of the daily mobility evo-
lution patterns. To achieve this purpose, we propose the mobility evolution patterns distance
function (MEPD) based on the concept of the Hellinger distance. The idea of MEPD is to
measure the average Hellinger distance over all overlapping time intervals. Given two mobil-
ity evolution patterns A = (a1, a2, . . . , ai) and B = (b1, b2, . . . , b j), we have to determine
the overlapping time intervals because different time intervals represent differentmovements.

The distance of mobility evolution patterns is the average Hellinger distance. We define
the distance as follows:

MEPD(A, B) =
∑

ai∈A

∑

b j∈B|O(ai ,b j)>0

H(ai , b j) × O(ai , b j)

T I
(12)

where O(ai , b j) is the overlap of time intervals, and T I is the time summation of all time
intervals.

In general, theMEPD can be taken as the average Hellinger distance between the mobility
evolution patterns. Thus, if two mobility evolution patterns are similar, the MEPD would
be smaller. By using the MEPD function, we can then perform clustering on the mobility
evolution patterns that are extracted from the check-in data.

5.3 Exploring LSH to speed up clustering

Based on the similarities function, we could perform existing clustering algorithms to cluster
dailymobility evolution patterns.WithGreedyMDL,we canmerely load compressed patterns
for clustering.This canhandle the issue ofmemory size in clustering.Anothermajor challenge
in clustering is the performance of deriving all similarities among patterns. Thus, in this paper,
we borrow the concept of the LSH (standing for locality-sensitive hashing) to prune the cost
of deriving similarities among all patterns. In this paper, we adopt density-based clustering
algorithms as the clustering algorithm. The reason for using theOPTICS algorithm is because
we may not know how many clusters exist. Performing the OPTICS algorithm for pattern
clustering according to their mobility patterns may result in performance issues when the
data size is huge. In the OPTICS algorithm, we have to compute the MEPD of all patterns to
get the pattern’s neighbors. Because MEPD needs to compute the Hellinger distance of all
models in the mobility patterns, the time complexity may grow to O(n3). As the data are big,
it may not be feasible for computation. Hence, to accelerate the cluster efficiency, we use
the concept of locality-sensitive hashing (LSH), which is used to determine the similar and
dissimilar patterns, and guarantee the quality of the similarity results. When we can separate
the similar and dissimilar patterns, we only have to compute the similarity of the similar
partitions. By exploring the LSH, we can avoid the comparison of all mobility evolution
patterns, and only compute the MEPD on the similar patterns.

123

394 C.-C. Chen et al.

Fig. 5 Multi-level LSH
illustration

m1

t1

m3

t3

m2

t2

Level 1 Level 2 Level 3

t3

m3

E2LSH

In the LSH algorithm, we use the existing method of E2LSH [2] for the pattern clustering
on mobility evolution patterns. E2LSH is the near optimal LSH on the Euclidean norm. In
addition, E2LSH can be used in clustering mobility evolution patterns. This is because the
Hellinger distance in theMEPD function can be taken as the Euclidean norm [17]. Therefore,
we can use the E2LSH method to solve the performance issue.

Because the time intervals in mobility evolution patterns vary, to perform E2LSHwe need
to add the following steps. First, we decompress the time intervals of the mobility evolution
patterns into the initial time interval. Hence, we modify the MEPD function to LSH MEPD
in Eq. 14. Assume we have the initial time interval set T = (t0, t1, . . . , tk), which is the
specific time interval for generating the initial segments. We use a time mapping function to
get the corresponding pattern model. The time mapping function is below:

MT (ti , A) = ai | ti ∈ I (ai), ai ∈ A (13)

where I (ai) is the time interval of the pattern model ai .

LMEPD(A, B) =
k∑

i=1

H(MT (ti , A), MT (ti , B)) × ti
|T | (14)

where |T | is the time summation of all time intervals. Second, because the LMEPD function
is the aggregation of the Hellinger distance, we create different level LSH buckets depending
on the initial time interval set. Then, each model in the mobility evolution patterns is passed
to its own level buckets via E2LSH. Figure 5 illustrates how models in a pattern hash to the
different levels of buckets. For example, m1, m2, and m3 are assigned to buckets at different
levels. Thus, we can use the mobility patterns in the same level buckets for computing the
MEPD to get the neighbors. By using the multi-level E2LSHmethod, the OPTICS algorithm
on MEPD with LSH can reduce the time of comparison for selecting the neighbors and thus
achieve better performance.

5.4 Extracting representative mobility evolution patterns

After the clustering process, we could have a set of daily mobility pattern groups and each
group can form the representative mobility evolution patterns around a city. Although the
daily mobility patterns in the same group are similar, each may still have different probability
distributions of feature regions and time intervals. Therefore,we need a post processing step to
integrate the patterns in the same group to extract representative mobility evolution patterns.
For this purpose, we first decompress the patterns in the same group to the initial time
interval, and each time interval of a pattern would have its own probability distribution of
feature regions. Second, for each group, we compute the average probability distribution of
feature regions of the patterns in the same initial time interval. After this step, we would have
a new mobility evolution pattern with initial time intervals for each day. Finally, to acquire

123

Mining and clustering mobility evolution patterns from social. . . 395

a representative mobility evolution pattern, we run the GreedyMDL algorithm again to get
a new mobility evolution pattern. Thus, every group can generate a representative mobility
evolution pattern, and the representative mobility evolution patterns of a city are derived.

6 Performance evaluation

In this section, we first describe our experimental settings. We then analyze the quality and
performance of clustering mobility evolution patterns.

6.1 Experimental settings

We set up our experiment with a real dataset, the Gowalla check-in dataset [7], in order to
contend with real-world phenomena. Table 1 summarizes the details of the datasets that we
use. It has 353,485 check-in records around New York city from February 2009 to October
2010 from Gowalla, and 567,472 records in American East from Brightkite.

We use different metrics for evaluating the quality and performance of clustering mobility
evolution patterns. In mobility evolution patterns, we measure the pattern phenomenon by
two metrics: Segment Size which is the number of segments used in mobility evolution
patterns; and (ii) Error which is the average of the Hellinger distance from the original data.
Intuitively, a small segment size means that we use less storage to store the patterns, and a
higher error indicates that less original information is preserved from the ordinal check-in
records. Moreover, in clustering mobility evolution patterns, we use Mobility Loss Rate to
measure the effectiveness of the mobility evolution patterns and Runtime to measure the
efficiency of the clustering algorithm.

Because we use lossy compression method to extract the mobility evolution patterns,
we have the information loss compared to the original data. For example, in Fig. 6, U1

and U2 are similar in uncompressed patterns, but they are dissimilar after the algorithm
GreedyMDL because of the more distinct region distribution (the dash square). Thus, to
evaluate the effectiveness of the mobility evolution patterns in pattern clustering, we pro-
pose the mobility loss rate to measure the information loss compared to the uncompressed
patterns. The mobility loss rate is defined as the number of users for incorrect cluster assign-
ment divided to the total number of users. The correct cluster assignment is defined as the
cluster results of uncompressed patterns because the uncompressed patterns would preserve
all mobility information of users. For measure mobility loss rate, we use uncompressed
patterns as the baseline method, which uses initial segments and models as the mobility
evolution patterns. Thus, if the mobility evolution patterns we extracted have lower mobil-
ity loss rate, it depicts that the patterns could be less mobility information loss and more
representativeness.

Table 1 Check-in datasets

Gowalla around New York Brightkite in American East

Records 353,485 567,472

Duration February 2009–October 2010 April 2008–October 2010

123

396 C.-C. Chen et al.

U1

s1 s2

U2

U1

s1 s2

U2

GreedyMDL

Fig. 6 Illustration of mobility loss rate

Fig. 7 Feature regions with
different OPTICS settings

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50

Fe
at

ur
e

R
eg

io
ns

minPts

radius=50m
radius=100m
radius=150m

6.2 Performance study

6.2.1 Evaluation of mobility evolution patterns

Before we start the discussion of the quality of the mobility evolution patterns, we first inves-
tigate the relationship between the feature regions and parameters (radius ε and minimum
pointsminPts) of the OPTICS algorithm. In Fig. 7, the number of feature regions decreases
when the radius increases or the number of minimum points decreases. For example, there
are 1059 feature regions when the radius is 50m and minPts is 40 points, and 22 regions
when the radius is 300m andminPts is 40 points. This is because a larger radius would form
a cluster with a large area, and smaller minPts would easily form a cluster. The number of
feature regions would influence the results of the mobility evolution patterns. Figure 8 illus-
trates how feature regions and error threshold influence the number of compressed segments
in a mobility evolution pattern.

We would have fewer segments with a larger radius and smaller minPts. The reason is
that there is higher probability of having two segments with similar region distribution when
we have fewer feature regions. If two similar segments would be merged by the GreedyMDL
algorithm, then we get a lower error rate in the mobility evolution patterns. Moreover, with a
higher error threshold, we can compress the mobility evolution patterns to a fewer number of

123

Mining and clustering mobility evolution patterns from social. . . 397

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f S
eg

m
en

ts

Error

radius=50m,minPts=10
radius=100m,minPts=10
radius=150m,minPts=10

Baseline

(a)

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f S
eg

m
en

ts

Error

radius=50m,minPts=20
radius=100m,minPts=20
radius=150m,minPts=20

Baseline

(b)

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f S
eg

m
en

ts

Error

radius=50m,minPts=30
radius=100m,minPts=30
radius=150m,minPts=30

Baseline

(c)

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f S
eg

m
en

ts

Error

radius=50m,minPts=40
radius=100m,minPts=40
radius=150m,minPts=40

Baseline

(d)

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.1 0.2 0.3 0.4 0.5

N
um

be
r o

f S
eg

m
en

ts

Error

radius=50m,minPts=50
radius=100m,minPts=50
radius=150m,minPts=50

Baseline

(e)

Fig. 8 Number of segments with the error threshold varied

segments. For example, in Fig. 8c, the number of segments of error threshold 0.5 is fewer than
the number of segments of error threshold 0.1 in every feature regions setting. If we increase
the error threshold, we can have good compression of the mobility evolution patterns with
fewer segments. However, fewer segments would also lose some mobility information of the
mobility evolution patterns. Thus, we use the result of the experiment to get the parameters
of the OPTICS algorithm and error threshold. According to the discussion above, we have
a concept of the relationship in the mobility evolution patterns, feature regions, and the
parameters of OPTICS. Next, we discuss how to decide better OPTICS parameters and error
threshold by pattern clustering and how to evaluate the quality of the representative mobility
evolution patterns.

123

398 C.-C. Chen et al.

Fig. 9 Number of pattern
clusters with different OPTICS
settings

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30 40 50

N
um

be
r o

f P
at

te
rn

 C
lu

st
er

s
minPts

radius=50m
radius=100m
radius=150m

6.2.2 Performance of clustering mobility evolution patterns

In this section,we evaluate the quality and performance of pattern clustering for representative
mobility evolution patterns. In the last section, we have left the issue of how to decide
the proper OPTICS parameters. We would need proper parameters for the performance
experiment. To decide the parameters, we use a parameter test to find the parameter which
can extract the greatest number of clusters. If we have fewer feature regions, the dailymobility
evolution patterns would be similar and form fewer clusters. And, if we have toomany feature
regions, the daily mobility evolution patterns would be dissimilar and no clusters may exist.
For this reason, we run pattern clustering on the daily mobility evolution patterns of the
baseline method.We choose the parameters of the OPTICS which have the largest number of
clusters as our experiment setting of the OPTICS in the feature regions. In Fig. 9, we find that
it extracts the largest number of clusters when using a radius equal to 100m and minimum
points equal to 50. Thus, we use this setting to evaluate the performance of the clustering for
representative mobility evolution patterns.

After deriving the setting of the OPTICS in feature regions, the other issue is to determine
the error threshold of the GreedyKL and GreedyMDL algorithm. For this issue, we want
to have an error threshold that would have higher mobility preserving patterns after the
compression of the GreedyMDL algorithm. To have higher mobility preserving patterns,
we would choose an error threshold of the GreedyMDL algorithm that would have the
lowest mobility loss rate for the clustering result compared with the baseline. The reason is
that lower mobility loss rate means the mobility information is not lost after GreedyMDL
compression. Thus, the clustering result would be mobility preserving. Figure 10 is the
mobility loss rate of different error thresholds of the GreedyMDL algorithm. As Fig. 10
shows, the mobility loss rate dramatically decreases after the error threshold 0.6. This is
because a higher error threshold leads to higher compression, and it also eliminates some
mobility information. Furthermore, the mobility loss rate of GreedyKL decreases after the
error threshold 0.5. This means the ability of mobility preserving of GreedyMDL would be
better than that of GreedyKL. Based on the results of the mobility loss rate experiment, we
choose error threshold 0.3 for GreedyKL and 0.5 for GreedyMDL as the better mobility
preserving parameter for the GreedyMDL algorithm.

We have already determined the parameters of the feature regions and the GreedyMDL
algorithm, and then we start to evaluate the effectiveness and efficiency of the clustering for
representative mobility evolution patterns. For effectiveness, we compared the data size and

123

Mining and clustering mobility evolution patterns from social. . . 399

Fig. 10 The mobility loss rate of
GreedyMDL and GreedyKL with
the error threshold varied

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
ob

ilit
y

Lo
ss

 R
at

e
Error

GreedyMDL
GreedyKL

Fig. 11 Data size of GreedyKL,
GreedyMDL, and GreedyMDL
with LSH compared with
Baseline

 0

 5

 10

 15

 20

 25

 30

N
um

be
r o

f S
eg

m
en

ts Baseline
GreedyKL

GreedyMDL
GreedyMDL+LSH

Fig. 12 Mobility Loss Rate of
Baseline, GreedyKL,
GreedyMDL, and GreedyMDL
with LSH

 0

 0.02

 0.04

 0.06

 0.08

 0.1

M
ob

ilit
y

Lo
ss

 R
at

e Baseline
GreedyKL

GreedyMDL
GreedyMDL+LSH

mobility loss rate of the four methods: baseline, GreedyKL, GreedyMDL, and GreedyMDL
with LSH. Here, the parameters of GreedyKL are radius of 100m, minimum points of 50,
and error of 0.3, and for GreedyMDL, and GreedyMDL with LSH, the settings are radius
of 100m, minimum points of 50, and error of 0.5. In Fig. 11, GreedyKL, GreedyMDL, and
GreedyMDL with LSH have fewer segment to describe the daily mobility patterns than the
baseline method, and GreedyMDL has fewest segments. Thus, the three algorithms store
the patterns with less storage. In addition, GreedyMDL performs better compression than
GreedyKL. Although GreedyKL, GreedyMDL, and GreedyMDL with LSH can save the
space for storing data, they still have low mobility loss rate around 0.1 as shown in Fig. 12.
That is, the mobility evolution patterns of our algorithms can be mobility preserving.

Finally, for efficiency, we compared the runtime of the four algorithms: baseline,
GreedyKL, GreedyMDL, and GreedyMDL with LSH. Figure 13 shows that GreedyMDL
is faster than baseline and GreedyKL, and GreedyMDL with LSH is the fastest. The reason
is that GreedyMDL has fewer segments than baseline and GreedyKL, and fewer segments
can reduce the times of comparison. In addition, GreedyMDLwith LSH is the most efficient.

123

400 C.-C. Chen et al.

Fig. 13 Runtime comparison of
Baseline, GreedyKL,
GreedyMDL, and GreedyMDL
with LSH of Gowalla

 0

 1000

 2000

 3000

 4000

 5000

R
un

tim
e

(s
ec

.)

Baseline
GreedyKL

GreedyMDL
GreedyMDL+LSH

Fig. 14 Runtime comparison of
Baseline, GreedyKL,
GreedyMDL, and GreedyMDL
with LSH of Brightkite

 0

 1000

 2000

 3000

 4000

 5000

 6000

R
un

tim
e

(s
ec

.)

Baseline
GreedyKL

GreedyMDL
GreedyMDL+LSH

This is because it can avoid all pairs comparison in the clustering algorithm. Moreover, in
Fig. 14, GreedyMDL is also faster than baseline and GreedyKL in a larger dataset. These
results demonstrate that GreedyMDL and GreedyMDL with LSH are effective and efficient
for extracting the representative mobility patterns.

7 Conclusion

In this paper, our goal is to mine and cluster daily mobility evolution patterns from check-
in data. Via the clustering process, we intended to discover representative daily mobility
evolution patterns. To achieve this, we addressed the problems: (1) how tomodel the mobility
evolution patterns and (2) how to cluster the mobility evolution patterns. Thus, we propose
two methods, GreedyKL and GreedyMDL, to extract the mobility evolution patterns for
describing the movements. The mobility evolution pattern is formed from a sequence of
segments, where each check-in segment is represented by a region distribution derived from
the check-in records. To get a goodmobility evolution pattern, our algorithmsmerge segments
untilweget the shortest representation length,where the representation length is definedbased
on the Minimum Description Length (MDL) principle. For grouping the users according to
their mobility patterns, we built a mobility evolution pattern distance (MEPD), which is
based on the Hellinger distance, to measure the similarity of the patterns. With this pattern
distance function, we can run a cluster algorithm, which is the OPTICS, to group the users
with similar mobility evolution patterns. In addition, to handle the performance issue on all
pair comparisons, we used the locality-sensitive hashing (LSH) concept to put the users with
similar patterns together. In this way, we only need to calculate the pattern distance with
possibly similar patterns. In our experiments, we used the metrics of error and mobility loss
rate to evaluate the quality of the mobility evolution patterns. The experimental results show
that our algorithms can mine mobility evolution patterns with good quality. Moreover, for
the clustering of mobility evolution patterns, our proposed scheme is able to speed up the

123

Mining and clustering mobility evolution patterns from social. . . 401

clustering process. In the mobility loss rate experiment, would prove the patterns we used in
pattern clustering has lower mobility loss rate.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

Ethical approval This chapter does not contain any studies with human participants or animals performed
by any of the authors.

Informed consent Informed consent was obtained from all individual participants included in the study.

References

1. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. In: 47th Annual IEEE symposium on foundations of computer science, 2006. FOCS’06.
IEEE, pp 459–468

2. Andoni A, Indyk P (2004) E2lsh: exact euclidean locality-sensitive hashing. Implementation available at
http://www.mit.edu/andoni/LSH/

3. Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) Optics: ordering points to identify the clustering
structure. ACM SIGMOD Record 28(2):49–60

4. Bagrow JP, Lin Y-R (2012) Mesoscopic structure and social aspects of human mobility. PloS One
7(5):e37676

5. CaoX, CongG, Jensen C (2010) Retrieving top-k prestige-based relevant spatial web objects. Proc VLDB
Endow 3(1–2):373–384

6. Cao X, Cong G, Jensen C, Ooi B (2011) Collective spatial keyword querying. In: Proceedings of ACM
international conference on management of data, pp 373–384

7. Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social
networks. In: Proceedings of the 17th ACM international conference on knowledge discovery and data
mining, pp 1082–1090

8. Cong G, Jensen C, Wu D (2009) Efficient retrieval of the top-k most relevant spatial web objects. Proc
VLDB Endow 2(1):337–348

9. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable
distributions. In: Proceedings of the 20th annual symposium on computational geometry. ACM, New
York, pp 253–262

10. Giannotti F, NanniM, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th
ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp
330–339

11. Gionis A, Indyk P, Motwani R et al (1999) Similarity search in high dimensions via hashing. In: ‘VLDB’,
vol 99, pp 518–529

12. Hao Q, Cai R, Wang C, Xiao R, Yang J, Pang Y, Zhang L (2010) Equip tourists with knowledge mined
from travelogues. In: Proceedings of the 19th international conference on World Wide Web, pp 401–410

13. Hsieh H-P, Li C-T, Lin S-D (2012) Exploiting large-scale check-in data to recommend time-sensitive
routes. In: Proceedings of the ACM SIGKDD international workshop on urban computing. ACM, New
York, pp 55–62

14. Jeung H, Liu Q, Shen H, Zhou X (2008) A hybrid prediction model for moving objects. In: Proceedings
of the 24th international conference on data engineering, pp 70–79

15. Jeung H, Yiu M, Zhou X, Jensen C (2010) Path prediction and predictive range querying in road network
databases. VLDB J 19(4):585–602

16. Koivisto M, Perola M, Varilo T, Hennah W, Ekelund J, Lukk M, Peltonen L, Ukkonen E, Mannila H
(2003) An mdl method for finding haplotype blocks and for estimating the strength of haplotype block
boundaries. In: Pacific symposium on biocomputing, Vol 8, pp 502–513

17. Krstovski K, Smith DA, Wallach HM, McGregor A (2013) Efficient nearest-neighbor search in the prob-
ability simplex. In: Proceedings of the 2013 conference on the theory of information retrieval. ACM, New
York, p 22

18. LakshmananV (2012) Automating the analysis of spatial grids: a practical guide to datamining geospatial
images for human and environmental applications. Springer, New York

123

http://www.mit.edu/andoni/LSH/

402 C.-C. Chen et al.

19. Li Z, Ding B, Han J, Kays R, Nye P (2010)Mining periodic behaviors for moving objects. In: Proceedings
of the 16th ACMSIGKDD international conference on knowledge discovery and datamining. ACM,New
York, pp 1099–1108

20. Li Z, Han J, Ji M, Tang L, Yu Y, Ding B, Lee J, Kays R (2011) Movemine: mining moving object data
for discovery of animal movement patterns. ACM Trans Intell Syst Technol 2(4):37

21. Monreale A, Pinelli F, Trasarti R, Giannotti F (2009)Wherenext: a location predictor on trajectory pattern
mining. In: Proceedings of the 15th ACM international conference on knowledge discovery and data
mining, pp 637–646

22. Noulas A, Scellato S, Lathia N, Mascolo C (2012) Mining user mobility features for next place prediction
in location-based services. In: 2012 IEEE 12th international conference on data mining (ICDM), IEEE,
pp 1038–1043

23. Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465–471
24. Rissanen JJ (1976) Generalized kraft inequality and arithmetic coding. IBM J Res Dev 20(3):198–203
25. Sun J, Faloutsos C, Papadimitriou S, Yu P (2007) Graphscope: parameter-free mining of large time-

evolving graphs. In: Proceedings of the 13th ACM international conference on knowledge discovery and
data mining, pp 687–696

26. WangP,WangH,LiuM,WangW(2010)Analgorithmic approach to event summarization. In: Proceedings
of ACM international conference on management of data, pp 183–194

27. Wu D, Yiu ML, Cong G, Jensen CS (2012) Joint top-k spatial keyword query processing. IEEE Trans
Know Data Eng 24(10):1889–1903

28. Ye M, Yin P, Lee W, Lee D (2011) Exploiting geographical influence for collaborative point-of-interest
recommendation. In: Proceedings of the 34th ACM international conference on research and development
in information retrieval

29. Zhang C, Han J, Shou L, Lu J, La Porta T (2014) Splitter: mining fine-grained sequential patterns in
semantic trajectories. In: Proceedings of the VLDB endowment, vol 7, no 9, pp 769–780

30. Zheng V, Zheng Y, Xie X, Yang Q (2010) Collaborative location and activity recommendations with gps
history data. In: Proceedings of the 19th international conference on World Wide Web, pp 1029–1038

31. Zheng Y, Liu L, Wang L, Xie X (2008) Learning transportation mode from raw gps data for geographic
applications on the web. In: Proceedings of the 17th international conference on World Wide Web, pp
247–256

Chien-Cheng Chen received the BS degree and MS degree from the
National Cheng Kung University, Tainan, Taiwan, in 2005 and 2007,
respectively. He is currently a Ph.D. student at the Department of Com-
puter Science, National Chiao Tung University, Hsinchu, Taiwan. His
research focus is on data mining, especially, trajectory pattern mining
and heterogeneous social networks.

123

Mining and clustering mobility evolution patterns from social. . . 403

Meng-Fen Chiang received the B.E. and M.E. degrees from National
ChengChi University in Taiwan, in 2004 and 2006, respectively, and
the Ph.D. degree in computer science from National Chiao Tung Uni-
versity, Taiwan, in 2013. She was a software engineer at the Yahoo
Taiwan from 2012–2014. In Feb. 2014, she joined Living Analytics
Research Centre, Singapore Management University, as a research fel-
low. Her current research interests include big data analytics and spatio-
temporal data mining.

Wen-Chih Peng received the BS and MS degrees from the National
Chiao Tung University, Taiwan, in 1995 and 1997, respectively, and
the Ph.D. degree in electrical engineering from the National Taiwan
University, Taiwan, R.O.C, in 2001. Currently, he is a professor in
the Department of Computer Science, National Chiao Tung Univer-
sity, Taiwan. Prior to joining the Department of Computer Science,
National Chiao Tung University, he was mainly involved in the projects
related to mobile computing, data broadcasting, and network data man-
agement. He serves as PC members in several prestigious confer-
ences, such as IEEE International Conference on Data Engineering
(ICDE), ACM International Conference on Knowledge Discovery and
Data Mining (ACM KDD), IEEE International Conference on Data
Mining (ICDM) and ACM International Conference on Information
and Knowledge Management (ACM CIKM). He is a co-organizer of
the Second International Workshop on Privacy-Aware Location-based
Mobile Services (PALMS) and is a guest editor of Signal Processing

(special issue on Information Processing and Data Management in Wireless Sensor Networks). His research
interests include mobile data management and data mining. He is a member of the IEEE.

123

	Mining and clustering mobility evolution patterns from social media for urban informatics
	Citation

	Mining and clustering mobility evolution patterns from social media for urban informatics
	Abstract
	1 Introduction
	2 Related works
	3 Preliminary
	3.1 Framework
	3.2 Mobility evolution patterns and clusters
	3.3 Representation length of the MDL
	3.3.1 Model length
	3.3.2 The description length
	3.3.3 Representation length

	4 Mining mobility evolution patterns
	4.1 Design concept
	4.2 GreedyKL
	4.3 GreedyMDL

	5 Clustering mobility evolution patterns
	5.1 Hellinger distance and LSH
	5.2 Distance function of mobility evolution patterns
	5.3 Exploring LSH to speed up clustering
	5.4 Extracting representative mobility evolution patterns

	6 Performance evaluation
	6.1 Experimental settings
	6.2 Performance study
	6.2.1 Evaluation of mobility evolution patterns
	6.2.2 Performance of clustering mobility evolution patterns

	7 Conclusion
	References

