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Collaboration Trumps Homophily in Urban Mobile
Crowd-sourcing

Thivya Kandappu, Archan Misra, Randy Tandriansyah
School of Information Systems, Singapore Management University 

{thivyak, archanm, rtdaratan}@smu.edu.sg

ABSTRACT
This paper establishes the power of dynamic collaborative
task completion among workers for urban mobile crowd-
sourcing. Collaboration is defined via the notion of peer refer-
rals, whereby a worker who has accepted a location-specific
task, but is unlikely to visit that location, offloads the task
to a willing friend. Such a collaborative framework might
be particularly useful for task bundles, especially for bundles
that have higher geographic dispersion. The challenge, how-
ever, comes from the high similarity observed in the spatio-
temporal pattern of task completion among friends. Using ex-
tensive real-world crowd-sourcing studies conducted over 7
weeks and 1000+ workers on a campus-based crowd-sourcing
platform, we quantify the effect of such “task completion ho-
mophily”, and show that incorporating such peer-preferences
can improve worker-specific models of task preferences by
over 30%. We then show that such collaborative offloading
works in spite of such spatio-temporal similarity, primarily
because workers refer tasks to their close friends, who in turn
perform such peer-requested tasks (with over 95% comple-
tion rate) even if they experience detours that are significantly
larger (often more than twice) than what they normally toler-
ate for platform-recommended tasks.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous.

Author Keywords
crowd-sourcing; collaboration; social-ties; homophily

INTRODUCTION
Mobile crowd-sourcing, whereby a time-varying pool of vol-
untary workers perform location-specific micro-tasks, has
rapidly become a powerful paradigm for many urban services,
such as last-mile package delivery (e.g., Amazon Flex1) and
municipal monitoring (e.g., Apps such as OneService2 or NY-
C3113 that allow reporting of problems related to garbage,
potholes, etc.).
1http://flex.amazon.com
2http://www.mnd.gov.sg/mso/mobile-installation.htm
3http://www1.nyc.gov/connect/applications.page
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While such participatory models of service execution have
several advantages, most crowd-sourced services currently
suffer from less-than-optimal resource utilization. In particu-
lar, research has shown( (e.g. [5]) that centrally-coordinated
and predictive models of task recommendation (that take into
account the future movement trajectory of individual worker-
s) can significantly outperform current decentralized and my-
opic models, where each worker greedily and independently
chooses the closest set of available tasks. While such pre-
dictive, central coordination promotes higher task comple-
tion and higher worker productivity (lower detour overhead-
s), the overall task completion rates can still be low–in many
cases, workers often deviate from their expected travel paths
and fail to complete tasks that they previously accepted. The
challenge of task completion is exacerbated for task bundles,
where workers must complete multiple tasks to receive pay-
ment; it is worth noting that task bundling is a commonplace
practice in many urban crowd-sourcing platforms (e.g., pack-
age delivery), as the higher cumulative reward helps over-
come the usually low per-task payment rates.

Developing and validating mechanisms to improve overall
task completion rates is thus an important challenge for urban
mobile crowd-sourcing. In this paper, we explore a central
idea, namely dynamic collaboration among peer crowd-
workers, and carefully investigate whether and how such
a feature can help to significantly improve the overall task
completion rate. To empirically investigate this idea, we uti-
lize TA$Ker, an experimental campus-scale crowd-sourcing
platform (with a client-side mobile App for both Android
& iOS devices) that has been operationally deployed on our
Singapore Management University (SMU). TA$Ker has an
active crowd-worker base of over 1200 university students,
who earn real monetary rewards by performing a variety of
location-specific reporting tasks, such as “length of queue in
the food court”, “availability of a soda brand at a particular
vending machine” and “cleanliness level of a specific toilet”.

We assume that dynamic collaboration would work as fol-
lows: worker A (the nominator), who has previously accept-
ed a task X but finds herself unable to complete it in the stip-
ulated time (most likely because the task location no longer
lies on A’s commuting path) can choose to refer the task to a
nominee: a peer co-worker B, who may be closer to task X. If
B completes the task within the stipulated time, then A and B
share the resulting reward. Note that current mobile crowd-
sourcing platforms do not possess such real-time peer-to-peer
task referral features.

Through our experimental studies, we demonstrate our cen-
tral contribution, namely that such a referral feature is indeed



very effective in increasing task completion rates. But most
interestingly, this increase is NOT because of the likely prox-
imity of the nominee to the task in question. In particular,
we shall discover a phenomenon called task completion ho-
mophily: workers with strong strength-of-ties tend to have
high similarity in their spatio-temporal patterns of task exe-
cution. In other words, birds of a feather flock together. Con-
sequently, a referral to a friend co-worker may have limited
utility, as tasks that are out-of-the-way for person A are also
more likely to be distant from the travel path of A’s friend-
s. Instead, the increased effectiveness of such referrals aris-
es because peer-requests for task completion exhibit much
higher compliance than platform-generated recommendation-
s. Tellingly, nominators refer task to their closest friends, and
nominees in turn complete such peer-referred tasks even if
they incur significantly higher detour overheads.

Research Questions & Contributions: We empirically and
systematically address the following research questions:

• Are there any underlying influences of social-ties on task
completion patterns–i.e., do the task completion patterns
of worker “friends” exhibit higher spatio-temporal sim-
ilarity? Using strength-of-tie metrics inferred from the
physical-world movement and interaction of TA$Ker work-
ers on the university campus, we show that there is a strong
correlation (Pearson correlation value of 0.74) between
the tie-strength of a worker pair and their spatio-temporal
task completion patterns. Our results indeed reveal the
so-called ‘task completion homophily’ phenomenon de-
scribed earlier.

• Is it possible to better predict the spatio-temporal prefer-
ences of tasks for a mobile crowd worker, by consider-
ing the corresponding preferences of other peers–i.e., how
does the prediction accuracy of task completion patterns
depend on social factors? We first show that a user’s intrin-
sic preferences for selecting and completing tasks can be
learnt and modeled, using various crowd-sourcing-related
features such as (i) the task’s detour overhead, (ii) the pop-
ularity of the task location and (iii) the task’s incentive
(with the last two factors having a dominant effect on work-
er preferences). Finally, we show that incorporating social
factors (specifically, the strength-of-tie weighted location
preference of all other peer workers) in a per-user task pref-
erence model results in a significant improvement, increas-
ing the prediction accuracy by 31%.

• Does dynamic collaboration- (i.e., peer referrals) result in
any tangible benefit to the overall task completion rate?
By incorporating such a peer referral feature in the TA$Ker
platform, we demonstrate its popularity and effectiveness.
Such a peer referral capability increased the task comple-
tion rate by 14% (from a baseline rate of 24.4% in the ab-
sence of such referral capability). For bundled tasks (es-
pecially if the bundle is spatially dispersed), the effect is
even more dramatic: the completion rate of referred tasks
more than doubles! Moreover, even over a relatively short
1 week trial period, this peer referral feature was utilized
by 10% of active TA$Ker workers to offload approx. 300
tasks (≈ 5.3% of all tasks performed during that period).

• How do workers distribute such referrals among their
“friend” workers? And how exactly do peer referrals re-
sult in higher task completion rates? We carried out a
detailed analysis of the task offloading pattern of nomina-
tors and the task acceptance/completion pattern of nom-
inees. We found that the workers always offload tasks
to their strongest ties, trusting that their closest friend-
s will complete the task. We then show that (i) as ex-
pected, nominators refer/offload tasks that are likely to re-
sult in the largest detour (the detour overhead for referred
tasks is roughly 1.8-times the detour experienced for non-
referred tasks), and (ii) nominees exhibit high task comple-
tion rates, with even detour-sensitive workers performing
tasks that impose a detour overhead of > 10 mins (even
though they accept system-recommended tasks only if the
detour is much smaller (< 5 mins)). Moreover, the aver-
age detour overhead experienced by a nominee for such of-
floaded tasks is strongly correlated (Spearman correlation
coefficient=0.64) to the tie-strength between the (nomina-
tor, nominee) pair.

Overall, we believe that our work is the first to empirically
demonstrate that a ‘peer referral” capability can significantly
increase the task completion rate of mobile crowd-sourcing,
by utilizing the willingness of workers to indulge in “social
collaboration”, in spite of higher individual travel overhead-
s. While our studies are restricted to a university campus,
we expect this ‘referral’ feature to be effective in city-scale
crowd-sourcing platforms as well.

RELATED WORK
Research looking at computer supported cooperative work
has long recognized the value of collaboration for completing
tasks distributed over a network [11, 18]. Below we review
the literature in modeling user behaviour, understanding the
value of collaborative work and how social connections affect
individual and collective movement patterns.

Benefits of Collaboration
A wide body of literature attests to the benefits of collabora-
tive problem-solving in various domains. For example, pairs
were shown to outperform individuals in lab tasks simulat-
ing scientific discoveries [23]. Co-authored scientific papers
are cited more often and appear in more prestigious journals
than single-authored papers [10, 24, 29]. Teams developing
inventions create more influential patents and fewer very poor
patents [27]. However, not much is known about the under-
lying social ties between crowd workers and how social-tie
based interactions among workers may be leveraged to im-
prove mobile crowd-sourcing outcomes.

Collaboration in Crowd-sourcing
More recently, crowd-sourcing research has turned its atten-
tion back to the value of coordinating human interaction at
scale. Some of this work is informed by the limits of leav-
ing individuals to self-organize their contributions to larger
projects [26]. Since the existing crowd-sourcing platform-
s (both online and mobile) have no built-in way for work-
ers to communicate each other, the platforms believe that
workers do not communicate with each other as part of their



work unless the platform is engineered to facilitate it. There
is also a growing recognition of tangible benefits of incor-
porating what Huang has recently proposed “social facilita-
tion” [8, 12, 13] and the value of group identity to collab-
oration [31]. “Friend-sourcing”, for example, [2] offers a
valuable case study for incorporating one’s social network
into crowd-sourcing processes. While [2] identifies the po-
tential issues around friend-sourcing and collaborative work,
they conclude that the increase in output quality outweighs
the potential challenges. Many of the studies examining the
value of integrating social networks into crowd-sourcing to
facilitate collaboration between sets of workers rather than
making room for collaborations that workers develop them-
selves [4]. In contrast to this research that primarily looks
at online crowd-sourcing scenarios, we focus on improving
the task completion rate for location-based mobile crowd-
sourcing (where collaboration is subject to additional spa-
tiotemporal constraints as workers must be at the task location
within a predefined time window).

Task Acceptance & Completion Behavior
Limited studies have explored the relationship between task
attributes and worker behavior, especially for the crowd-
sourced execution of location-dependent tasks. Wang [30]
studied the task completion times of online tasks (posted on
Amazon Mechanical Turk), and established a power-law rela-
tionship between task completion times and task-related fea-
tures, such as the type of the task, the task price and the day
the task was posted. Alt et al. [1] used an independently de-
veloped mobile crowd-sourcing platform to discover a vari-
ety of worker preferences, including preference for perform-
ing tasks before and after business hours or involving rela-
tively simple chores (e.g., taking pictures). More recently,
Thebault-Spieker [14] conducted studies on the relationship
between task pricing and location, at city-scale, and showed
that workers preferred to perform tasks with lower detours
and that were outside economically-disadvantaged areas.

How Social Ties Influence Physical World Movement
There is a rich body of work in social computing on how an
individual’s movement pattern is modulated by the movemen-
t choices of her friends. Cho et al [7] used location-based
social network data and cellular location records to demon-
strate that social relationships (in particular the visit pattern
of friends) explain around 30% of human movement (espe-
cially over longer distances). The correlation in the move-
ment behavior of friends was also utilized by DeDomenico,
et al [9] to show that a user’s movement behavior could be
more accurately predicted by factoring in the movements of
her friends. In our work, we carefully study how this concept
of social influence interacts with the prospect of collaborative
task execution in mobile crowd-sourcing platforms.

BACKGROUND AND OVERVIEW
Before presenting the design of the TA$Ker platform, and the
associated experimental results, we first provide a high-level
background of the deployment of our mobile crowd-sourcing
application on our urban university campus.

Campus Layout: SMU has a downtown campus in Singa-
pore, consisting of 4 distinct academic buildings, 1 library,
plus 1 administrative building that is rarely utilized by stu-
dents. The student body comprises approximately 9000 un-
dergraduate students pursuing degrees across 6 schools, who
typically commute daily from their home to the university.
Each of the 4 academic buildings is 5 storeys in height, with
a per-floor area varying between 1500-2500 m2, and consists
principally of faculty offices, research labs, teaching class-
rooms and various “group-study rooms”. The library is 4
floors in height, with a per-floor area of approx. 2750 m2.

Moreover, all the 5 buildings are connected by an un-
derground, airconditioned concourse (accessible from each
building’s basement level). This concourse is the “social hub”
of the campus and includes a variety of eating establishments,
a bank, multiple retail shops and benches for studying, as well
as serves as a common space for a variety of extra-curricular
recreational activities (due to Singapore’s hot and humid cli-
mate, inhabitants usually spend majority of their working day
indoors and typically use the underground concourse to tran-
sit between buildings). See Figure 1(a) for a schematic layout
of the campus, and Figure 1(b) for images of certain popular
sections of the underground concourse. The food court, and
nearby library areas, are the most heavily trafficked, and the
bench areas are usually occupied by students for moderately
long durations.

(a) Schematic of the SMU cam-
pus (buildings & concourse)

(b) Various popular sections (cam-
pus clinic, food court, T-Junction for
events, study areas) of the concourse

Figure 1. The urban campus: Venue for TA$Ker

Location Service and Student Engagement: As part of a
large-scale experimental mobile testbed [19] (which present-
ly has a participating pool of over 3000 undergraduate stu-
dents), the university operates an indoor location service [16].
This location service does not require any application installa-
tion on any mobile device, and instead uses server-side Wi-Fi
fingerprinting techniques to track the on-campus location of
all persons (i.e., their mobile device) on campus, as long as
their Wi-Fi interface is enabled (regardless of whether they
connect to the campus Wi-Fi network or not). Due to well-
known limitations of such server-side location tracking, the
location service currently offers medium-grained granularity
(errors are typically ±6− 8 meters) and latency (the period



between successive location updates about individual devices
is around 2-4 minutes). However, the universality of this lo-
cation service means that we can perform continuous, longi-
tudinal tracking of all mobile devices on campus. As a con-
sequent, the location service provides the location/movement
history of over 100,000 devices over the past 2.5 years; this
movement data can be used predict an TA$Ker user’s individ-
ual future movement pattern.

What Do We Crowdsource?: TA$Ker is built and deployed
as an experimental mobile crowd-sourcing platform, which
can support empirical investigation of novel and alternative
crowd-sourcing strategies over a campus-scale deploymen-
t. At present, the worker pool of TA$Ker comprises around
1000 students (a subset of the pool of 3000 student partici-
pants of the campus testbed). In addition, the TA$Ker App
is intended to help the Facilities Management (FM) services
on campus achieve the vision of a smart campus, by provid-
ing continual, updated information on the state of various re-
sources on campus. Examples of such resources are varied
and include: the cleanliness of different restrooms, whether
the lights in certain rooms have been switched off or not, the
crowdedness of certain study areas, the availability of spe-
cific items in various vending machines and whether various
garbage bins are full or not. Accordingly, all tasks in TA$Ker
are presently reporting-type tasks, with the goal of using the
university’s student population as a voluntary and participato-
ry resource to provide reliable and timely inputs on the state
of such campus resources.

SYSTEM DESIGN
Before diving into the details of the experimental studies that
are relevant to this paper’s central research question, we first
outline the key relevant characteristics of TA$Ker. Figure 2
illustrates the overall functional architecture of TA$Ker. In
addition to the TA$Ker mobile App, the TA$Ker backend sys-
tem includes the following key components: (a) Route Pre-
dictor, that predicts an individual user’s movement trajectory
based on her historical movement traces (the traces obtained
by the server-side Wi-Fi location tracking system); (b) Task
Recommender, that, for a certain pool of workers, suggests
tasks (from the overall pool of available tasks) that best match
(i.e., minimize the additional detour overhead) the predicted
trajectory of an individual worker; (c) Task Management Por-
tal, that allows TA$Ker administrators to create, modify and
monitor the set of available tasks (as well as set task prices
or specify task bundles), (d) Database & Results Validator,
which stores the responses received from the users and vali-
dates the integrity of the responses by comparing the location
of the specified task and the locations visited by the worker,
and (e) Results Analyzer, which analyzes the contents of exe-
cuted tasks to provide deeper understanding of the behavioral
interaction by crowd-workers with the TA$Ker App.

Task Recommendation & Push vs. Pull Users: One of
TA$Ker’s core capabilities is the ability to support customized
recommendations for individual workers, by going beyond
such proximity filters (which operate using only the work-
er’s current location) to preferentially suggesting tasks that
lie close to a person’s predicted future movement trajectory.

More specifically, TA$Ker allows workers to be randomly di-
vided into two groups: (a) the “pull” class workers are able
to view all available tasks and can select an appropriate sub-
set of tasks from this entire list; whereas (b) the “push” class
users are able to view only a smaller set of tasks, selected by
the Task Recommender that are best aligned to their predict-
ed movement pattern. For this “push” class, the Task Rec-
ommender utilizes the previously-proposed TRACCS frame-
work [6], which recommends tasks so as to maximize the total
set of feasible tasks, while adhering to (i) a worker-specific
detour bound and (ii) stochastic uncertainty in a worker’s
movement trajectory. Broadly speaking, TRACCS improves
the decentralized or first-come-first-served models of task as-
signment, a topic that Kittur et al. [17] have identified as crit-
ical to the sustainable operation of future crowd-tasking plat-
forms.

Implementation Details
The implemented TA$Ker system consists of three compo-
nents: (a) a web interface for task creation, (b) a server and
a database for storing tasks and responses, and (c) a client
application on mobile phones for crowd-workers. The PHP-
based server implements the Route Predictor, Task Recom-
mender and Task Management Portal (creation and modifica-
tion of tasks), and also allows individual workers to be as-
signed to different control/treatment groups (e.g., push vs.
pull workers). We developed both Android and iOS mobile
client Apps for TA$Ker, and distributed them to our partici-
pants via our own private App Store. This TA$Ker App shows
various tasks to the users which can further be filtered based
on users’ current location, incentive preferences, preferred
task types, etc., and allows them to select and execute tasks,
with the results then being uploaded to the server.

Figure 2. TA$Ker framework - architecture

Experiment Study Details
To support the studies, on the interplay between social ties
and peer recommendations, performed in this paper, TA$Ker
was deployed over a 7 weeks period, March 7 - April 22, 2016
(with tasks being available only on working weekdays). Dur-
ing this period, a total of 1300 students opted to participate in
the study (been previously approved by the university’s Insti-
tutional Review Board (IRB)). During this period, the TA$Ker



(a) Inviting a friend. (b) List of invites sent and received. (c) List of nominees to offload a task.
Figure 3. Screenshots of TA$Ker App showing: (a) inviting a friend, (b) list of invitations sent and received, and (c) the process of task offloading to a
nominee.

platform provided a total of 140,000 distinct tasks. The user-
s were divided randomly into two equal sized-groups “push”
vs. “pull” groups.

For operational reasons, the tasks were broken up into 3 dis-
tinct time windows: 9am-12noon, 12noon-3pm and 3pm-
6pm, roughly aligned with the most common lecture slots,
such that the TA$Ker App only shows tasks that are valid
within the current time window. The Task Recommender op-
erates on each window independently–i.e., it takes all tasks
within a 3-hour time window, computes the worker’s predict-
ed movement over that 3-hour window and then recommends
suitable tasks. Moreover, each task is associated with a vari-
able execution interval (Ts,Te) (where Ts and Te denote the
start and end time instants of the interval), such that the task
can only be performed (i.e., the report on the relevant resource
be uploaded) within this execution interval. To ensure fair-
ness in terms of workloads and rewards among the “push”
and “pull” workers, a single worker could only execute Max
tasks in any 3 hour window (Max was set to 6 for all the
weeks).

Table. 1 highlights the overall distribution of tasks during
this study, including the numbers of individual/same-building
(type 1)/multi-building (type 2) bundles. Table. 2 shows the
total number of TA$Ker workers involved in each week – both
registered and active workers and the number of responses re-
ceived, on weekly basis.

During this 7-week period, we intentionally utilized two nov-
el features of TA$Ker, described next.

Task Bundling: In this study, we introduced the notion of
task bundles: a set of tasks grouped together and offered to
the crowd workers at slightly lower per-task incentive (com-
pared to the atomic tasks). The key feature of the bundle is

Table 1. Summary of task details.
Indiv. Tasks in Tasks in
tasks type1 bundle type2 bundle

Incentive 0.40 0.30 0.35
per task ($)
Total tasks 37.45% 27.88% 34.67%
posted
Posted tasks per
building
SIS 6.31% 4.6%
SOB 9.07% 7.3%
LIB 6.61% 2.77%
SESS 9.7% 8.01%
SOA 5.76% 5.22%
Non-referred task 66.94% 11.93% 21.11%
completion rate
Referred task 79.55% 100% 52.17%
completion rate

that it provides a higher total reward, and potentially allows a
worker to amortize their total detour overhead over multiple
tasks (especially if the tasks are all close to one another). The
downside, however, is the absence of any partial rewards: a
worker receives the total payment specified for the bundle on-
ly if she completes all the tasks (there are no partial rewards
for performing a subset of the tasks in a bundle).

Our bundling technique is motivated by several key discov-
eries and practical use cases: (i) Recent studies [21, 22] of a
year-long dataset from a leading mobile crowd-sourcing plat-
form point out an important factor behind the success of a
small set of efficient workers (called super agents), who con-
stitute 10% of the crowd but perform 80% of the tasks. These
efficient workers optimize their efficiency by carefully plan-



Table 2. Summary of user details.
Week No.Registered No.Active Responses

users users received
1 1119 349 10618
2 1167 364 10624
3 1201 308 8491
4 1208 262 8301
5 1222 248 8936
6 1231 223 6779
7 1235 171 5641

ning their trips, and bundling a sequence of tasks to perform
in a single trip; (ii) Several real-world crowd-sourced pack-
age delivery companies in Singapore work on the bundling
model: to compensate for the low per-delivery task reward-
s associated with their low-margin operations, they need to
provide each worker with multiple pick-up/delivery jobs.

Moreover, by varying the spatial dispersion of the bundle, we
can effectively control the amortization benefit. For example,
if the tasks are all on the same floor of one of the academic
buildings, they can be performed with a detour of less than 5
minutes; in contrast, a bundle spread across academic build-
ings could potentially incur a travel detour of as much as 15
minutes. More specifically, our studies included 3 different
types of tasks: (1) individual tasks – where worker will get
paid after completing it, (2) Same-building bundles – where
4 tasks in the same building are grouped together and formed
as a bundle, and these bundles are posted to cater people who
do not want to make longer detours, and (3) Multi-building
bundles – tasks belong to this type of bundle are distributed
across the campus, covering any 4 of the 5 buildings.

Friend Nominations & Task Referrals: To improve the
completion rate of tasks, and to experimentally study the im-
pact of “peer requests” on the task execution pattern, we in-
troduced the “task referral” feature. Under this feature, each
worker could, a priori, invite at most 4 of his/her co-workers
(existing TA$Ker workers) to become “TA$Ker buddies”. If
this request was accepted, the referring worker could then re-
fer/offload an accepted, but currently not executed, task to
such a buddy. (Within a single 3-hour time window, a TA$Ker
worker was allowed to offload at most 4 (out of the maximum
of 6) tasks to such buddies.) If the offloading request was
accepted, then the task could no longer be performed by the
referrer, but only by the requested buddy. Moreover, if the
requested buddy completed the task, referring worker will re-
ceive 25% of the task incentive as a bonus while requested
buddy will receive the task incentive.

The idea of task offloading emerged from our experiences
with an earlier version of TA$Ker, which was used to conduct
a pilot study over 900 workers in Sept 2015. From that study,
we observed that 15% of the accepted tasks are not complet-
ed by the crowd workers. Moreover, from an online survey
conducted on those workers, 81% workers answered that the
primary reason behind their failure to complete a previously-
accepted task was a sudden change in their on-campus move-
ment pattern. Such unexpected changes caused some of their
tasks to lie too far from their actual trajectory pattern. By

allowing a worker to dynamically co-opt another worker, we
expect the task referral feature to help mitigate this problem.

Due to the delay in completing and integrating this task re-
ferral feature, this referral feature was activated only during
the last week (happen to be the end of semester exam week
in the campus) of our study. Note that the process of becom-
ing a “TA$Ker buddy” is unidirectional. In other words, if a
nominee B accepts a buddy request from a nominator A, the
nominator can refer tasks to the nominee, but not vice versa.
For the reverse flow of task referrals (from B to A), a sepa-
rate and explicit buddy request must first be initiated (by B)
and accepted (by A). Fig. 3(b) illustrates screenshots of the
TA$Ker App, during various stages of the buddy request and
task referral processes.

TASK COMPLETION & SOCIAL TIES
We first start our investigation by trying to understand
the “homophily effect” in mobile crowd-sourcing – i.e.,
we specifically address the research question “Do closely-
connected peer workers exhibit spatio-temporal similarities
in terms of the tasks performed (e.g., whether they perform
tasks at the same or nearby locations, or during similar time
periods)?” The overall goal is to understand whether such so-
cial similarity effects influence worker behavior, even in sit-
uations where the crowd-sourcing platform does not natively
(or intrinsically) support collaborative task execution.

To investigate this issue, we first compute the expected
strength-of-tie among pairs of TA$Ker workers using just
their physical collocation and interaction patterns. Having
established such a physical world movement-based proxy for
tie-strengths, we then study whether and how the spatio-
temporal similarity of task execution is related to such a tie-
strength metric.

Calculating Pairwise Strength of Ties
To compute the pair-wise tie-strength between any two
TA$Ker workers, we utilize the historical traces of worker
location on the campus, and combine that with prior work
on (i) movement-based group detection and (ii) movement-
based tie-strength computation. We define a spatio-temporal
co-occurrence of two (or more) users as an episode. We then
utilise the longitudinal observations we are able to make us-
ing the location traces data, of extracted episodes, to build a
pairwise tie-strength metric.

More specifically, we first utilize the state-of-the-art Gru-
Mon group detection system [25] to detect group interactions,
based on shorter time windows of shared residency (at dif-
ferent locations) and movement patterns. Given our access
to only location data traces (we do not have the sensor data
streams of each worker’s smartphone), we utilize GruMon’s
location-based group detection logic, which looks for joint
transitions between distinct stay points (locations where the
user resides for a substantial amount of time) to reliably in-
fer group interactions. Prior studies have shown that GruMon
has accuracies of approx. 90% and is fairly robust to location
errors. We then also compute a combination of features (in-
volving both collocation and group interaction) to compute a
pairwise tie-strength among individuals, using the approach



previously adopted in [15], which combines the following
factors:

• Spatial precision: the inverse of the number of other peo-
ple the meeting/episode is shared with. For example, the
strength between two people in the group study room is
higher than that of two people who are in a seminar room
with 50 others.

• Temporal precision: represents the normalized duration of
meeting/episode. Longer the duration, stronger the tie.

• Spatial uniqueness: For example, meetings at the Gym are
more rare/unique than at the seminar room, hence higher
weights are given to the former. This is computed based on
ALL meetings observed over the period of consideration.

• Temporal uniqueness: Meetings that occur during the
weekends/late evenings are given a higher weightage over
meetings during the day, as they are more uncommon.

• Durability: this gives higher weights to pairs of people
who meet multiple days over the week (their relationship
has longevity)

• Frequency: This feature computes the number of distinct
group interactions between a pair of individuals during the
day, and thus gives higher weightage to people who meet
multiple times over the same day.

We retain only the top 1% of strongest ties so as to prune out
accidental co-locations (i.e., strangers being at the same place
at the same time accidentally).

Validation: The demographic similarity (school and year of
study) between the top-100 inferred (strong) pairs and 100
random pairs were compared. Using a Chi-squared test, we
confirmed that the strong pairs showed a statistically, signif-
icantly higher similarity. In other words, stronger ties were
seen to disproportionately become to the same school, or the
same cohort, which is indeed what we expect. For the pur-
pose of this study, the strength-of-ties among individuals was
computed using the entire history of indoor movement data
from the period of September 2015 through February 2016.

Threat to Validity: While the movement history from Sept
2015-February 2016 provides sufficient data to build stable
tie-strengths, the model admittedly assumes that these tie-
strengths remain constant over the observation window. A
particular concern might be that this observation period strad-
dles two distinct academic terms; one can expect many re-
lationships to change from term to term (e.g., ties between
students sharing the same course or working on the same
project). However, the top 1% of ties typically represent the
long-lasting, enduring friendships–these ties were seen to re-
main unchanged when the tie-strength computation was done
separately for each term. Accordingly, we believe that these
top-1% ties provide a fairly robust indicator of relationships
among the student workers using TA$Ker.

Spatio-temporal Task Completion Score
We next observed the task completion pattern of each pair
of TA$Ker users, over a seven-week trial period (collecting

details such as (i) time that task is performed; (ii) number
of coordinated transitions across locations over discrete time
intervals (e.g., 15 minutes)). Given these observations, we
defined two distinct Task Similarity Scores as follows:

1. Collocation-Time Similarity Score: For every 15 minute
time window over the period of observation, we extract
the locations in which a pair of workers complete tasks.
For example, assume user A and B are known to have a
strong tie strength and user A completes tasks at 3 loca-
tions {campus clinic, food court, library} between 11:15
and 11:30. Also, User B completes tasks at {food court,
concourse, library} during the same time window. In this
case we define user A and B as sharing 50% of their spatio-
temporal profile, i.e., 2 (i.e., food court and library) out of
the 4 (i.e., food court, library, campus clinic and concourse)
distinct locations observed over that time window. The ag-
gregated score is first calculated, pairwise on daily basis,
and averaged over the entire period of observation.

2. Collocation Similarity Score: This method is similar to the
Collocation-Time Similarity score, except that we look at
the shared task-completion locations over an entire day–
i.e., without requiring that a shared location tasks complet-
ed by both users during the same 15-minute interval. In
other words, given two distinct sets of locations A(T ) and
B(T ) where users A and B execute tasks over a day, this
score computes A(T )∩B(T )

A(T )∪B(T ) .

“Homophily” Effects in TA$Ker
We next investigate the correlation between the tie-strengths
(based on longitudinal observations of collocation and move-
ment patterns) and the spatio-temporal task completion s-
cores. Fig. 4 illustrates a scatter-plot of the two distinct scores
(Collocation-Time and Collocation) vs. the Tie-Strength s-
cores between all pairs of TA$Ker participants. It is fair-
ly easy to see that the Spatio-temporal scores are indeed
positively correlated with the tie-strength values. Further-
more, we calculated the correlation between both the spatio-
temporal score and the corresponding tie-strength values: the
correlation coefficient is 0.53 (with p-value 1.99e-15) for
Collocation Similarity and 0.74 (with p-value 2.2e-16) for
Collocation-Time Similarity. Clearly, “friends” perform tasks
not only at the same locations, but during the same 15-min
time windows.

Figure 4. Tie strength between pairs of TA$Ker participants



Key Takeaway: Our results show the existence of a signif-
icant “homophily” effect in the execution of mobile crowd-
sourcing tasks on campus. Workers who share the same
school or belong to the same cohort not only have closer “so-
cial” ties to one another, but also exhibit similarities in the
spatio-temporal preferences for executing tasks. This is likely
due to the fact that such stronger-tie workers (“friends”) have
a higher likelihood of having similar movement patterns (e.g.,
possible common courses, highly overlapping course sched-
ules), and thus end up preferring tasks with similar space-
time distributions. At first glance, this phenomenon suggests
that allowing explicit collaboration/referral of tasks among
“friends” may not be as useful, as their travel patterns may be
similar (birds of a feather truly flocking together), resulting
in similar likes/dislikes for tasks at different locations. We
shall revisit this issue later, when we carefully analyze the
outcomes that result from explicit support of task referral in
the TA$Ker platform.

WORKER PREFERENCES & SOCIAL INFLUENCE
Workers may have different preferences and strategies for ac-
cepting and executing tasks on a mobile crowd-sourcing plat-
form. In general, such individual-specific preferences can be
affected by platform-intrinsic factors such as incentives, the
detour overhead and the task’s complexity (the time taken to
perform the task). Continuing with our investigation of the
possibility of homophily effects on mobile crowd-sourcing,
we first develop a per-user model of task preferences based on
platform-intrinsic features. Subsequently, we incorporate the
social effect–i.e., taking into account the preferences of oth-
er peer-workers with whom the worker has strong social ties,
and show that such social features can significantly improve
the prediction of individual worker preferences. (Besides be-
ing germane to our investigation of how such social ties affect
collaborative crowd-sourcing, such preference modeling can
be used to improve the operational efficiency of the platform
in other ways–e.g., by improving the relevance of tasks rec-
ommended by the Task Recommender component).

In the following we first explain how to parameterize a work-
er’s behaviour. Then we explain our approach for modeling
the worker context over time. Let us denote a worker’s like-
lihood of completing a new task by P (y|x;θ), where variable
y indicates whether the worker completes the task successful-
ly (y = 1) or not (y = 0), vector x = (x1,x2, ...) includes the
parameters (such as payment, detour, task complexity, etc.)
and vector θ = (θ1,θ2, ...) is the learned coefficients based on
worker’s history.

Parameterizing Worker’s Behaviours
We first model θ (the worker’s preference) as a function of
the following platform (or task) intrinsic features:

• Incentive: the amount of money the worker would receive
by doing a task. This is specified by the task owner via the
Task Management Portal.
• Detour: this quantifies the additional travel overhead that

the worker incurs while performing a task. To measure the
detour, we first need to identify the neighboring stay lo-
cations (both prior to and after the task performance)–i.e.,

locations where the worker stays for a significant amount
of time (in our case, more than 4 minutes). The detour is
then calculated by computing the difference between the
shortest travel path between these stay locations and the
path the worker actually takes so as to perform the chosen
task. Mathematically, let the task location be denoted as Z.
We analyze the location traces, and identify the stay loca-
tions (places where the worker resided continuously for 4
or more minutes) before and after going to Z. We denote
the stay locations before and after Z as X and Y , respective-
ly. The detour time is then (tX ,Z + tZ,Y )− tX ,Y , where tX ,Z
denotes the travel time to reach location Z from location X .
• Task complexity: this is a relative metric to measure the

complexity of tasks. In TA$Ker, there were 4 different
types of reporting tasks, ranging from ones that required
choosing from a Boolean option to Photo tasks (those that
required taking a picture). To roughly measure the com-
plexity of each type, we first calculate the daily ratio be-
tween the average time the worker spent on tasks of that
type, divided by the average time he/she spent on all com-
pleted tasks that day. The final complexity is then obtained
by averaging this daily ratio over the entire 7-week obser-
vation period. As an example, let the amount of time spent
while performing photo type tasks on day i be denoted by
by tph(i), total time spent on performing tasks on that day
by tall(i), and let n be the total number of days. The com-
plexity score for photo tasks (for that specific user) is then
obtained as: ∑

n
i=1(tph(i)/tall(i))

n .
• Task Familiarity: this is a relative metric used to find out

the preferred type of tasks of each user, on a weekly basis.
This metric is computed by dividing the number of tasks of
a particular type completed by a user by the total number
of tasks completed by the same user in a period of time.
• Popularity of the task location: number of unique work-

ers (during the specified task validity period, eg., between
10 and 10:30) in that particular location. This measure of
a location’s intrinsic popularity is then normalized by the
worker count over all possible locations across the entire
campus.

The training output vector indicates whether or not the work-
er has completed the task he/she accepted. Given the above
parameters, we can run our algorithms to learn θ and conse-
quently capture worker-specific preferences.

Regression Model For Worker Task Preferences
We exploit regularized logistic regression to build the predic-
tive model and find parameter weights (i.e., vector θ). Let us
denote the collected observations from a worker by (x(i),y(i))
where 1 ≤ i ≤ T . The regression model aims to find θ by
minimizing the following cost:

(1)
argmin

θ

1
T ∑

1 ≤i≤T
log(hθ(x(i)))y(i) +

log(1− hθ(x(i)))(1− y(i))2 + λr ∑
j =1,2,...

θ
2
j



where hθ(x) = P (y= 1|x,θ) = 1
1+exp(−θt x) is the likelihood of

completing a task by the worker and λr is a penalty coefficien-
t, which is a small positive number that shrinks the norm of
θ. The cost function minimizes the prediction error over the
training dataset. The penalty term, also known as Ridge reg-
ularization, is used to avoid overfitting the model. To solve
Equation 1, we use a gradient descent based algorithm that
iteratively converges to the solution [3].

We employed regularized logistic regression with Ridge
penalty on the parameters. Each worker completed between
10 – 6000 tasks over the trial period of 5 weeks (as the u-
niversity end of semester exams were going on for the last
two weeks, we have excluded those 2 weeks from this analy-
sis, assuming their decision to choose a task highly depends
on their tight schedule). To test the accuracy of the result-
ing model, we divided the 5 week trial period into two sets:
(1) the first three weeks of data (50%) formed the training
set, while (2) the next two weeks (4th and 5th) of data (29%)
formed the test set. After finding a suitable λr corresponding
to each worker, we applied the gradient descent based algo-
rithm to find the characterization parameter θ for each worker.

Table 3. Regression Table.
Features Coeff. Std.Err Chi-sq p-val 95% CI
Intercept -1.23 0.36 11.14 0.00084 (0.15, 0.61)
Detour -0.039 0.014 0.08 0.0077 (0.977, 1.03)
Incentive 0.59 0.10 7.60 0.00058 (0.27, 0.57)
Complexity -0.18 0.23 0.67 0.41 (0.53, 1.30)
Familiarity 0.08 0.022 15.04 0.00010 (0.88, 0.96)
Popularity 0.68 0.18 7.55 2.8e-05 (1.51,3.12)

We tabulate the regression outcome in Table 3. The fea-
tures incentive, detour and popularity of the task location are
deemed to be statistically significant. The regression coef-
ficients also reveal the relative importance of these different
platform-intrinsic features. For example, we see that, hold-
ing all the other features at a fixed value, we will see a 3.8%
increase in the odds of accepting the task for a one-unit de-
crease in detour (since 1- exp(−0.039) = 0.038). Similarly,
we see an 80% and 97% increase in odds of accepting the
task for a one-unit increase in incentive (exp(0.59) -1 = 0.8)
and popularity of the task location ((exp(0.68) -1 = 0.97)),
respectively.

Effect of Social Ties on Prediction Accuracy
To measure the effect of social ties, we now include one more
factor called friendship factor (which measures the collective
social preference for a location) as follows. We first derive an
aggregated location score per each user in our system. This s-
core is calculated by averaging the number of tasks performed
in each possible location during the first 3 weeks (i.e., training
set) of the trial period. Subsequently, the “friendship” factor
for a worker i at a task location l is obtained by computing the
weighted average of the “location score” of all other workers
(with the weight for worker j being directly proportional to
the tie-strength between workers i and j). Mathematically,
if T Si j denotes the tie-strength between user i and his peer
j and LS jl denotes the location score of the friend j at loca-
tion l, then the ‘friendship” score for user i at location l is
computed as ∑ j∈Worker\i(T Si j ∗LS jl)/| {Worker \ i} |.

We tabulate the regression outcome of the new model in Ta-
ble 4. The 3 older features (incentive, detour and popularity
of the task location), as well as the new friendship feature are
seem to be statistically significant. Similar to the observation-
s we made in the previous model, we can say that, holding all
the other features at a fixed value, we will see 136% increase
in the odds of accepting the task for a one-unit increase in
friend factor (since exp(0.86) -1 = 1.36).

Table 4. Regression table (with friendship factor)
Features Coeff. Std.Err Chi-sq p-val 95% CI
Intercept -0.47 0.17 7.93 0.0048 (0.45, 0.86)
Detour -0.08 0.022 5.04 0.00010 (0.88, 0.96)
Incentive 0.22 0.30 0.52 0.0004 (0.68, 2.28)
Complexity -0.011 0.21 1.35 0.82 (0.54, 1.41)
Familiarity -0.074 0.23 8.01 0.030 (0.84, 0.91)
Popularity 0.47 0.16 4.88 0.0001 (1.11,2.31)
Friend factor 0.86 0.20 4.23 1.9e-05 (0.28, 0.62)

Figure 5 plots the cost function (Equation 1) averaged over
all the workers for the following scenarios: (1) being obliv-
ious to the social effect and considering only the 5 intrinsic
features described above, and (2) additionally incorporating
the effect of social ties by including the additional friend-
ship feature. As we can observe, as λr increases, the cost
function on the test set reduces and converges. More impor-
tantly, the cost function for the ‘socially-augmented’ model
(that includes the friendship feature) is lower by ≈ 31% (for
our chosen value of λ(r) = 0.1), compared to the cost func-
tion for the “intrinsic-only” model. This result provides evi-
dence that worker preferences on task selection and execution
in mobile crowd-sourcing are indeed significantly influenced
by (more precisely, correlated with) the preferences of other
social peers.

Figure 5. Prediction Cost of Worker Task Preference (with & without
social effects)

Key Takeaway: Our investigations show that the user prefer-
ences, for different tasks offered on a mobile crowd-sourcing
platform, can be modeled quite well as a combination of in-
trinsic factors (with the popularity of task locations and task
rewards being the two most influential factors). However,
the preference model is significantly more accurate when one
modifies the location-specific preference to take into account
the appropriately weighted preferences of peer workers. Sim-
ilar to observations made on location-based social networks,



these results provide further reinforcement that worker choic-
es for tasks in mobile crowd-sourcing platforms exhibit the
homophily effect.

THE POWER OF COLLABORATIVE REFERRALS
Generally speaking, collaborative work is known to result
in superior outcomes (compared to individual efforts) across
a variety of domains. The strong social homophily effect-
s, which we have observed in the spatio-temporal pattern-
s of mobile crowd-sourcing, however, call into question the
likely success of a collaborative strategy for completing mo-
bile crowd-sourcing tasks. The proof, of course, is in the
eating: as shown in Table 1, referred tasks did achieve a
very high completion rate(with nominees performing 100%
of tasks from same-building bundles and over 50% of tasks
from multi-building bundles).

We now study this dynamic task referral feature (which was
introduced in the TA$Ker App over weeks 6-7 of our study)
in greater detail. We specifically focus on week 7, as week
6 was a transient period with minimal use of this feature (we
used week 6 to advertise and explain this newly introduced
feature). Our goal is to try and understand the patterns of
tasks offloaded and accepted by the nominator and nominee
respectively, and to thereby understand why the referral pro-
cess works. During the last one week of our study, workers
exchanged a total of 85 friend requests. Moreover, 300 tasks
(primarily belonging to bundles, but also consisting of indi-
vidual tasks) were offloaded to such nominees. Each user is
allowed to offload (as a nominator) or accept and perform (as
a nominee) at most 4 tasks, in a 3-hour time window. The
nominee has the flexibility to “reject” a task if he thinks it’s
not feasible for him to perform it.

Our two key primary findings are:

• Nominators always offload the tasks to their strongest ties.
in particular, for each nominating user, we found that
he/she always offloaded tasks to a single nominee–the one
who had the strongest tie-strength among the nominator’s
peers (within the set of TA$Ker users). This validates
our assumption that collaboration in such mobile crowd-
sourcing platforms primarily occur among close friends.

• Nominators offload tasks primarily because they are too far
away. By comparing the real trajectory of the nominator to
the location of the offloaded task, we found that all offload-
ed tasks would incur a detour of at least 11.75 minutes de-
tour to the nominator (if he/she had actually performed the
task). Accordingly, we confirm our initial conjecture that
offloading would primarily be used to help complete tasks
that were too far from the worker’s expected trajectory.

Detour Sensitivity & Task Referrals
To further investigate the phenomenon, we investigate the de-
tours experienced by workers (for performing non-referred
vs. referred tasks), and identified two different classes of
workers: (1) Detour Sensitive: these are workers who always
accept and perform tasks that are close by (i.e., are either on
the same floor or in the same building and thus result in very
low detour), even if the task reward is relatively lower; and

(2) Detour Insensitive: these are workers who are willing to
take longer detours in order to earn more (they can be viewed
as similar to super-agents). It is worth stating that these two
classes had approximately the same number of “push” and
“pull” users–i.e., detour sensitivity was not a function of the
recommendations made by the TA$Ker platform.

Nominee Perspective: Figure 6 plots the average detour in-
curred by various nominees across their completed tasks: the
x-axis plots the average detour for non-referred tasks during
weeks 1-5, while the y-axis plots the average detour for all
referred (offloaded) tasks during week 7. We can easily sepa-
rate the cluster of detour-sensitive nominees (those who pre-
viously performed only tasks with average detour ≤ 5 mins)
from the detour-insensitive ones (those whose average detour
was higher than 10 mins–i.e., spanned multiple buildings).
We see that detour-insensitive workers experience no differ-
ence between non-referred vs. referred tasks–they continue
to experience detours of >10 mins (equivalent to visiting a
building that is two blocks away).

In contrast, detour-sensitive nominees showed a dramatic
change in their pattern: for refereed tasks that they complet-
ed, they experienced detours that are more than twice what
they normally tolerate. This discrepancy explains why task
offloading is successful: even though the nominee is likely
to be far away from the offloaded task, the nominee ends up
completing the task (irrespective of her detour sensitivity). To
mathematically verify this change, we conducted a t−test on
the average detour (for such detour-sensitive users) between
referred vs. non-referred tasks, and confirmed that the differ-
ences were statistically significant (confirmed by a t-test with
p-values < 0.0001).

Nominator Perspective: Figure 7 plots the similar detour
values for various nominators: the x-axis plotting the aver-
age detour for non-referred tasks during weeks 1-5, with the
y-axis plotting the average detour for all referred (offload-
ed) tasks during week 7. We see the two categories of user-
s: detour-sensitive users have x-axis values less than 5 mins,
while detour insensitive users have x-axis values of > 10 min-
s. The interesting observation is that the detours associated
with the referred tasks is usually high (> 10 mins) for either
category of workers.

For detour-sensitive workers, this implies an inherent willing-
ness to initially accept tasks with longer detour (the nomina-
tor must first accept the task before she can offload it). Ap-
parently, the availability of the task referral feature enables
such workers to accept more out-of-the-way tasks, based
on the expectation that these tasks can then be offloaded
(if needed) to their friends. To mathematically verify this
change, we conducted a t−test on the average detour (for
such detour-sensitive nominators) between referred vs. non-
referred tasks, and confirmed that the differences were statis-
tically significant (p-values < 0.0001).

Impact of Tie-Strength on Detour
Our investigations suggest that the success of dynamic col-
laboration (i.e., peer referrals) is primarily driven by the tie-
strength between the nominator and nominee, and not due



Figure 6. Average detour (Nominee) before and after task offloading
feature is introduced

Figure 7. Average detour (Nominator) before and after task offloading
feature is introduced

to any possible reductions in detour caused by the referral.
To further quantify this effect, we looked at both detour-
sensitive and detour-insensitive nominees and computed (just
for week 7), the average detours that they experienced (over
all completed tasks) for non-referred and referred tasks. Fig-
ure 8(a) plots these average detour for detour-sensitive nomi-
nees, while Figure 8(b) plots these average detours for detour-
insensitive nominees. The figures further reinforce our cen-
tral observation: while detour-insensitive users accept re-
ferred tasks without any noticeable change in their detour
overheads, detour-sensitive users accept tasks even though
the added overhead is noticeably larger.

For any particular user i, let di denote the difference between
these two average detour values. We finally investigate if this
value of di is itself influenced by the degree of the friendship
between the nominator and the nominee. In particular, we
investigate the correlation between di (the additional detour
overhead) and the tie-strength between the nominator k and
nominee i (denoted by tki). The resulting Spearman correla-
tion coefficient is 0.64, indicating that this willingness to take
on additional detour is strongly influenced by the strength of
the friendship between the (nominator, nominee) pair.

Key Takeaway: Our careful analysis of the differences in de-
tours between non-referred and refereed tasks shows that the
peer referral process works even though the task-related de-
tour experienced by the nominee is appreciably high (greater
than 10 mins, on average). While ≈ 50% of workers are

just intrinsically insensitive to such high detours, the other
50% are quite sensitive. However, they also accept and com-
plete such referred tasks, principally because the referral re-
quest comes from their close friends. Moreover, we show
that: higher the tie-strength between the (nominator, nomi-
nee) pair, the greater the willingness of the nominee to incur
longer detours for the referred tasks. Clearly, future mobile
crowd-sourcing platforms should enable such selective task
offloading to close friends, to increase both the acceptance
and completion rate of tasks.

DISCUSSION
Many crowd-sourcing efforts presume humans as indepen-
dent sources of information. Many routine uses of crowd-
sourcing, such as surveys and behavioral experiments depend
on one crowd-worker’s response, assuming that he is not col-
luding with peers. Also, the platforms often bias the output
obtained from a crowd-worker by considering the majority
votes [28], but if all the crowd-workers’ responses are cor-
related, then the results can be skewed [20]. However, our
study empirically shows that workers themselves are putting
collaboration back into such practices. They in fact collabo-
rate with their peers dynamically and increased the task com-
pletion rate.

In this paper we presented a phenomenon called task comple-
tion homophily: workers with strong strength-of-ties tend to
have high similarity in their spatio-temporal patterns of task
execution. We show that there is a strong correlation (Pearson
correlation value of 0.74) between the tie-strength of a worker
pair and their spatio-temporal task completion patterns. This
corroborates with the findings reported in [7], where they
use location-based social network data and cellular location
records to demonstrate social relationship, in particular the
visit pattern of friends. Furthermore, as reported in [9], a us-
er’s movement behavior could be more accurately predicted
by factoring in the movements of her friends.

Recently, online crowd-sourcing research community fo-
cused on the value of coordinating human interaction at s-
cale. The notion of “social facilitation” [8, 12, 13] is well
studied in the online community. Such studies offer a valu-
able case study for incorporating one’s social network into
crowd-sourcing processes [2]. In contrast to the research that
primarily looks at online crowd-sourcing scenarios, in this
paper, we show that in mobile crowd-sourcing, incorporat-
ing social factors (specifically, the strength-of-tie weighted
location preference of all other peer workers) in a per-user
task preference model results in a significant improvement,
increasing the prediction accuracy by 31%.

Limitations and Challenges
Our work and results provide compelling evidence that the
incorporation of a “dynamic peer-to-peer offloading” capa-
bility can significantly improve the efficacy of urban crowd-
sourcing. There are, however, several open issues and chal-
lenges that need further investigation:

• Applicability to City-Scale Crowd-sourcing: TA$Ker is a
campus-scale crowd-sourcing platform. Consequently, all



(a) Detour Sensitive Nominee (b) Detour Insensitive Nominee

Figure 8. Average detour of the referred and non-referred tasks of (a) detour-sensitive, and (b) detour in-sensitive users

the workers are long-term residents of the campus and for-
m long-term social linkages; moreover, their on-campus
movement patterns will naturally have high overlap. Such
social ties or movement overlap may not be as pronounced
in a city-wide deployment of crowd-sourcing; close friend-
s, for example, may live in entirely different neighborhood-
s and have no overlap in commuting paths. The efficacy
of such task offloading in such scenarios is not immedi-
ately obvious. However, it is possible that task execution
may indeed have locality-of-reference–e.g., such offload-
ing may still be useful within neighborhoods (or hous-
ing estates), where neighbors have varying degrees of so-
cial ties and are likely to have appreciable spatial over-
lap. Our current belief is that such dynamic offloading
may indeed prove effective for neighborhood-scale crowd-
sourcing (e.g., when used to solicit reports on municipal
resources such as garbage bins and street lights), as the
participants in such a platform would have high spatiotem-
poral overlap as well.
• Task Corroboration and User Reputation: Truth discovery

& corroboration of results is a key requirement for reli-
able urban crowd-sourcing. Present mechanisms for task
corroboration often rely on individual-specific reputation
measures, which are appropriate for scenarios where work-
ers perform tasks independently (interacting only with the
crowd-sourcing platform). If task offloading and shared
execution becomes the norm, such corroboration measures
may need to be redesigned to better take into account the
social ties and interactions among task nominators and
nominees (are workers less or more likely to generate spu-
rious reports when they’re asked to do so by their friends?).
• Design of Incentive Sharing: Our work in this paper has

adopted a natural, but simplistic, incentive sharing scheme,
where the task reward is equally shared among the nomi-
nator and nominee. It is entirely possible that the incen-
tive sharing schemes may need to be redesigned to better
harmonize with the different price sensitivities of differen-
t workers. For example, would a nominator be willing to
refer the task to a friend whose profile indicates that she
demands a higher fraction of the reward, due to possibly
facing a higher detour overhead? Moreover, in our current

studies, the task execution interval (Ts,Te) is specified inde-
pendently of the task’s reward and whether it is performed
by the nominator or a nominee. In future, it is possible that
tasks may have a more flexible rewards vs. execution inter-
val curve, which may provide workers with more interest-
ing choices between performing the task in a more-delayed
fashion (thus earning less but receiving the entire reward)
or offloading it for more immediate execution (earning a
higher but shared reward).
• Lack of User Feedback Data: Unfortunately, during our s-

tudy period, we did not explicitly survey the participants
to find their opinions about the usefulness of this referral
feature. We plan to conduct such explicit surveys during
ongoing/future studies, to help us better understand addi-
tional collaborative capabilities that they may desire.

CONCLUSIONS AND FUTURE WORK
To provide better understanding of dynamic collaboration a-
mong peer crowd workers in mobile crowd-sourcing, we have
conducted extensive real-world (over 7 weeks and with 1300
workers) using TA$Ker – a campus based mobile crowd-
sourcing platform. In this study, collaboration is character-
ized by the act of peer referrals, where a worker who initially
committed to perform a task, but is unlikely to reach the task
location, can offload the task to his friend. We first show the
existence of a significant “homophily” effect in the execution
of mobile crowd-sourcing tasks in campus. Though, at first
glance, this “homophily” feature implies that the explicit col-
laboration among “friend ” crowd workers may not be use-
ful, we show later that peer assistance outweighs the effect of
“homophily” in mobile crowd-sourcing platforms.

Our empirical analysis reveals the following:

• The physical tie-strength of a crowd worker pair and their
spatio-temporal task completion pattern are strongly cor-
related (with Pearson correlation of 0.74), exhibiting “task
completion homophily” among TA$Ker workers.
• Incorporating social factors in a per-user preference mod-

el yields more accuracy in prediction compared to the one
only with task-intrinsic properties. In particular, we show



that incorporating a social attribute called the “friendship s-
core” (i.e., the strength of tie weighted location preference
of all other peer workers) improved the per-user task pref-
erence accuracy by 31%, compared to a model that used
only task-intrinsic properties such as incentive, popularity
of the task location and task complexity.
• Dynamic peer referrals is very successful: its introduction

increased the overall task completion rate by 14%. More-
over, nominees exhibit extremely high compliance to such
offloading requests–performing 100% of requests for tasks
in spatially-contained bundles and over 50% of requests
for geographically-dispersed bundles. Over a 1 week trial
period (happen to be the university’s exam week), the task
referral feature is used by at least 10% of the active workers
of TA$Ker to offload around 300 tasks.
• A nominee’s willingness to tolerate a higher detour offload-

ed task is strongly correlated (Pearson correlation 0.64) to
the physical tie strength between the nominee and nomina-
tor.

In ongoing and future work, we shall systematically use
TA$Ker to study the interplay between such dynamic task of-
floading and other crowd-sourcing parameters (such as incen-
tive sharing strategies).
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