
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection Lee Kong Chian School Of 
Business Lee Kong Chian School of Business 

3-2014 

Distributionally robust mixed integer linear programs: Persistency Distributionally robust mixed integer linear programs: Persistency 

models with applications models with applications 

Xiaobo LI 
Singapore University of Technology and Design 

Karthik NATARAJAN 
Singapore University of Technology and Design 

Chung-Piaw TEO 
National University of Singapore 

Zhichao ZHENG 
Singapore Management University, DANIELZHENG@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/lkcsb_research 

 Part of the Operations and Supply Chain Management Commons 

Citation Citation 
LI, Xiaobo; NATARAJAN, Karthik; TEO, Chung-Piaw; and ZHENG, Zhichao. Distributionally robust mixed 
integer linear programs: Persistency models with applications. (2014). European Journal of Operational 
Research. 233, (3), 459-473. 
Available at:Available at: https://ink.library.smu.edu.sg/lkcsb_research/3629 

This Journal Article is brought to you for free and open access by the Lee Kong Chian School of Business at 
Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in Research 
Collection Lee Kong Chian School Of Business by an authorized administrator of Institutional Knowledge at 
Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb_research
https://ink.library.smu.edu.sg/lkcsb
https://ink.library.smu.edu.sg/lkcsb_research?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=ink.library.smu.edu.sg%2Flkcsb_research%2F3629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Invited Review

Distributionally Robust Mixed Integer Linear Programs:

Persistency Models with Applications

Xiaobo Li∗ Karthik Natarajan† Chung-Piaw Teo‡ Zhichao Zheng§

Abstract

In this paper, we review recent advances in the distributional analysis of mixed integer linear programs

with random objective coefficients. Suppose that the probability distribution of the objective coefficients

is incompletely specified and characterized through partial moment information. Conic programming

methods have been recently used to find distributionally robust bounds for the expected optimal value

of mixed integer linear programs over the set of all distributions with the given moment information.

These methods also provide additional information on the probability that a binary variable attains a

value of 1 in the optimal solution for 0-1 integer linear programs. This probability is defined as the

persistency of a binary variable. In this paper, we provide an overview of the complexity results for

these models, conic programming formulations that are readily implementable with standard solvers

and important applications of persistency models. The main message that we hope to convey through

this review is that tools of conic programming provide important insights in the probabilistic analysis of

discrete optimization problems. These tools lead to distributionally robust bounds with applications in

activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and

newsvendor problems.
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1 Introduction

Consider a mixed 0-1 linear program (LP) in maximization form,

Z(c) = max
{
cTx : x ∈ X

}
, (1)

where the feasible region is described as

X =
{
x ∈ <+

n : aTj x = bj , ∀j = 1, . . . ,m; xi ∈ {0, 1}, ∀i ∈ B ⊆ {1, . . . , n}
}
. (2)

The set of decision variables {1, . . . , n} includes 0-1 decision variables indexed by the set B and nonnegative

decision variables indexed by {1, . . . , n}\B. The class of mixed 0-1 linear programs has been used exten-

sively in business, engineering, and economic applications, to model diverse types of problems arising from

production planning, logistics deployment, scheduling of jobs and machines, among others. However, in

practice, the input parameters (i.e. c, aj , bj) are often not known with certainty, and need to be estimated

in the modeling process. Since the optimal solution is sometimes very sensitive to the input parameters,

one needs to be careful in modeling the uncertainty in these problems. In this review, we focus ourselves

on the uncertainty inside the objective coefficient vector, c.

1.1 Probabilistic analysis of mixed 0-1 linear programs

Formally, the problem of interest is:

Given the mixed 0-1 linear program in (1) and a probability measure θ for the random objective

coefficient vector c, compute the expected optimal value, i.e.,

(MEAN) Eθ

(
Z(c)

)
=

∫
Z(c)dθ(c).

Clearly, computing MEAN is at least as hard as solving the deterministic mixed 0-1 linear program.

MEAN is computable in time polynomial in the size of the instance1 when the deterministic problem is

solvable in polynomial time and θ is a discrete distribution with a polynomial number of support points.

However, for general distributions, the computation of MEAN is significantly more challenging than

solving the deterministic problem. An example is the problem of finding the longest path on a directed

acyclic graph. The deterministic version of this problem is to find a longest path between a source node s

and a sink node t in a directed acyclic graph G(V, E) where V is the set of vertices, E is the set of edges

1Here, the “instance” refers to the problem input string that encodes all the necessary parameters of the optimization

problem, Z(c), and all the support points of c.
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with associated arc lengths cij for each arc (i, j) ∈ E . The longest path problem (LPP) is formulated as

the following 0-1 integer linear program,

ZLPP (c) = max

 ∑
(i,j)∈E

cijxij :
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = bi, ∀i ∈ V; xij ∈ {0, 1}, ∀(i, j) ∈ E

 ,

where bi is defined to be 1 for i = s, −1 for i = t and 0 otherwise. For a fixed c, ZLPP (c) is computable

in polynomial time. The linear programming relaxation solves the integer program in this case. The

complexity of computing E(ZLPP (c)) for independent discrete distributions was resolved by Hagstrom

[28].

Theorem 1 (Hagstrom [28]) For a directed acyclic graph with arc lengths that are independently distributed

and restricted to taking two possible values each, computing the expected value of the longest path is #P-

complete. Furthermore it cannot be computed in time polynomial in the number of points in the range of

the longest path unless P = NP.

Roughly speaking, the difficulty stems from the observation that an exponential number of support

points for the multivariate independent discrete distribution can be supported by an exponential number

of optimal solutions. The difficulty of this problem has led to the development of methods such as Monte

Carlo simulations [73, 15], PERT approximations [50], exact methods in special instances such as series-

parallel graphs [56] and upper and lower bounds on the expected longest path [25, 22, 38].

Explicit formulas for the expected optimal value have been developed in the asymptotic analysis of

random combinatorial optimization problems. This area has its roots in the pioneering work of Beardwood

et al. [5] who characterized the asymptotic behavior of a traveling salesperson tour length for points

randomly generated on the Euclidean plane. The book by Steele [70] provides an introduction to the

asymptotic analysis of combinatorial optimization problems under the Euclidean model. More closely

related to the theme of this paper is the probabilistic analysis of combinatorial optimization problems

under the mean field model. In the mean field model, the nodes of a graph are assumed to be fixed

while the arc lengths are independently chosen from a probability distribution. The arc lengths need not

satisfy the triangle inequality. The origins of this model lies in an early paper of Karp [35] who analyzed

the asymmetric traveling salesperson problem and its linear assignment relaxation for distances drawn

independently from an uniform distribution in [0, 1]. The linear assignment problem (LAP) is formulated

as

ZLAP (c) = min


n∑
i=1

n∑
j=1

cijxij :

n∑
i=1

xij = 1, ∀j = 1, . . . , n;

n∑
j=1

xij = 1, ∀i = 1, . . . , n;

xij ∈ {0, 1}, ∀i, j = 1, . . . , n

 .
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Explicit asymptotic expressions for the expected value of the assignment problem under random costs have

been developed for uniform and exponential distributions by several authors (see Krokhmal and Pardalos

[39] for a review on this topic). Aldous [2] in 2001 rigorously proved the following result which was initially

conjectured by Mézard and Parisi [54] in 1985 using ideas in statistical physics.

Theorem 2 (Aldous [2]) Let the random variables cij for i, j = 1, . . . , n be independent with uniform

distribution on [0,1] or exponentially distributed with parameter 1. Then

lim
n→∞

E

(
ZLAP (c)

)
= ζ(2) =

π2

6
≈ 1.645.

Asymptotic expressions for the expected value of other combinatorial optimization problems have since

been developed under the mean-field model (see Aldous [3]). However, explicit formulas for finite size

instances of combinatorial optimization problems are much more difficult to obtain. One such formula

that was conjectured by Parisi in 1998 [64] and recently proved by two sets of authors is provided next.

Theorem 3 (Linusson and Wästlund [46], Nair, Prabhakar, and Sharma [59]) Let the random variables

cij for i, j = 1, . . . , n be independent and exponentially distributed with parameter 1. Then

E

(
ZLAP (c)

)
=

n∑
i=1

1

i2
.

While this result is elegant and surprising, the techniques in its proof is typically difficult to use for the

analysis of general discrete optimization problems with non-identical, or non-independently distributed

uncertainties. In this paper, we review an alternate approach for the probabilistic analysis of discrete

optimization problems that relaxes the assumption of independence. Instead of fixing the joint distribution

of the random parameters, we allow for the joint distribution to be incompletely specified by the partial

moment information. Surprisingly, the probabilistic analysis of the problem becomes tractable for a wide

class of mixed integer linear programs, under appropriate assumptions of the input distributions. The

moment information can be viewed as imposing boundary conditions on the way the scenarios of the

extremal distribution are generated so as to guard against extremely unrealistic distributions.

1.2 Organization of the paper

In Section 2, the central problem of finding the tight bound on the expected optimal value of a mixed 0-1

linear program is introduced. The formal characterization of the set of probability distributions using the

theory of moments is provided in this section. The notion of persistency - the probability that a binary

variable attains a value of 1 in the optimal solution is also discussed in this section. In Section 3, conic
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programming methods to compute the bounds and estimate persistency are reviewed. Polynomial time

computable bounds and bounds that are NP-hard to compute are identified in this section. In Section 4,

we review applications of this approach in activity networks, vertex packing discrete choice models, random

walk and sequencing problems, and newsvendor problems. We conclude in Section 5.

1.3 Notation

Throughout the paper, standard letters such as x denote scalars, bold letters such as x denote vec-

tors, bold capital letters such as X denote matrices and calligraphic fonts such as X denotes sets.

The notation c+ represents max(0, c). The transpose of a column vector c is denoted as cT . For t-

wo vectors x and y of dimension n, xTy denotes x1y1 + . . . + xnyn, and x ◦ y denotes the column

vector (x1y1, . . . , xnyn)T . The set Sn denotes the set of n × n symmetric matrices equipped with the

standard inner product A · B =
∑n

i=1

∑n
j=1AijBij . The vector e has all components equal to one,

and the vector ei has 1 in its ith component and 0 otherwise. The cone of n × n nonnegative ma-

trices is defined as Nn = {A ∈ Sn : A ≥ 0}. The cone of n × n positive semidefinite matrices is de-

fined as S+
n =

{
A ∈ Sn : vTAv ≥ 0, ∀v ∈ <n

}
. The cone of n × n copositive matrices is defined as

COn =
{
A ∈ Sn : vTAv ≥ 0, ∀v ∈ <+

n

}
. The cone of n × n completely positive matrices is defined as

CPn =
{
A ∈ Sn : ∃v1,v2, . . . ,vk ∈ <+

n such that A =
∑k

i=1 viv
T
i

}
. For a cone K, the dual cone is defined

as K∗ = {A : A ·B ≥ 0, ∀B ∈ K}. The nonnegative and positive semidefinite cones are self-dual while

the copositive and completely positive cones are duals of each other. Namely, (Nn)∗ = Nn, (S+
n )∗ = S+

n

and (COn)∗ = CPn. The closure of a cone K is denoted as K and the interior is denoted as Int(K). The

convex hull of a set K is given as conv(K).

2 Bounds on the expected optimal value and persistency

Suppose the exact probability distribution θ of the parameters is unknown. Rather, θ is only known to lie

in the set of probability distributions Θ. Formally, the central problem of interest is:

Given the mixed 0-1 linear program in maximization form in (1) and a nonempty set of prob-

ability measures Θ for the random objective coefficient vector c, compute the tightest upper

bound on the expected optimal value, i.e.,

(MEAN-UB) Z = sup
θ∈Θ

Eθ

(
Z(c)

)
= sup

θ∈Θ

∫
Z(c)dθ(c).
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We discuss a few important aspects of this problem next:

(a) The most commonly used model in the probabilistic analysis of optimization problems is the inde-

pendent distribution model. However, modeling data as independent random variables is sometimes

unrealistic. For example, in supply chain networks one often needs to deal with correlated demands,

and in activity networks one needs to deal with correlated activity durations due to resource depen-

dencies. By dropping the explicit assumption of independence in the description of Θ, it is possible

to capture the effect of dependencies.

(b) The upper bound of interest is valid across all distributions in the set Θ and is as tight as possible.

Tightness implies that either there exists a feasible distribution that attains the upper bound exactly

or there exists a sequence of distributions that attains the bound and is feasible in a limiting sense.

Hence, this bound is termed as a distributionally robust bound. For the longest path problem on

directed acyclic graphs with random arc lengths as arising in activity networks, the upper bound

corresponds to a worst-case expected project completion time. For the maximum flow problem with

random arc capacities, the upper bound corresponds to the worst-case expected maximum flow that is

supported by the network. While MEAN-UB deals with upper bounds for maximization problems,

by simply replacing c with −c transforms the bounds to lower bounds on minimization problems.

(d) Under reasonable assumptions on the set of distributions Θ, the tight bound turns out to be efficiently

computable with convex conic programming. In instances where the tight bound is not efficiently

computable, conic programming relaxations provide weaker upper bounds. An example of a bound on

the expected optimal value of a discrete optimization problem through convex quadratic programming

is the following elegant result of Lyons, Pemantle and Peres [49] and Lovász [47].

Theorem 4 (Lyons, Pemantle, and Peres [49], Lovász [47]) Let Θ be the set of distributions for a nonneg-

ative random vector c whose joint survival function S(t1, . . . , tn) = P (c1 ≥ t1, . . . , cn ≥ tn) is log-concave.

(a) Suppose X is the feasible region for a shortest s-t path problem, minimum s-t cut problem or minimum

linear assignment problem. Then

inf
θ∈Θ

Eθ

(
min
x∈X

cTx

)
≥ min

x∈conv(X )

(
n∑
i=1

E(ci)x
2
i

)
.

(b) The lower bound in (a) is tight for the set X =
{
x ∈ <+

n : eTx = 1, xi ∈ {0, 1} ∀i = 1, . . . , n
}

. The

bound is attained by independent exponential random variables, i.e.,

min
θ∈Θ

Eθ

(
min

i=1,...,n
ci

)
=

(
n∑
i=1

1

E(ci)

)−1

.
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The bound in Theorem 4(a) is the optimal value to a separable convex quadratic minimization problem

over 0-1 polytopes and efficiently computable. This result implies that for independent exponentially

distributed random edge lengths in an undirected graph, the expected length of the shortest path between

any two nodes is bounded from below by the resistance between the nodes, where the resistance of an edge

is defined as the expectation of its length. While the lower bound in Theorem 4(a) is not tight in general

(see Example 5, Page 372 in [47] for a counterexample), Theorem 4(b) identifies a particular instance where

the bound is tight. The models discussed in Section 3 provide tight bounds for general mixed integer linear

programs using conic optimization. A formal description of the set of distributions Θ based on the theory

of moments is provided next.

2.1 Moment representation of the set of distributions Θ

A simple and popular characterization of the set of distributions Θ is based on only the first two moments

- the mean and covariance matrix. Let Ω be a given subset of <n. Define M(Ω)+ to be the space of

finite positive Borel measures defined on the domain Ω. The set of probability measures with first moment

vector µ and second moment matrix Π is defined as

Θ =

{
θ ∈M(Ω)+ : 1 =

∫
Ω
dθ(c), µ =

∫
Ω
cdθ(c), Π =

∫
Ω
ccTdθ(c)

}
. (3)

Under this description, the distributional robust bound is found by solving the generalized moment problem,

(MEAN-UB) Z = sup
θ∈M(Ω)+

∫
Ω
Z(c)dθ(c)

s.t.

∫
Ω
dθ(c) = 1∫

Ω
cdθ(c) = µ∫

Ω
ccTdθ(c) = Π.

(4)

For an in-depth discussion of the moment problem, the reader is referred to the classic book of Karlin and

Studden [34]. A more recent algorithmic exposition on the moment problem using conic programming is

found in the book of Lasserre [43]. We review the results from this theory of moments that are particularly

relevant to this paper.

The moment feasibility problem characterizes necessary and sufficient conditions that the moments

must satisfy so that the set of distributions Θ as defined in (3) is nonempty. Towards this, define the
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moment cone of order 2 supported on Ω ⊆ <n as2

M2(Ω) =

λ
 1 µT

µ Π

 ∈ Sn+1 :
λ ≥ 0; 1 =

∫
Ω
dθ(c), µ =

∫
Ω
cdθ(c),

Π =

∫
Ω
ccTdθ(c), for some θ ∈M(Ω)+

 .

From the theory of moments, the dual of this moment cone is the cone of all non-homogeneous quadratic

polynomials that is nonnegative over Ω and defined by

P2(Ω) = M2(Ω)∗ =


 w0 wT /2

w/2 W

 ∈ Sn+1 : w0 +wTc+ cTWc ≥ 0, ∀ c ∈ Ω

 .

The dual of the cone of nonnegative polynomials is the closure of the moment cone, namely P2(Ω)∗ =

M2(Ω). The dual of the moment problem in (4) is hence formulated as:

ZD = inf
wo,w,W

w0 +wTµ+W ·Π

s.t. w0 +wTc+ cTWc ≥ Z(c) ∀c ∈ Ω,

(5)

where w0 ∈ <, w ∈ <n and W ∈ Sn. Problems (4) and (5) are related through conic duality.

Theorem 5 (Karlin and Studden [34], Lasserre [43])

(a) Weak duality: The optimal primal and dual objective satisfy Z ≤ ZD.

(b) Strong duality: If the moments lie in the interior of the moment cone, i.e., 1 µT

µ Π

 ∈ Int (M2(Ω)) ,

then the optimal primal and dual objectives are equal and satisfy Z = ZD.

Alternate conditions to guarantee strong duality for the moment problem have also been identified in

the literature (see Zuluaga and Pena [76] and Shapiro [68] for some examples). The primary method to

compute Z and ZD uses convex conic programming techniques such as linear and semidefinite programming.

The connection between the cone of moments, the cone of nonnegative quadratic polynomials and the

semidefinite cone is provided in the next theorem for the domain Ω = <n and Ω = <+
n .

Theorem 6 (Karlin and Studden [34], Kemperman [36])

2The definition of the moment cone based on symmetric matrices in Sn+1 is a slight modification of the definition from the

literature (cf. [34, 43]) that uses vector notation in <(n+1)(n+2)/2.
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(a) For Ω = <n, the following cones are equivalent, 1 µT

µ Π

 ∈M2(<n)⇐⇒

 1 µT

µ Π

 ∈ S+
n+1,

 w0 wT /2

w/2 W

 ∈ P2(<n)⇐⇒

 w0 wT /2

w/2 W

 ∈ S+
n+1.

(b) For Ω = <+
n , the following cones are equivalent, 1 µT

µ Π

 ∈M2(<+
n )⇐⇒

 1 µT

µ Π

 ∈ CPn+1,

 w0 wT /2

w/2 W

 ∈ P2(<+
n )⇐⇒

 w0 wT /2

w/2 W

 ∈ COn+1.

Theorem 6(a) is from Karlin and Studden [34]. Essentially, for Ω = <n, testing feasibility in the

cones M2(Ω) and P2(Ω) are easy since these are equivalent to testing the positive semidefiniteness of a

symmetric matrix. Theorem 6(b) is from Kemperman [36]. For Ω = <+
n , testing feasibility in M2(Ω) is

equivalent to verifying if a matrix is completely positive, and testing feasibility in P2(Ω) is equivalent to

verifying if a matrix is copositive. For a detailed introduction to completely positive matrices, the reader is

referred to the book of Berman and Shaked-Monderer [6]. Three recent surveys on completely positive and

copositive matrices with emphasis on optimization are found in Bomze [13], Dür [24] and Hiriart-Urruty

and Seeger [31]. Unlike the positive semidefinite cone, testing feasibility in the completely positive and

copositive cones are known to be difficult. For instance, Murty and Kabadi [58] showed that the problem of

verifying if a given matrix is copositive is co-NP-complete. A popular relaxation to the completely positive

cone is the doubly nonnegative cone which is defined as the intersection of the positive semidefinite and

the nonnegative cone. The following well-known relationship holds among these cones,

CPn ⊆ S+
n ∩Nn ⊂ S+

n +Nn ⊆ COn.

Equality holds for the leftmost and rightmost inclusion only for n ≤ 4 from a result of Diananda [19].

To obtain better approximations to the completely positive and copositive cones, hierarchies of convex

cones based on positive semidefinite and nonnegative cones have been developed by several researchers

(see Parillo [63], Lasserre [41], Bomze and de Klerk [14], Laurent [45], Zuluaga and Pena [76] for details

on these hierarchies). While these hierarchies of cones converge to the completely positive and copositive

cones asymptotically, the size of the formulations grow so rapidly that the higher order approximations
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are intractable from a computational viewpoint. The conic representations in Theorem 6 are extendable

to arbitrary sets Ω ⊆ <n by using a generalized notion of complete positivity and copositivity over the

domain Ω (see Kemperman [36], Sturm and Zhang [71]).

2.2 Persistency in combinatorial optimization

A related parameter in the analysis of optimization problems under uncertainty is the distribution of the

optimal decision vector. Define the mapping X opt(c) as the set of all optimal solutions for a given c,

X opt(c) =
{
x ∈ X : cTx ≥ cTy, ∀y ∈ X

}
. (6)

The number of solutions in X opt(c) could be one or many depending on the uniqueness of the optimal

solution. For continuous distributions such as the multivariate normal distribution with a positive definite

covariance matrix, the probability measure of the support over which there are multiple optimal solutions

is zero. This however need not be the case for discrete distributions. For a random vector c, any optimal

solution x(c) ∈ X opt(c) is a random vector. Bertsimas et al. [10] proposed a definition of persistency for

combinatorial optimization problems based on the components of the random vector x(c).

Definition 1 (Bertsimas, Natarajan, and Teo [10]) The persistency of the binary variable xi is defined as

the probability that xi takes the value of 1 in some optimal solution, i.e.,

Persistency of binary variable xi = P

(
xi(c) = 1, for some x(c) ∈ X opt(c)

)
= P

(
Z(c) = max

x∈X :xi=1
cTx

)
.

For activity networks, “persistency” is equivalent to the concept of the “criticality index” of an activity.

A criticality index of an activity measures the probability that an activity is on the longest path in an

activity network. A higher criticality index roughly indicates higher importance of that activity in the

successful completion of the project on time. Criticality indices have been previously estimated using

simulations [73, 15] and approximations [23]. The conic optimization methods discussed in the next section

provide an alternate method to estimate the persistency of a binary variable.

It is important to point out that an alternate definition of “persistency” for deterministic 0-1 opti-

mization problems has been previously proposed. Adams et al. [1] and Hammer [29] define an optimal

solution to the continuous relaxation of a mixed 0-1 linear program to be persistent if the set of 0-1 vari-

ables realizing binary values in the continuous relaxation retain those same binary values in at least one

integer optimum. A mixed 0-1 linear program possesses the persistency property if every optimal solution
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to the continuous relaxation is a persistent solution. Weighted vertex packing is the first example of a

combinatorial optimization problem that is shown to possess the persistency property (see Nemhauser and

Trotter [62]). The persistency property has also been identified in unconstrained quadratic 0-1 optimization

by Hammer et al. [29], unconstrained polynomial 0-1 optimization by Lu and Williams [48], and integer

programs with at most two variables per inequality by Hochbaum et al. [32]. The motivation of identifying

the persistency property in this line of research is to reduce the computational time to solve deterministic

mixed 0-1 linear programs. This is done through a preprocessing step that solves the continuous relaxation

first and fixes the persistent variables to their respective binary values. The reduction in the search space

then provides computational benefits in the second step where either the optimal solution or near-optimal

solution is found through exact methods or heuristics. Definition 1 of persistency has a similar motivation

of helping identify variables that often take a value of 1 in the optimal solution. The main distinction is

that while Definition 1 is for the stochastic 0-1 optimization problem, the earlier definition was for the

deterministic 0-1 optimization problem.

3 Conic optimization based methods

There is a vast literature on moment bounds in areas such as inventory control [67], queueing systems [75],

finance [16, 11], decision theory [69], activity networks [12] and probability and statistics [52, 42, 72]. In

this section, we review conic optimization based methods to compute MEAN-UB and the correspond-

ing complexity of obtaining the bounds. The following generic “primal” proof technique is adopted in

developing the conic programs to compute MEAN-UB:

(a) Define the “appropriate” decision variables using moments of the objective coefficient vector c and

the optimal solution vector x(c).

(b) Identify necessary constraints that these variables must satisfy for all distributions in Θ. Express the

objective function in terms of the decision variables and find a upper bound on the expected value of

Z(c) using conic optimization.

(c) Show that the constraints are sufficient by constructing a distribution (or a sequence of distributions)

in Θ that attains the upper bound (in a limiting sense). We outline steps (a) and (b) in this section

to provide a flavor of the proof technique. The tightness argument of step (c) is found in the specific

references. It is also possible to derive these results through an alternative dual approach (see [34,

52, 11]).
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To develop the conic programs to compute MEAN-UB, we make use of three different moment

representations for the set of distributions Θ:

(a) Cross moments: Given cross moment information that includes the means and covariances, we

show that the distributionally robust bound is NP-hard in general. We provide two different conic

programming approaches in Section 3.1. The first approach uses a complete enumeration of the

extreme points to construct the SDP formulation, whereas the second approach uses the constraint

formulation to derive a completely positive conic program for this problem. Both approaches are

exact as there are extremal distributions that match the bound.

(b) Marginal moments: Given univariate marginal moment information that includes the means and

variances, we show that the distributionally robust bound is computationally tractable if the determin-

istic 0-1 linear program is solvable in polynomial time. In this moment representation, no assumption

on the dependency among the random variables is made. We describe the convex formulation for

these models in Section 3.2.

(c) Nonoverlapping multivariate marginal moments: We conclude by discussing a hybrid approach

in Section 3.3, that uses nonoverlapping marginal multivariate information to compute the distribu-

tionally robust bound. In this hybrid approach, the random objective coefficients are partitioned

into several subsets, and cross moment information for each of the subsets is assumed to be known.

However, the dependence structure across different subsets is unknown. A natural application of this

approach is in activity networks.

Table 1 provides a summary of the key results from this section.

Description Cross moments Marginal moments Nonoverlapping multivariate moments

of Θ Mean and covariance Mean and variance Partitioned mean and covariance

Complexity NP-hard (Theorem 7) P P fmor activity networks

Formulation Exponential sized SDP (Theorem 8) SOCP (Theorem 10) SDP (Theorem 15)

CPP (Theorem 9)

Table 1: MEAN-UB for polynomial (P) time solvable 0-1 linear programs with Ω = <n

Notes: Polynomial complexity (P) in the table refers to an algorithm that takes polynomial time in the size of the

instance and log(1/ε), and computes a bound within ε of the optimal bound for all ε > 0. SDP, SOCP, and CPP

refer to semidefinite program, second-order cone program, and completely positive program, respectively.
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3.1 Cross moments (mean and covariance)

Computing the bound on the expected optimal value with mean and covariance information is unfortunately

NP-hard even for the class of polynomial time solvable mixed integer linear programs. The complexity

result is formally described in the next theorem.

Theorem 7 (Bertsimas and Popescu [11], Bertsimas, Doan, Natarajan, and Teo [8])

(i) For Ω = <+
n , computing MEAN-UB with mean and covariance information is NP-hard even when

Z(c) = cTx is just a linear function on c.

(ii) For Ω = <n, computing MEAN-UB with mean and covariance information is NP-hard even for

linear programs.

The key step that is used to prove the hardness results in Theorem 7 is to show that the separation

version of the dual problem is NP-hard. Then from the equivalence of separation and optimization (see

Grötschel et al. [26]), Theorem 7 follows. The separation version of the dual problem is:

Given a function Z(·), a set Ω, a scalar w0 ∈ <, a vector w ∈ <n and a matrix W ∈ S+
n ,

verify if w0 +wTc+ cTWc ≥ Z(c), for all c ∈ Ω. Otherwise, find a violated inequality.

The separation problem is difficult for Ω = <+
n since it is equivalent to testing if a matrix is copositive (see

Murty and Kabadi [58]). For Ω = <n, the separation problem is easy when Z(c) is given by the maximum

of a polynomial number of linear functions. However, Bertsimas et al. [8] showed that the separation

problem is NP-hard when Z(c) is the optimal objective value to a linear program where Z(c) is given by

the maximum of a exponential number of linear functions. The result is proved by a reduction from the

two norm maximization problem over a polytope, which was shown to be NP-hard by Mangasarian and

Shiau [51]. We now discuss conic programming formulations and relaxations for these NP-hard problems.

3.1.1 Vertex based formulation

In this section, we discuss an explicit conic program to compute MEAN-UB given a vertex representation

of the convex hull of the feasible region for the mixed integer linear program. Let

conv(X ) =

{
K∑
k=1

λkx
(k) :

K∑
k=1

λk = 1; λk ≥ 0, x(k) ∈ X , ∀ k = 1, . . . ,K

}
, (7)

where x(k)’s represent the vertices of the convex hull. Then Z(c) can be evaluated using the vertex based

formulation, i.e.,

Z(c) = max

{
K∑
k=1

λkc
Tx(k) :

K∑
k=1

λk = 1; λk ≥ 0, ∀k = 1, . . . ,K

}
. (8)
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Note that in general the number of vertices K is exponential in the size of the problem.

Theorem 8 (Bersimas and Popescu [11], Bertsimas, Doan, Natarajan, and Teo [8], Zuluaga and Pe-

na [76], Mishra, Natarajan, Tao, and Teo [55]) For the vertex based formulation in (8) with mean and

covariance information, MEAN-UB is computed by solving the conic optimization problem:

Z = max
λk,wk,W k,k=1,...,K

K∑
k=1

wT
k x

(k)

s.t.
K∑
k=1

 λk wT
k

wk W k

 =

 1 µT

µ Π


 λk wT

k

wk W k

 ∈M2(Ω) ∀k = 1, . . . ,K.

(9)

Step (a): The decision variables in formulation (9) are defined as the scaled conditional moments,

λk = P
(
x(c) = x(k)

)
,

wk = E
(
c|x(c) = x(k)

)
P
(
x(c) = x(k)

)
,

W k = E
(
ccT |x(c) = x(k)

)
P
(
x(c) = x(k)

)
.

Step (b): The objective function is expressed as the weighted sum of conditional moments,

E

(
Z(c)

)
= E

(
cTx(c)

)
=

K∑
k=1

E
(
cTx(k)|x(c) = x(k)

)
P
(
x(c) = x(k)

)
=

K∑
k=1

wT
k x

(k).

The equality constraint is obtained by defining the moment matrix as the sum of the conditional moments,

K∑
k=1

 λk wT
k

wk W k

 =

K∑
k=1

P
(
x(c) = x(k)

) 1 E
(
cT |x(c) = x(k)

)
E
(
c|x(c) = x(k)

)
E
(
ccT |x(c) = x(k)

)


=

 1 µT

µ Π

 .

The conic constraints in formulation (9) are obtained from moment feasibility on the domain Ω.

A natural implication of this result is that for Ω = <n with the number of vertices K polynomially

bounded in n, MEAN-UB is computable in polynomial time by solving the semidefinite program in

Theorem 8. This problem was first studied by Boyle and Lin [16] for an option pricing problem with

Z(c) = (maxi ci − k)+ where k is the strike price and the option payoff is determined by the maximum of

asset prices. Delage and Ye [20] extended this result by relaxing the assumption on the exact knowledge of

the two moments and incorporating additional support information. In their model, the set of distributions
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is defined with a compact convex support Ω, mean µ and second moment matrix bounded from above in

the positive semidefinite order by Π, i.e.,

Θ =

{
θ ∈M(Ω)+ : 1 =

∫
Ω
dθ(c), µ =

∫
Ω
cdθ(c), Π �

∫
Ω
ccTdθ(c)

}
. (10)

Delage and Ye [20] showed that with the number of vertices K polynomially bounded in n, MEAN-UB

is computable in polynomial time for the set of distributions defined in (10) under reasonable assumptions

on the convex set Ω.

3.1.2 Constraint based formulation

Theorem 8 is useful when the number of vertices K of the feasible region is not too large. However, K is

often exponential in the size of the problem. The next theorem provides a completely positive program

to compute MEAN-UB for mixed 0-1 linear programs using a constraint based representation. In this

part, we work on the original constraint based formulation of Z(c) as defined in (1)-(2). The constraint

based formulation is derived using an interesting result of Burer [17] who showed that any mixed 0-1

linear program with a mixture of binary and continuous variables can be formulated as a completely

positive program. Natarajan et al. [61] extended this result to mixed 0-1 linear programs under objective

uncertainty by formulating a completely positive cross moment model (CPCMM).

Theorem 9 (Natarajan, Teo, and Zheng [61]) For the class of mixed 0-1 linear programs with mean and

covariance information, MEAN-UB is computed by solving the following completely positive program,

Z = max
x,X,Y

n∑
i=1

Yii

s.t. aTj x = bj ∀j = 1, . . . ,m

aTj Xaj = b2j ∀j = 1, . . . ,m

Xii = xi ∀i ∈ B ⊆ {1, . . . , n}
1 µT xT

µ Π Y T

x Y X

 ∈M2(Ω×<+
n ).

(11)

Step (a): The decision variables in this formulation are defined as

x = E(x(c)),

Y = E(x(c)cT ),

X = E(x(c)x(c)T ).
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Step (b): The objective function is expressed as

E

(
Z(c)

)
=

n∑
i=1

E (cixi(c)) =

n∑
i=1

Yii.

The first two constraints in formulation (11) are obtained by taking the expectations,

bj = aTj x = E
(
aTj x(c)

)
,

b2j = aTj Xaj = E

((
aTj x(c)

)2
)
.

The third constraint is obtained from taking the expectation of the equality constraint xi(c)
2 = xi(c) for

the binary variables xi(c) ∈ {0, 1},

Xii = E(xi(c)
2) = E(xi(c)) = xi.

The validity of the conic constraint follows from c ∈ Ω and x(c) ≥ 0, since
1 µT xT

µ Π Y T

x Y X

 =


1 E(cT ) E(x(c)T )

E(c) E(ccT ) E(cx(c)T )

E(x(c)) E(x(c)cT ) E(x(c)x(c)T )

 ∈M2(Ω×<+
n ).

For Ω = <+
n , the conic constraint is equivalent to complete positivity of the matrix variable. While the

number of constraints and variables in Formulation (11) are polynomial in the size of the problem, the diffi-

culty lies in the completely positive cone constraint which is intractable. The advantage of this formulation

is that it directly uses the constraint based representation instead of the vertex based representation. A

simple polynomial time computable upper bound is obtained by using the doubly nonnegative relaxation

of the completely positive cone,

Z ≤ max
x,X,Y

n∑
i=1

Yii

s.t. aTj x = bj ∀j = 1, . . . ,m

aTj Xaj = b2j ∀j = 1, . . . ,m

Xii = xi ∀i ∈ B ⊆ {1, . . . , n}
1 µT xT

µ Π Y T

x Y X

 ∈ S+
2n ∩N2n.

(12)

By using higher order approximations to the completely positive cone, it is possible to get better approxi-

mations to MEAN-UB.
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3.1.3 Extension to higher order moments

The constraint based formulation in Theorem 9 uses the first two moments of the random vector c and

the random optimal solution vector x(c) as decision variables,(
1, E (c) , E (x(c)) , E

(
ccT

)
, E
(
cx(c)T

)
, E
(
x(c)x(c)T

))
.

By allowing for higher order moments, Lasserre [44] has generalized the approach to the class of parametric

polynomial optimization problems which includes mixed 0-1 linear programs as a special case. Note that

binary variables can be modeled in polynomial optimization problems with constraints of the form x2
i = xi.

The parametric optimization problem studied in Lasserre [44] is of the form,

Z(ξ) = max

{
f(ξ,x) : fj(ξ,x) ≥ 0, ∀j = 1, . . . ,m

}
, (13)

where ξ is a random parameter vector that lies in a compact set Ω with a probability measure θ, and x is

the decision vector. Define the set

K = {(ξ,x) : ξ ∈ Ω, fj(ξ,x) ≥ 0, ∀j = 1, . . . ,m} .

Let ϕ denote the joint probability measure on the random vector (ξ,x(ξ)), where x(ξ) is an optimal

solution for a fixed ξ. Lasserre [44] defined the infinite dimensional linear program over the measure ϕ as

sup
ϕ∈M(K)+

∫
K
fdϕ

s.t. projΩϕ = θ,

(14)

where projΩϕ denotes the projection of ϕ on the set Ω. This formulation is referred to as a “joint +

marginal” formulation since ϕ is a joint probability measure on the parameters and optimal solutions

while θ is the given probability measure on the parameters. Under appropriate compactness conditions

on the feasible region (see Lasserre [44]), the optimal objective value to (14) is exactly Eθ(Z(ξ)). To

solve the infinite dimensional linear program for polynomial functions f(·) and fj(·), Lasserre proposed a

hierarchy of semidefinite relaxations that is based on the theory of moments. The optimal objective value

to the sequence of semidefinite relaxations converges in the limit to Eθ(Z(ξ)). The attractiveness of this

technique is that it is general purpose since it can handle uncertainty in the objective and constraints and is

applicable to the class of polynomial optimization problems. However the size of the semidefinite relaxation

grows rapidly which makes solving the higher order semidefinite relaxations numerically challenging. In the

remaining part of this section, we review sets of distributions Θ where the distributionally robust bound

can be found in polynomial time using conic optimization.
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3.2 Marginal moments (mean and variance)

Suppose that the support space Ωi for each random variable ci along with the mean E(ci) = µi and the

second moment E(c2
i ) = Πi is known. The variance of ci is denoted by σ2

i . However, the dependence

structure among the different random variables is unknown. Let θi = projiθ denote the projection of the

multivariate measure θ to the ith random variable ci. The marginal moment representation of the set of

distributions is

Θ =

θ ∈M(Ω1 × . . .× Ωn)+ :
1 =

∫
Ωi

dθi(ci), µi =

∫
Ωi

cidθi(ci),

Πi =
∫

Ωi
c2
i dθi(ci), ∀i = 1, . . . , n

 .

The upper bound on the expected optimal value with mean and variance information is formulated as

Z = sup
θ∈M(Ω1×...×Ωn)+

∫
Ω1×...×Ωn

Z(c)dθ(c)

s.t.

∫
Ωi

1dθi(ci) = 1 ∀i = 1, . . . , n∫
Ωi

cidθi(ci) = µi ∀i = 1, . . . , n∫
Ωi

c2
i dθi(ci) = Πi ∀i = 1, . . . , n

(15)

Moment feasibility in this instance is equivalent to the feasibility of univariate moment sequences. This

condition is obviously necessary. Sufficiency follows by constructing a feasible joint measure using the

independent distribution. Testing moment feasibility is thus easy for the marginal moment model for both

Ωi = < and <+. The next theorem provides a conic programming formulation for the class of 0-1 linear

programs, i.e.,

X =
{
x ∈ <+

n : aTj x = bj , ∀j = 1, . . . ,m; xi ∈ {0, 1}, ∀i ∈ {1, . . . , n}
}
.

Theorem 10 (Bertsimas, Natarajan, and Teo [10], Natarajan, Song, and Teo [60])

(i) For the class of 0-1 linear programs with mean and variance information, MEAN-UB in (15) is

computed by solving the following conic optimization problem,

Z = max
x,y,z

n∑
i=1

yi

s.t. x ∈ conv(X ) xi yi

yi zi

 ,

 1− xi µi − yi

µi − yi Πi − zi

 ∈M2(Ωi) ∀i = 1, . . . , n.

(16)
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For Ω = <n, formulation (16) reduces to the second-order cone program,

Z = max
x∈conv(X )

n∑
i=1

(
µixi + σi

√
xi(1− xi)

)
. (17)

(ii) Z is computable in polynomial time for a 0-1 linear program with a compact convex hull.

Step (a): The decision variables in formulation (16) are defined as

xi = P (xi(c) = 1),

yi = E (cixi(c)) = E (ci|xi(c) = 1)P (xi(c) = 1),

zi = E
(
c2
ixi(c)

)
= E

(
c2
i |xi(c) = 1

)
P (xi(c) = 1).

Step (b): The objective function is expressed in terms of the decision variables as

E

(
Z(c)

)
=

n∑
i=1

E

(
ci|xi(c) = 1

)
P (xi(c) = 1) =

n∑
i=1

yi.

Since the vector (x1(c), . . . , xn(c)) lies in conv(X ) for all realizations of c, taking expectation, we get

x = E(x(c)) ∈ conv(X ).

The conic constraints are from the moment feasibility conditions, xi yi

yi zi

 = P (xi(c) = 1)

 1 E(ci|xi(c) = 1)

E(ci|xi(c) = 1) E(c2
i |xi(c) = 1)

 ∈M2(Ωi),

 1− xi µi − yi

µi − yi Πi − zi

 = P (xi(c) = 0)

 1 E(ci|xi(c) = 0)

E(ci|xi(c) = 0) E(c2
i |xi(c) = 0)

 ∈M2(Ωi).

The proof of the tightness can be found in [10].

A dual representation of this conic program in Theorem 10 is discussed in Klein Haneveld [37], Birge

and Maddox [12] and Bertsimas et al. [9]. The key implication of Theorem 10 is that MEAN-UB can be

found in polynomial time for supports such as Ω = <n and Ω = <+
n for the class of 0-1 linear programs

with a compact convex hull representation. This provides tight bounds for combinatorial optimization

problems such as the shortest path, linear assignment, and spanning tree problems.

3.2.1 Extension to integer programs

The marginal moment model has been extended to general integer programs by Natarajan et al. [60] with

a binary reformulation. Assume that the deterministic integer program with nonnegative integer variables

is formulated as

Z(c) = max

{
cTx :

n∑
i=1

ajixi = bj , ∀j = 1, . . . ,m; xi ∈ Xi, ∀i = 1, . . . , n

}
,
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where the set Xi consists of nonnegative integer values from αi to βi:

Xi = {αi, αi + 1, . . . , βi − 1, βi} ⊆ Z+.

Defining binary variables yik for k ∈ Xi, i = 1, . . . , n, the binary expansion of the feasible region is given

as

Y =

y :

n∑
i=1

∑
k∈Xi

ajikyik = bj , ∀j = 1, . . . ,m;
∑
k∈Xi

yik = 1, ∀i = 1, . . . , n;

yik ∈ {0, 1}, ∀k ∈ Xi, ∀i = 1, . . . , n

 .

There is an unique one to one correspondence between the extreme points of the original feasible region

and the binary reformulation Y, namely xi = k if and only if yik = 1. Based on this, Natarajan et al.

[60] provided a second-order cone program for integer programs with mean and variance information for

Ω = <n.

Theorem 11 (Natarajan, Song, and Teo [60]) For the class of integer programs with mean and variance

information and Ω = <n, MEAN-UB in (15) is computed by solving the following second-order cone

program,

Z = max

{
n∑
i=1

µi ∑
k∈Xi

kyik + σi

√√√√∑
k∈Xi

k2yik −

(∑
k∈Xi

kyik

)2
 : y ∈ conv(Y)

}
. (18)

3.2.2 Extension to marginal distributions

Finding a bound on a function of multiple random variables given only the probability measures of the

individual random variables has its origins in the Monge-Kantorovich [57, 33] formulation for mass trans-

portation problems. The reader is referred to the book of Rachev and Ruschendorf [66] for a historical

account of this problem. The upper bound on the expected optimal value with given marginal distributions

is formulated as

Z = sup
θ∈M(Ω1×...×Ωn)+

∫
Ω1×...×Ωn

Z(c1, . . . , cn)dθ(c)

s.t. projΩi
θ = θi ∀i = 1, . . . , n.

(19)

Meilijson and Nadas [53] solved this problem in a combinatorial optimization setting by estimating an

upper bound on the expected longest path in a directed acyclic graph given marginal distributions of the

arc lengths. Their motivation was to find the worst case expected project completion time in an activity

network across all joint distributions of activity durations that are consistent with the marginal distribu-

tions. This bound is thus robust against dependence. Weiss [74] generalized this bound to combinatorial
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optimization problems such as the maximum flow, shortest route and reliability problems. The formulation

in [53, 74] is derived from a dual convex minimization formulation.

Theorem 12 (Meilijson and Nadas [53]) For 0-1 linear programs with given marginal distributions, MEAN-

UB in (19) is computed by solving the following convex minimization problem,

Z = inf
d

(
Z(d) +

n∑
i=1

Eθi(ci − di)
+

)
. (20)

Natarajan et al. [60] provided a primal approach to compute this bound for continuous marginal

distributions.

Theorem 13 (Natarajan, Song, and Teo [60]) For 0-1 linear programs with continuous marginal distribu-

tions ci ∼ Fi(·), MEAN-UB in (19) is computed by solving the following concave maximization problem,

Z = sup
x∈conv(X )

n∑
i=1

∫ 1

1−xi
F−1
i (t)dt. (21)

In the next example, we compare the probabilistic bounds for combinatorial optimization problems

given marginal distributions with and without the assumption of independence.

Example: Probabilistic analysis of combinatorial optimization problems

Bertsimas et al. [9] applied the marginal distribution model to find the expected value of combinatorial

optimization problems when the assumption of independence among the random costs is dropped. For the

linear assignment problem with random costs identically distributed cij ∼ F (·), the tight lower bound on

the expected optimal value is found by solving the following convex minimization problem,

ZLAP = min


n∑
i=1

n∑
j=1

∫ xij

0
F−1(t)dt :

n∑
i=1

xij = 1, ∀i = 1, . . . , n;∑n
j=1 xij = 1, ∀j = 1, . . . , n; xij ≥ 0, ∀i, j = 1, . . . , n

 .

Theorem 14 (Bertsimas, Natarajan, and Teo [9]) Let the random variables cij for i, j = 1, . . . , n be

identically distributed with density function f(·) and distribution function F (·). Then

ZLAP = n2

∫ F−1(1/n)

0
cf(c)dc.

A comparison of the bound in Theorem 14 with results for the independence model is provided next:

(a) For the uniform distribution in [0, 1], the lower bound in Theorem 14 is ZLAP = 1/2. This lower

bound is tight for all n. Namely there exists a joint distribution with uniform marginals that attains
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this bound for each n. In contrast under the assumption of independence, only the explicit asymptotic

limit limn→∞E(ZLAP (c)) = π2/6 is known.

(b) For the exponential distribution with parameter 1, the lower bound is ZLAP = n+n(n−1) ln (1− 1/n),

while under independence E(ZLAP (c)) =
∑n

i=1 1/i2.

As highlighted by these examples, the extremal distributions under the marginal distribution model provide

new and non-trivial limits on the asymptotic behavior of optimization problems. It is interesting to compare

the proof technique for the marginal distribution model with that of the independence model. The proof

of the former model is based on convex optimization, while for the later model, the proof is based on

sophisticated probabilistic techniques (see [2]).

3.3 Nonoverlapping multivariate marginal moments

Doan and Natarajan [21] recently developed the bound MEAN-UB for a set of distributions Θ that lies

between the two extremes of the cross moment and marginal moment information. In this distribution

model, the random objective coefficients are assumed to be partitioned into subsets with information on

the moments of the random parameters in each subset. The dependence structure between any random

parameters for different subsets is assumed to be unknown. To describe the formulation, we use the

example of activity networks. In the directed acyclic graph representation of an activity network, a natural

partition is formed by the set of arcs (activities) entering each node. Define cj = (cij)i:(i,j)∈E to be the

sub-vector of random arc lengths for the arcs entering node j ∈ V, where n is the total number of nodes

in the graph. Denote the dimension of cj as nj . Suppose that the support Ωj for each random sub-vector

cj along with the mean E(cj) = µj and the second moment moment matrix E(cjc
T
j ) = Πj is known. For

example, in projects where different teams are responsible for the set of activities entering different nodes,

it is reasonable to assume that each team is knowledgeable about the joint distribution of the activities

for which they are responsible. The project manager is interested in evaluating the worst-case expected

project completion time that is compatible with these factors. The correlation among the arc lengths cij

and ckl entering two different nodes j and l is unknown under this model. Let θj denote the projection

of the measure θ for the random sub-vector cj . The upper bound on the expected longest path with
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nonoverlapping mean, variance and covariance information is formulated as

ZLPP = sup
θ∈M(Ω1×...×Ωn)+

∫
Ω1×...×Ωn

ZLPP (c1, . . . , cn)dθ(c)

s.t.

∫
Ωj

1dθj(cj) = 1 ∀j ∈ V∫
Ωj

cjdθj(cj) = µj ∀j ∈ V∫
Ωj

cjc
T
j dθj(cj) = Πj ∀j ∈ V.

(22)

Theorem 15 For the longest path problem in a directed acyclic graph with nonoverlapping multivariate

marginal moment information at each node, MEAN-UB in (22) is computed by solving the following

conic optimization problem:

ZLPP = max
xij ,wij ,W ij ,(i,j)∈E

∑
(i,j)∈E

eTijwij

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =


1, if i = s

−1, if i = t

0, if i ∈ V xij wT
ij

wij W ij

 ∈M2(Ωj) ∀(i, j) ∈ E 1 µTj

µj Πj

− ∑
i:(i,j)∈E

 xij wT
ij

wij W ij

 ∈M2(Ωj) ∀j ∈ V,

(23)

where eij is a vector of dimension nj with 1 in its ith component and 0 otherwise. For Ω = <n, MEAN-

UB is computable in polynomial time as a semidefinite program.

Step (a): The decision variables in this model are defined as

xij = P (xij(c̃) = 1), ∀(i, j) ∈ E ,

wij = E(cjxij(c̃)) = E(cj |xij(c̃) = 1)P (xij(c̃) = 1), ∀(i, j) ∈ E ,

W ij = E(cjcj
Txij(c̃)) = E(cjcj

T |xij(c̃) = 1)P (xij(c̃) = 1), ∀(i, j) ∈ E .

Step (b): The objective function is expressed as

E

(
ZLPP (c)

)
=
∑

(i,j)∈E

E

(
cij |xij(c) = 1

)
P (xij(c̃) = 1) =

∑
(i,j)∈E

eTijwij .

The first constraint is obtained by taking the expectation of the vector x(c) ∈ conv(X ) for all realizations

of c,

x = E(x(c)) ∈ conv(X ).
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The conic constraint is obtained from moment feasibility on the domain Ω. The last conic constraint is

obtained from the equality, 1 µTj

µj Πj

− ∑
i:(i,j)∈E

 xij wT
ij

wij W ij


= P (xij(c̃) = 0, ∀i ∈ V)

 1 E(cTj |xij(c̃) = 0, ∀i ∈ V)

E(cTj |xij(c̃) = 0, ∀i ∈ V) E(cjc
T
j |xij(c̃) = 0, ∀i ∈ V)


∈M2(Ωj).

The proof of tightness can be found in Doan and Natarajan [21].

4 Applications

The conic programming method provides a flexible and simple way to analyze mixed integer linear programs

with random objective. Since there is a huge number of problems under the umbrella of mixed integer LP,

we review only a few applications of the approach.

4.1 Activity networks

The activity network example in Figure 1 is inspired from van Slyke [73] and discussed in more details

in Bertsimas et al. [10]. This example serves as a benchmark for comparison of the conic programs with

alternative methods for estimating the project completion time and the criticality indices of activities under

random activity durations.

Figure 1: Simple activity network from Van Slyke [73]
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The deterministic critical path method (CPM) uses the expected value of the activity durations to

compute the critical path. The deterministic critical path approach identifies activities (1, 2) and (2, 4) as

being critical with expected project duration of 20.1 irrespective of the number of parallel arcs between

nodes 3 and 4. Simulation is a popular approach to analyze activity networks under uncertainty. By

simulating durations from a joint probability distribution, it is possible to analyze the project by solving

a longest path problem for each sample. However, this comes at the cost of computational expense for

large projects comprising of several thousand activities. For this project, we use the multivariate normal

distribution to simulate activity durations. Table 2 provides a comparison of CPM and the simulation

method with the SDP and SOCP methods discussed in Section 3.

CPM Simulation Cross moment Marginal moment Nonoverlap moment

n ZLPP (µ) x13 E(ZLPP (c)) x13 ZLPP x13 ZLPP x13 ZLPP x13

1 20.1 0.000 20.848 0.481 21.051 0.475 22.050 0.487 21.757 0.485

2 20.1 0.000 21.117 0.597 21.504 0.594 22.431 0.563 22.122 0.559

5 20.1 0.000 21.490 0.715 22.349 0.733 23.147 0.656 22.842 0.664

10 20.1 0.000 21.768 0.785 23.271 0.820 23.960 0.728 23.672 0.746

15 20.1 0.000 21.917 0.817 23.973 0.862 24.595 0.770 24.322 0.792

Table 2: Project statistics for different numbers of parallel arcs (n) between nodes 3 and 4

Notes: ZLPP (µ) is the project duration using the means. E(ZLPP (c)) is the expected project duration for the normal

distribution and ZLPP = supθ∈ΘE(ZLPP (c)) is the worst case expected project duration. The value x13 is the

criticality index of activity (1, 3) for the different models.

The simulation results in Table 2 are obtained with independent activity durations. It is clear from the

table that the deterministic critical path method severely underestimates the expected project duration.

Furthermore it fails to identify activity (1, 3) as being the most important especially when the number of

parallel arcs between nodes 3 and 4 increases. The criticality index of activity (1, 3) is clearly larger than

the criticality index of activity (1, 2) for n > 1 based on the simulation results. This is due to the simple

observation that it is very likely that any one of the upper paths will be critical in comparison to the

lower path due to the presence of parallel independent arcs. Using a deterministic approach would imply

that the project manager focuses on the wrong activity (1, 2). For the cross moment and nonoverlapping

multivariate marginal moments, SDP is used while for univariate marginal moments, SOCP is used to

compute the worst case expected project completion time. All three methods help identify the importance

of activity (1, 3) under distributional uncertainty. As should be expected, the worst case expected project
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duration for the cross moment model is lesser than that of the nonoverlapping marginal moment model

which in turn is lesser than marginal moment model.

In Table 3, the effect of partial correlations is tested on the project performance. Three multivariate

normal distributions are simulated. The correlations between all activities are set to zero except for the

correlation between activity (1, 2) and (1, 3), which takes values of −0.9, 0 and 0.9. From Table 3, it

is clear that actual criticality index is sensitive to the correlation structure as expected. In fact, as the

degree of dependence among activity durations increases, the variation in the criticality indices potentially

become significant. Although SOCP based marginal moment model still identifies activity (1, 3) as the most

critical activity, it does not capture explicit dependence information. In contrast, the more computationally

intensive SDP models help provide closer fits to the exact simulation values.

Simulation Cross moment Nonoverlap moment

ρ(1,2),(1,3) E(ZLPP (c)) x13 ZLPP x13 ZLPP x13

−0.9 21.6401 0.6787 22.5514 0.6990 23.0975 0.6432

0 21.4908 0.7151 22.3496 0.7334 22.8428 0.6645

0.9 21.3058 0.7966 22.0933 0.8024 22.3966 0.7243

Table 3: Project statistics for n = 5 with different correlations ρ(1,2),(1,3) between activity (1, 2) and (1, 3)

4.2 Vertex packing

In this example, we compare the persistency obtained from the SOCP in Formulation (17) with known

persistency results for deterministic combinatorial optimization problems. The deterministic weighted

vertex packing problem is: Given an undirected graph G(V, E) with weights ci for each vertex i ∈ V, find

a subset of vertices S ⊆ V such that (i, j) /∈ E for all i, j ∈ S with maximum total sum of the weights of

nodes in the set S. The integer programming formulation for the weighted vertex packing problem is

ZWV P (c) = max

{∑
i∈V

cixi : xi + xj ≤ 1, ∀(i, j) ∈ E ; xi ∈ {0, 1}, ∀i ∈ V

}
, (24)

with its linear programming relaxation given as

Z̄WV P (c) = max

{∑
i∈V

cixi : xi + xj ≤ 1, ∀(i, j) ∈ E ; xi ≥ 0, ∀i ∈ V

}
. (25)

Let xWV P (c) and x̄WV P (c) denote the optimal solutions to (24) and (25) for objective vector c. The

vertex packing problem has shown to be persistent in the deterministic discrete optimization context (see

Nemhauser and Trotter [62]) - namely for every optimal solution to the linear programming relaxation
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x̄WV P (c), the set of variables realizing binary values retains the same binary values in at least one optimal

solution xWV P (c). If we allow for uncertainty in the weights, e.g., given E(ci) = µi and V ar(ci) = σ2
i , ∀i ∈

V, then under the marginal moment model, the upper bound on the expected optimal value is computed

by solving

ZWV P = max

{∑
i∈V

(
µixi + σi

√
xi(1− xi)

)
: x ∈ conv(XWV P )

}
, (26)

where XWV P is the feasible region in formulation (24). The persistency of each binary variable xi is

obtained by using the optimal solution to the second-order cone program. However, for the vertex packing

problem, the convex hull of feasible region is not easily characterizable. In this case, it is appealing to use

linear programming relaxation to approximate conv(XWV P ). This results in a weaker upper bound,

Z̄WV P = max

{∑
i∈V

µixi + σi
√
xi(1− xi) : xi + xj ≤ 1 ∀(i, j) ∈ E , xi ≥ 0 ∀i ∈ V

}
. (27)

Clearly ZWV P ≤ Z̄WV P . We use the simple graph in Figure 2 to compare the persistency values.

Figure 2: Vertex packing example

The set of all feasible solutions for this problem is

X =


(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 1), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 0, 1), (0, 0, 0, 1, 0, 1), (1, 0, 0, 0, 1, 0),

(0, 1, 0, 0, 0, 1), (0, 0, 1, 1, 0, 0), (1, 0, 0, 1, 0, 1), (0, 0, 0, 0, 0, 0)

 .

Assume σi = σ, ∀i ∈ V. Let xWV P (µ, σ) and x̄WV P (µ, σ) denote the optimal solutions to (26) and (27),

respectively. In Table 4, two sets of mean parameters are considered. The first column corresponds to mean

µ = (2, 1, 1, 1, 1, 1) for which the deterministic problem has the unique optimal solution (1, 0, 0, 1, 0, 1).

The second column corresponds to mean µ = (3, 1, 1, 3, 6, 3) for which the deterministic problem has two

optimal solutions (1, 0, 0, 1, 0, 1) and (1, 0, 0, 0, 1, 0). In the first example as the standard deviation σ → 0,
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xWV P (µ, σ)→ xWV P (µ). However in the second example this is not true due to the presence of multiple

optimal solutions. Specifically, the nonlinear part of the objective function
∑

i∈V σi
√
xi(1− xi) pulls the

optimal solution to the middle of the true optimal solutions. The more tractable linear programming

formulation has a similar behavior for small values of σ. However for larger values of σ, the two solutions

xWV P (µ, σ) and x̄WV P (µ, σ) can be much further apart.

µ = (2, 1, 1, 1, 1, 1) µ = (3, 1, 1, 3, 6, 3)

xWV P (µ, 1) (0.7582, 0.1209, 0.1209, 0.6139, 0.2652, 0.6139) (0.9484, 0.0258, 0.0258, 0.4914, 0.4828, 0.4914)

x̄WV P (µ, 1) (0.5822, 0.4178, 0.4178, 0.5822, 0.4178, 0.5822) (0.6581, 0.3419, 0.3419, 0.5000, 0.5000, 0.5000)

xWV P (µ, 0.1) (0.9949, 0.0026, 0.0026, 0.9780, 0.0194, 0.9780) (0.9994, 0.0003, 0.0003, 0.4999, 0.4998, 0.4999)

x̄WV P (µ, 0.1) (0.9287, 0.0713, 0.0713, 0.9287, 0.0713, 0.9287) (0.9789, 0.0211, 0.0211, 0.5000, 0.5000, 0.5000)

xWV P (µ, 0.01) (0.9999, 0.0000, 0.0000, 0.9998, 0.0002, 0.9998) (1.0000, 0.0000, 0.0000, 0.4999, 0.5001, 0.4999)

x̄WV P (µ, 0.01) (0.9991, 0.0009, 0.0009, 0.9991, 0.0009, 0.9991) (0.9998, 0.0002, 0.0002, 0.4999, 0.5001, 0.4999)

lim
σ→0

xWV P (µ, σ) (1, 0, 0, 1, 0, 1) (1, 0, 0, 0.5, 0.5, 0.5)

lim
σ→0

x̄WV P (µ, σ) (1, 0, 0, 1, 0, 1) (1, 0, 0, 0.5, 0.5, 0.5)

Table 4: Persistency xWV P (µ, σ) and x̄WV P (µ, σ) for different values of the mean µ and standard deviation

σ

4.3 Discrete choice models

The results described earlier indicate that random discrete optimization problem with a polynomial number

of extreme points can be analyzed using compact convex programs. One important example is the class

of discrete choice models. These models predict the probability that customers choose an item from a

finite set of alternatives. Consider a set of alternatives N = {1, . . . , n}. Assume that the utility that an

individual customer assigns to alternative k ∈ N is given by

ck = vk + εk,

where vk is the deterministic component that relates to the known attributes of the alternative, and εk is

the random error associated with the model due to uncontrolled factors. The random utility maximization

problem faced by the customer is then formulated as

Z(c) = max

{∑
k∈N

ckxk :
∑
k∈N

xk = 1; xk ∈ {0, 1}, ∀k ∈ N
}
.

Let Pj denote the probability that alternative j is selected by the customer. This choice probability is the

persistency value,

Pk = P (xk(c) = 1) = P (ck ≥ cj , ∀j ∈ N ) .
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The classical logit model for choice prediction starts with the assumption that the error terms εk’s are

modeled by independent extreme value distributions,

F (εk ≤ t) = e−e
−t
,

for which the following elegant closed form solution for the choice probabilities can be obtained,

Pk =
evk∑

j∈N
evj

.

However, this approach has some drawbacks. For example, the formula implies the Independence of Irrel-

evant Alternatives (IIA) property wherein the relative ratio of the choice probabilities for two alternatives

is independent of the remaining alternatives. This property is not always observed in practice where

the entire choice set helps in determining the relative probabilities. The probit model, another classical

choice prediction model, using correlated normal distributions, can overcome this shortcoming, but at the

added cost of finding choice probabilities through extensive simulation. In this case, no simple closed-form

solution exists.

An alternative approach to find probabilities in discrete choice models is through conic optimization

methods we reviewed in the previous section. Suppose that the n dimensional vector of random errors ε is

characterized by marginal moments, i.e., the mean vector 0 and the second moment matrix Π � 0. The

tight upper bound on the expected random utility is found by solving the following moments problem,

Z = sup

{∫
<n

max
k∈N

(vk + εk) dθ(ε) :

∫
<n

dθ(ε) = 1,

∫
<n

εdθ(ε) = 0,

∫
<n

εεTdθ(ε) = Π

}
. (28)

The constraints in (28) ensure that θ is a joint probability distribution consistent with the mean and

covariance matrix of the random variables. The equivalent primal semidefinite program using Theorem 8

is

Z = max
λk,wk,W k,k∈N

∑
k∈N

eTkwk

s.t.
∑
k∈N

 λk wT
k

wk W k

 =

 1 vT

v vvT + Π


 λk wT

k

wk W k

 � 0 ∀k ∈ N ,

(29)

where ek is a vector of dimension n with 1 in its kth entry and 0 otherwise. In this formulation λk

is the choice probability that alternative k is selected by the customer under the extremal distribution.

Alternatively, we can describe ε by marginal distributions, i.e., εj ’s distribution function is known as Fj(·).
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From Theorem 13, the upper bound on the expected random utility is found by maximizing the concave

function over the simplex, i.e.,

sup
x

∑
k∈N

(
vkxk +

∫ 1

1−xk
F−1
k (t)dt

)
s.t.

∑
k∈N

xk = 1

xk ≥ 0 ∀k ∈ N .

(30)

In this formulation xk is the choice probability that alternative k is selected by the customer under the

extremal distribution. Natarajan et al. [60] and Mishra et al. [55] provide detailed numerical comparisons

of these conic optimization based choice models with classical discrete choice models such as logit and

multinomial probit models.

4.4 Random walks and sequencing

In this section, we discuss the sequencing problem with random costs, which is a notoriously difficult

problem. To illustrate the viability of the moment based approach, we compare the persistency values

obtained from the SDP models for a simple random walk with the values that are exactly known. This

example demonstrates that the distributionally robust assumption in the models are sufficient to obtain

near exact approximations to the actual persistency values.

Let ci, i = 1, . . . , n be a sequence of independent and identically distributed random variables. For

each positive integer k, define the partial sums,

Sk = c1 + . . .+ ck, ∀k = 1, . . . , n,

and S0 = 0. The sequence S0, S1, . . . , Sn is a random walk. Let Mn = max{S0, . . . , Sn} denote the

maximum partial sum in the first n steps, and Kn = min{k : Sk = Mn} denote the first time step at which

the maximum partial sum is obtained in the first n steps. Note that both Mk and Sk are random variables.

A basic problem in the random walk theory is to estimate the probability distribution of Kn, i.e.,

P

(
Kn = k

)
= P

(
Sk > S0, . . . , Sk > Sk−1, Sk ≤ Sk+1, . . . , Sk ≤ Sn

)
.

Define p0 = q0 = 1, pn = P (S1 > 0, . . . , Sn > 0), qn = P (S1 ≤ 0, . . . , Sn ≤ 0), and an = P (Sn > 0), for all

n ≥ 1. The random walk theory provides an explicit form for this probability as

P

(
Kn = k

)
= pkqn−k, ∀n ≥ k ≥ 0.
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For random variables ci with a symmetric continuous distribution function, the limiting distribution is

given by the arcsine law,

lim
n→∞

P

(
Kn

n
< x

)
=

2

π
arcsin

√
x, ∀x ∈ (0, 1).

The corresponding limiting density function is:

1

π
√
x(1− x)

.

Note that in contrast to common intuition, the arcsine law shows that the two end points (k = 0 or

k = n) have the highest probability of attaining the maximum, while the minimum takes place around

k ≈ n/2. The problem is similar to a discrete choice problem, where the utility of alternative k is given

by the summand Sk =
∑k

j=1 cj . Figure 3 shows the choice prediction of the random walk model, based

on simulation and the cross moment model, for n = 20, where ci has mean µi = 0, standard deviation

σi = 1. The simulation results are based on a multivariate normal distribution. Interestingly, the figure

clearly shows that the cross moment model approximately returns the arcsine law behaviour of the choice

probabilities.

Figure 3: Comparison of probabilities under simulation and cross moment model

These techniques can be used to investigate complex sequencing problems. Consider an oil field explo-

ration problem, where the objective is to determine the optimal sequence to explore a set of n oil fields.

The valuation of oil field i is random and denoted by vi. For ease of exposition, assume that the cost to
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explore each oil field is µi where µi = E(vi). With a little abuse of notation, denote the maximum loss

given a sequence π of explorations as

Z(π) = max

(
0, µπ(1) − vπ(1), (µπ(1) − vπ(1)) + (µπ(2) − vπ(2)), . . . ,

n∑
i=1

(µπ(i) − vπ(i))

)
,

where π(i) = j indicates that the oil field j is the ith to explore under the sequence π. The goal is to

find the optimal sequence that minimizes the expected maximum loss given the joint distribution of the

valuations denoted as θ, i.e.,

min
π
Eθ (Z(π)) .

An alternative approach is to use a distributional robust model where the exact joint distribution of

the valuations is unknown, and θ is known only to lie in a set of distributions Θ. The distributional robust

sequencing problem is formulated as

min
π

sup
θ∈Θ

Eθ(Z(π)).

Suppose the valuation vi has mean µi and variance σ2
i , and valuations of different fields are uncorrelated

to each other. The inner problem is similar to a discrete choice problem, where the utility function of the

(k + 1)th alternative is described as
k∑
i=1

(µπ(i) − vπ(i)),

with mean 0 and variance σ2
π(1) + . . .+σ2

π(i). A simple approximation is to use the marginal moment model

which provides a distributional robust approximation to this problem,

min
π

max
y

n∑
i=1

(√
σ2
π(1) + . . .+ σ2

π(i)

√
yi(1− yi)

)
s.t.

n∑
i=1

yi = 1

yi ≥ 0 i = 1, . . . , n.

(31)

It follows simply that the optimal sequence π in Formulation (31) is obtained by the smallest variance first

rule. i.e., explore the oil fields starting from the smallest to the largest variance. However, this sequencing

rule is not optimal in general, when the distributions are explicitly given, or even when the cross moments

are known. It remains an open problem to find the optimal sequencing rule in these cases. For other

applications of the persistency model in appointment scheduling, we refer the readers to Kong et al. [40].

4.5 Newsvendor planning

Consider a newsvendor planning problem where the seller needs to determine the order quantity q of an

item that maximizes her expected profit under random demand D. The unit cost of the item is c and the
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selling price is p, with p > c. As the items are perishable, any unsold item will be deemed wasted. It is

well known that the optimal ordering quantity q∗ satisfies the critical fractile rule: P (D ≤ q∗) = (p− c)/p.

Scarf [67] analyzed a maximin newsvendor problem who finds the optimal ordering quantity only based on

the mean µ and variance σ2 of the demand. In the maximin approach, the newsvendor chooses the order

quantity that maximizes the minimum expected profit over all possible demand distributions Θ with the

given mean and variance, i.e.,

max
q≥0

inf
θ∈Θ

pEθ(min(q,D))− cq. (32)

To see that this problem fits into our framework, note that min(q,D) can be written as

min {qx+Dy : x+ y = 1, x, y ≥ 0} .

For given mean and variance only, we have the following distributionally robust formulation for the newsven-

dor problem:

max
q≥0

min
λ1,λ2,w1,w2,W1,W2

pw1 + pqλ2 − cq

s.t.

 λ1 w1

w1 W1

+

 λ2 w2

w2 W2

 =

 1 µ

µ σ2 + µ2


 λ1 w1

w1 W1

 � 0,

 λ2 w2

w2 W2

 � 0, w1, w2 ≥ 0.

(33)

The inner semidefinite program in (34) decomposes the demand into two events: Event 1 when D < q, and

Event 2 when D ≥ q. By taking the dual of the inner SDP, the single item minimax newsvendor problem

is formulated as a SDP which can be solved analytically as in Scarf [67]. For other results in this area, the

reader is referred to the works of Popescu [65], Chen et. al. [18], Goh and Sim [27], Delage and Ye [20],

Doan et. al. [21] and Zymler et. al. [77].

We end this section by providing the extension of the maximin approach to the multi-dimensional

newsvendor problem. Let q ∈ <+
m be the vector of resource order quantities, and c be the unit cost vector

of the resources. The matrix A is the technology matrix whose (i, j) component represents the amount of

resource i required to produce one unit of product j. Let p ∈ <+
n be the unit revenue vector for the set

of n products. The product demand is random and denoted by D ∈ <+
n . Harrison and Van Mieghem [30]

formulated the multi-dimensional newsvendor problem as

max
q≥0

E(Ψ(q,D))− cTq, (34)
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where the recourse problem is

Ψ(q,D) = max
y

pTy

s.t. y ≤D

Ay ≤ q

y ≥ 0.

(35)

The maximin multi-dimensional newsvendor problem is to find the resource vector that maximizes the

minimum expected profit over all nonnegative demand distributions θ with the given mean vector µ and

second moment matrix Π, i.e.,

max
q≥0

inf
θ∈Θ

E(Ψ(q,D))− cTq. (36)

We show that the maximin multi-dimensional newsvendor problem can be reformulated as a copositive

program. To see this, consider the more general distributionally robust stochastic linear program,

Z = min
Ax=b,x≥0

(
cTx+ sup

θ∈Θ
EP
[
Q(h̃,x)

])
, (37)

where the recourse problem is defined as

Q(h̃,x) = min
w

qTw

s.t. Ww ≥ h̃− Tx.

From the strong duality of linear programming problem,

Q(h̃,x) = max
p

(h̃− Tx)Tp

s.t. W Tp = q

p ≥ 0.

By directly applying Theorem 11 on the inner problem of (38) and taking the dual of the completely positive

program, the distributionally robust stochastic program can be formulated as the following copositive

program,

Z = min
x,w1,w2,Y ,y,y0

cTx+ qTw1 + (q ◦ q)Tw2 +Q · Y + µTy + y0

s.t.


y0 yT /2 (Tx+Ww1)T /2

y/2 Y −I/2

(Tx+Ww1)/2 −I/2 Wdiag(w2)W T

 ∈ CO2n+1

Ax = b, x ≥ 0,

(38)

where I represents the identity matrix of appropriate dimension, and diag(w2) denotes the diagonal ma-

trix formed with the diagonal entries being the entries of the vector w. This formulation provides the

generalization of the Scarf formulation to the multi-dimensional newsvendor problem.
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5 Conclusion

In this paper, we review some of the recent advances on the distributional robust analysis of mixed integer

linear programs using conic programming techniques. Evaluating bounds on the expected optimal value is

a classical problem that has been well studied over several decades. However, it is only more recently that

conic programming methods have been used in the probabilistic analysis of discrete optimization problem-

s. The strong connection between the theory of moments and conic programming provides an important

analytical tool for this class of problems. Besides bounds, these methods also aid in estimating parameters

of interest such as the persistency of a binary variable. This review paper also discusses the complexity

results for this class of problems, and a few of the important applications in areas such as activity networks,

discrete choice models, random walks, and newsvendor problems.
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[58] K. G. Murty, S. N. Kabadi. 1987. Some NP-complete problems in quadratic and nonlinear programming.

Mathematical Programming, 39, No. 2, 117-129.

[59] C. Nair, B. Prabhakar, M. Sharma. 2005. Proofs of the Parisi and Coppersmith-Sorkin random assignment

conjectures. Random Structures & Algorithms, 27, No. 4, 413-444.

[60] K. Natarajan, M. Song, C. P. Teo. 2009. Persistency model and its applications in choice modeling. Management

Science, 55, No. 3, 453-469.

[61] K. Natarajan, C. P. Teo, Z. Zheng. 2011. Mixed zero-one linear programs under ojective uncertainty: A com-

pletely positive representation. Operations Research, 59, No. 3, 713-728.

[62] G. L. Nemhauser, L. E. Trotter. 1975. Vertex packings: structural properties and algorithms. Mathematical

Programming, 8, No. 1, 232-248.

[63] P. A. Parillo. 2000. Structured Semidefinite Programs and Semi-algebraic Geometry Methods in Robustness

and Optimization, Ph.D. thesis, California Institute of Technology.

[64] G. Parisi. 1998. A conjecture on random bipartite matching. Physics e-Print archive.

[65] I. Popescu. 2007. Robust mean-covariance solutions for stochastic optimization. Operations Research, 55, No.

1, 98-112.
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