
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2016

How to break an API: Cost negotiation and community values in How to break an API: Cost negotiation and community values in

three software ecosystems three software ecosystems

Christopher Bogart

Christian K\303\244stner

James Herbsleb

FERDIAN THUNG
Singapore Management University, ferdiant.2013@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
Bogart, Christopher; K\303\244stner, Christian; Herbsleb, James; and FERDIAN THUNG. How to break an
API: Cost negotiation and community values in three software ecosystems. (2016). FSE 2016:
Proceedings of the 24th ACM SIGSOFT Symposium on the Foundations of Software Engineering, Seattle,
November 13-18, 2016. 109-120.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3621

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3621&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

How to Break an API: Cost Negotiation and
Community Values in Three Software Ecosystems

Christopher Bogart,1 Christian Kästner,1 James Herbsleb,1 Ferdian Thung2

1Carnegie Mellon University, USA 2Singapore Management University, Singapore

ABSTRACT
Change introduces conflict into software ecosystems: breaking
changes may ripple through the ecosystem and trigger rework
for users of a package, but often developers can invest addi-
tional effort or accept opportunity costs to alleviate or delay
downstream costs. We performed a multiple case study of
three software ecosystems with different tooling and philoso-
phies toward change, Eclipse, R/CRAN, and Node.js/npm,
to understand how developers make decisions about change
and change-related costs and what practices, tooling, and
policies are used. We found that all three ecosystems dif-
fer substantially in their practices and expectations toward
change and that those differences can be explained largely by
different community values in each ecosystem. Our results
illustrate that there is a large design space in how to build
an ecosystem, its policies and its supporting infrastructure;
and there is value in making community values and accepted
tradeoffs explicit and transparent in order to resolve conflicts
and negotiate change-related costs.

CCS Concepts: Software and its engineering → Collabora-
tion in software development;

Keywords: Software ecosystems; Dependency management;
semantic versioning; Collaboration; Qualitative research

1. INTRODUCTION
Central planning in software engineering is increasingly giv-
ing way to decentralized development in software ecosystems,
in which developers build on a rich set of third-party contri-
butions, from libraries to community documentation. Devel-
opers can reuse and build upon others’ contributions, often
aided by package management tools that support finding,
installing, and publishing third-party packages within the
ecosystem. Development in such a decentralized environment
can be challenging and can expose friction among loosely
organized parties.

Change introduces conflict into software ecosystems. Break-
ing changes in one package may ripple through the ecosystem

and may trigger rework in many dependent packages. Avoid-
ing changes, however, may result in stale software projects,
in dependencies with known defects, and in growing incom-
patibility with other tools and standards.

The burden of change can be borne by different partici-
pants: a package maintainer can decide how to make a change,
may invest additional effort to make it easier to adopt the
change, or may decide to accept opportunity costs for not
making a change. Developers depending on other packages
may regularly monitor change in their dependencies and try
to influence their development or may rework their own pack-
ages. Core ecosystem developers might take on responsibility
for vetting or testing packages in some way. End users may
encounter defects if changes are not made or may encounter
installation difficulties if packages in the repository have
become incompatible.

How, when, and by whom changes are performed in an
ecosystem with interdependent packages is subject to (often
implicit) negotiation among diverse participants within the
ecosystem. Each participant has their own priorities, habits
and rhythms, often guided by community-specific values and
policies, or even enforced or encouraged by tools. Ecosystems
differ in, for example, to what degree they require consistency
among packages, how they handle versioning, and whether
there are central gatekeepers. Policies and tools are in part
designed explicitly, but in part emerge from ad-hoc decisions
or from values shared by community members. As a result,
community practices may assign burdens of work in ways
that create unanticipated conflicts or bottlenecks.

To understand current practices and how developers might
design or redesign their ecosystems, we have performed a
case study of three open source software ecosystems with
different philosophies toward change: Eclipse, R/CRAN, and
Node.js/npm. We studied how developers plan, manage, and
negotiate change within each ecosystem, how change-related
costs are allocated, and how developers are influenced by and
influence change-related expectations, policies, and tools in
the ecosystem. In each ecosystem, we studied public policies
and policy discussions and interviewed developers about their
expectations, communication, and decision-making regarding
changes. Our research questions were therefore:
• How do developers make decisions about whether and

when to perform breaking changes and how do they
mitigate or delay costs for other developers? (Section 5)
• How do developers react to and manage change in their

dependencies? (Section 6)
• How do policies, tooling, and community values influ-

ence decision making? (Sections 5.3, 6.3, and 7)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950325

109

Published in FSE 2016: Proceedings of the 24th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
Seattle, November 13-18, 2016, pp. 109-120.
http://doi.org/10.1145/2950290.2950325

We found that developers have a great deal of freedom
when assigning or delaying costs of changes within an ecosys-
tem. At the same time, expectations about how to handle
change differ significantly among the three ecosystems and
influence cost-benefit tradeoff decisions among developers
and users. These differences are rooted in community values
and are reinforced through peer pressure, policies, and tool-
ing, as we will describe. For example, long-term stability is
a key value of the Eclipse community: this shifts costs to the
developers making the change, who may go to great length to
accept opportunity costs and technical debt to avoid break-
ing client code. In contrast, the Node.js/npm community
values ease for developers and has a technical infrastruc-
ture in which developers are less concerned about breaking
changes as long as they are signaled clearly through version
numbering. We hypothesize that clarifying how policies serve
core community values can facilitate decision making and
focused deliberation over policies and values.

In summary, we contribute a case study of three software
ecosystems, contrasting their change-related practices, values,
policies, and tools. Our results have implications for under-
standing how stakeholders can influence change negotiation
and design or change software ecosystems.

2. STATE OF THE ART
In this paper, we study breaking changes between packages in
software ecosystems. While all changes may incur costs to a
downstream maintainer for vetting the updates, we consider
as breaking changes those changes that trigger rework for
downstream users. Changes to a package’s API are especially
likely to break clients that rely on the API. Note that break-
ing changes include also changes regarding behavior and
performance expectations, not just changes to an interface’s
method signatures. A software ecosystem is “a set of actors
functioning as a unit and interacting with a shared market for
software and services, together with the relationships among
them; ... frequently underpinned by a common technological
platform or market” [48]. Software ecosystems enable supply
chains on a shared technology platform, often including an
online repository and a local package management system.
From the perspective of an individual developer working
on a package, we distinguish upstream packages on which
the package depends and downstream packages that use the
package, as illustrated in Figure 1.

In practice, breaking changes are common. Change in
software systems has been studied, measured, and modeled
intensively for many decades [9,15,26,28,50,54]. Through-
out a large body of research, all studied real-world systems
evolved in unanticipated ways with rippling consequences
across modules [6, 15, 22, 24, 27, 30, 31, 39–41]. For example,
Cossette et al. have shown that Java libraries “frequently
and seriously change over time” [6, 24]. Decan et al. found
that about 1 in every 20 updates to a CRAN package was
a backward incompatible change, accounting for 41% of the
errors in released packages that depended on them [11]. Com-
plicated and changing dependencies are a pain point for
many developers [1] and have led to common expressions
like “DLL hell” and “dependency hell”. Although package
managers are designed to structure the problem by making
dependencies and versions explicit [1,25,29], they themselves
are complicated and cannot prevent the problem of rippling
consequences of breaking changes.

Preplanning to shield anticipated change behind a stable

Upstream

Downstream

Pl
at

fo
rm

 &
Co

m
m

un
ity

values

tools

policies

practices

select dependencies
bug reports, pull requests
monitoring

changes
notifications

Figure 1: Conceptual overview: upstream vs. down-
stream and influence of platform and community.

interface, information hiding [37], is a key design princi-
ple, but cannot always protect against unanticipated change
at scale in practice [35, 46]. Traditional centralized change
control or change management approaches (such as change
control boards and roadmapping [15,44]) break down with
the dynamic and distributed nature of software ecosystems.
Tools for change impact analysis [2, 49] face challenges with
the scale, openness, and distributed nature of software ecosys-
tems.

Change in software ecosystems can therefore be unex-
pected and disruptive, but practices and tools have emerged
for upstream developers to alert users and help them adapt.
Developers use social media such as Twitter, blogs, mailing
lists, and chat to directly communicate relevant recent or
upcoming changes [7,19,43]. Semantic versioning is a popular
versioning strategy to signal the compatibility of a change
through version numbers: changes in the major version indi-
cate breaking API changes, whereas changes to minor and
patch version are intended as backward compatible [38,40].
Transparent environments, such as GitHub [7], enable users
to follow and comment on changes. Tools like YooHoo [21],
NeedFeed [36], gemnasium [17] and greenkeeper [18] use dif-
ferent strategies to automatically filter what is relevant to a
particular downstream project out of voluminous upstream
activity streams. Once downstream users are aware of rele-
vant changes, they may collaborate directly with upstream
developers to get help with changes [7, 19]. Tools have been
proposed to make breaking changes less disruptive by making
it easy to apply patches to downstream products [14,20].

Among different developer communities, different values
can lead to different policies and practices. For example,
Murphy-Hill et al. found that creativity and communication
with non-engineers is valued more by game developers than
by application developers, resulting in less testing and ar-
chitecture focus in game development [32]. In the broader
context of business platforms, Boudreau and Hagiu show
ways that the rules and mechanisms of business platforms
enable different interactions among participants and affect
the platform’s business value [3].

Overall though, little is known about how the policies and
tools of a software ecosystem reflects or influences the values
of the developers in the ecosystem’s domain. Tiwana et al.
describe the problem abstractly and call for more work on how
governance, architecture, and other factors cause ecosystems
to evolve [47]. Izquierdo and Cabot have begun mapping
the design space for governance in open-source communities
for managing change [4] and O’Mahony investigated the
evolution of software ecosystem governance [33], but neither
address how a community’s values and policies allocate cost
among participants. In this paper, we investigate the decisions
developers make with respect to breaking changes to see how
the different values play out at the smallest scale and relate
to ecosystem-wide policies and values.

110

Table 1: Interviewees. R2 and N4 were pairs of close
collaborators, identified as R2a, R2b, N4a, and N4b.

Code Case Field Occupation

E1 Eclipse Programming tools/HCI University
E2 Eclipse Soft. Eng./CS Education University
E3 Eclipse Soft. Eng./Research University
E4 Eclipse CS Education University
E5 Eclipse Software engineering Retired
E6 Eclipse Software engineering Industry
E7 Eclipse Eclipse infrastructure Industry
E8 Eclipse Software engineering Industry
E9 Eclipse Software engineering Industry

R1 CRAN Soil science Government
R2a,b CRAN Statistics University
R3 CRAN Medical imaging University
R4 CRAN Genetics University
R5 CRAN Soil science University
R6 CRAN Web apps Industry
R7 CRAN Data analysis Industry
R8 CRAN R infrastructure Industry
R9 CRAN R infrastructure Industry
R10 CRAN R infrastructure University

N1 NPM Telephony Industry
N2 NPM Tools for API dev. Industry
N3 NPM Web framework Startup
N4a,b NPM Web framework Startup
N5 NPM Cognitive Science University
N6 NPM Database, Node infrastr. Startup
N7 NPM Database, Node infrastr. Industry

3. METHODOLOGY
We performed a multiple case study, interviewing 28 develop-
ers in the three ecosystems. Case studies are appropriate for
investigating “how” and “why” questions about current phe-
nomena [55]. We selected three contrasting cases to aim for
theoretical replication [55], a means to investigate the propo-
sition that phenomena will differ across contrasting cases for
predictable reasons. Eclipse and Node.js/npm serve as cases
that contrast sharply in their approach to change: Eclipse
has interfaces that have not changed for over a decade, while
Node.js/npm is a relatively new and fast-moving platform.
We expected that Eclipse’s policies and tools might impose
costs on developers in a way that encouraged them to act
consistently with the ecosystem’s values of stability. The
R/CRAN ecosystem serves as a useful third theoretical repli-
cation, since its policy favors compatibility among the latest
versions of packages over Eclipse’s long-term compatibility
with past versions. In addition, CRAN acts as a gatekeeper
for a centralized repository in contrast to npm’s intentionally
low hurdles for contributions.

We pursued two complementary recruitment strategies for
our interviews. First, to find individuals with recent, relevant
experiences, we mined repositories to identify packages with
multiple upstream and downstream dependencies and many
changes in 2014 or 2015. Our interviews focused on their
personal practices and experiences negotiating upstream and
downstream dependencies. Then, to gain additional insights
into the origins and impacts of ecosystem policies, we re-
cruited 8 additional developers with some role (current or
historical) in the development of the ecosystem’s tools or
policies, adding interview questions about the ecosystem’s
history, policy, and values. All 28 interviewees were active
software developers with multiple years of experience, but
their background ranged from university research to startup

companies; Table 1 gives an overview.
We conducted semistructured phone interviews that lasted

30–60 minutes. We generally followed an interview script
shown in Supplement A, but tailored our questions toward
the interviewees’ personal experiences. With the interviewees’
consent, we recorded all interviews. We then transcribed them
and used a grounded, iterative approach to coding. In our
analysis, we distinguish between decisions made as upstream
and downstream developer, as depicted in Figure 1, where an
interviewee often held both roles. We tentatively coded the
transcripts looking for interesting themes, then iteratively
discussed, redefined, and recoded. Once we settled on a set of
codes, we recoded all transcripts from scratch with at least
two researchers coding each transcript. To complement our
interviews, we explored policies, public discussions, meeting
minutes, and tools in each ecosystem. Several interviewees
pointed us to additional documents and tools.

Validity check. To validate our findings, we adapted Da-
genais and Robillard’s methodology [8] to check fit and ap-
plicability as defined by Corbin and Strauss [5, p. 305]. We
presented interviewees with both a summary and a full draft
of Sections 4–7, along with questions prompting them to look
for correctness and areas of agreement or disagreement (i.e.,
fit), and any insights gained from reading about experiences
of other developers and platforms (i.e., applicability).

Six of our interviewees responded with comments on the
results; all six indicated general agreement (e.g., “It brings
a structure and coherence to issues that I was loosely aware
of, but that are too rarely the centre of focus in my everyday
work.”); some corrected small factual errors, (e.g., the number
of CRAN packages had passed 8000 since we initially wrote
Section 4); and a few found ways to sharpen our analysis (e.g.,
R7 noted that CRAN’s policy to contact downstream devel-
opers does not apply to the majority of users outside CRAN).
We incorporated their feedback when it was consistent with
a recheck of our data and added clarifications otherwise.

Threats to Validity. Our study exhibits the threats to
validity that are typical and expected of qualitative case
studies. The three cases may be atypical, and so one needs
to be careful when generalizing beyond the three cases. Our
results may be affected by a selection bias, in that developers
who did not want to be interviewed may have had different
experiences. Finally, the differences we found among cases
may be confounded with the reasons we selected them, such
as their popularity or the availability of data about them.

4. CASE OVERVIEW
To understand the identified different practices and policies,
it is important to understand the purpose and history of each
ecosystem. In the following, we provide a brief description
of all three ecosystems and their values, informed by both
public documentation and our interviews.

4.1 Eclipse
The Eclipse foundation publishes more than 250 open source
projects. Its flagship project is the Eclipse IDE, created in
2001. The IDE is built from the ground up around a plugin
architecture, which can be used as a general purpose GUI
platform and in which plugins can depend on and extend
other plugins. Projects can apply to join the Eclipse foun-
dation through an incubation process in which their project
and practices come under the Eclipse management umbrella.

111

It is also common practice to develop both commercial and
open-source packages separately from the foundation, and
publish them in a common format on a third-party server. In
addition, the “Eclipse marketplace” is a popular registry, list-
ing over 1600 external Eclipse packages that can be installed
from third-party servers through a GUI dialog.

The Eclipse foundation coordinates a “simultaneous re-
lease” of the Eclipse IDE once a year and (as of 2016) three
“update releases” for new features in between. Many external
developers align with those dates as well.

The Eclipse foundation is backed by corporate members,
such as IBM, SAP, and Oracle. Its policies are biased toward
backward compatibility; packages (e.g., commercial business
solutions) developed 10 years ago will often still work in a
current Eclipse revision without modification.

A core value of the Eclipse community is backward
compatibility. This value is evident in many policies, such
as “API Prime Directive: When evolving the Component API
from release to release, do not break existing Clients” [13].
Although not entirely uncontroversial (as we will explain),
this value was confirmed by many interviewees.

4.2 R/CRAN
The Comprehensive R Archive Network (CRAN) has man-
aged and distributed packages written in the R language
since 1997. R is an interpreted language designed for statis-
tics. The R language itself is updated approximately every
six months, but new development snapshots are available
daily. R has multiple repositories with different policies and
expectations, including Bioconductor and R-Forge; we focus
on CRAN, the largest one. CRAN formally exists under the
umbrella of the R Foundation, but sets its own policies.

CRAN contains over 8000 packages. Of these, 29 are ei-
ther required or “recommended”, and are bundled in binary
installs. About 2200 more are cataloged as useful for 33 dif-
ferent specializations such as finance and medical imaging.
Distributing R software as a CRAN package gives it high
visibility, since installation from CRAN is automated in the
command-line version of R and the popular IDE RStudio [42].

R and CRAN are used by many developers without a
formal computer-science or programming background. CRAN
pursues snapshot consistency in which the newest version of
every package should be compatible with the newest version
of every other package in the repository. Older versions are
“archived”: available in the repository, but harder to install.
When a new package version is submitted to CRAN, it is
evaluated by the CRAN team’s partly-automated process.
The package must pass its own tests, and must not break
the tests of any downstream packages in CRAN that depend
on it, without first alerting those package’s authors so they
can make corresponding fixes. Package owners need to react
to changes in the platform or in upstream packages within a
few weeks, otherwise their package may be archived.

A core value of the R/CRAN community is to
make it easy for end users to install and update
packages. Although not explicitly represented in policy doc-
uments, this value was apparent from many interviews; for
example R10 said, “CRAN primarily has the academic users
in mind, who want timely access to current research.”

4.3 Node.js/npm
Node.js is a runtime environment for server-side JavaScript
applications released initially in 2009, and npm is its default

package manager. npm provides tools for managing packages
of JavaScript code and an online registry for those packages
and their revisions. The npm repository contains over 250,000
packages with rapid growth rates.

The Node.js/npm platform has the somewhat unusual
characteristic that multiple revisions of a package can coexist
within the same project. That is, a user can use two packages
that each require a different revision of a third package. In
that case, npm will install both revisions in distinct places
and each package will use a different implementation.

A core value of the Node.js/npm community is to
make it easy and fast for developers to publish and
use packages. In addition, the community is open to rapid
change. Ease for developers was one of the principles motivat-
ing the designer of npm [45]. Therefore, npm explicitly does
not act as a gatekeeper; it does not have review or testing
requirements; in fact the npm repository contains a large num-
ber of test or stub packages. The focus on convenience for de-
velopers (instead of end users) was apparent in our interviews.

5. PLANNING CHANGES
We first discuss negotiating change from the perspective of a
developer planning to perform changes that may affect down-
stream users. While we observed similar forces and concerns
regarding change across all three ecosystems, we observed dif-
ferences in how the community values affect the ways package
maintainers mitigate or delay costs for downstream users.

5.1 Breaking Changes: Reasons and Oppor-
tunity Costs

Although breaking changes to APIs are costly to downstream
users in terms of interruptions and rework, our interviewees
gave many reasons why they had to perform such changes;
there are corresponding opportunity costs that arise when
deciding not to perform the change, such as the cost of
maintaining obsolete code, working around known bugs, or
postponing desirable new features.

Obvious and expected reasons for breaking changes in-
cluded requirements and context changes and rippling effects
from upstream changes. Beyond that, we found surprisingly
frequent mentions of stylistic and performance reasons, as
well as difficult bug fixes.

Technical debt. Surprisingly, many interviewees (E3, E9,
R1, R3, R4, R5, R6, R7, R8, N1, N7) mentioned concerns
about technical debt, rather than bugs, new features, or rip-
pling upstream changes, as the trigger for breaking changes.
By technical debt we refer to code that is functionally suffi-
cient but has outstanding stylistic issues developers want to
fix, such as poorly-chosen object models or method names,
lack of extensibility or maintainability, or little-used or long-
deprecated methods.

We conjecture that the reason these changes came up
so often in discussion was because our interviewees had
thought about them in depth. Technical debt often arises
from the tension between tools and practices that encourage
developers to preserve backward compatibility (e.g., Eclipse’s
“prime directive”), versus general pressure for evolution and
improvement. Developers often postpone breaking changes
until the technical debt becomes intolerable; for example,
E3 mentioned as the reason for planning to finally remove
some deprecated code: “What we did there was to provide old
methods as deprecated. But that gets quite messy. At one point
almost half of the methods were deprecated.” E9 similarly told

112

us about an upcoming long-postponed major version change:
“since we don’t do it often, probably once every five years, [...]
let’s take advantage of that opportunity to do some of the
things that would be good that we couldn’t do before.”

Old interfaces can come to seem old fashioned and unattrac-
tive in a swiftly changing community. Several interviewees
said they made breaking changes to harmonize syntax (R1)
or improve “weird” or “bad” names (R3, R4) in their interfaces.
Several interviewees (E1, E5, E6, R6) felt that having to
preserve old interfaces over long periods caused opportunity
costs since it hindered attracting new developers, lured by
cutting-edge things. E6 discussed this at some length: “If you
have hip things, then you get people who create new APIs on
top of that in order to [for example] create the next graphi-
cal editing framework or to build more efficient text editors.
These things don’t happen on the Eclipse platform anymore.”

Efficiency. Several interviewees (E6, R1, R4, N1) reported
cases in which efficiency improvements required breaking
changes. For example, N1’s package offered an API for re-
questing paged data that the server could not provide effi-
ciently; they deprecated and eventually removed that func-
tion rather than spending money on hardware.

Bugs. Bug fixes were another reason for breaking changes
(E4, E7, N7, R9). Bug fixes can break downstream packages
if those packages depend on the actual (broken) behavior
instead of the intended behavior. A lack of well-defined con-
tracts in most implementations makes assigning blame and
responsibilities difficult in practice. As E5 told us, “If some-
one likes the broken semantics, then they’re not going to like
the fixed semantics.” Thus even fixing an obvious mistake
in code under the control of a single person can require
significant coordination among many people.

Throughout our interviews, we heard many examples of
how bug fixes effectively broke downstream packages, and the
difficulty of knowing in advance which fixes would cause such
problems. For example, R7 told us about reimplementing a
standard string processing function, and finding that it broke
the code of some downstream users that depended on bugs
that his tests had not caught. R9 commented on the oppor-
tunity cost of not fixing a bug in deference to downstream
users’ workarounds for it: “If the [downstream package] is
implemented on the workaround for your bug, and then your
fix actually breaks the workaround, then you sort of have to
have a fallback... [pause] It gets nasty.”

5.2 Dividing and Delaying Change Costs
Our previous discussion already hinted that there is flexibil-
ity regarding who bears the costs of a breaking change. For
instance, a package’s developer can decide between making a
breaking change, pushing costs for rework to maintainers of
downstream packages; or not making the change, accepting
opportunity costs such as technical debt. Even when decid-
ing to make the change, the developer faces strategic choices
about whether to invest more effort when making the change
to reduce the interruption and rework costs for downstream
users as well as to affect timing of when those costs are
paid. For example, by documenting how to upgrade, the
developer invests more effort to reduce effort for downstream
maintainers. Different developers and different communities
have different attitudes toward who should pay the costs of
a change and when, as we will show.

5.2.1 Awareness of Costs to Downstream Users
Most interviewees stated that they avoid breaking changes
that would affect downstream users, when they could avoid
it. Reasons included looking out for their users’ best interests
and knowing that costs to affected users would come back to
them, as users ask for help adapting to the change, ask for
the change to be reverted, or seek alternative packages. Two
interviewees (E1 and R4) specifically mentioned concern for
downstream users’ scientific research (R4: “We’re improving
the method, but results might change, so that’s also worrying
– it makes it hard to do reproducible research”).

Interviewees’ concern for impacts on users was tied to
the size and visibility of the user base, and the perceived
importance and appropriateness of their usage. Many inter-
viewees across all ecosystems (E4, E5, E6, R1, R4, R6, R7,
R9, N7) were aware of their users and were concerned specif-
ically about the number of users affected and the quantity
of complaints that a change would imply, e.g., R9: “Some-
times you want to rename a function or class, ... However
because this would break scripts or packages assuming the
old name, you often end up supporting both names.” Some
interviewees (E1,R4,R8) noted that their sensitivity toward
avoiding breaking changes grew with experience and with a
growing user base, as they learned from feedback received
about earlier breaking changes.

Only a few developers were not particularly worried about
breaking changes. Some (E6, N1, N5) had strong ties to their
users and felt they could help them individually (N5: “We
try to avoid breaking their code – but it’s easy to update their
code”). Interviewee N6 expressed an “out of sight, out of mind”
attitude: “Unfortunately, if someone suffers and then silently
does not know how to reach me or contact me or something,
yeah that’s bad but that suffering person is sort of [the tree]
in the woods that falls and doesn’t make a sound.”

Finally, there was some debate about bug-fixing changes
(see above). Some developers aimed to support downstream
users who relied on incorrect behavior, while others were less
concerned when they considered usage as inappropriate (R9:

“After upgrading the parser some people complained that their
script was no longer working. But the problem was that their
syntax was invalid to begin with. It’s obviously their fault.”)

5.2.2 Techniques to Mitigate or Delay Costs
Despite a strong general preference for avoiding breaking
changes, there are many cases where the opportunity costs
of not making a change are too high. Our interviewees iden-
tified several different strategies for how they, as package
maintainers, routinely invest effort to reduce or delay the
impact from their changes for downstream users.

Maintaining old interfaces. Across all ecosystems, pre-
serving the old interface alongside a new one is a very common
approach to mitigate an immediate impact of a change on
downstream users. While specifics depend on the language
and tools, common strategies to avoid breaking downstream
implementations include documenting methods as deprecated
and providing default implementations for new extension
points or parameters. In these strategies, the package de-
veloper invests additional effort now to preserve backward
compatibility, accepting technical debt in the form of extra
code to maintain for some time, in exchange for preventing an
immediate downstream impact of the change. The developer
may at some later time clean up the code, affecting down-

113

stream users that have not updated in the meantime [41].
Similarly, many interviewees (E2, E3, E5–E8, R1, R6–R9,

N1, N7) told us about various techniques to perform changes
without breaking binary compatibility. They prevent rework
costs for existing users by accepting more complicated imple-
mentations and harder maintenance in the changed package,
while possibly also creating costs for new downstream users
who have to deal with more complicated mechanisms.

Parallel Releases. Several developers (E5, E6, R1, R2,
R4, R7, R8) reported strategies to maintain multiple parallel
releases, such that downstream developers can incorporate
minor nonbreaking changes (e.g., bug fixes) without having
to adopt major revisions. Node.js/npm offers specific mecha-
nisms to support parallel releases with different version num-
bers; it is a common practice to provide security patches also
for older releases. In contrast, CRAN only supports sequential
version numbering, causing some developers to fork their own
packages (e.g., ‘reshape’ to ‘reshape2’). In each case, develop-
ers invest significant additional effort in maintaining old re-
leases to reduce the (immediate) impact on downstream users.

A variant of this strategy is to maintain separate interfaces
for different user groups with different stability commitments
within the same package (see the façade pattern [16]). For
example, interviewee E5 provided in parallel both a detailed
and frequently changing API for expert users and a simpler
and stable API that insulated less sophisticated users from
most changes. Similarly, interviewee R1 has split packages
into smaller packages, with the intention that each user could
depend only on parts relevant to them and would be exposed
to less change. In both cases, the developer accepts the higher
design and maintenance costs of multiple APIs for reduced
impact on specific groups of users with distinct needs.

Release Planning. Some individual developers and some
communities are considerate of downstream users when plan-
ning when to release changes. Some developers report delib-
erately delaying changes to batch multiple changes together.
For example, R1 keeps versions of his package with a quickly-
changing API in a separate repository and updates CRAN
less frequently when he wants to release a version to a broader
audience. While in R/CRAN and Node.js/npm packages are
usually released individually, large parts of the Eclipse com-
munity coordinate around synchronized yearly releases (a
strategy also common in other package systems as Debian
and Bioconductor). Delaying releases may incur coordination
overhead and opportunity costs in slowing down development
for the changer, but reduces the frequency (though not neces-
sarily the severity) with which downstream users are exposed
to changes and gives downstream users a planning horizon.

Communication with users. Finally, developers commu-
nicate in various ways with users to reduce the impact of a
breaking change. Several interviewees (E6,R4,R7,R8,R9,N6,
N7) made early announcements to create awareness and re-
ceive feedback. R7 explained that “two weeks or a month
before the actual release, I do sort of a pre-release announce-
ment on Twitter [and] tell people to use the README.” He
told us during the validation phase that he has since written
a script to email all downstream maintainers before a release.

Another reason for communicating with downstream users
was to help them deal with the aftermath of change. In the
simplest case, a developer could invest effort in documenting
how to upgrade. Several interviewees (E7, R2, R3, R7–R9,
N1, N4, N5), were aware of their users and reached out to

them individually; for example N1 contacted users using an
old API to help them migrate, and N5 had most users present
on-site and could therefore help them migrate their code. E7
went so far as to create individual patches for downstream
packages to get them to adopt a new interface and move away
from an old deprecated one. In all cases, package maintainers
invest effort to reduce costs for downstream users.

5.3 The Influence of Community Values
The previously discussed techniques are mechanisms that
developers can use for tweaking who pays for the costs of
a change and when. Individual developers often adopt pat-
terns and, in fact, some interviewees (E1,R3,R4,R5,R8,N6)
described gradual adoption of more formal processes over
time, as they learned their value through experience. At the
same time, we could clearly observe that attitudes and prac-
tices differ significantly among the three ecosystems and are
heavily influenced by ecosystem values, tools, and policies.

Eclipse. Developers are willing to accept high costs and
opportunity costs to further Eclipse’s value of backward
compatibility, especially for core packages. The community
has developed educational material explaining Java’s binary
compatibility and giving recommendations for backward com-
patible API design [12,13]. With API Tools, the community
has developed sophisticated tool support to detect even subtle
breaking changes and enforce change-related policies, such as
adding @since tags to API documentation. Breaking changes
in core packages are in fact very rare [21].

Even though they arguably make the platform harder
to learn and maintain, Eclipse developers have identified
and documented [13, part 3] several workarounds how to
extend an interface while maintaining old interfaces, such as
creating additional interfaces to avoid modifying existing ones
(e.g., IDetailPane2, IDetailPane3, IHandler2) and runtime
weaving. Deprecating interfaces and methods is common, but
actually removing them is not; for example, like many other
methods, org.eclipse.core.runtime.Plugin.startup() is
still included despite being deprecated for over 11 years. E6
noted that this backward compatibility prevents modernizing
APIs, such as replacing arrays with collections.

The Eclipse community invests significant effort into re-
lease planning, at the cost of some resulting friction, as
reported by multiple interviewees. The required coordination
is invested toward ensuring stability and smooth transitions
at few plannable times for downstream users. Documenting
compatibility issues with prior releases is a mandatory step
of that process. In contrast, maintenance releases for old
major revisions are not common; presumably because with
backward compatibility users can simply be told to update
to the latest release.

R/CRAN. As the R/CRAN community values making it
easy for users to get a consistent and up-to-date installation,
developers invest significant effort to achieve consistency.

There is no policy against CRAN packages making changes
that affect the larger body of code outside of CRAN. However
when changes affect other CRAN packages, upstream devel-
opers are asked to bear the significant extra cost of reaching
out to and coordinating with maintainers of affected pack-
ages (termed ‘forward impact management’ by De Souza
and Redmiles [9]). Downstream maintainers then may also
bear the cost of pressure to update their packages first be-
fore the upstream developer can make a breaking change, to

114

ensure that all CRAN packages are consistent. This culture
leads to constant synchronization and a greater likelihood
to reach out to downstream developers to mitigate change
costs than observed in the other ecosystems. Synchroniza-
tion is thus continuous, but more decentralized and localized
than with Eclipse’s simultaneous releases. Many interviewees
(E6,N1,R4,R7,R8) told us that they reach out individually
to downstream maintainers and users for this reason. Among
our interviewees, developers of specialized R packages target
small and close communities and tend to know their users.

Consistency is enforced by manual and automated checks
throughout the ecosystem on each package update. The
change management process is collaborative but also de-
manding of a maintainers time; R7 said the timeline to adapt
to an upstream change “might be a relatively short timeline
of two weeks or a month. And that’s difficult for me to deal
with because I try to sort of focus one project for a couple
weeks at a time, just so I can remain productive”.

The platform is not conducive to multiple parallel releases—
on CRAN a package revision must have a higher version
number than the one it supersedes, so an old major version
cannot be updated; policies also discourage forking a project
and submitting it with a separate name. There is no central
release planning, because it is perceived to slow down access
to cutting-edge research.

Overall, we observed much more communication and co-
ordination with downstream users about individual changes
than in Eclipse, but also more flexibility with regard to
performing breaking changes.

Node.js/npm. The Node.js/npm community values ease
for upstream developers and the possibility to move fast. It
is much less demanding of developers making a breaking
change in carrying the costs of that change.

Many interviewees focused strongly on signaling change
through semantic versioning. That is, developers would be
free to make breaking changes as long as they clearly indi-
cate their intentions. Because the technical platform allows
downstream developers to still easily use the old version
without fearing version inconsistencies, breaking changes
do not cause rippling effects or immediate costs for down-
stream users. While they still avoid breaking changes and
employ various strategies to maintain old interfaces, in our
interviews, Node.js/npm developers were more willing than
developers of other platforms to perform breaking changes in
the name of progress and in fighting technical debt, including
experimenting with APIs until they are right.

As mitigation strategy, maintenance releases for old ver-
sions are common, made easy by the platform and associated
tools. Analyzing the npm repository, we found that 24 of the
100 most “starred” packages did this at least once. There is no
central release planning, as this would be incompatible with
the values of simplifying developers’ lives and moving fast.

Key section insights: • There are many reasons for
breaking changes, including less obvious ones like technical
debt and performance. It is very difficult (and potentially
expensive) to keep code stable. • Still, developers generally
prefer stability and are aware of the costs their changes
cause for others. • There are many means to invest more
effort in order to mitigate and delay costs for downstream
users. • Community values influence how costs are shifted
and explain most differences in techniques and practices
that we observed among the ecosystems in practice.

6. COPING WITH UPSTREAM CHANGE
Just as package developers have some flexibility in planning
changes that may affect downstream users, developers have
flexibilities regarding whether, when, and how to react to up-
stream change, again influenced by values, policies, and tech-
nologies. Having to monitor and react to upstream change can
be a significant burden on developers (e.g., mismatch between
schedules has been shown to be a barrier to collaboration [23]).
The urgency of reacting to change can depend significantly
on the development context and platform mechanisms.

When discussing how frequently they react to upstream
change, our interviewees described a spectrum ranging from
never updating (e.g., E3) to closely monitoring all changes in
upstream packages (N1, N2, R9). Some interviewees explicitly
ignored certain upstream changes (N3, N7); others upgraded
dependencies only at the time of their own releases (N3, N5)
or during deliberate house-cleaning sweeps (N7, E2). Even
when the platform does not require updates, developers often
prefer to update their dependencies to incorporate new fixes
and features (E3, N2) or to avoid accumulating technical debt
(R6, N5). But they avoid updating when updates require too
much effort (e.g., by causing complicated conflicts; N5, E3)
or cause too much disruption downstream (N7).

6.1 Monitoring Change
When developers have to or want to react in a timely fashion
to upstream changes, they need to monitor the upstream
projects in some way. The platform itself, e.g., Node.js, R
core, and the CRAN infrastructure, is often an additional
source of changes that developers need to keep up with. In
our interviews, we discovered many different strategies for
monitoring, including technical and social strategies. Their
strategies varied along with the urgency of their needs, from
active monitoring of upstream activity, to general social
awareness of upstream activities, to a purely reactive stance
where developers wait for some kind of notifications.

Burden of active monitoring. Only a few interviewees
(E5, R9, N1, N4) reported actively monitoring upstream
changes by regularly looking at all changes of their upstream
dependencies. R9, N1, and N2 said they used GitHub’s no-
tification feed with some regularity. Several interviewees
indicated that such raw notification feeds, in their current
form, are a significant burden with a low signal to noise ratio,
as stated for example by R7 “The quantity of notifications
I get on GitHub already is to the point of overwhelming. So
I don’t even mostly read them unless I’m actually working
on the project at that moment.” He later told us that after
our interview he tried scaling back to watching just the 3-
5 projects he is actively working on. Only one interviewee
(R9) did not feel overwhelmed, saying that occasional, casual
skimming of GitHub feeds was useful way to get a casual
overview of activity.

In several cases, developers monitored upstream changes
not as outsiders following a stream of data, but as active
participants in those projects, collaborating to influence them
toward their own needs (E5, N4, N7, R6) or providing direct
contributions to those packages (E7, E9, R7). For example,
in describing the challenge of getting upstream projects to
prioritize changes that he needed, an Eclipse developer said

“I touch everything that I care about, because it’s really hard
to convince other people to do things that I need to do. I find
it much easier to just learn all the projects and when I need

115

something, to do it myself.” This aligns with de Souza and
Redmiles’ observation of exchange of personnel as a common
strategy for cooperation among dependent projects [9].

Others like E5 actively compiled and tested their project
with development versions of upstream dependencies, empha-
sizing the importance of giving timely reactions:“if you report
it within a week there’s a better chance the developer might re-
member what they did [...] which provides a good chance that
they can revert their change before they hit their milestone.”

Social awareness. Many interviewees tried to maintain
a broad awareness of change through various social means.
The most frequently mentioned mechanism, especially in the
Node.js community, was Twitter (E9, R7–R9, N2, N3, N4a,
N4b, N6, N7). For example, N4a commented, “the people
who write the actual software are fairly well connected on
Twitter, [...] like water cooler type of thing. So we tend to
know what’s going on elsewhere.” In each ecosystem, several
interviewees (E5, R9, N4, N6) mentioned the importance of
face-to-face interactions at conferences for awareness about
important changes in the ecosystem. Other mentioned social
mechanisms to learn about change were personal networks
(R6, R8), blogs (E1, R4, R7, R8, N4, N7), and curated mail-
ing lists (N1). Though these mechanisms are rarely specific
to individual packages, several developers mentioned them
as their main monitoring strategies.

Reactive monitoring. Although our research questions
led us to probe interviewees about the aforementioned active
and social monitoring practices, in fact most interviewed
developers adopted a reactive strategy for most of their de-
pendencies. They wait to hear about problems from others
(in advance, or after things had broken): upstream developers
contacting them about breaking changes, failing tests after
dependency updates, or platform maintainers warning of
changes that would affect them. There are also tools that
enable this reactive stance, that generate targeted notifica-
tions on certain kinds of changes. The specific tools differ
among the platforms and support different practices or poli-
cies. Policies and common practices (e.g., testing practices)
in the platform strongly in turn affect the reliability of a
reactive strategy and corresponding tools.

Some Eclipse and Node.js/npm developers use continuous
integration to detect compile-time issues caused by breaking
changes in upstream packages early. For Node.js/npm, some
developers use the tools gemnasium [17] and greenkeeper [18]
to get notifications about new releases of upstream pack-
ages. Gemnasium alerts developers of package releases that
fix known vulnerabilities, whereas greenkeeper submits pull
requests to automate a continuous integration run against
the new release. In either case, developers can react to noti-
fications by email or pull requests.

CRAN is interesting because, by asking upstream develop-
ers to notify their users, it encourages downstream developers
across the ecosystem to take a reactive stance (in contrast
to Eclipse and Node.js/npm, where individual downstream
developers need to employ optional monitoring tools). Some
interviewees, like R7, defended the practice of waiting to
be told about breaking changes as a principled attention-
preserving choice, consistent with ecosystem norms; others,
however, like R2, were apologetic about being reactive: “I
guess I’ll sound crass about this and say it. For things like
that I would wait to hear from CRAN when something broke.
Because I don’t think I can keep up with all of it.” CRAN

enforces this policy with manual and automated checking on
each package update, running the package’s tests and the test
of all downstream packages in the repository, as well as some
static checks. The CRAN team may then warn an affected
downstream developer of an upcoming change by email.

6.2 Reducing the Exposure to Change
Many developers have developed strategies to reduce their
exposure to change from upstream modules and, thus, reduce
their monitoring and rework efforts. The degree to which
developers adopt such mitigation strategies again depends
on the technology, policies, and values, as we will discuss.

Limiting dependencies. Most of the CRAN and Eclipse
interviewees that we asked (R1, R2, R3, R4, R6, R7, E1, E2,
E4, E5, E9) felt that it was better to have fewer dependencies.
Reasons for limiting dependencies included limiting one’s
exposure to upstream changes and not burdening one’s users
with a lot of modules to install and potential version conflicts
(“dependency hell”). Interviewee E5 represents a common
view: “I only depend on things that are really worthwhile. Be-
cause basically everything that you depend on is going to give
you pain every so often. And that’s inevitable.” Apart from
removing no longer needed dependencies (tooling provided
in Eclipse), some developers took more aggressive actions
to avoid dependencies, including copying (R4) or recreating
(R1, R6, R7, N6) the functionality of another package.

In contrast, due to Node.js/npm’s ability to use old versions
and Eclipse’s stability, some developers (E3, N1, N5) specif-
ically said that they didn’t see dependencies as a burden.

Selecting appropriate dependencies. When limiting
themselves to appropriate dependencies, interviewees men-
tioned a variety of different signals they looked for; these fell
into several categories:
• Trust of developers: Several interviewees (E4, R1, R5,

R7, N4, N6) based decisions on personal trust of pack-
age maintainers. Criteria included being a large or-
ganization (E4), having a reputation for high quality
code (R6, N6), and being consistent with maintenance
(R6). One interviewee (R7) deliberately sent bug re-
ports to a package to test whether the developer would
be responsive before depending on it.
• Activity level: Some interviewees (E4, N6, N2, R1, R6)

considered the activity level of the community of de-
velopers, for example distinguishing a “real” ongoing
project from an abandoned research prototype. Both
high and low activity levels can be a positive indicator
depending on the state of the project, as stated by
N2: “Ones with activity are mostly better maintained;
they have lots of people contributing, like express. It’s
likely the community will have eyes on the ball, consider
backward compatibility, ramifications [...]. Ones with
little activity are small projects that don’t change often,
so change isn’t an issue either.”
• Size and identity of user base: Some considered how

large the user base was using signals as daily download
counts (E2, N3, N5), whether projects of trusted devel-
opers use it (N6), or, as E2 said, “how I perceive other
software projects are using it.”
• Project history: Some interviewees assumed that past

stable behavior of a package would predict future sta-
bility (R1, R4, R6, E2). Signals included their own
experience with the package (N4, E5), its status as part

116

of the platform’s core set of packages (E4), or its visible
version history, such as lack of recent updates and a
version number above 1.0 (E3, N1, N4).
• Project artifacts: Finally, some developers considered

signals from the project artifacts, including coding style
(R1, R6), documentation (R1), good maintenance (N6),
perceived ease of adoption (R1), code size (E2, N4, N7),
and conflicts with other dependencies (N5).

Encapsulating from change. Interestingly, there was
almost no mention of traditional encapsulation strategies to
isolate the impact of changes to upstream modules, contra to
our expectations and typical software-engineering teaching
[37, 44, 52]. Only N6 mentioned developing an abstraction
layer between his package and an upstream dependency.

6.3 Platform Values and Developer Values
Because policies, tools, and practices support different values
in each ecosystem, they impose different costs on developers
depending on whether their attitude towards some particu-
lar dependency aligned or conflicted with the community’s
broader values. In some situations developers will treat a
dependency as a fixed resource to draw functionality from
(also termed API as contract [10]), but in other situations,
they treat the interface as open to negotiation and change
(also API as communication mechanism [10]).

Eclipse’s value on backward compatibility and predictable
release planning is convenient for developers and corporate
stakeholders who wish to rely on the released core platform
code as as fixed resources. Stability ensures that most de-
velopers relying on the platform packages do not need to
monitor upstream changes, reacting at most to the yearly
releases. Signals about whether to trust an upstream package
are primarily social in the sense they can trust the packages
that are part of the core, supported by corporations known
to be invested in the stability of the platform.

Developers working within more volatile parts of the Eclipse
ecosystem, such as using code outside the stable core, or in-
development features of the core, have a greater need for mon-
itoring and may be exposed to more change, sometimes en-
countering friction associated with that. E6 told us that“there
is a very different understanding of how important compatibil-
ity is and what it means, if you start from the platform, and
then to the outer circles of Eclipse.” E5 talked about recom-
piling upstream code often in order to report bugs to them
within a week. Thus although Eclipse deeply values stability,
there is necessarily a sphere of activity with active collabora-
tion and change where that value is appropriately set aside.

CRAN’s emphasis on consistency and timely access to
research seems to encourage the collaborative rather than
resource view of dependencies. CRAN’s snapshot consistency
approach creates some urgency in that maintainers need
to react to breaking upstream changes quickly (typically a
few weeks [51]). This causes some apparent friction with
researchers who might otherwise wish to publish their soft-
ware and move on to other things. Many of the interviewees
limited their dependencies, sometimes quite aggressively, by
replicating code and reacting to notifications about change
rather than actively following a community of upstream de-
velopers. However an active and socially connected subset
of developers (R7–R10) seemed to welcome collaboration.
Although R7 advocated reacting to upstream changes rather
than trying to anticipate them, R7, R8, and R9 emphasized
Twitter and conferences to maintain an upstream awareness.

Node.js/npm’s emphasis on convenience for developers
has led to infrastructure that decouples upstream and down-
stream developers from having to collaborate, since the down-
stream can depend on old versions of the upstream for as
long as they like. That means there is usually no urgency to
monitor upstream changes, except for patching security vul-
nerabilities. Developers do nonetheless often choose to take a
collaborative approach to development, using tools like con-
tinuous integration and greenkeeper [17] to force themselves
to stay up to date despite the platform’s permissiveness.

Key section insights: • Monitoring change is important
for some users, but burdensome due to too much noise.
• Social mechanisms for monitoring are frequently used
in practice. • Investments in tooling and practices in all
communities enable reactive monitoring. • Platform design
decisions can lead to strong aversions against dependencies,
leading to efficiency losses. • Lots of signals for stability of
packages are used to decide on which packages to depend.
• The opportunities and strategies to avoid costs from
upstream changes differ significantly based on platform
design. • Platforms tend to either support collaboration or
support a view of fixed resources, but rarely both, thus not
fitting all users.

7. CHOICES, POLITICS, AND CONFLICT
As we have shown, choices about practices, policies, and
tools have a major impact on allocating burdens among
different groups of developers and users. While technical
considerations certainly play a role, choices about allocating
costs and benefits are fundamentally political decisions.

In our three ecosystems, each community places a particu-
lar constituency in a favored position. The design of npm was
driven by one individual developer, who set goals and made
technology and policy decisions to primarily serve developers;
in that ecosystem impetus for change seems to come from
peer advocacy and tool-building among developers. In con-
trast, CRAN was designed and adjusted over a long period by
a team of volunteers who were primarily concerned about end
users. As gatekeepers to CRAN, this group has a lot of power
to enforce policies, such as the discussed mandate to react to
upstream change in a timely fashion, that get developers to
take on costs that end users would otherwise bear. This power
is significant due to CRAN’s popularity, its importance for
academic reputation, and its integration with major develop-
ment tools. In contrast, the policies of the Eclipse ecosystem
are clearly driven in part by business needs of corporate
sponsors of the project, who provide significant funding and
exert significant power by sponsoring development effort.

As policies are put into practice, we observed several ways
in which they were adjusted or augmented to accommodate
the difficulties they encountered, including carving out excep-
tions, tools to help enforce policies, and tools to reduce the
cost of complying. Nevertheless, not all policies translated
fully into practices, and some degree of conflict persisted.

Policy vs. practice. Policies and practices are not always
aligned. Practice may diverge from policy when policies are
perceived to be misaligned with the community values and
the platform mechanisms. For example there is a tension in
Eclipse between the policy and practice of semantic version-
ing. Eclipse has a long-standing versioning policy similar to
semantic versioning and the platform’s stability is reflected
in the fact that many packages have not changed their major

117

version number in over 10 years. However, even for the few
cases of breaking changes that are clearly documented in the
release notes, such as removing deprecated functions, major
versions are often not increased, because, as E8 told us, up-
dating a major version number can ripple version updates
to downstream packages, and can entail significant work for
the downstream projects. The opposite dynamic is evident
in CRAN: the official policy only requires that version num-
bers increase with each submission; but a permissive form
of semantic versioning is used and recommended by many
developers [51,53].

Tools sometimes are used to help enforce policies or to make
it easier to comply. CRAN enforces many policies through
automated checks whenever a package is updated. Tools like
greenkeeper [18] in Node.js/npm help to identify breaking
changes in upstream packages, especially those that are not
correctly signaled by semantic versioning. Tools can also be
used to reduce the costs of compliance. For example, in 2008,
Eclipse introduced API Tools, that provides sophisticated
compatibility checks regarding whether a change is breaking
a previously released API in a way consistent with the ver-
sion numbering they are proposing. Since then, the tool has
become ubiquitous enough that E5 claimed it was notable for
a package to not use this tool. The tool reduces the chance
of accidental breaking changes that violate Eclipse’s value of
stability or its versioning policies.

Value tensions and evolution. Ecosystem policies may
not resolve all tensions between competing goals, and we
found evidence of conflicts in all three ecosystems. For exam-
ple, in Eclipse several interviewees complained about stagnant
development and the “political” nature of making changes,
which can drive away developers and users. One Eclipse devel-
oper complained that “you have to be very patient and know
who to talk with and whatnot; you really have to know how to
play that game in order to get your patches accepted, and I
think it’s very intimidating for some new people to come on.”
In R/CRAN, the goal of timely access to current research con-
flicts with many researchers’ goal to ensure reproducibility of
their studies [34]. Similarly, in Node.js/npm the rapid rate of
changes and automatic integration of patches can raise con-
cerns about reproducibility in commercial deployments. In
many cases, the community then builds tools to work around
some of the issues, such as providing tools that take a specific
snapshot of an installation including all transitive package
dependencies (e.g., ‘npm shrinkwrap’ or R/CRAN’s packrat).

Such value conflicts led to policy evolution in all three
ecosystems. Many changes, especially in Node.js/npm, start
through grassroots activities and are, again, often supported
by tool building. For example, facilities exploiting seman-
tic versioning were built into npm from the beginning, but
semantic versioning was only later accepted broadly. As ac-
ceptance and conformance increased, the community started
filing bug reports against changes that did not comply with
semantic versioning rules1 and started developing tools to en-
force or exploit semantic versioning, such as semantic-release,
a package that will automatically increase the version number
depending on detected changes. Also npm itself changed and
now, by default, automatically updates both minor and patch
releases instead of only patch releases, since both should be

1For example, N4a and E8 talked about reporting incorrect
version numbers choices as bugs to upstream authors, in order
to improve the reliability of these numbers in the community.

backward compatible.2

In the extreme, value conflict can lead to schism. In the
Node.js community, at one point, the dissatisfaction with
change governance of the platform (not necessarily the ecosys-
tem) led to a community revolt, in which Node.js was forked
into io.js for about a year when many of the platform’s core
developers felt that Node.js was too slow in updating the
Javascript engine and slow in transitioning to a promised
“open governance” model. The two projects were remerged af-
ter the project’s owners relented, demonstrating that Node.js
community exercises de facto power.

Key section insights: • Policies are often explicitly
designed for certain values, but they also evolve over time.
• Investment in tools can enforce policies or reduce costs
of compliance. Peer pressure is common to enforce policies
that align with values. • Conflicts exists as different users
and stakeholders have different values. Tooling sometimes
help to address isolated needs.

8. CONCLUDING REMARKS
We found that the three ecosystems differ significantly in
their practices, policies, and tools. These differences align
well with the community values of stability, timely access
to current research, and ease of contribution. Our results
indicate that there is a large design space in how to build
an ecosystem and how to allocate costs among the various
stakeholders, which can be shaped by policies and supporting
tools. Yet, we believe that most developers are not aware
of the design space and potential alternatives. Only few
of our interviewees could compare multiple ecosystems or
were aware of practices and tools in other ecosystems. In
our validation phase, several interviewees reported value in
understanding other ecosystems.

We argue that community values play an essential role
in shaping a software ecosystem, yet they can be somewhat
difficult to distill from the outside (we had a general notion,
but were not aware of the actual values going into the study).
Making community values and the involved tradeoffs explicit
and transparent can help to ensure that all stakeholders un-
derstand the tradeoffs of decisions made by the platform and
the accepted consequences, such as higher costs for certain
stakeholders or reduced attractiveness to newcomers. Such
political transparency can help to understand and resolve
conflicts and to guide design discussions.

How to break an API: In Eclipse, you don’t. In
R/CRAN, you reach out to affected downstream devel-
opers. In Node.js/npm, you increase the major version
number.

9. ACKNOWLEDGMENTS
This work has been supported by by NSF awards 1546393,

1302522, 1322278, 1111750, 0943168, 1318808 and 1552944,
the Science of Security Lablet (H9823014C0140), the U.S.
Department of Defense through the Systems Engineering
Research Center, and a grant from the Alfred P. Sloan Foun-
dation.

2For details see the caret and tilde discussion at https://
nodesource.com/blog/semver-tilde-and-caret/

118

10. REFERENCES
[1] C. Artho, K. Suzaki, R. Di Cosmo, R. Treinen, and

S. Zacchiroli. Why do software packages conflict? In
Proc. Working Conf. Mining Software Repositories
(MSR), pages 141–150. IEEE Computer Society, 2012.

[2] S. A. Bohner and R. S. Arnold. Software Change
Impact Analysis. IEEE Computer Society Press, Los
Alamitos, CA, 1996.

[3] K. J. Boudreau and A. Hagiu. Platform rules:
multi-sided platforms as regulators. Platforms, Markets
and Innovation, pages 163–191, 2009.

[4] J. L. Cánovas Izquierdo and J. Cabot. Enabling the
Definition and Enforcement of Governance Rules in
Open Source Systems. Proc. Int’l Conf. Software
Engineering (ICSE), pages 505–514, 2015.

[5] J. Corbin and A. Strauss. Basics of Qualitative
Research (3rd ed.): Techniques and Procedures for
Developing Grounded Theory, chapter Criteria for
Evaluation. SAGE Publications, Inc., 2014.

[6] B. E. Cossette and R. J. Walker. Seeking the ground
truth: A retroactive study on the evolution and
migration of software libraries. In Proc. Int’l
Symposium Foundations of Software Engineering
(FSE), page 55. ACM Press, 2012.

[7] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
Coding in GitHub: Transparency and Collaboration in
an Open Software Repository. In Proc. Conf. Computer
Supported Cooperative Work (CSCW), pages
1277–1286, 2012.

[8] B. Dagenais and M. P. Robillard. Creating and
Evolving Developer Documentation: Understanding the
Decisions of Open Source Contributors. ACM
International Symposium on Foundations of Software
Engineering, pages 127–136, 2010.

[9] C. R. B. de Souza and D. F. Redmiles. An empirical
study of software developers’ management of
dependencies and changes. Proc. Int’l. Conf. Software
Engineering (ICSE), 2008.

[10] C. R. B. De Souza and D. F. Redmiles. On the roles of
APIs in the coordination of collaborative software
development. Computer Supported Cooperative Work,
18(5-6):445–475, 2009.

[11] A. Decan, T. Mens, M. Claes, and P. Grosjean. When
GitHub meets CRAN: An Analysis of Inter-Repository
Package Dependency Problems. International
Conference on Software Analysis, Evolution, and
Reengineering, pages 493–504, 2016.

[12] J. des Rivières. API first, 2005. Talk at EclipseCon’05,
slides: http://www.eclipsecon.org/2005/presentations/
EclipseCon2005 12.2APIFirst.pdf.

[13] J. des Rivières. Evolving Java-based APIs, 2007. Online
documentation:
https://wiki.eclipse.org/Evolving Java-based APIs.

[14] D. Dig and R. Johnson. How do APIs evolve? A story
of refactoring. Journal of Software Maintenance and
Evolution: Research and Practice, 18(2):83–107, 2006.

[15] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Trans. Softw.
Eng. (TSE), 27(1):1–12, Jan 2001.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, Boston, MA, 1995.

[17] Gemnasium. http://gemnasium.com.

[18] Greenkeeper. http://greenkeeper.io.

[19] C. Gutwin, R. Penner, and K. Schneider. Group
awareness in distributed software development. Proc.
Conf. Computer Supported Cooperative Work (CSCW),
pages 72–81, 2004.

[20] J. Henkel and A. Diwan. CatchUp!: Capturing and
replaying refactorings to support API evolution. In
Proc. Int’l Conf. Software Engineering (ICSE), pages
274–283. ACM Press, 2005.

[21] R. Holmes and R. J. Walker. Customized awareness:
Recommending relevant external change events. In
Proc. Int’l Conf. Software Engineering (ICSE), pages
465–474. ACM Press, 2010.

[22] D. Hou and X. Yao. Exploring the intent behind API
evolution: A case study. In Proc. Working Conf.
Reverse Engineering (WCRE), pages 131–140. IEEE
Computer Society, 2011.

[23] S. J. Jackson, D. Ribes, A. G. Buyuktur, and G. C.
Bowker. Collaborative rhythm: Temporal dissonance
and alignment in collaborative scientific work. Proc.
Conf. Computer Supported Cooperative Work (CSCW),
pages 245–254, 2011.

[24] P. Kapur, B. Cossette, and R. J. Walker. Refactoring
references for library migration. In Proc. Int’l Conf.
Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 726–738. ACM Press,
2010.

[25] D. Le Berre and P. Rapicault. Dependency
management for the Eclipse ecosystem: Eclipse P2,
metadata and resolution. In Proc. Int’l Workshop on
Open Component Ecosystems (IWOCE), pages 21–30.
ACM Press, 2009.

[26] M. Lehman. Programs, life cycles, and laws of software
evolution. Proceedings of the IEEE, 68(9):1060–1076,
Sept 1980.

[27] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
M. Di Penta, R. Oliveto, and D. Poshyvanyk. API
change and fault proneness: A threat to the success of
Android apps. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering
(ESEC/FSE), pages 477–487. ACM Press, 2013.

[28] N. H. Madhavji. Environment evolution: The Prism
model of changes. IEEE Trans. Softw. Eng. (TSE),
18(5):380–392, May 1992.

[29] F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon,
B. Durak, X. Leroy, and R. Treinen. Managing the
complexity of large free and open source package-based
software distributions. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 199–208. IEEE
Computer Society, 2006.

[30] M. Mattsson and J. Bosch. Stability assessment of
evolving industrial object-oriented frameworks. Journal
of Software Maintenance: Research and Practice,
12(2):79–102, 2000.

[31] T. McDonnell, B. Ray, and M. Kim. An empirical
study of API stability and adoption in the Android
ecosystem. In Proc. Int’l Conf. Software Maintenance
(ICSM). IEEE Computer Society, 2013.

[32] E. Murphy-Hill, T. Zimmerman, and N. Nagappan.
Cowboys, ankle sprains, and keepers of quality: how is

119

video game development different from software
development? Proc. Int’l. Conf. Software Engineering
(ICSE), pages 1–11, 2014.

[33] S. O’Mahony and F. Ferraro. The emergence of
governance in an open source community. Academy of
Management Journal, 50(5):1079–1106, 2007.

[34] J. Ooms. Possible Directions for Improving Dependency
Versioning in R. The R Journal, 5(1):1–9, 2013.

[35] K. Ostermann, P. G. Giarrusso, C. Kästner, and
T. Rendel. Revisiting information hiding: Reflections
on classical and nonclassical modularity. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP),
volume 6813 of Lecture Notes in Computer Science,
pages 155–178. Springer-Verlag, 2011.

[36] R. Padhye, S. Mani, and V. S. Sinha. NeedFeed:
Taming Change Notifications by Modeling Code
Relevance. Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 665–675, 2014.

[37] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Commun. ACM,
15(12):1053–1058, 1972.

[38] T. Preston-Werner. Semantic versioning 2.0.0, 2013.
Online: http://semver.org.

[39] S. Raemaekers, A. van Deursen, and J. Visser.
Measuring software library stability through historical
version analysis. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 378–387. IEEE Computer
Society, 2012.

[40] S. Raemaekers, A. Van Deursen, and J. Visser.
Semantic versioning versus breaking changes: A study
of the Maven repository. In Proc. Int’l Working Conf.
Source Code Analysis and Manipulation (SCAM),
pages 215–224. IEEE Computer Society, 2014.

[41] R. Robbes, M. Lungu, and D. Röthlisberger. How do
developers react to API deprecation? The case of a
Smalltalk ecosystem. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE), pages
56:1–56:11. ACM Press, 2012.

[42] RStudio Team. RStudio: Integrated Development for R.
Technical report, RStudio, Inc., Boston MA, 2015.

[43] L. Singer, F. Figueira Filho, and M.-A. Storey.
Software engineering at the speed of light: how
developers stay current using twitter. Proc. Int’l. Conf.
Software Engineering (ICSE), pages 211–221, 2014.

[44] I. Sommerville. Software Engineering. Pearson Addison
Wesley, 9th edition, 2010.

[45] A. Stakoviak, A. Thorp, and I. Schleuter. The
Changelog, 2013. Podcast: https://changelog.com/101/.

[46] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.
N degrees of separation: Multi-dimensional separation
of concerns. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 107–119. IEEE Computer Society, 1999.

[47] A. Tiwana, B. Konsynski, and A. a. Bush. Platform
evolution: Coevolution of platform architecture,
governance, and environmental dynamics. Information
Systems Research, 21(4):675–687, 2010.

[48] I. van den Berk, S. Jansen, and L. Luinenburg.
Software ecosystems. Proc. European Conference on
Software Architecture Companion Volume (ECSA),
pages 127–134, 2010.

[49] M. Weiser. Program slicing. IEEE Trans. Softw. Eng.
(TSE), 10(4):352–357, 1984.

[50] D. M. Weiss and V. R. Basili. Evaluating software
development by analysis of changes: Some data from
the software engineering laboratory. IEEE Trans. Softw.
Eng. (TSE), 11(2):157–168, Feb. 1985.

[51] H. Wickham. Releasing a package. O’Reilly Media,
Sebastopol, CA, 2015. Online:
http://r-pkgs.had.co.nz/release.html.

[52] W. Wu, F. Khomh, B. Adams, Y. G. Guéhéneuc, and
G. Antoniol. An exploratory study of API changes and
usages based on Apache and Eclipse ecosystems.
Empirical Software Engineering, pages 1–47, 2015.

[53] Y. Xie. R package versioning, 2013. Blog post:
http://yihui.name/en/2013/06/r-package-versioning/.

[54] S. S. Yau and J. S. Collofello. Some stability measures
for software maintenance. IEEE Trans. Softw. Eng.
(TSE), 6(6):545–552, Nov. 1980.

[55] R. A. Yin. Case Study Research: Design and Methods.
SAGE Publications, 5th edition, 2013.

120

	How to break an API: Cost negotiation and community values in three software ecosystems
	Citation

	How to Break an API: Cost Negotiation and Community Values in Three Software Ecosystems

