
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2016

Demystifying and puncturing the inflated delay in smartphone-Demystifying and puncturing the inflated delay in smartphone-

based WiFi network measurement based WiFi network measurement

Weichao LI
Hong Kong Polytechnic University

Daoyuan WU
Singapore Management University, dywu.2015@phdis.smu.edu.sg

Rocky K. C. CHANG
Hong Kong Polytechnic University

Ricky K. P. MOK
CAIDA/UCSD, Hong Kong

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LI, Weichao; WU, Daoyuan; CHANG, Rocky K. C.; and MOK, Ricky K. P.. Demystifying and puncturing the
inflated delay in smartphone-based WiFi network measurement. (2016). CoNEXT '16: Proceedings of the
12th International on Conference on emerging Networking EXperiments and Technologies: Irvine,
California, December 12-15, 2016. 497-504.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3618

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3618&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Demystifying and Puncturing the Inflated Delay in
Smartphone-based WiFi Network Measurement

Weichao Li1, Daoyuan Wu2, Rocky K. C. Chang1, and Ricky K. P. Mok3 †

1The Hong Kong Polytechnic University, 2Singapore Management University, 3CAIDA/UCSD
{csweicli|csrchang}@comp.polyu.edu.hk1, dywu.2015@smu.edu.sg2,

cs.rickymok@connect.polyu.hk3

ABSTRACT

Using network measurement apps has become a very effec-
tive approach to crowdsourcing WiFi network performance
data. However, these apps usually measure the user-level

performance metrics instead of the network-level performance
which is important for diagnosing performance problems. In
this paper we report for the first time that a major source of
measurement noises comes from the periodical SDIO (Se-
cure Digital Input Output) bus sleep inside the phone. The
additional latency introduced by SDIO and Power Saving
Mode can inflate and unstablize network delay measurement
significantly. We carefully design and implement a scheme
to wake up the phone for delay measurement by sending just
enough warm-up and background traffic. Our evaluation re-
sults show that the overall median delay overheads can be
kept within 3ms, regardless of the actual network delay.

CCS Concepts

•Networks → Network measurement; Mobile networks;

Wireless local area networks;

Keywords

Network measurement; Accuracy; WiFi; Android

1. INTRODUCTION

To manage and operate a reliable WiFi network, it is nec-
essary to monitor the WiFi network performance, such as

†This work was done when the author worked at the Hong Kong Poly-
technic University.

We thank Dr. Dan Pei for shepherding our paper and the anonymous re-
viewers for their valuable comments. This work is partially supported by a
grant (ref. no. G-YBAK) from The Hong Kong Polytechnic University and
a grant (ref. no. H-ZL17) from the Joint Universities Computer Centre of
Hong Kong.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA

c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999595

network delay, effectively and accurately. However, network
delay cannot be obtained directly from the common wireless
access points (APs). Moreover, existing passive monitoring
methods, including sniffer-based methods [40, 14, 25] and
methods based on AP hacking [33, 28, 29], are not flexible
and scalable to deploy.

A promising approach to monitor mobile network perfor-
mance is to use smartphone apps which have gained pop-
ularity in recent years. These speedtest-like services are
available on Android [1, 2, 10], iOS [8, 9], and Windows
Phone [7, 11]. Besides, the research community has de-
ployed measurement apps (e.g., Netalyzr [6], MobiPerf [4],
and the recent MopEye [5]) to analyze and diagnose various
network performance issues [35, 36, 26, 38].

These measurement apps usually measure user-level per-
formance, because they are implemented in the user space.
While they are useful for characterizing the user experience,
they cannot be used to reliably infer the network-level per-
formance which is important for many reasons, such as for
operators to know their network performance and for users
to diagnose whether the network or their phone is responsi-
ble for performance degradation. As shown in [23], the net-
work round-trip times (nRTTs) measured by apps in WiFi
networks are all inflated, and the amount of inflation varies
across smartphone models, measurement methods, and the
actual nRTT. As CDN and cloud services continue to reduce
the end-to-end delay, this delay inflation will significantly
over-estimate the actual nRTT. Although it is shown that part
of the delay inflation can be mitigated, the remaining over-
head, which is not negligible, is still not understood.

In this paper, as the first main contribution, we discover
and demonstrate that the energy-saving mechanisms—the
Secure Digital Input Output (SDIO) bus sleeping and the
IEEE 802.11 Power Saving Mode (PSM)—are the main sources
of the delay inflation. Specifically, the SDIO bus sleeping in-
flates the nRTT internally, whereas the PSM externally, be-
tween the phone and AP. To the best of our knowledge, this
paper is the first to report the effect of SDIO bus sleeping
on the nRTT measurement. Our analysis also shows that the
delay inflation is dependent on the WiFi chipset utilized by
the smartphone. Therefore, two different smartphones may
obtain quite different nRTTs for same network path.

In our second contribution, we propose to mitigate the

497

Published in CoNEXT '16: Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies:
Irvine, California, December 12-15, 2016, Pages 497-504.
http://doi.org/10.1145/2999572.2999595

impact of the energy-saving mechanisms by enforcing the
smartphones to operate in the wake-up mode during the de-
lay measurement. Our approach is the first to mitigate the
effect of SDIO bus sleeping. Although the impact of PSM
have been studied by many works [13, 17, 30, 31], their
focus is more on scheduling the packets on the AP side to
achieve a better balance between energy consumption and
network delay. Sui et al. [34] proposeping2 to measure the
network delay from the server side and try to avoid the addi-
tional delays introduced by the energy-saving mechanisms.
However, ping2 can be used only for network paths with
short nRTT and cannot remove the inflations completely, be-
cause, when nRTT is long, the device could fall back to the
inactive state again before it receives the response packet and
starts the second ping.

We have implemented our approach in AcuteMon, an An-
droid app prototype run on unrooted phones and requiring
no system customization, such as kernel recompilation and
customized ROM. We carefully design AcuteMon, so that
the packets sent out to keep the phone in the wake-up state is
minimal. We have conducted testbed experiments to validate
our approach using five smartphones equipped with different
WiFi chipsets and Android systems. The median additional
delay is kept within 3ms for most of the tests, regardless of
the actual nRTTs, and the delay variations are smaller than
3ms. To the best of our knowledge, this is the most accurate
delay measurement that can be achieved on Android phones
to this date without hacking the underlying system.

In §2 next, we first introduce our approach to evaluate
the accuracy of the nRTT measurement. In §3, we illustrate
the delay inflation problems caused by SDIO and PSM, and
perform root-cause analysis. We describe AcuteMon in §4
and evaluate its performance. After highlighting the related
works in §5, we conclude this paper in §6.

2. BACKGROUND

2.1 A model for nRTT measurement

The nRTT measurement can be inflated inside or outside
the phones. For the internal factors, we use delay overhead,
denoted by ∆d, to evaluate the (in)accuracy of delay mea-
surement [22, 23]. As shown in Fig. 1, the reported user-

level RTT is computed by du = tiu − tou, where tou is the
send time of the probe packet and tiu is the receive time of
the response packet at the measurement app. However, due
to various processing layers in the system, they are deliv-
ered to the air at ton and received at tin. Therefore, the delay
overhead is computed as

∆d = du − dn = (tiu − tou)− (tin − ton). (1)

Here we do not consider the processing delay introduced
by the server, because the additional delay is in microsecond
level for TCP data packets [24]. Since the delay overhead is
accumulated at various layers of the system, it is necessary to
record the timestamp at each vantage point to understand the
sources of the overhead. Besides the timestamps reported
by the app (tou and tiu), Fig. 1 also shows the timestamps

tuo
tk
o

tno tni

tk
i

tui

dn

dk

du

tsitso

tv
o

tv
i

dv

Figure 1: Measurement flow for Android apps.

in kernel space (tok, tik), WNIC (wireless NIC) driver (tov,
tiv), and network adapter (ton, tin). The kernel timestamps
can be recorded with bpf and libpcap. Since the system
usually does not provide any API to obtain the timestamps in
the driver, we modify the driver to obtain them (see §3.2.1).
As for ton and tin, we can estimate them through external
wireless sniffers for WiFi networks [23]. In addition to du
and dn, we define kernel-level RTT as dk = tik − tok and
driver-level RTT as dv = tiv − tov . To clarify where and how
the delay inflation occurs, we also break down the overall
delay overhead into three types of overheads:

• User-kernel overhead: ∆du−k = du − dk.
• Kernel-driver overhead: ∆dk−v = dk − dv .
• Driver-phy overhead: ∆dv−n = dv − dn.

Similarly, we can define kernel-phy overhead (∆dk−n) as
the difference between dk and dn (= dk − dn) or the sum of
∆dk−v and ∆dv−n.

Based on [23] and others, ∆du−k is now better understood
and can be mitigated. In particular, the overhead incurred in
the DVM (i.e., ∆du−k) can be mitigated by executing a pre-
compiled native C program. In this paper, we focus on un-
derstanding and mitigating the inflated delay between PHY
and the kernel space, because mitigating only the user-kernel
overhead is not sufficient to obtain accurate nRTT.

Besides, the IEEE 802.11 PSM (see §3.2.2) can inflate the
nRTT between an AP and smartphone, because the AP does
not always send the received packets to the smartphone im-
mediately. Although this additional delay looks like an ex-
ternal factor, we still treat it delay overhead, mainly because
this inflation occurs only when the device is in dormancy
and can vary across different smartphone models and at dif-
ferent times. Therefore, excluding this PSM-induced delay
can facilitate a more accurate and stable nRTT.

2.2 A multiple-sniffer testbed in WiFi net-
work

Our testbed, as shown in Figure 2, consists of a measure-
ment server, which is equipped with a 1.86GHz Intel Core
2 Duo processor (E6320) and 2GB memory, and an IEEE
802.11g compatible wireless AP, NETGEAR WNDR3800.
In §4.3 and §4.4, a load generator and a load server are added
to the testbed to generate cross traffic. The three sniffers are
wire-connected to the measurement server through the AP
and a switch. The sniffers are three desktop PCs equipped
with Intel 7260 WNIC. In particular, the smartphone is con-
nected to one of the sniffer via USB cable, so that adb (An-
droid Debug Bridge) and automation scripts can be run on
the phone.

498

Figure 2: The testbed setup where the packet sniffers, smart-
phone, and wireless AP are placed within a distance of 0.5m.

3. DELAY OVERHEAD CAUSED BY
ENERGY-SAVING MECHANISMS

3.1 Effect of packet sending interval

Our root-cause analysis begins with an ICMP ping ex-
periment conducted in the testbed described in §2.2. We
run a ping program through adb shell for 100 times
with two packet sending intervals, a small interval of 10ms
and larger default of 1s, measuring the nRTTs between the
smartphones under test and the measurement server. In this
paper, we test five different smartphones in Table 1. For
the root-cause analysis, we use only Google Nexus 4 and
Nexus 5, because they employ the WNIC chipsets manu-
factured by Qualcomm (WCN 3660) and Broadcom (BCM
4339), respectively. As most smartphones employ the WNIC
chipsets provided by these two manufacturers [32], and these
chipsets usually share the same source code for the same
manufacturer, any delay overhead caused by these chipsets
and drivers could be captured by these two phones. Given
the fact that the average latency of broadband service for
each monitored ISP in US ranges from 14ms to 52ms [16],
we set the nRTT to 30ms and 60ms with tc command on
the server side to emulate the real Internet environment.

Table 1: The smartphones used in the testbed evaluation.

Models Ver. CPU (core) RAM WNIC†

Google Nexus 5 4.4.2 2.26GHz (4) 2GB BCM4339
Google Nexus 4 4.4.4 1.5GHz (4) 2GB WCN3660

HTC One 4.2.2 1.7GHz (4) 2GB WCN3680

Sony Xperia J 4.0.4 1GHz (1) 512MB BCM4330
Samsung Grand 4.1.2 1.2GHz (2) 1GB BCM4329

Note: †: WNIC model numbers with prefix BCM/WCN are
manufactured by Broadcom/Qualcomm, respectively.

Table 2 summarizes the result of the multi-layer delay
measurement. The measurement for both phones consis-
tently report smaller and consistent du when the packet send-
ing interval is small. Moreover, the RTTs captured by tcpdump
(i.e., dk) and the external wireless sniffers (i.e., dn) show that
both are very close to du. However, as the sending interval
is increased to 1s, both phones are observed with significant
delay increase. In particular, Nexus 4 shows two different
patterns. With the emulated RTTs of 60ms, the nRTT for
Nexus 4 is inflated mainly in the network. But when the em-
ulated RTT is 30ms, the inflation occurs inside and outside

the phone. On the other hand, Nexus 5’s nRTT is mainly in-
flated inside the phone. The reasons will be given in §3.2.2.

Table 2: RTTs measured at different layers (mean with 95%
confidence interval in ms).

Phone RTT Intv. du dk dn

Google
Nexus 4

30ms
10ms

33.16 32.46 31.29
±0.96 ±0.04 ±0.35

1s
48.15 48.10 42.58
±3.88 ±3.88 ±4.28

60ms
10ms

63.91 63.86 62.32
±0.73 ±0.73 ±0.46

1s
136.33 136.66 130.03
±7.64 ±7.66 ±7.52

Google
Nexus 5

30ms
10ms

33.38 33.27 31.22
±0.58 ±0.59 ±0.45

1s
43.21 43.03 31.78
±1.29 ±1.29 ±1.01

60ms
10ms

64.18 64.08 61.61
±0.68 ±0.67 ±0.35

1s
81.98 81.83 62.35
±2.04 ±2.05 ±0.42

To better visualize the distribution of the delay overheads,
we employ box-and-whisker plots to present ∆dk−n in Fig-
ure 3(a) and 3(c) and ∆du−k in Figure 3(b) and 3(d). In each
plot, the mark inside the box is the median and the top and
bottom are the 75th and 25th percentile. The upper and lower
whiskers are the maximum and minimum, respectively, after
excluding the outliers. Figure 3(a) and 3(c) clearly show that
Nexus 4 and 5 experience comparably small ∆dk−n, which
are smaller than ∼4ms, when the packet sending interval is
small. With the interval of 1s, Nexus 5 has a much larger
∆dk−n than Nexus 4 (∼18ms vs. ∼6ms in median for emu-
lated RTT of 60ms, and ∼12ms vs. ∼6ms for emulated RTT
of 30ms). On the other hand, since ∆du−k is very close to 0
for both Nexus 4 and 5, ∆du−k is not a major source of de-
lay inflation. Moreover, some values of ∆du−k are negative
due to the low resolution of the reported ping results. For
example, ping on Nexus 4 reports RTT in integer when RTTs
are larger than 100ms. Therefore, the fractional part could
be truncated and the round-down RTT could be smaller than
the tcpdump measurement.

3.2 Root cause analysis

3.2.1 Effect of SDIO bus sleep

We first analyze the source code of the WNIC driver in
Nexus 5. The WiFi chipset used by Nexus 5 (Broadcom
BCM 4339) connects to the system through SDIO bus and
adopts the “bcmdhd” driver 1. This driver also supports other
Broadcom WNIC chipsets, such as BCM 4329, 4330, 4335,
and others. Therefore, the finding here is also applicable to
other phones equipped with Broadcom WiFi chipset, espe-
cially those with FullMAC MLME (MAC Sublayer Manage-
ment Entity).

We trace the function calls in the packet sending and re-
ceiving directions. For packet sending, the kernel function
dev_queue_xmit()maps to driver functiondhd_start-
_xmit(). As shown in Figure 4(a), this function further

1In “drivers/net/wireless/bcmdhd”.

499

0

5

10

15

20

25

N
4

(1
0

m
s)

N
5

(1
0

m
s)

D
e

la
y

O
ve

rh
e

a
d

 (
m

s)

(a) ∆dk−n (30ms).
−1

−0.5

0

0.5

1

N
4

(1
0

m
s)

N
5

(1
0

m
s)

D
e

la
y

O
ve

rh
e

a
d

 (
m

s)

(b) ∆du−k (30ms).

D
e
la

y
O

ve
rh

e
a
d
 (

m
s)

0

5

10

15

20

25

N
4
(1

0
m

s)

N
4
(1

s)

N
5
(1

0
m

s)

N
5
(1

s)

(c) ∆dk−n (60ms).

D
e
la

y
O

ve
rh

e
a
d
 (

m
s)

-1

-0.5

0

0.5

1

N
4
(1

0
m

s
)

N
4
(1

s
)

N
5
(1

0
m

s
)

N
5
(1

s
)

(d) ∆du−k (60ms).

Figure 3: Kernel-phy delay overhead (∆dk−n) and User-
kernel delay overhead (∆du−k) for Google Nexus 4 and 5
when the emulated RTTs are 30ms and 60ms, respectively.

calls dhd_sched_dpc(), registering a packet sending task
in a kernel thread, dpc. The dpc maintains a while(1)
loop in its sub-function dhdsdio_dpc(). Before the dpc
thread can send packets (3 in Figure 4(b)), dhdsdio_dpc()
needs to check the status of SDIO bus and the readiness
of backplane clock (1 and 2 , respectively). Eventually,
function dhdsdio_txpkt() is executed, and the data are
written to the bus.

(a) In function dhd_start_xmit().

(b) In dpc thread.

Figure 4: Key WNIC driver functions for packet sending.

For packet receiving, the dpc thread is also responsible
for data processing. As shown in Figure 5(a), the inter-
rupt handling function dhdsdio_isr() first registers a
task in the dpc thread. Similar to packet sending, the dpc
thread also needs to check the status of SDIO bus and back-
plane clock (i.e., 1 and 2 in Figure 5(b)), and then receives
frames from the bus with functiondhdsdio_readframes().
After the frames are queued using dhd_rxf_enqueue(),
another kernel thread rxframe invokesnetif_rx_ni()
to deliver the packets to the system.

(a) In function dhdsdio_isr().

rxframe

dpc

(b) In dpc and rxframe thread.

Figure 5: Key WNIC driver functions for packet receiving.

We enable the driver debug message by re-compiling the
Android kernel. The kernel log information shows that the
driver puts the SDIO bus into sleeping state frequently if the
data transmission rate is not high. When there is a packet
sending request or a packet arrival interrupt, it takes time for
the driver to bring up the bus. We modify the source code by
timestamping at the entrances of functionsdhd_start_xmit()
and dhdsdio_txpkt() (i.e., 1 and 2 in Figure 4), so
that we can measure the delay when the driver sends out a
packet, denoted by dvsend. Similarly, the delay dvrecv for
the driver to receive a packet can be measured by timestamp-
ing dhdsdio_isr() and dhd_rxf_enqueue() (i.e.,
1 and 2 in Figure 5). We re-build the kernel to measure
dvsend and dvrecv in Nexus 5.

To evaluate the effect of bus sleep, we also disable the
sleep feature in dhdsdio_bussleep(). Table 3 presents
the minimum, mean, and maximum values of dvsend (dvrecv)
when sending out (receiving) 100 ICMP packets with the
two packet sending intervals (10ms and 1s). After disabling
the bus sleep feature, both dvsend and dvrecv drop closely to
1ms, regardless of the packet transmission rate. Otherwise,
the mean value can be as high as 14ms when the packet send-
ing interval is 1s. As a result, we have verified that the SDIO
bus sleep is the main component in dk−n.

Table 3: dvsend and dvrecv measured by Nexus 5 with SDIO
bus sleep mode enabled or disabled (in ms). The delay for
waking up the bus could go up to ∼14ms.

Type Bus sleep Packet interval Min Mean Max

dvsend

Enabled
10ms 0.096 0.321 10.184

1000ms 0.139 10.151 13.547

Disabled
10ms 0.092 0.229 0.836

1000ms 0.139 0.720 0.858

dvrecv

Enabled
10ms 0.314 1.635 2.827

1000ms 0.368 12.754 14.224

Disabled
10ms 0.311 1.589 2.651

1000ms 0.362 1.756 2.088

We also investigate the criteria that trigger the bus sleep
mode. Our driver analysis shows that the driver maintains
a counter idlecount. For every dhd_watchdog_ms, whose

500

default value is 10ms, the driver increases this counter by 1
if the hardware is idle. When the counter reaches a thresh-
old idletime (5 by default), the driver will instruct the bus
to sleep. Therefore, the default idle period is 50ms. Both
idletime and dhd_watchdog_ms are configurable when the
driver is loaded. Our experiments also confirm that the idle
period (demotion timer, Tis) for Nexus 5 is 50ms.

The “wcnss” driver used by Qualcomm WNIC chipsets
shares similar mechanism, although the chipsets connect to
the system via SMD interface instead of SDIO. To simplify
our presentation, we refer also this energy-saving mecha-
nism to SDIO bus sleep mode.

3.2.2 Effect of Power Save Mode

The PSM allows WNIC to switch from active state (a.k.a.
Constantly Awake Mode, CAM) to sleep state (a.k.a. Power
Save Mode, PSM) in order to reduce energy consumption
and prolong battery lifetime. In PSM, the WiFi station (STA)
and AP agree upon a listen interval, which is the number of
beacon intervals that the STA will ignore before turning on
the receiver. Right before the end of the listen interval, the
STA wakes up and listens for the beacon frame. Only when
there are packets buffered on the AP will the STA stay in
CAM to receive them.

PSM can be further classified into static PSM and adap-

tive PSM. As static PSM could lead to RTT round-up ef-
fect and degrade network performance [19], adaptive PSM
is usually adopted by smartphones today [15, 30, 31]. The
adaptive PSM allows STA to stay in CAM for a pre-defined
idle period (PSM timeout, Tip), preventing the STA from
immediately going to sleep after data transmission.

However, adaptive PSM could still inflate the nRTT. Let
dp and dn be the measured and actual network delay, respec-
tively. If dn is larger than Tip, the STA has already turned off
its receiver when the response packet arrives at the AP. Only
after the STA listens to the beacon frame can it change the
state to CAM and receive the packet. As a result, dn could
be inflated by up to IB ∗ (L + 1), where IB is the beacon

interval with a value of 100 TUs (Time Units, 1.024ms per
TU), and L is the listen interval.

We measure the PSM timeout value (Tip) by carefully
sending out packets with increased packet sending interval.
Table 4 shows that Tip is smartphone-dependent. As an ex-
treme case, Nexus 4 enters PSM in 40ms when the WNIC is
idle. Therefore, there is a higher possibility for Nexus 4 to
report an inaccurate result when measuring a network path
longer than 40ms. This is why Nexus 4 is observed with sig-
nificant increase of network delay when the emulated RTT
is set to 60ms in §3.1. On the other hand, the values of the
listen interval determines how much nRTT can be inflated
by PSM. Although STA announces a default listen interval
during the association period (1 for “wcnss” driver and 10
for “bcmhd” driver by default), we find that the smartphones
do not adopt this default value. The actual listen interval for
the phones are all 0, meaning that its length is 1 beacon cy-
cle which is 102.4ms. Thus, the adaptive PSM can inflate
the nRTT by over 100ms.

Table 4: PSM timeout values (Tip) and initial listen intervals
(L) of the smartphones under test.

Phone Tip L (associated) L (actual)

Google Nexus 4 ∼40ms 1 0

Google Nexus 5 ∼205ms 10 0

Samsung Grand ∼45ms 10 0
HTC One ∼400ms 1 0

Sony Xperia J ∼210ms 10 0

4. A BETTER PRACTICE

In this section, we present an effective approach to miti-
gate the delay overhead in the WiFi network measurement.
We have implemented our approach in AcuteMon, an An-
droid app prototype running on unrooted phones and requir-
ing no system modification and customization, such as ker-
nel recompilation and customized ROM. Although Acute-
Mon is designed mainly for WiFi networks, it can be eas-
ily extended to cellular environment, mitigating the effect of
RRC (Radio Resource Control) state transition.

4.1 Implementation details

As illustrated in Figure 6, AcuteMon consists of two con-
current threads—background traffic thread (BT) and mea-
surement thread (MT). The goal of the BT is to keep the
smartphone in the wake-up state (i.e., SDIO bus awake mode
and CAM in WiFi) during nRTT measurement. The process
starts with a warm-up phase where the BT sends a warm-up
packet to a warm-up server. According to §3, a smartphone
enters CAM immediately when sending out packets, but it
has to wait a period of time (promotion delay, Tprom) for the
SDIO bus to wake up. After being activated, it remains in
the SDIO bus awake mode for Tis and CAM for Tip, where
Tis and Tip are the demotion timeout value for SDIO bus
sleep and PSM, respectively. Therefore, the warm-up time
dpre should meet Tprom < dpre < min(Tis, Tip).

In the subsequent measurement phase, the BT periodically
sends lightweight background traffic with an inter-packet in-
terval of db. With a proper choice of db (db < min(Tis, Tip)),
the background traffic can reset the state demotion timers
to prevent any state demotion. Here we assign both dpre
and db to 20ms. Our evaluation in §4.2 shows that the em-
pirical values work effectively. For example, db of 20ms
is also appropriate for the smartphones employing “wcnss”
driver. AcuteMon ignores the response packets of warm-up
and background packets by setting the TTL (time-to-live)
value of the warm-up packets to 1, so that the packets will
be dropped at the first-hop router.

The MT, on the other hand, sends K measurement probes
to measure the nRTT between the phone and a target server.
In the current version, AcuteMon uses TCP control mes-
sages (TCP SYN/ACK packets) and TCP data packets (HTTP
request and response) to measure nRTT to any TCP servers.
The implementation can be easily extended to UDP and ICMP
packets. We implement the MT as a pre-compiled C binary
(instead of running within the Android runtime) to mitigate
the user-kernel delay overheads [23].

In our prototype of AcuteMon, dpre and db were assigned
with empirical values. Although they work well in our testbed
evaluation (§4.2-§4.4), they could be inappropriate for some

501

db
t0

t2

dw

t3
du

t1

dpre

Figure 6: Measurement process of AcuteMon.

smartphone models, because both Tis and Tip are tunable.
However, inferring the actual Tis and Tip of a particular
smartphone is challenging. A simple solution is training the
program to obtain suitable values. Another possible workaround
is to collect the configurations by modelling and building a
database. This will be our future work.

AcuteMon consumes very low battery, because it sends
out very few additional packets in the measurement phase,
and will not affect the energy-saving mechanisms when there
are no measurement tasks. Moreover, the warm-up and back-
ground packet(s) are dropped in the first hop and will not
burden the remaining part of a network path. Supposing that
AcuteMon sends five probe packets (K = 5) to measure
a path with nRTT of 100ms, the BT will send only around
25 packets to the gateway for the nRTT measurement. Our
evaluation in §4.4 shows that the impact of the background
traffic on the measurement results is negligible.

4.2 Performance evaluation

We evaluate the performance of AcuteMon in the testbed
mentioned in §3.1. For each test, we run AcuteMon on
the smartphone to measure the nRTT between the phone
and the measurement server by sending out 100 TCP probes
(K = 100). We introduce additional delays on the server
side to emulate four different nRTTs: 20ms, 50ms, 85ms,
and 135ms. Since the experiments are performed in an ideal
environment without other mobile devices and cross traffic,
introducing additional delays on the server side can be con-
sidered as controlling the length of the network path.

4.2.1 Actual nRTT

Table 5 presents the means and 95% confidence intervals
of the actual nRTTs (dn) measured by the external sniffers.
For all five smartphones, dns are very close to their emu-
lated values. In fact, no significant nRTT inflation can be
observed, and most of the deviations are kept within 3ms,
implying that the measurement packets have not been de-
layed at the AP. Our further analysis of the raw pcap files
also confirms that no PSM activity can be detected when the
smartphone receives response packets. Compared with the
results shown in Table 2, AcuteMon successfully prevents
the smartphones from entering PSM.

4.2.2 Delay overheads

Next we analyze the measurement accuracy of AcuteMon
in terms of delay overhead. We use box plots to present
∆du−k and ∆dk−n introduced by AcuteMon in Figure 7.

On the x-axis, we use (u) and (k) after the RTT to denote
∆du−k and ∆dk−n, respectively. Due to the page limit, we
only show three of the five smartphones tested, because the
rest have very similar results.

The previous study [23] has shown that executing the mea-
surement logic as a native Linux program can mitigate the
delay overheads caused in the DVM. The measurement re-
sults support this claim. We observe very small ∆du−k for
all the phones, most of which are smaller than 0.5ms. Even
for the two smartphones with relatively low hardware con-
figurations (i.e., Sony Xperia J and Samsung Grand), their
∆du−ks are smaller than 1ms.

On the other hand, ∆dk−n accounts for the majority of
the delay overhead. Although ∆dk−n is much larger than
∆du−k, their medians are all less than 2ms, and the up-
per bounds are still less than 3ms (except for Sony Xperia
J, whose upper bounds can be 4ms). For the smartphones
equipped with Qualcomm’s WNIC chipsets (Google Nexus
4 and HTC One), Figure 7(c) shows that the medians of
∆dk−n can be as small as ∼0.8ms. As a result, the over-
all median delay overheads are kept within 3ms.

Another important observation is that the delay overheads
for AcuteMon are independent of nRTTs, and the values of
the overheads are much more stable. Therefore, the true
value can be obtained by performing calibration.

Table 5: The actual nRTTs (dn) measured by external snif-
fers (mean with 95% confidence interval, in ms).

Phone
Emulated RTT (ms)

20 50 85 135

Google Nexus 5
22.461 51.683 87.198 137.090
±0.545 ±0.168 ±0.387 ±0.320

Sony Xperia J
21.584 51.597 86.868 136.79
±0.184 ±0.149 ±0.275 ±0.178

Samsung Grand
22.020 52.614 86.675 137.0
±0.382 ±0.485 ±0.177 ±0.217

Google Nexus 4
21.680 51.673 86.888 137.98
±0.181 ±0.202 ±0.358 ±1.101

HTC One
21.874 51.786 86.810 136.850
±0.200 ±0.198 ±0.192 ±0.154

4.3 Comparison with other tools

We compare AcuteMon with three other popular tools,
including ICMP ping, httping [18], and MobiPerf, on
Google Nexus 5. Since we have evaluated the delay over-
head caused by AcuteMon in §4.2.2, here we compare only
the RTTs measured by these tools in the same testbed. For
httping, we download and cross-compile its source code,
so that it can run on Android. As for MobiPerf, it sup-
ports three measurement methods: 1) invoking the ping pro-
gram, employing Java classes 2) InetAddress, and 3)
HttpURLConnection. In fact, the second and third meth-
ods are very similar, both of which utilize TCP control mes-
sages (SYN/RST vs. SYN/SYN ACK). Since MobiPerf can-
not configure the number of probe packets, we implement its
second method in our own test app, called Java ping.

In comparing the four tools, we introduce an additional
delay of 30ms on the server side. During the measurement,
each tool sends out 100 probes (K = 100). We consider

502

D
e
la

y
O

ve
rh

e
a
d
 (

m
s)

0

1

2

3

4

5

2
0
m

s(
u
)

2
0
m

s(
k)

5
0
m

s(
u
)

5
0
m

s(
k)

8
5
m

s(
u
)

8
5
m

s(
k)

1
3
5
m

s(
u
)

1
3
5
m

s(
k)

(a) Google Nexus 5.

D
e
la

y
O

ve
rh

e
a
d
 (

m
s)

0

1

2

3

4

5

2
0
m

s(
u
)

2
0
m

s(
k)

5
0
m

s(
u
)

5
0
m

s(
k)

8
5
m

s(
u
)

8
5
m

s(
k)

1
3
5
m

s(
u
)

1
3
5
m

s(
k)

(b) Samsung Grand.

D
e
la

y
O

ve
rh

e
a
d
 (

m
s)

0

1

2

3

4

5

2
0
m

s(
u
)

2
0
m

s(
k)

5
0
m

s(
u
)

5
0
m

s(
k)

8
5
m

s(
u
)

8
5
m

s(
k)

1
3
5
m

s(
u
)

1
3
5
m

s(
k)

(c) Google Nexus 4.

Figure 7: Box plots of ∆du−k and ∆dk−n obtained by AcuteMon.

two scenarios, with and without cross traffic. The objective
of introducing cross traffic is to congest the WiFi network.
We use iPerf [3] to generate a large volume of data be-
tween a wireless load generator and a fixed load server. The
load generator establishes 10 connections to the server, and
each connection sends out UDP packets at a sending rate of
2.5Mbps. According to [37], the actual throughput for UDP
traffic in an IEEE 802.11g WLAN is usually smaller than
20Mbps. Therefore, the introduced cross traffic can over-
load the network. In our test, we find that the maximum
throughput is only around 10Mbps.

Figure 8 plots the CDF of the RTTs measured by the four
tools. The figure clearly shows that AcuteMon outperforms
the other three significantly in both scenarios. When the net-
work is free of cross traffic, almost 90% of the RTTs mea-
sured by AcuteMon are smaller than 35ms. The differences
between AcuteMon and the other three are almost larger than
10ms. In the congested network case, the measured RTTs
are all increased, and AcuteMon still gives the smallest mea-
sured RTTs.

30 40 50 60
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D

F

AcuteMon
httping
ping
Java ping

(a) Without cross traffic.

30 40 50 60
0

0.2

0.4

0.6

0.8

1

RTT (ms)

AcuteMon
httping
ping
Java ping

(b) With cross traffic.

Figure 8: CDF plots of RTT measured by AcuteMon and
other popular measurement tools.

4.4 Effect of background traffic

We further study whether the background traffic sent by
AcuteMon will affect the measurement results in a congested
WiFi network. We apply the same settings of emulated RTT
and cross traffic described in §4.3 to the testbed. For a fair
comparison, we disable the SDIO bus sleep function by mod-
ifying the driver, so that AcuteMon will stay in the wake-up
mode without sending background traffic. Moreover, since
the emulated RTT (30ms) is smaller than Nexus 5’s PSM
timeout value (∼205ms), the smartphone will also stay in
the CAM during the measurement. As shown in Figure 9,
the difference between with and without background traffic
for AcuteMon is very small, showing that the effect of send-
ing just enough background traffic is slight. Compared to

the result obtained when the network is not congested, the
RTT increase here is mainly caused by the cross traffic, but
not the background traffic.

30 40 50 60
0

0.5

1

RTT (ms)

C
D

F

With BG traffic
Without BG traffic
No cross traffic

Figure 9: CDF plot of RTTs measured by AcuteMon with
and without sending background traffic.

5. RELATED WORKS

The performance of Android system has been well stud-
ied and evaluated in the past, especially on the performance
impact of DVM on Android apps [27], and the comparison
between native C/JNI and Java applications in DVM [12,
21]. However, these works seldom study the relationship
between system delay and network delay measurement. Al-
though some other studies apply cross-layer analysis [39]
and intercept system events [20], they do not analyze the
network behavior systematically nor study the device driver.
Li et al. [23] study the delay overhead in WiFi network and
propose to mitigate the user-level overhead by using native
C implementation. In this paper, we systemically investigate
the delay overhead caused by energy-saving mechanisms for
WiFi networks.

6. CONCLUSION

In this paper we considered the problem of measuring net-
work RTT from smartphones. We presented AcuteMon, a
network measurement app in Android, to mitigate all ma-
jor sources of delay inflation for WiFi networks. We first
reported and demonstrated that the energy-saving mecha-
nisms (SDIO and PSM) employed in smartphones are the
main sources of the delay inflation. Based on our driver code
analysis and empirical evaluations, we proposed to keep the
phone in the wake-up state during the delay measurement
through a carefully timed sending of warm-up and periodic
background traffic. Our testbed experiment results show that
our approach can effectively mitigate the delay overheads
and achieve very accurate network RTT.

503

7. REFERENCES
[1] Internet Speed Test 3G,4G,Wifi on Google Play. https://play.google.

com/store/apps/details?id=uk.co.broadbandspeedchecker.

[2] Internet Speed Test on Google Play.
https://play.google.com/store/apps/details?id=pl.speedtest.android.

[3] iPerf - the ultimate speed test tool for TCP, UDP and SCTP.
https://iperf.fr/.

[4] MobiPerf on Google Play.
https://play.google.com/store/apps/details?id=com.mobiperf.

[5] MopEye: Speed test & sniffer.
https://play.google.com/store/apps/details?id=com.mopeye.

[6] Netalyzr on Google Play. https://play.google.com/store/apps/details?
id=edu.berkeley.icsi.netalyzr.android.

[7] Network Speed Test on Windows Store.
http://www.windowsphone.com/en-us/store/app/network-speed-
test/9b9ae06b-2961-41ef-987d-b09567cffe70.

[8] Speedtest X HD WiFi & Mobile Speed Test on App Store. https://
itunes.apple.com/us/app/speedtest-x-hd-wifi-mobile/id366593092.

[9] Speedtest.net on App Store. https:
//itunes.apple.com/us/app/speedtest.net-mobile-speed/id300704847.

[10] Speedtest.net on Google Play. https://play.google.com/store/apps/
details?id=org.zwanoo.android.speedtest.

[11] Speedtest.net on Windows Store.
http://www.windowsphone.com/en-us/store/app/speedtest-net/
4fcd4de1-050b-44dc-b123-a786808eb49b.

[12] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and
S. Albayrak. Developing and benchmarking native Linux
applications on Android. In Proc. Mobilware, 2009.

[13] Y. Bejerano, J. Ferragut, K. Guo, V. Gupta, C. Gutterman,
T. Nandagopal, and G. Zussman. Scalable WiFi multicast services
for very large groups. In Proc. ICNP, 2013.

[14] Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker,
and S. Savage. Jigsaw: Solving the puzzle of enterprise 802.11
analysis. In Proc. ACM SIGCOMM, 2006.

[15] N. Ding, A. Pathak, D. Koutsonikolas, C. Shepard, Y. Hu, and
L. Zhong. Realizing the full potential of PSM using proxying. In
Proc. IEEE INFOCOM, 2012.

[16] FCC. 2015 measuring broadband America fixed report.
https://www.fcc.gov/reports-research/reports/measuring-
broadband-america/measuring-broadband-america-2015, 2015.

[17] Y. He and R. Yuan. A novel scheduled power saving mechanism for
802.11 wireless LANs. Mobile Computing, IEEE Transactions on,
8(10):1368–1383, Oct 2009.

[18] F. Heusden. httping. http://www.vanheusden.com/httping/.

[19] R. Krashinsky and H. Balakrishnan. Minimizing energy for wireless
web access with bounded slowdown. Wireless Network,
11:135–148, Jan. 2005.

[20] J.-C. Kuester and A. Bauer. Monitoring real android malware. In
Proc. Runtime Verification, 2015.

[21] S. Lee and J. W. Jeon. Evaluating performance of Android platform
using native C for embedded systems. In Proc. IEEE ICCAS, 2010.

[22] W. Li, R. Mok, R. Chang, and W. Fok. Appraising the delay
accuracy in browser-based network measurement. In Proc.

ACM/USENIX IMC, 2013.

[23] W. Li, R. Mok, D. Wu, and R. Chang. On the accuracy of
smartphone-based mobile network measurement. In Proc. IEEE

INFOCOM, 2015.

[24] X. Luo, E. Chan, and R. Chang. Design and implementation of TCP
data probes for reliable network path monitoring. In Proc. USENIX

ATC, 2009.

[25] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing
the MAC-level behavior of wireless networks in the wild. In Proc.

ACM SIGCOMM, 2006.

[26] A. Nikravesh, D. Choffnes, E. Katz-Bassett, Z. Mao, and M. Welsh.
Mobile network performance from user devices: A longitudinal,
multidimensional analysis. In Proc. PAM, 2014.

[27] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of
Android Dalvik virtual machine. In Proc. JTRES, 2012.

[28] A. Patro, S. Govindan, and S. Banerjee. Observing home wireless
experience through WiFi APs. In Proc. ACM MobiCom, 2013.

[29] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Mengy, M. Ma, K. Ling, and
D. Pei. WiFi can be the weakest link of round trip network latency
in the wild. In Proc. IEEE INFOCOM, 2016.

[30] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu. SAPSM: Smart
adaptive 802.11 PSM for smartphones. In Proc. ACM UbiComp,
2012.

[31] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. NAPman:
Network-assisted power management for Wifi devices. In Proc.

ACM MobiSys, 2010.

[32] B. Shaffer. Broadcom and Qualcomm battle for WLAN IC
leadership. https://technology.ihs.com/517658/broadcom-and-
qualcomm-battle-for-wlan-ic-leadership, November 2014.

[33] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki. PIE
in the sky: Online passive interference estimation for enterprise
WLANs. In Proc. USENIX NSDI, 2011.

[34] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and
T. Moscibroda. Characterizing and improving WiFi latency in
large-scale operational networks. In Proc. ACM MobiSys, 2016.

[35] N. Vallina-Rodriguez, N.Weaver, C. Kreibich, and V. Paxson.
Netalyzr for Android: Challenges and opportunities. In Proc.

Workshop on Active Internet Measurements (AIMS), 2014.

[36] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and
V. Paxson. Beyond the radio: Illuminating the higher layers of
mobile networks. In Proc. ACM MobiSys, 2015.

[37] A. L. Wijesinha, Y. tae Song, M. Krishnan, V. Mathur, J. Ahn, and
V. Shyamasundar. Throughput measurement for UDP traffic in an
IEEE 802.11g WLAN. In Proc. SNPD/SAWN, 2005.

[38] D. Wu, W. Li, R. Chang, and D. Gao. MopEye: Monitoring per-app
network performance with zero measurement traffic. In Proc. ACM

CoNEXT Student Workshop, 2015.

[39] L. Xue, C. Qian, and X. Luo. Androidperf: A cross-layer profiling
system for Android applications. In Proc. IEEE IWQoS, 2015.

[40] J. Yeo, M. Youssef, and A. Agrawala. A framework for wireless
LAN monitoring and its applications. In Proc. ACM WiSe, 2004.

504

	Demystifying and puncturing the inflated delay in smartphone-based WiFi network measurement
	Citation

	main.dvi

