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Detecting Similar Repositories on GitHub

Quanlai Li1, Yan Li1, Pavneet Singh Kochhar2, Xin Xia1 and David Lo2
1College of Computer Science and Technology, Zhejiang University, Hangzhou, China

2School of Information Systems, Singapore Management University, Singapore
{lql, liyansam, xxia}@zju.edu.cn, {kochharps.2012, davidlo}@smu.edu.sg

Abstract—GitHub contains millions of repositories with a
number of repositories implementing similar functionalities. Find-
ing similar repositories on GitHub can be helpful for software
engineers as it can help them reuse source code, identify alter-
native implementations, explore related projects, find projects to
contribute to, and discover code theft and plagiarism. Previous
studies have proposed techniques to detect similar applications by
analyzing API usage patterns and software tags. Unfortunately,
these prior studies either only make use of a limited source
of information or use information not available for projects on
GitHub.

In this paper, we propose an approach that can effectively
detect similar repositories on GitHub. Our approach is designed
based on three heuristics which leverage additional data sources
(i.e., GitHub stars and readme files) which are not considered in
previous works. The three heuristics are: projects that are starred
by the same users within a short period of time are likely to be
similar with one another, projects that are starred by similar
users are likely to be similar with one another, and projects
whose readme files contain similar contents are likely to be similar
with one another. Based on these three heuristics, we compute
two relevance scores (i.e., star-based relevance and readme-based
relevance) to assess the similarity between two repositories. By
integrating the two relevance scores, we build a recommendation
system called RepoPal to detect similar repositories. We compare
RepoPal to a prior state-of-the-art approach CLAN using one
thousand Java repositories on GitHub. Our empirical evaluation
demonstrates that RepoPal achieves a higher success rate, preci-
sion and confidence over CLAN.

Keywords—Similar Repositories, GitHub, Information Re-
trieval, Recommendation System

I. INTRODUCTION

GitHub contains over 29 million repositories1 developed
by more than 11 million developers spread around the world.
A repository is a basic unit in GitHub which typically contains
the source code and resource files of a software project. It also
stores information related to the project’s evolution history
and high-level features, and persons who create, contribute,
fork, start and watch it. GitHub hosts a myriad of projects
ranging from database applications, operating systems, gaming
software, web applets, mobile applications and many more.
Large organizations like Google, Facebook and Microsoft are
using GitHub to host their open-source projects. Many influ-
ential open-source projects also move to GitHub; these include
popular programming language projects such as Python2 and

1https://github.com/about/press
2https://github.com/python

Go3, popular server projects such as Nginx4 and Cherokee5,
popular development frameworks, platforms and libraries such
as Bootstrap6, Node.js7, and JQuery8, and many more. The
large number of projects give developers a plethora of options
to chose the project they want to use or contribute to.

Among the millions of repositories that GitHub hosts,
many implement similar functionalities but are developed by
different developers or organizations. Detecting these similar
repositories can be useful for code reuse, rapid prototyp-
ing, identifying alternative implementations, exploring related
projects, finding projects to contribute to, discovering code
theft and plagiarism (when they are reused inappropriately),
and many more – c.f., [1], [2], [3]. A study showed that
often more than 50% of the source code files are reused in
more than one open-source projects [4]. Thus, by detecting
similar applications, developers can reuse code and focus on
implementing the functionalities not provided by any of the
existing applications.

Unfortunately, to the best of our knowledge, currently
there is no system implemented on GitHub that can detect
the similarity of repositories. To help developers find relevant
repositories among the millions of repositories it hosts, GitHub
provides a search engine. However, it is only a simple text-
based search engine that accepts as input a list of query words
and returns repository names, files, issue reports and user
names that contains the query words. This search engine is
certainly not an ideal tool to find similar repositories.

In the literature, past studies have proposed several tech-
niques to detect similar applications. McMillan et al. develop
an approach named CLAN (Closely reLated ApplicatioNs) that
computes similarity between Java applications by comparing
the API calls made by the two applications [5]. They show
that developers are able to find similar applications and their
technique performs better than another a previously proposed
technique MUDABlue [6]. Thung et al. propose a technique
that leverages software tags instead of the API usage patterns
used by CLAN, to recommend similar applications [7]. Their
approach automatically identifies important tags used by an
application by assigning different weights to different tags.
The tags along with their weights are then used to compare
applications.

3https://github.com/golang
4https://github.com/nginx/nginx
5https://github.com/cherokee/webserver
6https://github.com/twbs/bootstrap
7https://nodejs.org/en/
8https://github.com/jquery/jquery
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Although the prior work has made significant progress in
the identification of similar applications, there are a number
of challenges in applying them to find similar repositories on
GitHub. First, GitHub contains millions of repositories that
get updated frequently over time and statically analyzing them
periodically to retrieve API calls is an expensive task. Second,
GitHub does not allow users to tag repositories. In addition
to these challenges, prior works do not leverage additional
data sources specific to GitHub that can provide new insights.
For example, GitHub allows users to star repositories to keep
track of the repositories that they find interesting. Starring a
repository is a public activity that can be viewed and tracked by
others. Moreover, repositories often contain readme files that
describe the high-level features of the applications developed
in the repositories.

To deal with the limitations and leverage the additional
data sources, in this work, we propose a novel approach to
identify similar repositories on GitHub. Our work is based
on three heuristics: First, repositories that are starred by the
same user within a short period of time are likely to be
similar. Second, repositories that are starred by similar users
are likely to be similar. Third, repositories whose readme
files share similar contents are likely to be similar. Based
on these three heuristics, we compute two relevance scores
which measure how similar two repositories are. The first
relevance score, named star-based relevance, is based on the
first two heuristics. It is computed by: (1) counting the number
of people who star both repositories, weighted based on the
period of time that lapsed between the time the two repositories
were starred by each person, and (2) counting the number
of similar user pairs who starred the repositories. The second
relevance score, named readme-based relevance, is based on
the third heuristic. It is computed by calculating the cosine
similarity of the vector space representations of the readme
files of the two repositories. Our proposed approach, named
RepoPal, combines these two relevance scores to identify
similar repositories for a given target repository.

We have evaluated RepoPal to recommend similar reposito-
ries from a collection of 1,000 Java repositories from GitHub.
We use a total of 50 queries, each corresponding to a Java
repository in GitHub, to evaluate the effectiveness of RepoPal
and a state-of-the-art approach CLAN [5]. We focus on only
Java repositories since CLAN can only handle Java programs.
We evaluate the effectiveness of RepoPal and CLAN via a user
study. The participants in the study rate each recommended
similar project with a score ranging from 1 (highly irrelevant)
to 5 (highly relevant). Based on the ratings, we use three
yardsticks to measure effectiveness: success rate [7], confi-
dence [5], [7], and precision [5], [7] as yardsticks9. Our user
study results show that RepoPal outperforms CLAN in terms
of success-rate, confidence, and precision by up to 34.48%,
20.14%, and 41.03% respectively.

The contributions of our work are as follows:

• We propose three new heuristics to identify simi-
lar repositories on GitHub which leverage two data
sources not considered in prior works – i.e., GitHub
star and readme files. We integrate these three heuris-
tics in a tool RepoPal.

9The definitions of these evaluation metrics are given in Section IV.

• We have evaluated RepoPal and CLAN on a dataset of
1,000 Java repositories and showed that our technique
outperforms CLAN by substantial margins in terms of
success-rate, confidence, and precision.

The structure of the remainder of this paper is as follows.
In Section II, we describe the three heuristics that our approach
uses and some motivating examples. In Section III, we elab-
orate the details of our approach RepoPal. In Section IV, we
describe the setup of our experiment which applies RepoPal on
a dataset of 1,000 GitHub projects and compares it against the
state-of-the-art approach CLAN. We present the results of our
experiment and some threats to validity in Section V and VI
respectively. Related work is briefly reviewed in Section VII.
Section VIII concludes and mentions future work.

II. HEURISTICS

In this section, we describe the three heuristics that are
used in our system and illustrate them by some examples in
Sections II-A, II-B, and II-C.

A. Heuristic 1: Projects that are starred by the same users
within a short period of time are likely to be similar with one
another

GitHub users can star a repository to show their approval
and interest. The user who stars a GitHub repository is called
a stargazer of that repository. A stargazer can continuously get
updated information of the starred repository. The fact that a
GitHub user stars multiple repositories in a short period of
time may indicate that the repositories are similar.

GitHub users often have sufficient motivation to star a
repository when they find it interesting or useful. If the code
developed in a repository is used by a stargazer, she may
want to keep track of it in order to update her own code
when the original repository is updated. Even if a developer
does not use the code in a repository, she can still star an
interesting repository to allow her to have an easier access to
it, and potentially use the code developed in the repository
in the future. Since starring is a public activity in GitHub,
starring a repository indicates a stargazer’s appreciation and
approval to the repository. Starring can be used as a means to
promote a repository of interest; it appears on a stargazer’s
public activity timeline, which allows the repository to be
known by the followers of the stargazer. GitHub itself also
encourages users to star repositories. Repository star count
is used in many GitHub functionalities. For example, GitHub
uses the number of stars that various repositories have to help
rank repositories returned by its search engine.10 GitHub also
promotes repositories that accumulate stars rapidly by putting
them in the GitHub explore page.11

When a software developer meets with a problem, the
developer may seek help from GitHub, hoping to find some
repositories for code reuse and inspiration. During surfing on
GitHub, the developer may encounter some useful repositories,
and subsequently star those that are related to the problem.
In this way, multiple related repositories can be starred by
the same GitHub user in a short time period. The problem

10https://help.github.com/articles/about-stars/
11https://github.com/explore
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that a developer meets often changes over time. Intuitively,
problems that a single developer meets tend to be similar. This
is especially so, if the time gap between when the problems
are encountered is short. A developer may solve one problem
in the morning, another related problem in the afternoon, and
a less related one 5 days later. Our first heuristic is based on
the hypothesis that repositories stared by one user in a shorter
time period are likely to have higher similarities than those
starred by the user in a longer time period.

For example, consider a GitHub user LiqiangZhang12 and
his public activities on Nov 18, 2015. On that date, he starred
three repositories in one hour, i.e., bunnyblue/DroidFix,
jasonross/Nuwa, and dodola/HotFix. These repositories
are all related to Android hot fix.13 If we look at his
activities two days earlier, we would notice that he
also starred three repositories in one hour, spongebo-
brf/MaterialIntroTutorial, alafighting/CharacterPickerView,
and fengjundev/DoubanMovie-React-Native. These three
repositories are all Android design and user interaction
projects. The repositories starred on Nov 18 are highly similar
to one another, and those starred on Nov 16 are also highly
similar to one another. The two groups of repositories are less
but yet still similar to each other, since they are all Android
repositories. This example illustrates that repositories that
are starred together by a single user are likely to be similar.
This is especially true if the period in which they are starred
together is short.

Figure 1: Snapshots of LiqianZhang’s Public Activities

This phenomenon is not limited to LiqiangZhang,
and we find many similar examples: On Nov 23
and 24, 2015, GitHub user fenixlin14 starred two
repositories: heshibidahe/Active learning ml 100k and
scikit-learn/scikit-learn. They are both Python machine
learning tools or modules. on Jan 26, 2016, GitHub user
shichaohao15 starred two repositories, getlantern/lantern
and ziggear/shadowsocks. Once deployed, both of them
can be used for assessing public websites in regions
where these websites are blocked. Another GitHub user
DreaminginCodeZH16 starred three repositories consequently
in Jan 17, 2016, including timusus/RecyclerView-
FastScroll, AndroidDeveloperLB/ThreePhasesBottomSheet

12https://github.com/StormGens
13Android hot fix allows developers to update Android applications without

publishing a new version.
14https://github.com/fenixlin
15https://github.com/shichaohao
16https://github.com/DreaminginCodeZH

and daimajia/AndroidImageSlider. These repositories are
similar in that they all deal with the scrolling or sliding action
on Android.

Moreover, intuitively the more GitHub users star the
same set of repositories together, the more likely the set of
repositories are similar to one another. For example, GitHub
user, yangweidong17, starred both bunnyblue/DroidFix and
dodola/HotFix in one hour, on Nov 18, 2015. These two repos-
itories are both starred by both yangweidong and LiqianZhang.
GitHub user vinci718 starred both timusus/RecyclerView-
FastScroll and AndroidDeveloperLB/ThreePhasesBottomSheet
on Jan 27, 2016. As we mentioned before, those two reposito-
ries are also starred by user DreamingCodeZH. The fact that
many people stars two repositories together strengthens our
confidence that the two repositories are similar.

B. Heuristic 2: Projects that are starred by similar users are
likely to be similar with one another

In the first heuristic, we consider repositories that are
starred by the same user to be similar. In this heuristic,
we consider repositories that are starred by similar users to
be similar too. We consider GitHub users who have many
common starred repositories to be similar.

For example, we track two GitHub users who starred
at least five common repositories. The two GitHub users,
Will Sahatdjian19 and Aldiantoro Nugroho20, have starred
contra/react-responsive21, Ramotion/folding-cell22, so-
fancy/diff-so-fancy23, corymsmith/react-native-fabric24 and
danielgindi/ios-charts25. Therefore, we consider them as
similar users. Many repositories Will Sahatdjian starred and
Aldiantoro Nugroho starred are also similar. For example, Will
Sahatdjian starred jessesquires/JSQMessagesViewController26,
and Aldiantoro Nugroho starred facebook/pop27. Both
repositories are not starred by the other user, however, they
are similar. The former one describes itself as an elegant
message UI library for iOS, while the latter one describes
itself as an extensible iOS and OS X animation library, useful
for physics-based interactions.

C. Heuristic 3: Projects whose readme files contain similar
contents are likely to be similar with one another

Analyzing the textual similarity of readme files could also
help us find similar repositories. It is intuitive that repositories
that have similar functionalities have higher likelihood of
using similar words in their readme file, even if they are not
developed by the same group of developers or organization.

17https://github.com/yangweidong
18https://github.com/vinci7
19https://github.com/kwcto?tab=activity
20https://github.com/kriwil
21https://github.com/contra/react-responsive
22https://github.com/Ramotion/folding-cell
23https://github.com/so-fancy/diff-so-fancy
24https://github.com/corymsmith/react-native-fabric
25https://github.com/danielgindi/ios-charts
26https://github.com/jessesquires/JSQMessagesViewController
27https://github.com/facebook/pop
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For example, consider two repositories Android-
HttpClient28 and android-async-http29. The two repositories
are similar to each other since they implement a number
of common functionalities, e.g., asynchronous HTTP client
functionality for Android applications. Excerpts of their
readme files are shown in Figure 2, and we find that they
share a number of words, e.g., asynchronous, HTTP, cookie,
JSON, GET, POST, etc.

(a) An example from Android-HttpClient’s Readme File

(b) An example from android-async-http’s Readme File

Figure 2: Readme Files of Two Similar Projects

III. REPOPAL

In this section, we first explain the overall architecture of
RepoPal. Next, we describe each of its main components.

A. Architecture

Figure 3 shows the overall architecture of our technique,
RepoPal, with its constituent parts, inputs and output. It takes
as input a set of GitHub repositories (GitHub Repository
Set), and a query repository (Query Repository). It outputs
a ranked list of repositories that are similar to the query
repository (Similar Repository List). It consists of three main
components: Star Relevance Calculator, Readme Relevance
Calculator, and Composer. The first and second component
compute the star-based relevance scores and the readme-based
relevance scores, respectively. The last component composes
the two relevance scores to rank repositories in the Repository
Set based on their similarity to the Query Repository. We
describe the three components of RepoPal in the next sub-
sections.

B. Star Relevance Calculator

The Star Relevance Calculator component leverages the
GitHub stars to rank repositories. Intuitively, two repositories
that are starred at a similar period of time by many people

28https://github.com/levelup/Android-HttpClient
29https://github.com/loopj/android-async-http

Figure 3: RepoPal Architecture

are likely to be similar together. We have shown a motivating
example in Section II. We use this intuition to calculate a star-
based relevance score between two repositories.

Before we define a formula to compute the star-based
relevance score, we need to introduce several notations. Let
U denotes a single GitHub user, R denotes a repository, and
S(R) denote all the users who starred R. Given the fact that
user U starred repository R, we use T (U,R) to represent the
time-stamp at which user U starred the repository R. Given
two repositories R1 and R2 which are starred by user U , we
can compute the adjusted time difference between them being
starred by U (denoted as D(U,R1, R2)) as follows:

D(U,R1, R2) = |T (U,R1)− T (U,R2)|+ 30min (1)

We set the adjusted time difference as the real time
difference (in minutes) plus 30 minutes. This is because there
is not much difference of relevance between two repositories
whether they are starred within one or a few minutes.

Based on the adjusted time difference, we can calculate
star-based relevance score between two repositories R1 and
R2, denoted as Relevances(R1, R2), as follows:

Relevances(R1, R2) =
∑

U∈S(R1)
⋃
S(R2)

1

D(U,R1, R2)

+
∑

(Ui,Uj)∈SIM

ε
(2)

In the above equation, SIM is a set of similar GitHub user
pairs. We consider a pair of GitHub users who star 5 common
repositories as similar. Also, ε is a small number equals to the
reciprocal of the maximum adjusted time difference of any
pair of repositories starred by Ui and any pair of repositories
starred by Uj . The motivation of setting ε to be such small
number is that the similarities of two repositories starred by
similar users should not be larger than the similarities of two
repositories starred by the same user.

The star-based relevance score is calculated as the sum of
the reciprocals of the adjusted time differences plus some con-
tributions due to similar users. In this way, for two repositories,
when the time difference between their two stars is smaller,
the reciprocal becomes larger, and therefore the relevance is
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higher. When there are more users starring the two repositories
together, the relevance score will also be higher. When more
similar users star the two repositories, the relevance score will
also be higher.

C. Readme Relevance Calculator

The Readme Relevance Calculator component computes
the readme-based relevance score of two repositories by com-
paring their readme files. We compute this relevance score
using the Vector Space Model (VSM), which is commonly
used to find similarity between documents in information
retrieval. We pre-process all the readme files by removing
stopwords and perform stemming to reduce the words to their
root form. We then convert the files into vectors of weights.
Each preprocessed word corresponds to an element in the
vector and its weight is computed using the standard tf-idf
weighting scheme [8]. The weight of word t given document
(i.e., readme file) R in a collection of documents C, denoted
as wt,R is computed as follows:

wt,R = (1 + logtft,R)× log(
|C|
dft

) (3)

In Equation 3 above, tft,R denotes the term frequency of
word t in document R, i.e., the number of times t occurs in
readme file R. dft denotes the document frequency of t, i.e.,
the number of documents (i.e., readme files in C) that contain
word t. After the weights are computed, each readme file R can
represented as a vector of weights. Given two repositories and
their two representative vectors of weights, we can compute
their readme relevance score, denoted as Relevancer(R1, R2),
by taking the cosine similarity of their representative vectors
as follows:

Relevancer(R1, R2) =

∑
tεR1∩R2

wt,R1 × wt,R2√∑
tεR1

w2
t,R1
×
√∑

tεR2
w2
t,R2

(4)

D. Composer

The Composer component composes the two relevance
scores and calculates the overall relevance score for two
repositories R1 and R2 as follows:

Relevance(R1, R2) = Relevances(R1, R2)×
Relevancer(R1, R2)

(5)

The pseudocode of the Composer Component is shown in
Algorithm 1. Given a query repository, it computes the star-
based, readme-based, and overall relevance scores between the
query repository and each repository in the Repository Set
(RepoSet) – lines 1 – 5. The repositories in Repository Set are
then be sorted based on their overall relevance scores (lines
6). Finally, the top-k repositories are output (line 7).

IV. EXPERIMENT SETUP

We compare RepoPal with a prior work CLAN (Closely
reLated ApplicatioNs) [5]. To the best of our knowledge,
CLAN is the most similar related work.30 CLAN identifies

30Another closely related work by Thung et al. [7] cannot be applied to
our setting since it requires the availability of manually assigned tags, while
tagging is not supported by GitHub.

Algorithm 1: Find Top-K Most Similar Repositories
Input : QRepo: Query repository, RepoSet: Set of

repositories
Output: Top-k repositories
1 for each repository r in RepoSet do
2 compute Relevances(QRepo, r)
3 compute Relevancer(QRepo, r)
4 compute Relevance= Relevancer ×Relevances
5 end
6 Sort the RepoSet repositories in descending order

based on Relevance score
7 Output the top-k repositories

similar applications by measuring the similarity of their Java
API (i.e., JDK) method invocations. CLAN parses the source
code of programs and represents each program by the Java API
methods that it calls. CLAN then assign weights to the Java
API methods following the popular term frequency - inverse
document frequency (TF-IDF) weighting scheme [8]; method
invocations that are called more often are given higher weights,
and method invocations that are called in less applications are
given higher weights. Next CLAN compares two applications
based on the weighted JDK method invocations using Latent
Semantic Indexing (LSI) [9]. We also combine RepoPal and
CLAN and denote the combined system as Combined. Given
a pair of repositories R1 and R2, Combined multiplies the
relevance score produced by RepoPal with the score that is
produced by CLAN. The product of the two relevance scores
is the score that is returned by Combined for R1 and R2.

To evaluate the three systems (i.e., RepoPal, CLAN, and
Combined), we use a dataset of 1,000 unique31 popular Java
repositories on GitHub which receive more than 20 stars from
GHTorrent [10]32. These repositories are picked randomly and
the number of stars ranges from 21 to 6106. We set the
requirement for number of stars since many repositories in
GitHub are of low quality [11], [12], which is especially true
when they do not have many stars. Ideally, only high-quality
repositories should be recommended. We only consider Java
repositories since we would like to compare our approach with
CLAN which only works for Java. For each of these 1,000
repositories, we collect its readme file, star events, and source
code. We pick 50 repositories among the 1,000 as queries (see
Table I), and generate the top five similar repositories using
RepoPal, CLAN and Combined.

We invited 50 participants to evaluate the effectiveness
of the three systems (i.e., RepoPal, CLAN and Combined)
in recommending similar repositories. The participants come
from Alibaba Ltd., NetEase Ltd. and Zhejiang University. Out
of the 50 participants, 12 of them are Alibaba employees,
9 of them are NetEase employees, 25 of them are senior
undergraduates in Zhejiang University and 4 are graduate
students from the same university. All of them are skillful
programmers with at least 3 years of coding experience. Forty
eight participants are GitHub users and 13 of them frequently
search interesting repositories in GitHub.

Each participant was given one of the query repositories

31None of the repositories are clones of one another.
32http://ghtorrent.org/
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Table I: Queries Used to Evaluate RepoPal, CLAN and the combined

Num. Query Num. Query Num. Query Num. Query Num. Query
1 Activiti 11 FlexiImageView 21 jpropel 31 apifest-oauth20 41 FragmentTabHostExample
2 Androzic 12 gatk 22 json 32 circular-progress-button 42 mvp-to-mvvm-transition
3 cli-parser 13 GraphTea 23 jsonde 33 O2OMobile Android 43 android-number-morphing
4 crunch 14 GwtMobile-UI 24 kalium 34 android-archetypes 44 lucy-xss-servlet-filter
5 me.fantouch.libs 15 Hangouts-UI 25 LyricHere 35 play-rest-security 45 metrics-reporter-config
6 dl4j-examples 16 high-scale-lib 26 mvel 36 MultiActionTextView 46 SalesforceMobileSDK-Android
7 Dumbledroid 17 invokebinder 27 Pydev 37 MultipleChoiceAlbun 47 spring-integration-extensions
8 ehour 18 iText-4.2.0 28 Qiitanium 38 deep functional test 48 aws-apigateway-swagger-importer
9 EmojiChat 19 itl-java 29 query 39 FileDownloaderManager 49 shoppinglist-clean-architecture-example
10 Fglass 20 Jobs 30 tempus-fugit 40 appbundle-maven-plugin 50 PhilipsHueSDK-Java-MultiPlatform-Android

listed above and 15 retrieved repositories generated by the
three systems (5 from each system). In some cases, there
may be several common repositories retrieved by different
systems using one query and we omit the duplicates. To reduce
experiment bias, we do not inform the participants which of
the three systems recommends a repository. Participants were
given the URLs of the GitHub repositories and therefore can
access the code, authors and contributors, readme file, related
links (if any) and other information to assess similarity. To
further reduce bias, we do not instruct participants to focus
on a specific piece of information. We hope participants could
judge the similarity of repositories fairly using various sources
of information. Participants are instructed to comprehend all
repositories carefully and use at least a total of 30 minutes
to assess similarities. After that, they are asked the following
questions about the relevance of each retrieved repository to
the query:

How relevant is the retrieved repository to the query
repository?
Options:
(1) Highly Irrelevant,
the participant finds that there is absolutely nothing in
common between the retrieved and query repositories.
(2) Irrelevant,
the participant finds that the two repositories have little
in common.
(3) Neutral,
the participant finds that the two repositories are
marginally relevant.
(4) Relevant,
the participant finds that the two repositories are similar
on a number of aspects.
(5) Highly Relevant,
the participant finds that the retrieved and query repos-
itories are similar in most aspects, and even some parts
may be identical.

We map each participant response to a score from 1 to
5, with 1 corresponding to “Highly Irrelevant” and 5 corre-
sponding to “Highly Relevant”. We use the scores to evaluate
the effectiveness of the three recommendation systems (i.e.,
RepoPal, CLAN, and Combined).

Following prior studies [5], [7], we use three evaluation
metrics, i.e., success rate, confidence and precision, to sum-
marize the ratings that we receive from the participants:

1) SuccessRate@T. SuccessRate@T is defined as the propor-
tion of successful top-5 recommendations that a system
generates. A top-5 recommendation is deemed to be

successful if there is at least one retrieved repository
with rating T or higher. We consider SuccessRate@4 and
SuccessRate@5.

2) Confidence. Median and mean confidence is defined as the
median and mean ratings participants give to all retrieved
repositories recommended by a system.

3) Precision. Precision is defined as the proportion of rele-
vant and highly relevant repositories among those that a
system recommends for a query. Given a set of queries,
we can define the mean and median of the precision
scores.33

Based on the above evaluation metrics, we investigate the
following research questions:

RQ1: What are the proportions of queries for which
RepoPal, CLAN, and Combined return at least
a relevant (or highly relevant) search result?

RQ2: How high are the median and mean confidence
of participants using RepoPal as compared to
CLAN?

RQ3: What are the precision scores of RepoPal and
CLAN?

V. EXPERIMENT RESULTS

In this section we report the evaluation of the three sys-
tems on the three metrics, and check the significance of the
differences, using data collected from participants.

A. RQ1: Success Rate

The success rates of RepoPal, CLAN and Combined are
shown in Table II. We note that RepoPal and Combined
achieve higher success rates than CLAN. RepoPal performs
better than Combined showing that adding CLAN to RepoPal
does not help boost performance. RepoPal, the best performing
system, can generate successful recommendations that contain
at least one relevant (highly relevant) repository 88% (78%) of
the times, which is a reasonably high percentage. In terms of
SuccessRate@4, RepoPal and Combined outperform CLAN by
12.82% and 5.12% respectively. In terms of SuccessRate@5,
which is a stricter criteria, RepoPal and Combined outperform
CLAN by higher margins, i.e., 34.48% and 24.14% respec-
tively.

33When precision is computed, at times recall is computed too. Note that we
do not compute recall since we do not know the total number of relevant and
highly relevant repositories in our collection of 1,000 repositories. Identifying
all relevant and highly relevant repositories given a query repository would
require too much manual labeling cost.
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Table II: Success Rate: RepoPal VS. CLAN VS. Combined

Approach Success Rate Success Rate
(Score ≥ 4) (Score ≥ 5)

RepoPal 88% 78%
CLAN 78% 58%

Combined 82% 72%

Figure 4: Success Rate

We note that 22% and 42% query results generated by
CLAN do not include a single repository rated as relevant (4)
or highly relevant (5) respectively. This shows the limitation
of using only JDK API method invocations to characterize
repositories. Many JDK API method invocations are generic
and do not fully characterize the semantics of the applications
implemented in repositories. RepoPal heuristics more effec-
tively capture the semantics of applications and thus it can bet-
ter identify similar repositories. Also, the fact that combining
CLAN with RepoPal does not improve performance highlights
that including JDK API method invocations may cause noise
since unrelated repositories may use similar method calls (e.g.,
methods from java.util.ArrayList are used by a wide range of
applications).

RepoPal outperforms CLAN in terms of SuccessRate@4 and
SuccessRate@5 by 12.82% and 34.48% respectively.

B. RQ2: Confidence

Table III and Figure 5 shows the experiment results for
confidence. Figure 5 is a box plot diagram showing the distri-
bution of the 250 ratings that RepoPal, CLAN, and Combined
each receives. According to the table and the box plot, RepoPal
and Combined have very similar mean and median confidence
scores out of the 250 participant ratings, which are higher
than the results of CLAN. RepoPal and Combined outperform
CLAN in terms of mean confidence by 20.14% and 18.80%
respectively. The median confidence of RepoPal and CLAN is
4 (relevant), while that of CLAN is 3 (neutral).

Table III: Confidence: RepoPal VS. CLAN VS. Combined

Approach Sample Size Median Mean
RepoPal 250 4.0 3.52
CLAN 250 3.0 2.93

Combined 250 4.0 3.51

Figure 5: Confidence Box Plot

Out of the 50 queries, RepoPal has higher mean confidence
over CLAN for 35 queries, and the same mean confidence for
2 queries. Combined has higher mean confidence over CLAN
for 32 queries, and the same mean confidence for 6 queries.

We perform Wilcoxon signed rank test [13] to evaluate
whether the improvement of RepoPal over CLAN is statisti-
cally significant in terms of confidence, and we find that the
p-value is 0.032. Therefore, the improvement of RepoPal over
CLAN is significant at the confidence level of 95%. We also
perform the same test to evaluate whether the improvement of
of Combined over CLAN is statistically significant, and we
find the p-value is 0.0020, which indicates the improvement
of Combined over CLAN is significant at the confidence level
of 95%.

RepoPal and Combined outperform CLAN in terms of
mean confidence by 20.14% and 18.80% respectively. The
improvements are statistically significant.

C. RQ3: Precision

Table IV shows the median and mean precision of Re-
poPal, CLAN, and Combined for the 50 queries. We notice
that RepoPal and Combined has higher median and mean
precision than CLAN. The median precision of RepoPal and
Combined is 0.6, and their mean precision is 0.55 and 0.56
respectively. Their mean precision scores outperform that of
CLAN by 41.03% and 43.59% respectively. Figure 6 is the
box plot showing the distribution of mean precision out of
the 50 queries. We note that the upper quartile for CLAN is
substantially lower than those of RepoPal and Combined.
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Table IV: Precision: RepoPal VS. CLAN VS. Combined

Approach Sample Size Median Mean
RepoPal 50 0.6 0.55
CLAN 50 0.4 0.39

Combined 50 0.6 0.56

Figure 6: Precision Box Plot

Out of the 50 queries, RepoPal has higher precision over
CLAN for 33 queries, and the same precision for 6 queries.
Combined has higher precision over CLAN for 23 queries and
the same precision for 21 queries.

Wilcoxon signed rank test is performed again to test
whether the improvements of RepoPal and Combined over
CLAN are statistically significant in terms of precision. The
p-values of RepoPal compared with CLAN and Combined
compared with CLAN are 4.007e−5 and 3.132e−7, respec-
tively, which indicate that the improvements of RepoPal and
Combined over CLAN are statistically significantly.

RepoPal and Combined outperform CLAN in terms of
mean precision by 41.03% and 43.59% respectively. The
improvements are statistically significant.

VI. THREATS TO VALIDITY

In this section, the threats to validity of our system and
experiment is discussed. The threats to validity is mainly
divided into threat to internal validity, threats to external
validity, and threats to construct validity. We also present what
steps we have taken to minimize the threats.

A. Threats to Internal Validity

Threats to internal validity relates to experiment bias. We
highlight two threats in terms of participants and repositories
used to evaluate the three systems below.

Participants: The empirical evaluation is based on the scores
given by the 50 participants. Some factors may cause some

threats to the validity of the findings; these include: the
familiarity of participants with Java and GitHub, participant
motivation to give careful evaluation, and consistency in par-
ticipants’ standard of relevance.

Although it is guaranteed that all participants reported
themselves to be familiar with Java and GitHub, their pro-
ficiency is not independently evaluated by us. The lack of
knowledge in Java language and GitHub may influence the
participants’ judgments. This threat is limited by the fact that
all student participants are from computer science department
in Zhejiang University and taken sufficient technical courses,
and all professional participants are developers or testers in
reputed technical companies (Alibaba Ltd.34 and NetEase
Ltd.3536).

Meanwhile, if participants do not have interest or moti-
vation in evaluating the similarity of repositories, they may
also make irresponsible choices. We minimize this threat by
choosing participants who said they are interested in our
research, and asking them to spend enough time to comprehend
the repositories.

The inconsistency of evaluation standard among partici-
pants may also have negative effect. We try to minimize this
by assigning the three system outputs for one query to be rated
by the same participant. Thus, the strictness or leniency of this
participant in his/her rating, would be fairly distributed to all
evaluated systems. Since each query was only assigned to one
participant, there is no information as to how reliable these
results are across participants. If we have more participants, we
can assign the same query to multiple participants and calculate
the inter-rater reliability. Note that many past studies that
require user study also do not compute inter-rater reliability
due to limited number of participants, e.g., [5], [7].

Repositories: In this study, we only use 50 queries to re-
trieve similar repositories to evaluate RepoPal, CLAN and
Combined. We also only retrieve similar repositories from a
pool of 999 repositories (i.e., 1,000 minus the one as query).
In the future, we plan to use more queries, repositories, and
participants to reduce the threats to validity.

The quality of repositories also poses a threat. If a
repository is of low quality, possibly with no description or
specification and a bad coding style, it is hard for participants
to give proper evaluation. We selected repositories with more
than 20 stars to build the dataset. Intuitively these popular
repositories should have better quality. A similar strategy of
filtering repositories using stars, which indicate the popularity
of the repositories, was also done in many prior studies,
e.g., [12], [14]. Although CLAN does not require repositories
to have stars, if we do not limit the number of stars, it is likely
that CLAN will retrieve many repositories that has similar API
invocations as the query repository but with low quality, which
will also harm CLAN’s performance.

B. Threats to External Validity

Threats to external validity mainly deals with the gener-
alizability of our research and experiment. We highlight the

34http://www.alibaba.com/
35https://en.wikipedia.org/wiki/NetEase
36http://www.163.com/
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threats in terms of the programming languages and the number
of stars of repositories considered in this work.

Programming Languages: GitHub contains numerous repos-
itories written in languages other than Java (e.g. Python, PHP,
C++), or combinations of multiple programming languages.
RepoPal is not designed for a single language and can be
applied to all GitHub repositories. However, since we want
to compare RepoPal with CLAN and CLAN only supports
Java, we focus on Java repositories in this study. We plan
to evaluate RepoPal with other repositories written in various
programming languages in the future.

Number of Stars: When the repositories’ star number reduces,
the quality of RepoPal’s retrieval may decrease. However,
as discussed before, most GitHub repositories with low star
number are also of low quality, making them unfavorable to
be reused.

C. Threats to Construct Validity

Threats to construct validity relates to the suitability of our
evaluation metrics. In this work, we use the same metrics as
used by the most closely related work by McMillan et al. [5]
and Thung et al. [7]. These metrics are: SuccessRate@T, con-
fidence and precision. These metrics are well known metrics
that have also been used in many previous studies [5], [7],
[15], [16], [17], [18].

VII. RELATED WORK

Finding Similar Repositories. The closest works to our
approach are the studies conduted by McMillan et al. [5]
and Thung et al. [7]. McMillan et al. propose an approach
CLAN, which compares similarity between projects using the
API usage patterns [5]. They evaluate their technique on over
8,000 Java applications and find that their approach has a
higher precision than previously proposed technique. Thung
et al. propose a technique to recommend similar repositories
based on software tags mentioned along with the project on
SourceForge [7]. They perform a user study which shows that
their technique outperforms JavaClan, that only uses Java API
method calls.

Unfortunately, GitHub does not support repository tagging
and the approach by McMillan et al. only relies on API
usage patterns. In this work, we propose a new approach that
addresses the limitations of prior approaches to identify similar
repositories on GitHub. It relies on two sources of information,
GitHub stars and readme files, which were not used in the
prior works. We have also compared our approach against the
work by McMillan et al. (i.e., CLAN) on Java repositories
and demonstrated that our work outperforms theirs. We do
not compare our approach with Thung et al.’s work since their
approach relies on tags which are not available for repositories
on GitHub.

Software Recommendation Systems. There have been a
number of studies on software recommendation systems. Ba-
jracharya et al. present a technique Structural Semantic Index-
ing (SSI) which associates words to source code entities based
on similarities of API usage, to recommend API usage exam-
ples [19]. Thung et al. present a technique that recommends

libraries to developers using association rule mining, which is
based on the current library usage, and collaborative filtering,
which finds libraries used by other similar projects [20]. The
evaluation of their technique on 500 Java projects shows high
recall rates. Bauer et al. present a technique to detect re-
implementations of source code by leveraging identifier based
concept location and static analysis [21]. Teyton et al. present
an approach that analyzes source code changes in software
projects, which have migrated from one third-party library to
another, and extract mappings between functions of old library
and new library [22].

Our work is orthogonal to the above studies: we recom-
mend similar repositories to a given query repository which is
a different problem compared with the the problems addressed
by the above mentioned works.

Software Categorization. Several approaches categorize
projects into different categories. Kawaguchi et al. propose
a technique MUDABlue, that uses source code and applies
Latent Semantic Analysis (LSA) to automatically determine
different categories from a collection of software systems and
classifies these systems into the above categories [6]. They
also implement a web-based interface to visualize different
categories and compare their technique to some previously
proposed techniques based on information retrieval. Wang et
al. propose a SVM-based approach to hierarchically categorize
software projects by aggregating different online profiles from
multiple repositories [23]. They conduct an experiment on over
18,000 projects and find that their technique shows significant
improvement in precision, recall and F-measure. These studies
classify projects into different categories, however, there can be
many projects within a category (on average, hundreds [23]).
Given a query project, it is not possible to use the above
mentioned approaches to differentiate projects within the same
category.

Code Search Engine. Several studies have proposed
source code search engines, for example, Exemplar [24],
Sourcerer [25], SNIFF [26], Portfolio [27], SpotWeb [28],
Parseweb [29], and S6 [30]. These search engines recover
source code fragments that match a certain natural language
query. In this work, we consider a different yet related problem,
namely the identification of similar repositories, given a query
repository.

Studies on GitHub. A number of studies have analyzed repos-
itories in GitHub. For example, Bissyande et al. study 100,000
GitHub projects to examine the popularity, interoperability and
impact of various programming languages [31]. Ray et al.
analyse more than 700 projects to understand the effect of
programming languages on software quality [32]. Vasilescu et
al. analyse thousands of projects and survey GitHub users to
investigate the relationship between gender and tenure diversity
on team productivity and turnover [33]. Different from the
above studies, we focus on an orthogonal problem namely the
identification of similar repositories on GitHub.

VIII. CONCLUSION AND FUTURE WORK

Detecting similar repositories on GitHub can help software
engineers to reuse source code, identify alternative implemen-
tations, explore related projects, find projects to contribute to,
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discover code theft and plagiarism, among others. A number
of prior approaches have been proposed to identify similar
applications, unfortunately they are not optimal for GitHub.
One approach relies only on similarity in API method invoca-
tions [5], while another relies on tags which are not present in
GitHub [7]. They do not leverage two sources of information
that can intuitively help to identify similar repositories, that
is, GitHub stars and readme files. In this work, we propose a
new technique named RepoPal that leverages the two sources
of information. It works based on three heuristics: First, repos-
itories that are starred by the same people within a short period
of time are likely to be similar. Second, repositories starred
by similar users are likely to be similar. Third, repositories
whose readme files share similar contents are likely to be
similar. In this study, we have evaluated RepoPal on 50 queries
run against a pool of 1,000 repositories, and compared its
effectiveness against CLAN. Our experiment results show that
RepoPal can outperform CLAN in terms of success rate,
confidence, and precision.

In a future work, we plan to reduce the threats to validity
by including additional queries, repositories, and participants
in the evaluation of RepoPal. Moreover, we plan to include
additional sources of information to boost the effectiveness of
RepoPal further.
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[31] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillère,
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