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Abstract
Synergistic interactions between task/resource allocation
and stochastic planning exist in many environments such
as transportation and logistics, UAV task assignment and
disaster rescue. Existing research in exploiting these syn-
ergistic interactions between the two problems have ei-
ther only considered domains where tasks/resources are
completely independent of each other or have focussed
on approaches with limited scalability. In this paper, we
address these two limitations by introducing a generic
model for task/resource constrained multi-agent stochas-
tic planning, referred to as TasC-MDPs. We provide two
scalable greedy algorithms, one of which provides pos-
terior quality guarantees. Finally, we illustrate the high
scalability and solution performance of our approaches in
comparison with existing work on two benchmark prob-
lems from the literature.

1 Introduction
In delivery of services or goods [Dantzig and Ramser, 1959;
Dolgov and Durfee, 2006], tasks have to be allocated to in-
dividual vehicles based on uncertain travel times to delivery
locations. Also, in disaster rescue scenarios [Velagapudi et
al., 2011; Varakantham et al., 2009], victims have to be al-
located to robots while considering the uncertainty in travel-
ing through disaster prone areas. Furthermore, in large ware-
houses [Hazard et al., 2006] of online portals such as ama-
zon, movement of automated robots fetching goods based on
online orders (uncertainty) have to be coordinated in the us-
age of pathways (resources). These domains have the follow-
ing common characteristics: (a) Multiple agents (e.g., am-
bulances/fire trucks) coordinate plans to achieve a goal or to
optimize a certain criterion (e.g., save victims); (b) There
is transition uncertainty in planning problems of individual
agents, either due to traveling on roads (due to traffic) or un-
certain demand (online orders) or physical constraints (e.g.,
robots); and (c) Actions of agents either require the availabil-
ity of resources (roads, paths, tools, etc.) or completion of
tasks allocated (target surveillance, delivery of items, etc.).
Furthermore, there is usually a hard constraint on the number
of tasks/resources available and this causes agent plans to be
dependent on each other.

We can view these domains as having a synergis-
tic combination of two interdependent challenges, namely

task/resource allocation and planning under transition uncer-
tainty for multiple agents. While the task allocation deter-
mines the plans for the individual agents, the feedback from
the plans can help improve the allocation (as not all allocated
tasks/resources can be executed/utilized due to uncertainty).
We refer to these problems as Task/Resource Constrained
Markov Decision Problems (TasC-MDPs) and we are specif-
ically focussed on cooperative TasC-MDPs.

Researchers have modeled task/resource constrained
stochastic planning problems in a variety of ways includ-
ing cooperative auctions [Koenig et al., 2010], resource-
constrained MDPs [Dolgov and Durfee, 2006; Guestrin and
Gordon, 2002], decentralized MDPs (Dec-MDPs) [Bernstein
et al., 2002], and Dec-MDP variants that exploit the spar-
sity of agent interactions [Nair et al., 2005; Kumar and Zil-
berstein, 2009; Velagapudi et al., 2011; Varakantham et al.,
2014; Witwicki and Durfee, 2011]. While Dec-MDPs are a
rich model, they do not represent tasks explicitly and, because
of this, all agents would be represented as being dependent on
each other. This significantly impacts the scalability of solu-
tion approaches. The most relevant models for this work are
the resource-parametrized MDPs [Dolgov and Durfee, 2006;
Wu and Durfee, 2010] and weakly-coupled MDPs [Guestrin
and Gordon, 2002]. While these works are relevant, they
are not scalable (i.e., to tens/hundreds of agents and hun-
dreds of tasks/resources) and do not consider dependencies
between tasks/resources. While there are many other relevant
papers, the following aspects differentiate our work from ex-
isting work in this thread: (i) We consider problems where
there exist dependencies (temporal and allocation constrain-
ing) between tasks/resources. (ii) Our unique mechanism of
employing a greedy heuristic method in the context of dual
decomposition for improved scalability and quality bounds.

Another thread of existing research considers multi-agent
deterministic routing [Christofides et al., 1981; Campbell et
al., 1998], where the individual routing problems are depen-
dent on the tasks/resources allocated to them. Decomposition
techniques such as Column Generation (CG) [Desrochers et
al., 1992], Lagrangian Relaxation (LR) [Kohl and Madsen,
1997; Chien et al., 1989] and Benders Decomposition [Fed-
ergruen and Zipkin, 1984] have been used to improve scala-
bility. The key difference and enhancement over this line of
existing work is due to consideration of transition uncertainty.
Unlike deterministic routing problems, in an MDP, the num-



ber of resources consumed or tasks completed is not easy to
compute due to the transition uncertainty.

We make the following key contributions to solve TasC-
MDPs in this paper. First, we provide a generic model
for TasC-MDPs with an ability to handle task dependen-
cies, specifically temporal task dependencies and task al-
location dependencies for agents. Second, we provide a
greedy approach referred to as GAPS to greedily allocate
tasks/resources to agents based on their marginal value con-
tribution. Third, we provide a unique method of employing
GAPS in the context of dual decomposition to improve scal-
ability and provide quality bounds. Finally, on two bench-
mark problems from the literature, we show that our approach
based on dual decomposition provides a good trade-off be-
tween the GAPS approach and optimal MILP.

2 Task/Resource Constrained MDP
A Task/Resource Constrained Markov Decision
Process (TasC-MDP) is defined using the tuple〈
Ag,Γ, C, D, Z, 〈Mi〉i∈Ag

〉
.

• Ag is the set of agents.
• Γ is the set of the different types of tasks/resources.
• C =

⋃
τ∈Γ C(τ) corresponds to the set of all

tasks/resources, where C(τ) is the set of tasks/resources
of type τ ; P(C) is the power set of C, that is, it is the
set of all possible task/resource allocations; |C(τ)| is the
global capacity bound for tasks/resources of type τ .

• D = {τi ≺ τj , τk ‖ τl, . . .} is the set of dependencies for
tasks/resources. While there are potentially other types
of dependencies, we restrict ourselves to temporal and al-
location constraining dependencies in this paper. A tem-
poral dependency is represented as τi ≺ τj , indicating
that a predecessor-task τi should be executed before the
successor-task τj . An allocation constraining dependency
is represented as τi ‖ τj , indicating that both tasks τi and
τj should be allocated to same agent.

• Z is the finite set of capacities for an agent, where z ∈ Z
represents a capacity type (e.g., weight, money, etc.).

• Mi is the MDP model for agent i along with the
task/resource associations of actions. It is defined as the
tuple

〈
Si, Ai, Pi, Ri, ρi, qi, q̂i, α

0
i

〉
.

- Si, Ai,Pi, Ri are the sets of states, actions, transition
and reward functions, respectively.
- ρi : Ai × Γ → R{0,1} is a function that specifies the
binary task/resource requirements of all actions.
- qi : Γ× Z → R is a function that specifies the capacity
costs of tasks/resources (e.g., qi(τ, z) defines how much
capacity z ∈ Z is required for task/resource type τ ∈ Γ).
- q̂i : Γ → R corresponds to the upper bound on the
capacities (e.g., q̂i(z) gives the upper bound on capacity
z ∈ Z ) for agent i.
- α0

i is the starting probability distribution for agent i.
The goal is to compute a joint policy π∗ that has the highest

expected reward among all joint policies:

π∗ = argmax
π

∑
i

Vi(πi, α
0
i ) s.t.

Algorithm 1 GAPS(TasC −MDP )
1: r̃← C
2: F ← ∅
3: repeat
4: for all i ∈ Ag \ F do
5: π∗i ← maxπi Vi(πi, α

0
i ) s.t. f(πi) ≤ r̃

6: 〈i∗, Vi∗〉 ← maxi∈Ag\F Vi(π
∗
i , α

0
i )f(πi) ≤ r̃

7: ri∗ ← GETCONSUMEDRESOURCE(π∗i∗)
8: r̃← r̃ \ ri∗
9: F ← F ∪ {i∗}

10: until r̃ = ∅ OR Vi∗ = 0
11: return π∗ ← {π∗i }i∈Ag∑

i∈Ag

|ri(τ)| ≤ |C(τ)| ∀τ ∈ Γ (1)

f(πi, τ) ≤ ri(τ) ∀i ∈ Ag,∀τ ∈ Γ (2)

where πi is the individual policy of agent i in the joint pol-
icy π; ri is the set of tasks/resources allocated to agent i with
ri(τ) indicating the number of tasks/resources of type τ ; and
Vi(πi, α

0
i ) is the expected value for the individual policy πi

on model Mi. The task/resource-based interactions are ex-
plicitly modelled in Constraint (1), which ensures that the
number of resources used (or tasks executed) is less than the
capacity. The individual resource requirements or task com-
pletions are modelled using Constraint (2). The function f
is used to compute the number of resources required or tasks
completed of type τ by using a policy πi for agent i.

Overall, TasC-MDPs represent task/resource-based inter-
actions between stochastic planning agents, i.e., given the al-
location of tasks/resources, the agent planning problems are
independent of each other. This is one of the key insights
that we exploit in a formal way with our greedy-based dual
decomposition approach. It should be noted that since TasC-
MDPs generalize the 0/1 knapsack problem, it is trivial to
show that optimally solving TasC-MDPs is at least in NP. Fi-
nally, as our approach can be applied on both resource and
task allocation problems, we will use “resource” and “task”
interchangeably in the rest of the paper.

3 GAPS Algorithm
We now introduce the Greedy Agent-based Prioritized Shap-
ing (GAPS) algorithm to solve TasC-MDPs. GAPS greed-
ily allocates resources to the agent that yields the highest in-
crease in expected value. Initially, it computes individual best
policy for all agents given all the resources. Once the agent
with the highest value is identified, excess resources that were
not utilized are determined. It fixes the policy for the highest-
value agent and repeats the process with the excess resources
for the remaining agents until there are no more resources
available or the value of adding an agent is 0.

Algorithm 1 shows the pseudocode. The algorithm uses
r̃ to represent the set of unallocated resources and F to rep-
resent the set of agents with allocated resources. They are
initialized to the set of all resources C (line 1) and the empty
set (line 2), respectively. GAPS then iterates over the set of
agents without allocated resources (line 4), and for each agent
i in this set, it solves the individual agent model assuming that
the agent is allocated all remaining unallocated resources r̃



(line 5). Among these agents, GAPS chooses the agent with
the largest expected reward (line 6), removes the resources
that it consumed from the set of available resources (lines 7-
8) and adds that agent to the set of agents with allocated re-
sources (line 9). GAPS repeats this process until there are no
more unallocated resources or the unallocated resources are
not useful to any agent (lines 3 and 10) and returns the joint
policy of all agents before terminating (line 11).

GAPS is an easily parallelizable algorithm. Instead of it-
erating through the agents and solving the individual MDP
models sequentially (lines 4-5), they can be solved in parallel
by each agent as they are independent of each other. Once
the individual MDP models are solved, they will then need
to communicate with each other to identify the agent with the
largest expected reward and the resources that it consumed(or
tasks completed) (lines 6-8) in each iteration. By employ-
ing this model of parallel computation and communication,
GAPS can be made even more scalable when there are multi-
ple processors and cheap communication.

In each iteration, GAPS computes policies for all the re-
maining agents. Thus, the runtime complexity of GAPS is
O(|Ag|2× Complexity of solving an MDP). However, in
many planning problems like disaster rescue,1 if the number
of agent types (sets of homogeneous agents) is k (≤ Ag), then
the number of policy computations is at most k and hence the
runtime complexity is O(k · |Ag|× Complexity of solving an
MDP), which is linear in the number of agents. Thus, we
exploit the property of homogeneous agents to improve the
scalability of GAPS.

4 Greedy-Based Dual Decomposition
While GAPS is highly efficient, it provides no guarantee on
the solution quality. We thus describe an optimization-based
approach that provides posteriori guarantees on solution qual-
ity. We first provide a Mixed Integer Linear Program (MILP)
formulation to solve TasC-MDPs that extends the formula-
tion by Dolgov and Durfee [2006]. Table 1 shows the MILP,
where variable xti(s, a) denotes the occupation-measure of
agent i for state action pair (s, a). The binary decision vari-
able δi(τ) denotes the allocation of a resource of type τ to
agent i. The objective is to maximize the sum of expected
rewards over all agents, while ensuring that their policies (in-
dividually and jointly) satisfy the following constraints:
• FLOW CONSERVATION: Constraints (4) and (5) enforce

that the total expected number of times state σi is exited
(LHS of the constraints) equals the expected number of
times state σi is entered (RHS of the constraints).

• INDIVIDUAL CAPACITY LIMITS: Constraint (6) is a ca-
pacity bound constraint for an agent on all capacity types
z ∈ Z. The total cost for obtaining all shared resources
τ ∈ Γ must be less than the capacity bound of agent
q̂i(z). For simplification, we use |Z| = 1 and q(τ, z) = 1
throughout the paper (i.e., the number of resources ob-
tainable by an agent cannot exceed its capacity).

1In disaster rescue, while all the robots have the same model, we
can assume only those agents starting from same state and having to
rescue a victim from the same cell as homogeneous agents.

Variables: ∀si, σi ∈ Si;∀ai ∈ Ai; ∀τ ∈ Γ;∀i ∈ Ag; ∀t ∈ H

Minimize: −
∑
i

∑
t

∑
si

∑
ai

xti(si, ai) ·Rti(si, ai) (3)

Subject to:∑
ai

xt+1
i (σi, ai) =

∑
si

∑
ai

xti(si, ai) · P ti (si, ai, σi), ∀σi, t, i

(4)∑
ai

x0i (si, ai) = αi(si), ∀si, i (5)

∑
τ

∑
k

qi(τ, z) · δti(τ) ≤ q̂i(z), ∀z, ∀i (6)∑
t,i

δti(τ) ≤ C(τ), ∀τ (7)

1

X

∑
ai

ρi(ai, τ)
∑
si

xti(si, ai) ≤ δti(τ), ∀τ, t, i (8)

δt+1
i (τk)−

∑
t′≤t

δt
′
i (τj) ≤ 0, ∀(τj ≺ τk) ∈ D, t < H, i (9)

∑
t

δti(τj) =
∑
t

δti(τk), ∀(τj ‖ τk) ∈ D, t (10)

δti(τ) ≤M · ρi(ai, τ) · xti(si, ai), ∀τ ∈ D, si, t, i (11)

xti(si, ai) ≥ 0, δit(τ) ∈ {0, 1} (12)

Table 1: Optimal MILP

• GLOBAL CAPACITY LIMITS: Constraint (7) prevents vio-
lation of global capacity limitations for all resource types
(i.e., total resources assigned over all agents i ∈ Ag for a
given type τ should not exceed the available resources of
that type C(τ)).

• RESOURCE REQUIREMENTS OF POLICY: Constraint (8)
computes the resource requirement of each type τ for a
policy at each time step t. Intuitively, this constraint en-
sures that if occupation measure xti(si, ai) for (si, ai) is
a positive number and resource τ is required for execut-
ing action ai (i.e., ρi(ai, τ) = 1), then 1 unit of resource
type τ is required. Here, X is a normalization constant
(calculated offline) representing the maximum flow for an
agent: X ≥ maxτ,i

∑
ai
ρi(a, τ)

∑
si

∑
t x

t
i(si, ai).

• TASK DEPENDENCIES: Constraints (9) to (11) represent
the resource dependencies. Constraint (9) represents the
temporal resource dependencies (τj ≺ τk) and Con-
straint (10) represents the allocation constraining depen-
dencies (τj ‖ τk) for every agent i. Constraint (11) is
helping constraints ensure that any resource τ is executed
in state si by enforcing the occupation measure xti(si, ai)
for (si, ai) to be a positive number and resource τ is re-
quired for executing action ai (i.e., ρi(ai, τ) = 1). M is
a large positive number. It should be noted that for inde-
pendent resources, D = ∅.

Note that the MILP in Table 1 is an optimal MILP as
it provides an exact solution. Unfortunately, given the in-
crease in the number of binary integer variables and the con-
straints that contain them, this optimal MILP is not scal-



able with increasing problem complexity (increasing agents,
tasks/resources, states, etc.). Therefore, we propose the use
of Lagrangian dual decomposition (LDD) [Bertsekas, 1999]
along with GAPS (referred as LDD+GAPS) to efficiently
solve TasC-MDPs. LDD+GAPS is an iterative method that
contains two stages at each iteration. In the first stage, we re-
lax the global capacity constraint (Constraint (7)) to obtain a
dual problem that can be solved independently for each agent.
Each individual agent solves an unconstrained MDP (with
dual variables in its objective) to get the best possible reward
value and resource allocation. However, the relaxation can,
in many cases, lead to violation of the global capacity con-
straint. Therefore, in the second stage (discussed in detail in
Section 4.2), we use GAPS to extract a feasible primal solu-
tion from the dual solution.

4.1 Maximizing the Lagrangian Dual
We relax or dualize coupling Constraint (7) for all resource
types to yield a significantly easier dual problem. For each
resource type, we create dual variables λτ , ∀τ ∈ Γ, that rep-
resent the price of violating the global capacity constraint.
Over the iterations, our approach will try to find the ‘right’
penalty in order to minimize the number of violations.

The Lagrangian dual L({Vi},λ) corresponding to a relax-
ation of Constraint (7) is defined as follows:

L({Vi},λ) =
∑
i

−Vi(πi, α0
i ) +

∑
τ

λτ

(∑
i,t

δti(τ)− C(τ)

)
(13)

Vi(πi, α
0
i ) represents the single agent contribution∑

t

∑
s

∑
a x

t
i(s, a) · Rti(s, a) in the Optimal MILP. On

rearranging the above equation, the separable structure of
Lagrangian over the agents can be obtained as:∑

i

min
xi,δi

[
−Vi(πi, α0

i ) +
∑
τ

λτ
∑
t

δti(τ)

]
−
∑
τ

λτ · C(τ) (14)

For a given λ, we note that the extra term
∑
τ λτ · C(τ) is a

constant that can be accounted for later in the master problem.
Thus, given a λ, the above Lagrangian dual L({Vi},λ) can
be minimized for each agent separately as the objective and
constraints are clearly delineated.

We now address the master problem of maximizing the La-
grangian lower bound over the price variables λ, which can
be solved by using projected sub-gradient ascent [Bertsekas,
1999]. The sub-gradient w.r.t. a variable λτ is essentially the
quantity in parentheses in Eq. (13), which is used to update
the price variables for the next iteration n+ 1 as follows:

λn+1
τ =λnτ + γn+1

[∑
i,t

δt,ni (τ)− C(τ)

]
, ∀τ ∈ Γ (15)

where δt,ni (τ) represents the solution values obtained by
solving the slave planning problem for agent i at iteration n:

min
x
−
∑
t

∑
s

∑
a

xti(s, a) ·Rti(s, a) +
∑
τ

λτ
∑
t

δti(τ)

s.t. Constraints (4)− (6) ∧ (8)− (12)

and γn+1 is the step parameter for iteration n + 1 that is set
based on the values computed in iteration n as below:

γn+1 =
Primaln −Dualn

||∇qn||2 (16)

where the dual value Dualn can be easily obtained from
Eq. (14) and the primal value Primaln is obtained as dis-
cussed in the next section. ∇qn denotes the total sub-gradient
of the dual function.

4.2 Extraction of Feasible Primal Solution
The dual solution obtained in the first stage may not be a fea-
sible primal solution. Therefore, we use the GAPS algorithm
to obtain a feasible primal solution from the dual solution.
This primal solution is crucial to set the step parameter γ that
helps improve the convergence rate of LDD+GAPS, and im-
parts the desirable anytime property to our approach.

The input to the GAPS algorithm is the resource require-
ment {δit(τ),∀τ} and the dual values {Vi(πi, α0

i )} for every
agent i ∈ Ag. Among these agents, GAPS chooses the agent
with highest expected reward (line 6), removes the resources
used by the agent, i.e.,

∑
t δ
i
t(k),∀k (line 8) and adds the

agent into the set of agents with allocated resources (line 9).
Notice that all agents in stage 1 solve unconstrained MDP
models that would violate the global capacity for each re-
source type. GAPS resolves this issue by ignoring the re-
quests that cannot be served. Thus, the agent i∗ obtains its
new resource allocation that is globally feasible and solves
the individual agent model with that allocation to obtain a so-
lution to its planning problem. This process is repeated by
GAPS until all resources are allocated or the unallocated re-
sources are of no use (lines 3 and 10) before returning the
joint policy and joint reward of all agents and terminating.
The joint reward of all agents gives the total primal value.

Finally, based on the current primal and dual values, we
provide the error in solution quality obtained by Lagrangian
dual decomposition to provide posteriori quality guarantees.
We use these guarantees in our experiments to make solution
quality comparisons.

5 Experiments
In this section, we empirically evaluate2 our GAPS and
LDD+GAPS algorithms on two benchmark problems from
the literature. The first domain is Multi-Agent Delivery Prob-
lems (MADPs) that have transitional uncertainty but without
resource dependencies [Dolgov and Durfee, 2006]. The sec-
ond domain is Urban Consolidation Center (UCC) problems
that deal with allocation of tasks and has transitional uncer-
tainty along with task dependencies [Handoko et al., 2014;
Wang et al., 2014]. We compare both our approaches with
an optimal MILP by Dolgov and Durfee [2006] (referred to
as Optimal MILP), solved using CPLEX, which is a state-of-
the-art algorithm for multi-agent coordination. We evaluate
the performance and scalability of our approaches in refer-
ence to the optimal MILP in MADP and UCC domains.

Experimental results are averaged over 15 randomly gen-
erated grid maps that randomly place the delivery locations
and walls. For runtime comparisons, apart from providing
standard runtime for GAPS and LDD+GAPS, we also pro-
vide the parallel runtimes for our approaches since they have
components that can be run in parallel. We compute the par-
allel runtime (denoted by GAPS(P) and LDD+GAPS(P)) by

2All our optimization problems are run on CPLEX v12.5.
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Figure 4: Scalability Test:m=10, H=10, C(τ)=r(Ag/10)

considering the maximum time taken by any agent when the
agents are solved in parallel. A time cut-off limit of two hours
was used for Optimal MILP in cases where CPLEX was un-
able to terminate and provide a solution. Further, for quality
comparison, we compare the percentage of optimality for the
three approaches (Optimal MILP, GAPS, and LDD+GAPS).
For Optimal MILP, the percentage of optimality is com-
puted using the optimality gap at cut-off time (provided by
CPLEX). For GAPS, it is Dual∗ and, for LDD+GAPS, it is
Primal∗ · 100/Dual∗, where Primal∗ and Dual∗ are the
Lagrangian primal and dual values.

5.1 Multi-Agent Delivery Problems
A Multi-Agent Delivery Problem (MADP) deals with a team
of agents, each starting from a potentially different part of the
map, need to deliver goods to their respective delivery loca-
tions. We model the environment as a grid. Figure 1 shows an
illustration of an example problem for one agent where 40%
of the cells are untraversable (marked grey) and remaining
cells are traversable (marked white). The cell with the letter
“S” is the starting cell of the agent. 10% of the traversable
cells are delivery locations marked with the letter “T” placed
randomly throughout the grid. Each delivery task requires a
set of (limited) resources, which are shown in numbers in the
delivery location cells. Each agent has 4 + |Γ| actions: move-
ment in any of the four directions and execute any of the |Γ|
delivery actions. The agents obtain reward when they suc-
cessfully make a delivery. The goal is to find the division of
resources to agents so that the overall reward is maximized.

We use the exact same domain representation as Dolgov
and Durfee [2006]. In our experiments, we have 10 re-
source types |Γ|, where total resources C(τ) for each re-
source type τ ∈ Γ is bounded by a randomly generated num-
ber between 1 and a maximum resource limit max given as
C(τ) = r(max). Each agent i has a fixed limited budget q̂i
of 6 resources to perform its tasks.

20 25 30 35 40
No. of Agents

0

100

200

300

400

R
u

n
ti

m
e

 i
n

 M
in

u
te

s

LDD+GAPS
GAPS
LDD+GAPS(P)
GAPS(P)

(a) m = 10, H = 10, |Γ| = 600

20 25 30 35 40
No. of Agents

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 O
p

ti
m

a
l

LDD+GAPS
GAPS

(b) m = 10, H = 10, |Γ| = 600

Figure 5: Varying Agents in UCCs with Task Dependencies

Solution Runtime: Figure 2 shows the runtime comparison
of the three algorithms with increasing agents |Ag|, resources
|Γ|, grid-size m, and horizon H . The most significant re-
sult is that GAPS and GAPS(P) obtained results in less than
a minute for all cases while LDD+GAPS(P) obtained solu-
tions in 2 to 4 minutes. One important observation is that
the runtime for Optimal MILP scales exponentially (in cases
where it could not finish or provide a feasible solution, it was
stopped at the time-limit) with increasing agents, grid-size,
and horizon, and decreasing resources. Optimal MILP could
not scale beyond 70 agents (and 5 resources) in Figure 2(a)
but by increasing the number of resources beyond 12 for 70
agents in Figure 2(b), the problem was less constrained and
easier for Optimal MILP to solve. Further, by increasing the
grid-size and horizon, we observed that Optimal MILP could
not scale beyond horizon of 5 on a 6 × 6 grid. Overall, with
respect to runtime, GAPS provides the best performance, but
LDD+GAPS(P) was not far behind and both our approaches
clearly outperformed (as expected) Optimal MILP.
Solution Quality: Figure 3 shows the quality comparison
for the three approaches where we observe that GAPS pro-
vides solutions with at least 70% of the optimal quality while
LDD+GAPS performs gracefully by providing at least 98%
of optimality. Optimal MILP provided 100% optimal solu-
tions for instances with up to 50 agents, resources greater than
12, grid sizes of up to 6× 6, and horizon of 6, after which the
solution quality degraded significantly. Based on the above
observations, we conclude that LDD+GAPS provides an ex-
cellent tradeoff between GAPS, which finds decent solutions
but very quickly, and the MILP, which finds optimal solutions
but is computationally expensive.
Scalability: To further experiment with scalability, we per-
formed experiments with up to 600 agents on a grid with size
m = 10 × 10, horizon H = 10 and with resources C(τ) =
10% of |Ag|,∀τ ∈ Γ. Figure 4 provides the runtime and qual-
ity comparisons for our approaches on large problems. Fig-
ure 4(a) shows the runtime comparison where the runtimes of
GAPS and LDD+GAPS increase exponentially with increas-
ing agents. However, the parallel runtime for both approaches
(i.e., GAPS(P) and LDD+GAPS(P)) still remains unaffected.
Figure 4(b) shows the quality comparison where LDD+GAPS
provided at least 96% of optimality while GAPS could only
provide 70% of optimality.

5.2 Urban Consolidation Center Problems
To reduce traffic and pollution due to large trucks deliver-
ing goods to distribution centers from ports, many cities have
started constructing Urban Consolidation Centers (UCCs)
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Figure 2: Runtime comparison w.r.t. (a) Agents |Ag|; (b) Resources C(τ); (c) Grid-size m×m; and (d) Horizon H for MADPs
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Figure 3: Quality comparison w.r.t. (a) Agents |Ag|; (b) Resources C(τ); (c) Grid-size m×m; and (d) Horizon H for MADPs
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Figure 6: Varying Tasks in UCCs with Task Dependencies

[Handoko et al., 2014]. Without a UCC, trucks from differ-
ent companies have to move in the same parts of the city to
deliver good. A UCC consolidates goods for different com-
panies and delivers them using a team of truck agents. These
truck agents have specific capabilities that help them in deliv-
ery tasks. Specifically, the tasks have difficulty levels associ-
ated with them ranging from low and medium to high while
agents have capabilities defined to handle the levels of tasks.
Further, there can be temporal dependencies between tasks
that may require the agent to complete some delivery task
prior to another task due to time window restrictions.

We use a grid world environment similar to the MADP do-
main, but with the difference that there can be multiple de-
livery tasks in a cell that do not require any resources to be
completed and may have task dependencies. Unlike the deliv-
ery problem, the agents can stay in the same cell to perform
more than one tasks. The task capacity over all agents is set
to 50% of the available tasks with equal capacity for every
agent. Each task in a cell represents a different task-type.
Thus, the number of actions a depend on the number of tasks
τ ∈ Γ present in every state (or cell). The agents are penal-
ized for late deliveries and rewarded for on-time deliveries.
The goal is to find the division of tasks to agents so that the

overall reward is maximized.
Solution Quality and Runtime: Figures 5 and 6 show
the runtime and quality comparison between GAPS and
LDD+GAPS for UCC with task dependencies. We do not
compare with Optimal MILP as it was not scalable beyond
600 tasks and 20 agents where it could solve only 30% of
the random grid sets. The runtime for LDD+GAPS and
LDD+GAPS(P) is approximately 5 hours and 2 hours, re-
spectively, while for GAPS and GAPS(P), it is still between
5 to 30 minutes and 2 to 6 minutes, respectively. However,
the solution quality obtained by GAPS is between 60-70% of
optimality while the solution quality of LDD+GAPS ranges
between 70-90% of optimality with at least 10% more opti-
mal than GAPS. Thus, even in these domains, LDD+GAPS
provides the best performance with GAPS providing a good
alternative in comparison to Optimal MILP.

6 Conclusions

Motivated by stochastic planning problems in delivery of
goods and services; disaster rescue; and large warehouses, we
have introduced a generic model called TasC-MDP for coop-
erative task/resource constrained multi-agent planning prob-
lems. This model not only captures independent tasks and
resources, but also temporal and allocation constraining de-
pendencies between tasks and resources. We first provided an
approach called GAPS that incrementally allocates resources
in a greedy manner and then developed an optimization based
approach called LDD+GAPS that exploits the decomposable
structure in TasC-MDPs and uses GAPS as a subroutine. Our
extensive experiments on benchmark problems demonstrate
that LDD+GAPS is very scalable and provides highly optimal
solutions (within 5% of optimal) even in very large problems.
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