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a b s t r a c t

Cross-modal hashing integrates the advantages of traditional cross-modal retrieval and
hashing, it can solve large-scale cross-modal retrieval effectively and efficiently. However,
existing cross-modal hashing methods rely on either labeled training data, or lack
semantic analysis. In this paper, we propose Cross-Modal Self-Taught Hashing (CMSTH)
for large-scale cross-modal and unimodal image retrieval. CMSTH can effectively capture
the semantic correlation from unlabeled training data. Its learning process contains three
steps: first we propose Hierarchical Multi-Modal Topic Learning (HMMTL) to detect multi-
modal topics with semantic information. Then we use Robust Matrix Factorization (RMF)
to transfer the multi-modal topics to hash codes which are more suited to quantization,
and these codes form a unified hash space. Finally we learn hash functions to project all
modalities into the unified hash space. Experimental results on two web image datasets
demonstrate the effectiveness of CMSTH compared to representative cross-modal and
unimodal hashing methods.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, with the development of information
and network technologies, there has been a massive
explosion of multimedia data on the web. Large amounts
of multimedia contents, especially images, are generated,
shared and accessed by users on Wikipedia, Flickr, Youtube
and other popular social websites. Web multimedia con-
tents have two characteristics. On one hand, they contain
various modalities, such as image, text, video and audio.
On the other hand, the amount of them becomes rather
huge. To meet the development trend of web multimedia,
cross-modal retrieval and hashing have become two
important techniques.

In traditional unimodal image retrieval, image examples
are usually used as queries to search image database [1].
However, in real world, users may be not satisfied with
image queries, but more comfortable to use other types of
queries such as text and sound. Moreover, users may want
to use images to search other types of data. Cross-modal
retrieval, which has been extensively studied in the multi-
media literature [2–5], is designed for the retrieval of het-
erogeneous data, e.g., using text query to retrieve images. In
addition, cross-modal methods can even enhance the per-
formance of unimodal retrieval by exploiting the correlation
between image and other modality. Besides effectively
correlating multi-modal data, efficiently indexing large-
scale data is also important. Hashing is an efficient index-
ing approach which can be used to solve the retrieval of
large-scale images [6–8]. It converts high-dimensional data
into short binary codes, which preserve the similarity of
data. Then fast search can be easily implemented by effi-
cient XOR and bit-count operations.
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Motivated by the success of hashing and cross-modal
retrieval, recently several cross-modal hashing methods
are proposed to integrate the advantages of them. Com-
mon cross-modal hashing methods learn a unified hash
space which correlates different modalities, and then the
search process can be accelerated based on hash codes.
The performance of cross-modal hashing lies on effect of
cross-modal correlation and quantization. However, most
existing cross-modal hashing methods cannot well solve
both these two points. Some cross-modal hashing meth-
ods are only binary versions of traditional cross-modal
retrieval approaches [9,10]. They mainly focus on the
cross-modal correlation, but pay less attention to the
effectiveness of hash code quantization, which is also
important for cross-modal hashing. For example, eigen-
value decomposition is widely used for cross-modal
hashing, but it will cause considerable quantization loss
in generating hash codes [11].

Cross-modal correlation analysis is essential for cross-
modal retrieval/hashing, but it is not well solved by current
methods. Cross-modal correlation describes the relationship
between different modalities, there exist mainly two types of
cross-modal correlations: content correlation and semantic
correlation. Content correlation is usually analyzed by unsu-
pervised cross-modal methods [12,13], it directly matches the
contents of heterogeneous modalities. The advantage of con-
tent correlation is that it does not require supervised labels for
the training data, and can be learned from the co-occurrence
of different modalities. Semantic correlation is usually ana-
lyzed by supervised cross-modal methods [3,4], it matches
different modalities according to semantic concepts or topics.
For example, the photo and sound of a bird can be correlated
by the concept ‘bird’. The advantage of semantic correlation is
that it describes the cross-modal data at a high level of
abstraction, which is more close to the real world. As a result,
methods based on semantic correlation usually achieve better
performance.

Both existing supervised and unsupervised cross-modal
methods have limitations in analyzing cross-modal corre-
lation. Supervised methods can well capture the cross-
modal correlation by semantic concepts, but they need the
labeled training data which are difficult to obtain. As a
result, supervised methods are not practical for real world
application. Unsupervised methods can directly use unla-
beled data for learning, but content correlation is not able
to effectively describe cross-modal data. Therefore, the
retrieval performance of unsupervised methods is usually
worse than supervised methods. Semi-supervised meth-
ods can partly solve the above limitations [8], but they still
need a small amount of training data to be labeled. This
means that professional people should define specific
semantic concepts and use them for labeling.

In this paper, we propose a novel method: Cross-Modal
Self-Taught Hashing (CMSTH) for large-scale image
retrieval. The core idea of CMSTH is that the semantic
topics are learned automatically, then all modalities are
correlated by these topics. Since semantic topics have
high-level abstraction and contain much semantic infor-
mation, CMSTH can better correlate different modalities
than previous unsupervised methods. Besides, CMSTH is
also more practical than supervised methods, it directly

uses unlabeled data for learning. CMSTH consists of three
learning steps. In the first step, we propose Hierarchical
Multi-Modal Topic Learning (HMMTL) which can effec-
tively learn the semantic information from multi-modal
data. In the second step, we specifically consider the
quantization loss, and transfer semantic topics to effective
hash codes by Robust Matrix Factorization (RMF). At last,
we learn efficient hash functions of all modalities which
can project them into the unified hash space.

The contributions of this paper are listed as follows:

� We propose a novel framework: Cross-Modal Self-
Taught Hashing (CMSTH) for large scale image retrieval.
CMSTH automatically detects semantic topics, and con-
structs the semantic correlation of different modalities
based on these semantic topics.

� We propose Hierarchical Multi-Modal Topic Learning
(HMMTL) to learn semantic topics from multi-modal
data. HMMTL simultaneously preserves intra-modal and
inter-modal consistency, and assigns proper weights to
different modalities. Thus HMMTL can learn topics with
more semantic information.

� Since multi-modal topics are not suited to hashing, we
use Robust Matrix Factorization (RMF) to transfer topics
to hash codes. RMF can generate effective hash codes
which also preserve the semantic correlation of topics.

When compared with a preliminary version [14]. We
have made following improvements: (1) We have dis-
cussed more comprehensive survey of related work,
especially on large-scale cross-modal retrieval. (2) We
improve our method to make it more suited to large-scale
data, and a new hash generation step is introduced. (3) We
compare our method to more representative cross-modal
hashing methods in experiments. The rest of this paper is
organized as follows. Section 2 discusses the related
methods. In Section 3, we describe the learning process of
CMSTH. Section 4 shows the experimental results on two
multi-modal image datasets. Finally the conclusions and
future work are presented in Section 5.

2. Related work

2.1. Multi-modal and cross-modal learning

In recent years, multi-modal and cross-modal learning
have been extensively studied [15]. Multi-modal learning,
which is also named as multi-view learning, has been
shown the effectiveness in image classification/annotation
[16–20]. In [19], Multiview Matrix Completion (MVMC) is
proposed for semi-supervised multilabel image classifica-
tion. MVMC weightedly combines the matrix completion
outputs of different modalities, and a cross-validation
strategy is applied to effectively learn combination
weights. Some multi-modal methods learn a unified space
from all modalities [16,21,22] to improve the performance
of image classification. In [22], the Multi-view Intact Space
Learning (MISL) is proposed to integrate multiple mod-
alities. For the learning of intact space, Cauchy loss is used
to strengthen robustness to outliers.

L. Xie et al. / Signal Processing 124 (2016) 81–9282



Multi-modal and cross-modal learning can also solve
the problem of cross-modal retrieval, and both supervised
and unsupervised methods have been studied. Canonical
Correlation Analysis (CCA) [23] and Canonical Factor
Analysis (CFA) [13] are two representative unsupervised
methods, and they are widely used in cross-modal retrie-
val [24,5]. The main idea of CCA and CFA is learning two
correlated subspace for two different modalities, such as
images and texts. Manifold learning has also been used for
unsupervised cross-modal retrieval [2,25,26]. They exploit
the neighborhood relation in multi-modal data, and learn
a unified space to represent different modalities. Recently,
with the development of deep learning, several deep
methods are proposed for cross-modal retrieval, including
Multimodal DBM [27] and Correspondence Autoencoder
(Corr-AE) [28]. Most unsupervised methods cannot cap-
ture the semantic information in the multi-modal data,
which limits their retrieval performance.

Supervised cross-modal methods correlate different
modalities according to semantic labels, and they usually
outperform unsupervised methods. In [24], semantic
labels directly form a semantic space, then Logistic
Regression and Support Vector Machine (SVM) are used to
project different modalities into this space, and the per-
formance is shown to be much better than CCA and CFA.
Supervised ranking methods are recently adopted for
cross-modal retrieval [29,30], they select training exam-
ples by semantic labels. The training examples in super-
vised methods should be labeled, thus they are not prac-
tical for real world application.

The main disadvantage of above cross-modal retrieval
methods is their scalability, they are not so efficient for
large-scale multi-modal data. Some cross-modal methods,
such as CCA, can be transformed to hashing by quantizing
each dimension of their subspace to binary code. However,

since their subspace is not specifically designed for hashing,
the quantization will cause significant information loss.

2.2. Unimodal hashing

Hashing is an efficient approach for large-scale image
retrieval, current hashing methods can be generally divi-
ded into two categories: random projection based hashing
and machine learning based hashing [31]. Locality Sensi-
tive Hashing (LSH) [32] is one of the most representative
random projection methods. LSH is data-independent,
thus it may lead to ineffective hash codes in practice.
Machine learning based hashing methods learn more
reliable hash function by analyzing the contents of data.
The representative machine learning based methods
include Spectral Hashing (SH) [33], Kernelized Hashing [7],
K-means Hashing [6], Anchor Graph Hashing [34] and Self-
Taught Hashing (STH) [35]. STH also adopts the self-taught
scheme, but the disadvantage of STH is that it cannot be
applied to multi-modal data. Moreover, it only uses two
steps which do not consider the quantization effect of
codes. As a result, STH performs worse than our method
even in unimodal retrieval.

2.3. Cross-modal hashing

The methods of cross-modal hashing are most related
to our work. Similar to traditional cross-modal retrieval,
both supervised and unsupervised cross-modal hashing
have been researched in recent years. Supervised and
semi-supervised hashing methods also require semantic
labels [36–38,11], which makes them be not practical.
Recently, large progress has been made for unsupervised
cross-modal hashing. Representative unsupervised cross-
modal hashing methods include Cross-View Hashing
(CVH) [9], Inter-Media Hashing (IMH) [31], Composite
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Hashing with Multiple Information Sources (CHMIS) [10]
and Collective Matrix Factorization Hashing (CMFH) [39].
However, they only consider the content correlation of
different modalities, and are unable to analyze the
semantic correlation. Our method also uses unsupervised
data for training, but it can effectively preserve the
semantic correlation in hash codes.

3. Cross-modal self-taught hashing

The whole framework of Cross-Modal Self-Taught
Hashing (CMSTH) is illustrated in Fig. 1. We can find that
CMSTH uses unlabeled multi-modal data for training.
CMSTH contains three steps, the first step is Hierarchical
Multi-Modal Topic Learning (HMMTL), which learns
semantic topics by preserving both intra-modal and inter-
modal consistency. The second step uses Robust Matrix
Factorization (RMF) to make our method more suited to
the quantization of hash codes. Then we learn linear hash
function which can efficiently project all modalities into
the shared hash space. Finally, we can obtain hash codes
for both image and text, and their hash codes can be
directly matched by hamming distance.

3.1. Notations and definitions

Suppose there are n training multi-modal examples
E1;…; En. Each example Ei contains M modalities, and
Ei ¼ x1i ;…; xMi

� �
, where xi

m
is the feature vector of mth

modality. In this paper, we only consider two modalities:
image and text, thus M¼2 and Ei is an image-text pair.
Images on the web are usually associated with text, and
our methods can also be applied to more modalities
ðM42Þ. For simplicity, a list of notations used in this paper
are shown in Table 1.

3.2. Hierarchical multi-modal topic learning

The first step of CMSTH is to learn unified semantic
topics in the unsupervised manner, then all modalities can
be semantically correlated by these topics. Generally,
combining multi-modal sources can obtain more semantic
information, thus we use both image and text to learn
semantic topics. Unlike traditional multi-modal methods,
we use a hierarchical learning process to combine image
and text. Firstly, we learn the unimodal topics which
preserve the intra-modal consistency of image and text.
Then we combine unimodal topics and generate the final
topics which can further preserve the inter-modal con-
sistency. The advantage of Hierarchical Multi-modal Topic
Learning (HMMTL) is that it not only preserves inter-
modal consistency, but also preserves intra-modal con-
sistency. Intra-modal and inter-modal consistency are both
important for cross-modal analysis [40], thus HMMTL can
learn topics with more semantic information.

For each modality, we construct its intra-modal simi-
larity graph Am, which is defined as

Am
ij ¼ e� xmi � xmj

�� ��2

2
=σm ; xmi and xmj are c nearest neighbors

0; otherwise

8<
: ð1Þ

where σm is the mean of all xmi �xmj
��� ���2

2
.

To learn the multi-modal topics from training data, we first
generate unimodal topic matrix FmARn�tm for each mod-
ality, where tm is the number of unimodal topics for each
modality. Fm can preserve the semantic information of the
mth modal features, it is obtained by minimizing the fol-
lowing graph Laplacian regularizer:

Xtm
k ¼ 1

XN
i ¼ 1

XN
j ¼ 1

Am
ij

f mik
dmii

� f mjk
dmjj

 !
¼ Tr FTmLmFm

� �
ð2Þ

where f mik is an element of Fm, and dii
m
is the sum of ith row

of Am. Lm ¼ I�D�1=2
m AmD

�1=2
m , I is the identity matrix, Dm is

the diagonal matrix and its diagonal element is dii
m
. Trð�Þ

denotes the trace operator.
After we obtain unimodal topic matrices FmjMm ¼ 1, we

use them to generate the multi-modal topic matrices
FARn�t , where t is the number of multi-modal topics. Each
Fm generates the final F by minimizing the following
function:

F�FmWmk k2F ð3Þ
where �k k2F denotes the Frobenius norm. WmARtm�t is the
weight matrix for the generation of F. According to (3) we
can find that the intra-modal information in Fm is trans-
ferred to F, thus F also preserves the intra-modal con-
sistency of each modality. Moreover, all Fm are combined
and they should be consistent with F, thus F further pre-
serves the inter-modal consistency.

In summary, the multi-modal topic matrix F is hier-
archically generated. At first, unimodal topic matrices
FmjMm ¼ 1 are generated by intra-modal similarity. Then
multi-modal topic matrix F is generated from all FmjMm ¼ 1.
We optimize the hierarchical generation in a joint learning
process. By combining (2) and (3), we arrive at the fol-
lowing objective function:

min
F

XM
m ¼ 1

Tr FTmLmFm
� �

þα2m F�FmWmk k2F
� �

s:t: FTmFm ¼ I; m¼ 1;…;M

FTF ¼ IXM
m ¼ 1

αm ¼ 1 ð4Þ

where the orthogonality constraints on F and Fm are to
avoid the trivial solution. αm is the weight parameter, it
reflects the importance of mth modality for the generation
of F, and we can easily find that (4) is convex with respect
to αm. Generally, different modalities should have different
importance for semantic learning. For example, texts
usually contain more semantic information than images.

By setting the derivative of (4) w.r.t. Wm to zero, we
have:

Wm ¼ FTmF ð5Þ

L. Xie et al. / Signal Processing 124 (2016) 81–9284



Substituting Wm in (4), the objective function becomes:

XM
m ¼ 1

Tr FTmLmFm
� �

þα2m Tr I�FTFmF
T
mF

� �� �
ð6Þ

We adopt an alternating optimization to solve (6). More
specifically, we alternatively update F, Fm and αm to opti-
mize the objective function.

(1) Optimizing F: We fix Fm and αm, then (6) can be
reformulated as:

max
F

Tr FT
XM
m ¼ 1

α2mFmF
T
m

� �
F

 !

s:t: FTF ¼ I ð7Þ
It is obviously that (7) is an eigenvalue problem, and we

can obtain F by eigen-decomposition of
PM

m ¼ 1 α2mFmF
T
m

� �
.

(2) Optimizing Fm: We fix F and αm. According to the

trace property: Tr FTFmF
T
mF

� �
¼ Tr FTmFF

TFm
� �

, (6) can be

transformed to:

min
Fm

Tr FTmCmFm
� �

s:t: FTmFm ¼ I ð8Þ
where

Cm ¼ Lm�α2mF
TF ð9Þ

We can also find that Fm is learned by solving the eigen-
value problem of (8),

(3) Optimizing αm: F and Fm are fixed, by using Lagrange
multiplier, we can obtain:

αm ¼
1=Tr I�FTFmF

T
mF

� �
PM

i ¼ 1 1=Tr I�FTFiF
T
i F

� � ð10Þ

The whole alternating optimization process is illu-
strated in Algorithm 1. In the implementation of this
algorithm, we initialize Fm by solving the eigenvalue pro-
blem of (2), and αmjMm ¼ 1 are set to the same. Since the
objective function is lower bounded by 0 and it will keep
decreasing in each step, its convergence is guaranteed. One
advantage of our topic learning is that the importance of
different modality for generating the semantic topics is
different, while previous cross-modal methods, such as
CCA and IMH, treat all modalities equally. Thus our topic
learning methods is more adaptive. Another advantage is

that the hierarchical generation can effectively preserve
both intra-modal and inter-modal consistency.

Algorithm 1. The learning process of HMMTL.

Input: Am
��M
m ¼ 1

Output: F
1: Compute LmjMm ¼ 1;
2: Initialize FmjMm ¼ 1 and αmjMm ¼ 1;
3: while Not Converge do
4: Update F by solving the eigenvalue problem of (7);
5: Update FmjMm ¼ 1 by solving the eigenvalue problem of (8);
6: Update αmjMm ¼ 1 according to (10);
7: end while

3.3. Robust matrix factorization for hash code generation

The eigenvalue decomposition in HMMTL obtains
unbalanced topics. Generally, most semantic information
is contained in top topics and the remaining topics usually
contain less semantic information or even noises [8]. By
choosing appropriate number of top multi-modal topics
for F, we can effectively learn semantic information and
remove noisy information. Then F can represent semantic
correlation between different modalities.

However, due to the variance of semantic information
in different topics, using each topic to generate one bit in
hash codes is not reasonable [41,11]. Directly using F for
hashing will result in much loss of semantic information in
the quantization process. Therefore, we should design a
hash generation process to effectively preserve the
semantic information in quantized hash codes.

In this subsection, we introduce the Robust Matrix
Factorization (RMF), which can effectively learn hash codes
with balanced information. Matrix factorization has shown
to be effective in the quantization of hash codes [39].
Unlike traditional matrix factorization, RMF uses ℓ2;1-norm
to decompose F to H. According to the characteristic of
ℓ2;1-norm [42,43], RMF is more robust to outliers, and it
can better preserve the semantic correlation in hash codes
H. The objective function of RMF for hash code learning is:

min
H;V

F�HVk k22;1þβ Hk k2F þ Vk k2F
� �

ð11Þ

where VARk�t , �k k2;1 denotes the ℓ2;1-norm, which is

defined as Xk k2;1 ¼
P

i

ffiffiffiffiffiffiffiffiffiffiffiffiP
jX

2
ij

q
.

Then we can solve the ℓ2;1-norm problem. Eq. (11) can
be transformed to:

min
H;V

Tr F�HVð ÞTDH F�HVð Þ
� �

þβ Hk k2F þ Vk k2F
� �

ð12Þ

where DH is the diagonal matrix with its diagonal element

Dii
H ¼ 1=2 F�HVð Þi

��� ���
2

The above equation (12) can be also solved by the
alternating process. In each iteration, we first optimize H
and fix V, by setting the derivative of (12) w.r.t. H to zero,
we can obtain:

HVVT þβD�1
H H¼ FVT ð13Þ

Eq. (13) is the Sylvester equation, we can rewrite this

Table 1
List of notations.

Notation Description

n Number of training examples
k Code length
Xm n� lm feature matrix of modality m
Am n� n intra-modal graph of modality m
Fm n� tm topic matrix of modality m
F n� t multi-modal topic matrix
H n� k hash codes of training examples
Pm lm � k weight matrix of hash function for modality m
αm Weight of modality m in topic learning
β,θm Regularization parameters
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equation in the form:

VVT � IþβI � D�1
H

� �
vec Hð Þ ¼ vec FVT

� �
ð14Þ

where � is the Kronecker product, and vec �ð Þ is the vec-
torization operator. We can easily compute H by:

vec Hð Þ ¼ VVT � IþβI � D�1
H

� ��1
vec FVT
� �

ð15Þ

Then we fix H and optimize V, by setting the derivative
of (12) w.r.t. V to zero, we can obtain V by:

V ¼ HTDHHþβI
� ��1

HTDHF ð16Þ

The alternative process of generating H is illustrated in
Algorithm 2.

Algorithm 2. The learning process of RMF.
Input: F
Output: H
1: Initialize H and V randomly;
2: while Not Converge do
3: Update H by (15);
4: Update V by (16);
5: end while

3.4. Cross-modal hash function learning

In the previous steps we have learned the hash space
which can effectively preserve the semantic correlation of
multi-modal data. Then we formulate the hash function
learning process which can project new examples into this
hash space. One advantage of self-taught scheme is that
different modalities are correlated in higher abstraction.
Moreover, unlike previous cross-modal methods which
have to jointly learn hash functions for all modalities, we
can learn their hash functions separately. Once we have
obtained the semantic hash space, then all modalities can
be easily projected into this space which correlates them.
We can even project new modalities into this space
without any changes for the whole framework.

The hash projection process should be efficient, in that
it occupies a certain part of the search time. For this pur-
pose, we use the linear projection as hash function, which
is defined as:

hm ¼ sgn xmPm�bmð Þ ð17Þ
where xm is the feature vector of modality m. PmARlm�k is
the hash projection matrix for modality m, k is the code
length, and lm is the feature dimension of modalitym. bm is
the threshold parameter, it is computed as the mean of all
xmPm from the training data.

Our hash function learning is different to [35], in that
we use soft assignment of H which is obtained from RMF.
The hard assignment of H is suited for the online search
process, since binary codes are more efficient. However, it
will cause the loss of semantic information, thus it is not
suited for learning process, which is done offline. As a
result, our hash function learning becomes a regression
problem, and we can use the following regularized least
square regression for each modality:

min
Pm

XmPm�Hk k2F þθm Pmk k2F ð18Þ

From (18) we can easily obtain that:

Pm ¼ XT
mXmþθmI

� ��1
XT
mH ð19Þ

Algorithm 3. The overall learning process of CMSTH.
Input:

Am
��M
m ¼ 1 ; XmjMm ¼ 1

Output:

F, H, PmjMm ¼ 1

1: Compute F by Algorithm 1;
2: Compute H by Algorithm 2;
3: for each modality m do
4: Compute Pm by (19);
5: end for

The overall learning process of CMSTH is shown in
Algorithm 3. Given a new example xm, we directly use (17)
to compute its hash vector hm, which is then used to
search any modalities by directly deploying the hamming
distance.

4. Experiments

4.1. Datasets and features

In this paper, two real world multi-modal image data-
sets: Wikipedia [3] and NUS-WIDE [44] are used for eva-
luation. These two datasets are both split into independent
training set and test set. Training set is used to learn hash
functions of all methods, and the retrieval performance is
evaluated on test set. The statistics of two datasets are
summarized in Table 2.

Wikipedia dataset was assembled from the “Wikipedia
feature articles”. It contains 2866 multi-modal documents
(image-text pairs), and each of them is labeled with
exactly one of 10 semantic labels. All labels are only used
as ground truth, they are not used for training. Documents
which share the same concept are regarded as relevant.
2173 image-text pairs in Wikipedia dataset are chosen as
training set, and the rest 693 pairs are used as test set.

NUS-WIDE dataset contains 269,648 multi-modal
documents, each multi-modal document is also an
image-text pair and text in NUS-WIDE refers to the asso-
ciated social tags. The image-text pairs are labeled by 81
concepts that are only used for evaluation. We prune the
original NUS-WIDE to form a new dataset consisting of
203,597 image-text pairs by keeping the images that have
at least one tag and one concept. Then this dataset is split
into 5090 training set and 198,507 test set.

On Wikipedia, we extract 1000-D SIFT histogram, 1000-
D HOG histogram, 500-D GIST for image, and extract 6000-
D tf-idf vector for text. On NUS-WIDE, we directly use six
image features and one binary text feature provided by
[44].1

Since some compared methods are not suited to mul-
tiple image features, we use Kernel PCA (KPCA) [45] to

1 All features can be downloaded from http://lms.comp.nus.edu.sg/
research/NUS-WIDE.htm
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combine image features and reduce their dimensions.
Histogram intersection kernel is used for all image histo-
grams and BoVWs, and RBF Kernel is used for other visual
features. All visual kernels are linearly combined to train
the KPCA. Finally we obtain 200-D visual feature for ima-
ges on Wikipedia, and 100-D visual feature for images on
NUS-WIDE. Since the dimension of text feature on Wiki-
pedia is too high, we also use KPCA to reduce its dimen-
sion to 30, and histogram intersection kernel is used.

4.2. Evaluation metrics

We adopt non-interpolated Mean Average Precision
(MAP) to measure the retrieval performance. Given a
query and a list of R retrieved results, the Average Preci-
sion (AP) is defined as:

AP ¼ 1
p

XR
i ¼ 1

pre ið Þrel ið Þ ð20Þ

where p is the number of relevant documents in the
retrieved set, pre(i) is the precision of top i retrieved
documents. relðiÞ ¼ 1 if the ith retrieved documents is
relevant to query, otherwise relðiÞ ¼ 0. The MAP score is the
mean of AP scores from all the queries. In our work, we set
R¼50, thus the MAP scores are computed on the top 50
retrieved documents of each query. Besides MAP, we use
Precision–Recall (PR) curves to measure the retrieval
performance.

4.3. Compared methods and implementation details

We compare our method with four representative
unsupervised cross-modal hashing methods, including
CVH [9],2 IMH [40], CHMIS [10], CMFH [39], and two
unimodal image hashing methods, including SH [33] and
STH [35]. The codes of all compared methods are publicly
available. For all methods, we choose the parameters
which make them perform best.

We also introduce a Baseline which is used to show the
advantage of RMF in our CMSTH. In Baseline, the first and
third steps of CMSTH are preserved, and RMF is removed.
Therefore, the baseline directly uses multi-modal topics as
hash codes.

In the implementation of CMSTH, we choose the
parameters that make CMSTH perform best or nearly best.
On both two datasets, the nearest neighbors c for Am

��M
m ¼ 1

are set to 500, and we set all θm ¼ 1; β¼ 0:1. The number of

unimodal and multi-modal topics is the same, they are set
to 8 on Wikipedia dataset, and 30 on NUS-WIDE.

4.4. Results of cross-modal image retrieval

In the cross-modal image retrieval, all methods only
use training data to learn hash functions, which are then
used to obtain hash codes for test data. We evaluate two
types of cross-modal retrieval tasks, one is Image Query,
where test images are used to search test texts; the other
is Text Query, where test texts are used to search test
images.

Table 3 shows the MAP scores of all cross-modal
methods on Wikipedia dataset. In Image Query, all test
images are used as queries, and test texts form database. In
Text Query, all test texts are chosen as queries and test
images form the database. From Table 3 we can find that
CMSTH performs best in all cases, which confirms the
advantages of the analyzing semantic correlation. When
the code length is 16, CMSTH obtains relatively high MAP
scores. If retrieval time is the major concern, CMSTH can
guarantee the performance by adopting small code length.
Moreover, CMSTH consistently improves the retrieval
performance by increasing the code length.

We also find that CMSTH significantly outperforms
Baseline which directly uses multi-modal topics as hash
codes and do not use RMF. The results confirm that RMF is
effective in generating hash codes. Although multi-modal
topics can well represent the semantic correlation of dif-
ferent modalities, they are not suited for quantization. RMF
can losslessly preserve the semantic information of multi-
modal topics in final codes, thus it significantly improves
the hashing performance. CVH and CHMIS do not consider
the semantic correlation in multi-modal data, thus they
perform worse than Baseline and CMSTH. CMFH and IMH
also ignore the semantic correlation, but they can generate
effective codes for quantization, so they are slightly better
than Baseline in some cases. The PR curves of all cross-
modal methods on Wikipedia are shown in Fig. 2, we can
find the results are consistent with MAP scores.

Table 4 shows the MAP scores of all cross-modal
methods on NUS-WIDE dataset. In Image Query, we
choose 1% of test images as queries, and all test texts form

Table 2
The statistics of two datasets.

Datasets Wikipedia NUS-WIDE

Training examples 2173 5090
Test images 693 198,507
Test texts 693 198,507
Dimension of image feature 200 100
Dimension of text feature 30 1000

Table 3
MAP scores of cross-modal retrieval on Wikipedia.

Wiki Method Code length

16 32 64 128

Image query CVH 0.2382 0.2377 0.2080 0.1920
IMH 0.2554 0.2694 0.2615 0.2454
CHMIS 0.2346 0.2365 0.2194 0.1819
CMFH 0.2857 0.2995 0.3041 0.3019
Baseline 0.2811 0.2797 0.2522 0.2298
CMSTH 0.3155 0.3293 0.3313 0.3375

Text query CVH 0.2644 0.2606 0.2274 0.2003
IMH 0.2799 0.2905 0.2806 0.2634
CHMIS 0.2781 0.2572 0.2341 0.1922
CMFH 0.3087 0.3242 0.3296 0.3330
Baseline 0.2976 0.2932 0.2684 0.2395
CMSTH 0.3562 0.3700 0.3825 0.3878

2 We use the codes implemented by http://www.cse.ust.hk/
�dyyeung/code/mlbe.zip
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database. In Text Query, 1% of test texts is chosen as
queries and all test images form the database. The results
on NUS-WIDE are similar to Wikipedia, CMSTH performs
best in all cases, which further confirms the advantages of
our method. CMSTH also performs better than Baseline,

which illustrates that RMF can improve the performance of
hashing. The only difference is that Baseline performs
better than other methods except for CMSTH. The reason
may be that semantic correlation is more important for
NUS-WIDE, and both Baseline and CMSTH canwell analyze
the semantic correlation. The PR curves of all cross-modal
methods on NUS-WIDE are shown in Fig. 3, and the results
are also consistent with MAP scores.

4.5. Results of unimodal image retrieval

We then show the results of cross-modal methods on
unimodal image retrieval. Unimodal retrieval is also
practical in some applications, using image queries to
search images is required by users sometimes. Therefore,
we evaluate our method in unimodal image retrieval. In
each retrieval process, we choose one test image as a
query, and other test images form database. All test images
are chosen as queries on Wikipedia, and 1% of test images
is chosen as queries on NUS-WIDE. Generally, cross-modal
methods should perform better than unimodal methods in
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Fig. 2. PR curves of cross-modal retrieval on Wikipedia: (a) Image query k¼32; (b) text query k¼32; (c) image query k¼64; and (d) text query k¼64.

Table 4
MAP scores of cross-modal retrieval on NUS-WIDE.

Wiki Method Code length

16 32 64 128

Image query CVH 0.4441 0.4371 0.4229 0.3966
IMH 0.3401 0.3507 0.3637 0.3808
CHMIS 0.4155 0.4133 0.3952 0.3597
CMFH 0.3303 0.3894 0.3837 0.3981
Baseline 0.4408 0.4588 0.5048 0.5031
CMSTH(3) 0.5032 0.5073 0.5270 0.5439

Text query CVH 0.4065 0.4136 0.4110 0.3846
IMH 0.3337 0.3557 0.3699 0.3764
CHMIS 0.3972 03966 0.3899 0.3562
CMFH 0.4004 0.4078 0.4174 0.4192
Baseline 0.4447 0.4486 0.4918 0.4906
CMSTH(3) 0.4761 0.4965 0.5088 0.5243
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image retrieval, in that exploiting associated text can
better understand the semantics of images.

Table 5 shows the results of all compared hashing
methods on two datasets, we can find CMSTH that obtains
the highest MAP scores in all cases, which shows that
CMSTH improves the performance of unimodal image
retrieval. However, the advantage of other cross-modal

methods, including CVH, IMH, CHMIS and CMFH is not
significant. They even perform worse than unimodal
hashing methods SH and STH. This phenomenon illus-
trates that cross-modal methods may not always improve
the performance of unimodal retrieval. Both CMSTH and
baseline analyze semantic correlation, their better results
confirm that semantic correlation of multi-modal data also
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Fig. 3. The PR curves of cross-modal retrieval on NUS-WIDE: (a) Image query k¼32; (b) text query k¼32; (c) image query k¼64; and (d) text query k¼64.

Table 5
MAP scores of unimodal image retrieval on two datasets.

Method Wikipedia NUS-WIDE

16 32 64 128 16 32 64 128

SH 0.3734 0.3779 0.3879 0.4058 0.4671 0.5855 0.5994 0.5999
STH 0.4004 0.4039 0.4083 0.4047 0.4660 0.4813 0.5002 0.6228
CVH 0.3879 0.3862 0.3877 0.3839 0.5522 0.6201 0.6326 0.6528
IMH 0.3912 0.4046 0.3970 0.4011 0.4461 0.5447 0.5894 0.6421
CHMIS 0.3920 0.3934 0.3999 0.4089 0.5177 0.6116 0.6414 0.6541
CMFH 0.3988 0.3978 0.4046 0.4150 0.3718 0.3789 0.4729 0.5764
CMSTH 0.4090 0.4326 0.4344 0.4492 0.5666 0.6584 0.6731 0.6876
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Fig. 4. The PR curves of unimodal image retrieval on two datasets: (a) Wikipedia k¼32; (b) Wikipedia k¼64; (c) NUS-WIDE k¼32; and (d) NUS-WIDE
k¼64.
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Fig. 5. Performance variations with different number topics in CMSTH on two datasets, the code length is 64: (a) Wikipedia and (b) NUS-WIDE.

L. Xie et al. / Signal Processing 124 (2016) 81–9290



well represents the relation of unimodal data. The PR
curves of unimodal retrieval are shown in Fig. 4, and the
results are consistent with MAP scores.

4.6. Parameter analysis

At last we analyze the influence of parameters in
CMSTH. The nearest neighbors c and regularization para-
meters θm have been comprehensively discussed by pre-
vious graph learning and regularized least square methods
[10,31,43], thus we do not focus on their analysis.

We mainly analyze the influence of topic number and β
which are more important in CMSTH. In our experiment, we
set the same number for unimodal and multi-modal topics.
Fig. 5 shows theMAP score variations with a different number
of topics on two datasets, and the code length k is set to 64.
We set topic number as f4;8;16;32;64;128g on Wikipedia,
and f10;15;30;60;120;240g on NUS-WIDE. From this figure
we can observe that CMSTH is sensitive to the topic numbers,
it obtains highest scores with topic number 8 on Wikipedia,
and 30 on NUS-WIDE. The results also illustrate that larger
number of topics does not mean the better performance of
cross-modal retrieval. They confirm that the semantic infor-
mation can be effectively learned and noises can be removed
by eigenvalue decomposition.

Fig. 6 shows MAP score variations with a different value
of β on two datasets, and k is set to 64. From the figure we
can find that our method is not very sensitive to β. The
highest MAP scores are obtained at β¼0.1 on Wikipedia
and β¼0.01 on NUS-WIDE, respectively. For β¼0.1 on
NUS-WIDE, the MAP score is also relatively high, thus in
our experiments we set β¼0.1 on both two datasets.

5. Conclusions and future work

In this paper we introduce Cross-Modal Self-Taught
Hashing (CMSTH) for both cross-modal and unimodal
image retrieval. CMSTH can correlate different modalities
by semantic topics, while previous unsupervised methods

only analyze the content correlation. In the first step of
CMSTH, we propose Hierarchical Multi-Modal Topic
Learning (HMMTL) to learn topics of multi-modal data. In
the learning process of topics, both intra-modal and inter-
modal consistency are preserved, and proper weights are
allocated for different modalities. Then we use Robust
Matrix Factorization (RMF) to transfer the topics to hash
codes which are more suited to quantization. In the last
step, we learn the hash functions to make all modalities be
correlated in the obtained hash space. Experimental
results on Wikipedia and NUS-WIDE show that CMSTH
significantly outperforms other cross-modal and unimodal
hashing methods.

A potential advantage of CMSTH is that it can be easily
extended without any changes in the whole framework.
For example, we may introduce a new topic model for first
step, to learn topics with more semantic information. In
the last step, most existing state-of-the-art supervised
methods can be used to learn the hash functions. In the
future work, we will consider improving the topic learning
and hash function learning steps.

References

[1] R. Datta, D. Joshi, J. Li, J.Z. Wang, Image retrieval: ideas, influences,
and trends of the new age, ACM Comput. Surv. (CSUR) 40 (2) (2008)
5.

[2] Y. Yang, D. Xu, F. Nie, J. Luo, Y. Zhuang, Ranking with local regression
and global alignment for cross media retrieval, in: ACM Multimedia,
ACM, Beijing, China, 2009, pp. 175–184.

[3] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G.R. Lanckriet,
R. Levy, N. Vasconcelos, A new approach to cross-modal multimedia
retrieval, in: ACMMultimedia, ACM, Firenze, Italy, 2010, pp. 251–260.

[4] L. Xie, P. Pan, Y. Lu, A semantic model for cross-modal and multi-
modal retrieval, in: ACM ICMR, ACM, Dallas, USA, 2013, pp. 175–182.

[5] S.J. Hwang, K. Grauman, Learning the relative importance of objects
from tagged images for retrieval and cross-modal search, Int. J.
Comput. Vis. 100 (2) (2012) 134–153.

[6] K. He, F. Wen, J. Sun, K-means hashing: an affinity-preserving
quantization method for learning binary compact codes, in: CVPR,
IEEE, 2013, pp. 2938–2945.

[7] B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scal-
able image search, in: ICCV, IEEE, 2009, pp. 2130–2137.

10 10 10 10 10 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

M
A

P

Image Query
Text Query

10 10 10 10 10 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

β

M
A

P

Image Query
Text Query

Fig. 6. Performance variations with different value of β in CMSTH on two datasets, the code length is 64: (a) Wikipedia and (b) NUS-WIDE.

L. Xie et al. / Signal Processing 124 (2016) 81–92 91

http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref1
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref1
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref1
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref5
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref5
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref5
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref5


[8] J. Cheng, C. Leng, P. Li, M. Wang, H. Lu, Semi-supervised multi-graph
hashing for scalable similarity search, Comput. Vis. Image Underst.
124 (2014) 12–21.

[9] S. Kumar, R. Udupa, Learning hash functions for cross-view simi-
larity search, in: IJCAI, vol. 22, 2011, p. 1360.

[10] D. Zhang, F. Wang, L. Si, Composite hashing with multiple infor-
mation sources, in: ACM SIGIR, ACM, Beijing, China, 2011, pp. 225–
234.

[11] D. Zhang, W.-J. Li, Large-scale supervised multimodal hashing with
semantic correlation maximization, in: AAAI, 2014, pp. 2177–2183.

[12] D.R. Hardoon, S. Szedmak, J. Shawe-Taylor, Canonical correlation
analysis: an overview with application to learning methods, Neural
Comput. 16 (12) (2004) 2639–2664.

[13] D. Li, N. Dimitrova, M. Li, I.K. Sethi, Multimedia content processing
through cross-modal association, in: ACM Multimedia, ACM, Ber-
keley, USA, 2003, pp. 604–611.

[14] L. Xie, P. Pan, Y. Lu, S. Jiang, Cross-modal self-taught learning for image
retrieval, in: MultiMedia Modeling, Springer, 2015, pp. 257–268.

[15] C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint
arXiv:1304.5634.

[16] Y. Luo, D. Tao, B. Geng, C. Xu, S.J. Maybank, Manifold regularized
multitask learning for semi-supervised multilabel image classifica-
tion, IEEE Trans. Image Process. 22 (2) (2013) 523–536.

[17] Y. Luo, D. Tao, C. Xu, C. Xu, H. Liu, Y. Wen, Multiview vector-valued
manifold regularization for multilabel image classification, IEEE
Trans. Neural Netw. Learn. Syst. 24 (5) (2013) 709–722.

[18] W. Liu, D. Tao, Multiview Hessian regularization for image annota-
tion, IEEE Trans. Image Process. 22 (7) (2013) 2676–2687.

[19] Y. Luo, T. Liu, D. Tao, C. Xu, Multiview matrix completion for multi-
label image classification, IEEE Trans. Image Process. 24 (8) (2015)
2355–2368.

[20] Y. Luo, T. Liu, D. Tao, C. Xu, Decomposition-based transfer distance
metric learning for image classification, IEEE Trans. Image Process.
23 (9) (2014) 3789–3801.

[21] L. Xie, P. Pan, Y. Lu, S. Wang, A cross-modal multi-task learning
framework for image annotation, in: ACM CIKM, ACM, Shanghai,
China, 2014, pp. 431–440.

[22] C. Xu, D. Tao, C. Xu, Multi-view intact space learning, IEEE Trans.
Pattern Anal. Mach. Intell. (2015) 1.

[23] H. Hotelling, Relations between two sets of variates, Biometrika
(1936) 321–377.

[24] J. Costa Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G.R. Lanckriet,
R. Levy, N. Vasconcelos, On the role of correlation and abstraction in
cross-modal multimedia retrieval, IEEE Trans. Pattern Anal. Mach.
Intell. 36 (3) (2014) 521–535.

[25] Y. Yang, Y.-T. Zhuang, F. Wu, Y.-H. Pan, Harmonizing hierarchical
manifolds for multimedia document semantics understanding and
cross-media retrieval, IEEE Trans. Multimed. 10 (3) (2008) 437–446.

[26] V. Mahadevan, C.W. Wong, J.C. Pereira, T. Liu, N. Vasconcelos, L.K.
Saul, Maximum covariance unfolding: manifold learning for bimo-
dal data, in: NIPS, 2011, pp. 918–926.

[27] N. Srivastava, R.R. Salakhutdinov, Multimodal learning with deep
Boltzmann machines, in: NIPS, 2012, pp. 2222–2230.

[28] F. Feng, X. Wang, R. Li, Cross-modal retrieval with correspondence
autoencoder, in: ACM Multimedia, ACM, Orlando, USA, 2014,
pp. 7–16.

[29] X. Lu, F. Wu, S. Tang, Z. Zhang, X. He, Y. Zhuang, A low rank structural
large margin method for cross-modal ranking, in: ACM SIGIR, ACM,
Dublin, Ireland, 2013, pp. 433–442.

[30] F. Wu, X. Lu, Z. Zhang, S. Yan, Y. Rui, Y. Zhuang, Cross-media
semantic representation via bi-directional learning to rank, in:
ACM Multimedia, ACM, Barcelona, Spain, 2013, pp. 877–886.

[31] J. Song, Y. Yang, Y. Yang, Z. Huang, H.T. Shen, Inter-media hashing for
large-scale retrieval from heterogeneous data sources, in: ACM
SIGMOD, ACM, New York, USA, 2013, pp. 785–796.

[32] A. Gionis, P. Indyk, R. Motwani, et al., Similarity search in high
dimensions via hashing, in: VLDB, vol. 99, 1999, pp. 518–529.

[33] Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: NIPS, 2009,
pp. 1753–1760.

[34] W. Liu, J. Wang, S. Kumar, S.-F. Chang, Hashing with graphs, in: ICML,
2011, pp. 1–8.

[35] D. Zhang, J. Wang, D. Cai, J. Lu, Self-taught hashing for fast similarity
search, in: ACM SIGIR, ACM, Geneva, Switzerland, 2010, pp. 18–25.

[36] M.M. Bronstein, A.M. Bronstein, F. Michel, N. Paragios, Data fusion
through cross-modality metric learning using similarity-sensitive
hashing, in: CVPR, IEEE, 2010, pp. 3594–3601.

[37] Y. Zhen, D.-Y. Yeung, A probabilistic model for multimodal hash
function learning, in: ACM SIGKDD, ACM, Beijing, China, 2012,
pp. 940–948.

[38] X. Zhu, Z. Huang, H.T. Shen, X. Zhao, Linear cross-modal hashing for
efficient multimedia search, in: ACM Multimedia, ACM, Barcelona,
Spain, 2013, pp. 143–152.

[39] G. Ding, Y. Guo, J. Zhou, Collective matrix factorization hashing for
multimodal data, in: CVPR, IEEE, 2014, pp. 2083–2090.

[40] X. Zhai, Y. Peng, J. Xiao, Cross-media retrieval by intra-media and
inter-media correlation mining, Multimed. Syst. 19 (5) (2013)
395–406.

[41] J. Wang, S. Kumar, S.-F. Chang, Semi-supervised hashing for large-
scale search, IEEE Trans. Pattern Anal. Mach. Intell. 34 (12) (2012)
2393–2406.

[42] Z. Ma, Y. Yang, N. Sebe, A.G. Hauptmann, Knowledge adaptation with
partially shared features for event detection using few exemplars,
IEEE Trans. Pattern Anal. Mach. Intell. 36 (9) (2014) 1789–1802.

[43] J. Song, Y. Yang, X. Li, Z. Huang, Y. Yang, Robust hashing with local
models for approximate similarity search, IEEE Trans. Cybern. 44 (7)
(2014) 1225–1236.

[44] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-
world web image database from national university of Singapore, in:
ACM CIVR, ACM, Santorini Island, Greece, 2009, p. 48.

[45] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis
as a kernel eigenvalue problem, Neural Comput. 10 (5) (1998)
1299–1319.

L. Xie et al. / Signal Processing 124 (2016) 81–9292

http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref8
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref8
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref8
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref8
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref12
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref12
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref12
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref12
http://arxiv:1304.5634
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref16
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref16
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref16
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref16
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref17
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref17
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref17
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref17
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref18
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref18
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref18
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref19
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref19
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref19
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref19
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref20
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref20
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref20
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref20
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref22
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref22
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref23
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref23
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref23
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref24
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref24
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref24
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref24
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref24
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref25
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref25
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref25
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref25
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref40
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref40
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref40
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref40
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref41
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref41
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref41
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref41
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref42
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref42
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref42
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref42
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref43
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref43
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref43
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref43
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref45
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref45
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref45
http://refhub.elsevier.com/S0165-1684(15)00353-9/sbref45

	Cross-Modal Self-Taught Hashing for large-scale image retrieval
	Citation

	Cross-Modal Self-Taught Hashing for large-scale image retrieval
	Introduction
	Related work
	Multi-modal and cross-modal learning
	Unimodal hashing
	Cross-modal hashing

	Cross-modal self-taught hashing
	Notations and definitions
	Hierarchical multi-modal topic learning
	Robust matrix factorization for hash code generation
	Cross-modal hash function learning

	Experiments
	Datasets and features
	Evaluation metrics
	Compared methods and implementation details
	Results of cross-modal image retrieval
	Results of unimodal image retrieval
	Parameter analysis

	Conclusions and future work
	References


