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ABSTRACT

Locating only one GPS position to a road segment accurately
is crucial to many location-based services such as mobile taxi-
hailing service, geo-tagging, POI check-in, etc. This problem
is challenging because of errors including the GPS errors and
the digital map errors (misalignment and the same representa-
tion of bidirectional roads) and a lack of context information.
To the best of our knowledge, no existing work studies this
problem directly and the work to reduce GPS signal errors
by considering hardware aspect is the most relevant. Conse-
quently, this work is the first attempt to solve the problem of
locating one GPS position to a road segment. We study the
problem in a data-driven view to make this process ubiquitous
by proposing a tractable, efficient and robust generative model.
In addition, we extend our solution to the real application sce-
nario, i.e., taxi-hailing service, and propose an approach to
further improve the result accuracy by considering destination
information. We use the real taxi GPS data to evaluate our
approach. The results show that our approach outperforms
all the existing approaches significantly while maintaining
robustness, and it can achieve an accuracy as high as 90% in
some situations.

ACM Classification Keywords
H.2.8 Database Applications: Spatial databases and GIS.

Author Keywords
Location-based services; GPS; positioning; map matching

INTRODUCTION

With the development of the mobile technology, GPS position-
ing is now widely applied in location-based services (LBSs)
[37, 38] such as discovering urban functional zones [34, 36],
human mobility prediction [10, 25, 30], and ride-sharing [6,
16]. Locating a GPS position to the road network without
any context information serves as a building block for many
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Figure 1. GPS points on a digital map

LBSs including taxi-hailing, check-in/geo-tagging in location-
based social networks (e.g., Foursquare, Twitter), etc. For
convenience, we name the problem of mapping a GPS posi-
tion to a road of a digital map without context information as
Single-point Map Matching (SMM) problem.

Let us take a quick view of taxi-hailing service, one of the
application scenarios of SMM. When a commuter is calling
for a taxi, if the APP simply maps the GPS point to the nearest
road which may be the wrong answer, it will bring inconve-
nience to the driver as she/he might not be able to find the
commuter. It could become worse during rush hour as it might
take some time for the taxi to reach another road. Even though
one can leverage the moving GPS position series of the com-
muter in a certain time interval to get a more precise answer,
we should make this process ubiquitous for every scenario
including those commuters standing steadily with only one
position available.

SMM is a challenging problem mainly because of following
four reasons. First, GPS signals have inevitable errors, e.g., the
combination of noise, bias and blunders [§8]. The bias is mainly
resulted by multipath effect [9, 11, 19]. Multipath occurs when
a radio signal is split by obstacles, e.g. high buildings, which
is very common in urban areas [7, 27]. Figure 1 visualizes
GPS points on a road network (Google Map). It is not hard to
observe that the distribution of GPS points is not consistent
with the road segments shown in the map. For given GPS
points a and b in the figure, if we simply map them to the
nearest road segment, the answer may not be correct.

Second, besides the GPS errors, the errors on the digital map
also lead to the difficulty of SMM problem. Most of maps,
including both commercial and noncommercial ones, are gen-
erated manually. Consequently, some roads displayed in the
map might not precisely align with the roads in the real world,
some new roads might be missing from the map, and some
closed roads might still present in the map [24, 29, 33]. Con-
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Figure 2. Examples of bidirectional roads on digital maps

sidering the relatively low update frequency of map data and
the dynamic nature of real road network, map data in most
cases are not exactly the same as real road networks in use.

Third, SMM problem cannot refer to any context information,
i.e., the predecessors and successors in a trajectory. The only
information SMM has is a single GPS position represented by
a latitude and a longitude.

Forth, most digital maps do not differentiate the spatial dif-
ference between the two sides of a bidirectional road, i.e.,
they represent the two sides using the same shape. Figure 2(a)
and 2(b) show a region in Singapore on Google map and Open-
StreetMap respectively, and Figure 2(c) shows the photo. We
can find out these roads shown in the maps are bidirectional
in nature but they are all represented by the same shape in
maps. More specifically, based on OpenStreetMap which is
the largest open source digital map, we find out that 78.6% of
roads in Singapore have the same road shape as their reverse
sides, such as {ry, r}, {r3, r4} and {rs, r¢} in Figure 3. Thus,
even we can confirm that a GPS position should be mapped to
an edge of a bidirectional road, e.g., the edge between node v,
and vs in Figure 3, the problem has not been fully solved as
we need to figure out whether it is located on rs or r¢.

Although we understand all the challenges of SMM problem,
we still believe that it is solvable because of following obser-
vations. First, the bias of GPS signals can be inferred given a
large number of historical GPS samples. This could be also
observed from the distribution of GPS points depicted in Fig-
ure 1. Second, the width of bidirectional roads is not that
small, which means the distribution of historical GPS points
w.r.t. one side of the road will be different from that w.r.t.
the other side of the road. When we accumulate sufficient
historical GPS points, we might be able to learn the difference
of GPS points w.r.t. two different sides of a road.

To the best of our knowledge, there is no existing work directly
solve SMM problem . The problem of GPS error reduction is
the closest but is still different from SMM. In addition, all the
works on GPS error reduction [9, 11, 27, 28] solve the problem
from a hardware aspect. We tackle SMM problem using a
data-driven approach because of following two main reasons.
First, a data-driven approach is believed to be more general.
Second, it is transparent from the application layer which
makes it ubiquitously applicable in any device/application.
In addition, studying SMM in a data-driven view does not
conflict with those hardware based works. For example, in
order to solve SMM problem, we can first adopt hardware
based approaches to reduce the GPS errors, and then apply the
data-drive approach to further improve the accuracy.
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Figure 3. Example of road network and SMM/SMMD problem

This paper studies the distributions of historical GPS sampling
points and tries to tackle SMM problem using a generative
model. In addition, we show how to plug our SMM solu-
tion into real-life problems which may have more information
available by an example of taxi-hailing service. More specifi-
cally, we extend SMM problem to SMMD where the location
mapping is based on a GPS point and the destination of the
journey. Our solution can be adjusted to online learning, which
allows the parameters of the model to be twisted continuously
based on the feedback from users. As a summary, we make
four major contributions in this paper.

e We formalize SMM problem. This is the first work on SMM
problem through a data-driven view. We implicitly catch
the fixed bias of GPS points by a generative model. Our
model is tractable and has a closed form solution which
makes it easy-trainable.

e We show how to plug our SMM solution to SMMD problem
in the taxi-hailing scenario. We model the tendency of users
when calling a taxi to study the SMMD problem.

e We adapt our model to online learning framework which is
useful in the real applications with continuous feedbacks.

e We conduct comprehensive experimental studies via a large
amount of real-world taxi data. The results show that the
proposed approach outperforms the existing approaches
significantly and also demonstrate its robustness.

PRELIMINARY

In the following, we first introduce two important definitions
on road network and road segment, and then formalize SMM
and SMMD problems studied in this paper.

Definition 1. (Road network.) A road network is modelled
as a directional graph G(V, E), where V refers to the set of
vertices (i.e., crossroads) and E refers to the set of edges (i.e.,
road segments).

Definition 2. (Road segment.) Given a road network G(V, E),
aroad segment r € E is a directed edge from a source vertex
r.s € V to an ending vertex r.e € V, with the direction repre-
sented by r.s — r.e. Unlike the definition in conventional road
networks, here the road segment has a new field denoted as
r.shape which is a list of intermediate points describing the
shape of the road, i.e., polyline representation.

Problem 1. (SMM problem.) Given a road network G and
a GPS position p generated by an object on a road segment
r, the Single-point Map Matching (SMM) problem aims to
find out the road segment » € G.E where p is actually located,
without relying on any other information.

Problem 2. (SMMD problem.) In taxi-hailing scenario, the
destination a commuter wants to go is usually available. Given



aroad network G, a GPS position p generated by commuter u
on a road segment r, and a destination d € G.V that u wants
to go, Single-point Map Matching with Destination (SMMD)
problem aims to find out the road segment r € G.E where p is
actually located.

Figure 3 plots an example road network with V = {v, vp, -+ -,
ve}, and E = {ry, 12, -, rg}. Take road segment r; as an exam-
ple. ry.direction = vi — v, and ry.shape = {vy, p1, p2, p3, 2}
The road between v; and v, is a bidirectional road and the
reverse side of r; is r, with the same shape but different di-
rection, i.e., rp.direction = v, — v;. For the SMM problem,
e.g., given point p in Figure 3, road segments rs, g, 7 and rg
are the candidate road segments where p is located and SMM
needs to locate one road segment that is most likely for p to
be located on. If we know the destination information, i.e., d,
of the journey started at point p and we want to locate p to a
road segment, which is an example of SMMD.

SOLUTION TO SMM PROBLEM

We understand from Introduction Section that some biases for
GPS positioning do exist in many places, with some caused
by the multipath effect and others caused by the in-correctness
of the digital map. In other words, we can leverage these
biases using the historical data to tackle problem SMM. If we
can capture all the biases in the map, we can locate the GPS
sample p closer to its actual position by correcting p according
to the bias near p. Unfortunately, it is not easy to capture and
express the bias explicitly since bias is changing in terms of
both direction and scale everywhere.

In order to avoid working on those intractable biases explicitly
and directly, we intend to tackle the SMM problem from a
probabilistic viewpoint. Let r; be one of the candidate road
segments that p might be mapped to, and C be the candidate
set that preserves all the candidate road segments. Finding
out the road segment r* which p has the highest probability to
be on, is equivalent to solve a Maximum-a-Posteriori (MAP)
problem or a classification/prediction problem, where p is the
object we need to predict and r; € C can be regarded as the
class labels. i.e., r* = arg mag P(ri|p). In the following, we
ri€

propose a new generative model, namely PSMM, as a solution.
The quantitative comparison of existing classifiers and PSMM
will be presented in the Evaluation Section.

Obtaining The Ground Truth

For all classification (supervised learning) problems, la-
bels/ground truths should be attained. As manual labeling
is obviously impractical for SMM problem, we explain how
to get the label of each historical GPS sample automatically.
To do so, a dataset of GPS series, i.e., trajectories, should be
available. Although mapping a single GPS position to the
road network is difficult, mapping a trip with series of GPS
positions will be much easier and more reliable, handled by
a well-studied technology named as map matching. Among
all of the map-matching approaches, hidden Markov Model
(HMM) based approaches are the best choice [1]. As stated
in [20], it is very robust to noise and sampling rate, e.g., it
achieves around 98% accuracy when sampling rate is 30s
and the noise standard deviation is 15m. The accuracy is

For each road r drawn from C(7):
For every road position 7 drawn from P(w, ):

G

Draw GPS position p ~ N[[;’ Egizzg;],z, (r)];

Figure 4. Exact generation process of a GPS sample

sufficiently high to get the label of each GPS position in a
trajectory and we pick up these GPS positions as training data.

Generation Process of GPS Point

Before presenting our model, let us use a parameterized form
to represent a polyline. That is to say, for a 2-d polyline
r.shape, any point (x,y) on the polyline satisfies that

X = fr,x(T)’y = f;',y(T)vo <t<l1

This means the coordinates (x, y) of intermediate points of a 2-
d polyline r.shape can be expressed as functions f,. (1), f,.,(1)
of parameter 7. In other words, when an object is moving
along r.shape from r.s to r.e, the movement can be expressed
by altering the parameter 7 from O to 1.

Figure 4 shows the exact generation process of a GPS position.
First, an object is located on one road segment r, which can
be modelled to be drawn from a categorial distribution C(x).
Then the true position of this object can be represented by the
offset, i.e., 7 in the parameterized representation, in r. Thus, 7
should be drawn from certain distribution $(w,) with parame-
ter w,. After deciding the true position (f}..(7), f..,(7)) of the
object, the object pushes a GPS position request and GPS is
returned with some biases and noises if any. Consequently, the
GPS position can be assumed to be drawn from a 2-d Gaussian

Jra(T) + b (1)
fr,y(T) + br,y(T)

by (7)
by (7)
models the random noise. We assume that every place should
have its own constant bias and random noises due to the differ-
ence of the environment, and that’s why we parameterize both
mean and covariance of the 2-d Gaussian by 7. Note that, as
mentioned above, the identical representation of bidirectional
road is a problem we need to resolve. However, as the width
of the road in the real world cannot be ignored, thus the dis-
tributions of the points corresponding to two directions of a
bidirectional road is different. As a result, we can regard them
as biases and the bidirectional road problem can be solved
under the solution of our generative model.

with mean ( ) and covariance matrix X,.(7),

where ( ) can be regarded as the fixed bias and Z,(7)

Given a point p and a candidate set C of road segments, the
model tries to find the road r € C that maximizes the posterior
P(r|p) (equally speaking, joint distribution P(r, p) as P(p) is
a constant w.r.t different rs), i.e., r* = arg max,cc P(r, p). In
detail,

P(r,p) = P(r) fP(p|r, T)P(t|r)dr
_ Jra(T) + b1 (7T)
= C(rlﬂ)fN(p‘( For(T) + byy(T) ),Z,(T)) P(r|w,)dt

Although this generation process can properly model the real
generation process of a GPS position, it is not a tractable
model for SMM because of three reasons. First, it is difficult
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Figure 5. Some statistical studies of historical data

to use one distribution to approximate the distribution of 7 in
all road segments. Based on Figure 5(a), we can figure out that
the distribution of 7 in different road segments differs tremen-
dously. Second, this model includes a latent variable 7 and the
joint distribution P(r, p) needs the integral of T which makes
the parameter inference hard. Although it can be solved by
Expectation-Maximization (EM) algorithm, it needs iterations
and the inference will be slow if a large amount of training data
is given. Third, it cannot be adopted to online learning which
is useful in real applications especially for SMM problem. The
detail of online learning will be introduced later.

Our Generative model: PSMM

We then propose Probability-based SMM (in short PSMM),
a model that borrows the general idea from the generation
process of GPS point discussed above but is modified to be
tractable and applicable for SMM problem.

The main change we introduce to PSMM model compared with
previous generation process, is a new concept, namely sloz. It
refers to a short line segment along a road segment. In other
words, we break a road segment which is represented by a
polyline into many short slots. We assume positions along one
slot share following common properties because of locality.
First, they share common bias and noise. Second, given a
large set of GPS points, the density of GPS points at different
positions of the same slot is constant. Accordingly, instead of
using 7 to represent the offset of a GPS point p from the start
vertex of a road segment, we use the position 7, of the head of
the slot s and the offset At in the slot s, i.e., 7 = 7, + AT.

In addition, in order to avoid integral, we also make some
changes to the generation of the GPS position such that the gen-
erated GPS position from the true position becomes tractable.
Recall that in the previous generative model, we assume that
all the positions on a road segment have certain probability
density to generate a given GPS position p. Similarly, it has
been assumed that all the positions on a road segment make
contribution to the generation of p. For example, for a GPS
sample p located in the middle of the road, the position 7 = 0
(i.e., the start of the road segment) has the probability density
to generate p, although with a relatively low probability, and
p’s projection on the road can also generate p, however with
a relatively high probability. Thus, all the positions on the
road have the probability density to generate p which leads to
the integral of 7 and further contributes to the difficulty of the
previous model. It can be observed that each GPS position is
generated quite near to its true position. Figure 6 plots an ex-
ample. For the sake of exponential component in the Gaussian,
the probability density for a true position T on the road expo-
nentially decreases with the increase of the distance between 7
and p. Positions near 74 call for a high probability to generate
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Figure 6. Example of intuitive generation process

p, such as 13, 74 and 75. Moreover, we do not consider the
difference between the probability density of 73 generating p
and that of 74 (or 75), because 73, 74 and 75 are spatially close
to each other. Consequently, we make an assumption that a
GPS position is generated only by its projection position on the
road segment. Back to example shown in Figure 6, we assume
p is generated only by 74. Consequently, the generation of the
GPS position from the true position is now tractable because
p is generated only by one 7 rather than the infinite 7 € [0, 1]
to avoid integral.

Based on the assumption that a GPS point p is generated
by its projection position 7 on a road segment r, we can use
1-d Gaussian to model the distribution of the distance from
p to 7, i.e., the vertical distance from p to r. Figure 5(b)
shows a histogram of the projection distances from history
GPS samples to the road segment for three randomly selected
segments. It demonstrates that the distance between p and its
projection on r also follows a near-Gaussian distribution. In
other words, the noise and bias of a GPS point can be restricted
to the vertical line from p to the slot. From Figure 5(b), we
can find out that the mean of the Gaussian is not zero which
implies that the bias and the variance are also different on
different segments. We use notation ¢ to denote the vertical
distance from the GPS position p to the road r, or equivalently
speaking, slot s. Thus, the generation of p in the 1-d Gaussian
model is equivalent to the generation of ¢ on 7 + Ar.

Incorporating the concept of slot and the proposed 1-d Gaus-
sian distribution for d, we propose PSMM model, as presented
in Figure 7. For the true position 7, + A, the slot s is drawn
from a categorical distribution C(¢,;) and then the offset At
is generated uniformly in the slot s. For the vertical distance
0, it is drawn from 1-d Gaussian with mean b,(t; + A7) and
variance o-%(‘zﬁY + AT).

To facilitate the understanding of PSMM model, an example is
plotted in Figure 8. We assume each line segment in the figure
refers to one slot and the model first selects the slot s = 4 in
the figure (suppose the index of slot starts from 1). It then
decides the in-slot offset Ar. The cross mark represents the
true location and the plus signs visualize the distribution of
the GPS signals when the true position is at 7, + A7. In this
example, we can figure out that the bias is above the segment
which is captured by b,(7y) and the noise level is modelled
by o%(z,). Note that we plot a straight road for simplicity but
PSMM model works even when the road segment is a polyline
with a minor modification in the angle part. Due to the space
limitation, we skip the detail.

For each road r drawn from C(7):
For each slot s drawn from C(¢)):
For each offset Az drawn from ¢/(0,7,.[en):
Draw projection distance 5 ~ N (b, (z, + A7)0 (z, +A7));
\\ Get p starting from (/,,(z, +A7)./,, (z,+A7))
and moving distance § along the vertical direction of s;

Figure 7. Generation process of PSMM model
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Under this PSMM model, the joint distribution P(r, p) can be
expressed by Equation 1. Note that now the model is free of
both latent variable and integral and meanwhile the modelling
of P(7) is not necessary.

P(r, p) = P(r)P(s|r)P(Atls, r)P(|s, 1, AT)
= C(rlr) X C(sl¢,) X U(AT|0, T5.len)
X N (6lb(r, + A7), 0 (7, + AT)) (1

Parameter Estimation

PSMM model relies on a few of parameters such as x for
road segments distribution and ¢, for slots distribution. In
the following, we explain how to determine the values of
these parameters. The main idea is to use the log joint
likelihood of training samples as the cost function. For
the training dataset with m training GPS samples 7 =

{(pD.rD).(p2.r®), - (p, F™)}, the log joint likeli-

hood can be computed by £ = Y log P (rm, p(i)). Since
we assume the in-slot offset follows the uniform distribution
that is only relevant to the length of the slot 7, and all the
positions in the same slot share the same bias and noise, PSMM
model needs to decide the values for parameters 7, {,, b, ()
and o,(15). By setting the derivative corresponding to the
object parameter to 0, we can get the closed form estimation
of that parameter through training data, which are,

pe 1r® =7} +1
n(r) =
m + |{r|lr € G.E}|
(s) = S = e =10+ 1
ér S UHEO =+ |{sls € rlf
morD = r 10 = 7460
bo(r.) = 2 r . r‘r()_ 7}
HrD = r1 =14}
i W = rro = 160 = bo(xy))?
o (1) =

H{r9 = r 100 = 74}

where 1{condition} is the indicator function that returns 1
when condition is true and O otherwise. Note that for esti-
mating parameter n(r) and ¢,(s), Laplace smoothing [17] is
adopted because of data sparsity problem which may lead
them to be zero.

Considering Large Bias and Misalignment

When a road segment has a large misalignment or the bias is
large, directly applying PSMM model may face some issues.
This is because PSMM model is based on the assumption that all
the positions on the same slot share the same point distribution,
same bias and same noise. When the bias is large or the
misalignment is severe, this assumption is no longer valid.
To address this problem, we adopt a principal curve fitting

.%-o‘-lo _o.%o Qo’% %

Figure 9. Example of latent road

algorithm [14] to fit the historical GPS points via a polyline.
Principal curves are curves that pass through the middle of a
dataset, providing a nonlinear summary of the data [12]. We
use the fitted polyline as the true position of road r, namely
latent road segment and denoted as 7 in Figure 9. Then, we
substitute all the r;s involved in PSMM model by 7;. Via this
strategy, the model will be trained by the latent road segments
formed by historical points and hence become irrelevant to the
in-correctness of digital map. Note that there is no need for
7 to be located in the middle of the historical points exactly,
as our model can capture the biases precisely when the biases
are not too large.

ONLINE LEARNING

Online learning is used in the case where the data becomes
available in a sequential fashion, in order to perform the classi-
fication task. In online learning, the mapping between the data
point and the labels is updated after the arrival of every new
data point in a scalable fashion; whereas traditional offline
learning techniques are used when one has access to the entire
training dataset at once. Because of the nature of SMM prob-
lem, online learning is very applicable. Considering following
situation. When a user pushes an SMM request, the model
predicts the road segment the user is on and then user can
feedback on whether the predication is correct. The model
can twist the parameters based on the user feedback to further
improve the system. This process can continue which is exact
the same as online learning.

The main benefits of online learning for SMM lay on three
aspects. First, the biases, noises and the road shapes might
change over the time. Thus, online learning provides a chance
for the model to adjust the parameters in order to cater for
new changes. Second, the proposed model relies on a large
sample set to decide the proper values of parameters and the
size of the sample set has a direct impact on the quality of the
parameters and hence the performance of the model. However,
in some application scenarios, the amount of samples available
is limited. Online learning provides an alternative to gradually
improve the accuracy of the predication when more and more
samples and feedback are collected. Third, online learning
has much lower memory requirements in the sense that it only
requires storage of the current parameters of the model and
the next data point (p, r). This is because online learning will
incrementally update the parameter with the prediction result
of the next data point. For PSMM, when the ith feedback sample

(r(i) =r, p(i)) arrives, we use superscript of the parameter, e.g.,

7'(r), to indicate the adjusted parameter after seeing the ith
feedback. As our parameter can be estimated in the closed
form, it is not hard to get the update criteria, as shown in
Equation (2), where ¢, = |{rlr € G.E}|, g5 = |{sls € r}l,
Nl =i— 1, N- = 2 1 = ), NI = 30 10 =
r,Tyw = Ts}. Note that the update of all the components has a
constant time complexity.
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SOLUTION TO SMMD PROBLEM

In this section, we will show how to plug the SMM solution to
the problem with additional input information when locating
the GPS position to the road network. Generally, let 7 denote
other information available. Given input {p, I}, locating the
real road segment 7* is also equivalent to find the road segment
r that can maximize the posterior, i.e, P(r|p, 7). By Bayes’
theorem, P(r|p,I) o« P(p,I|\r)P(r) = P(p|r)P(L|r, p)P(r)
= P(p,r)P(Z|r, p). Recall that P(p,r) is the joint probabil-
ity in SMM problem which can be derived by Equation (1).
That is to say our PSMM model can be plugged here without
any modification and the only remaining task is to model the
component P(Z|r, p).

Specifically, in taxi-hailing service, the destination where a
user wants to go is usually available, i.e., I = d. To differenti-
ate this from the original SMM problem where the destination
d is not available, we name the problem of locating a user
currently located at a GPS position p to a road segment given
the destination d the user wants to go as SMMD, as presented
in Problem 2 in Preliminary Section. In the following, we
introduce how to model P(d|r, p).

Note that, once r is given, the generation of d is irrelevant
to the GPS position p since p is also generated by r, thus
P(d|r, p) = P(d|r). Intuitively, we can use categorical dis-
tribution to model P(d|r) since d is a discrete variable, i.e.,
d is drawn from C(®,) and the probability of choosing the
destination d given r is denoted by ®,(d). Through maxi-
mum likelihood estimation (MLE), ®,(d) can be estimated
b W, where {T|T.s = r A T.e = d}| refers to
the number of trips that are from road segment r to d, and
{T|T.s = r}| refers to the number of trips started from road
segment r. However, this naive method suffers from a data
sparsity problem. We find that given certain road r, most value
of {T|T.s = r NT.e = d}| is O for d € G.V. Thus, the desti-
nation information will be eventually useless since for all the
destinations with {T|T.s = r A T.e = d}| = 0, ®,(d) will be
assigned an identical value. Motivated by this, we intend to
propose Probability-based SMMD (in short PSMMD) to model
P(d|r) which does not suffer from the data sparsity problem.

Note that P(d|r) is the probability of the event that the user
wants to go to d if he/she is standing at road r. Intuitively, the
direction of the candidate road segment w.r.t. d (e.g., whether
it is towards the destination or not) may affect user’s choice
of road segments. As a result, we first introduce the cosine
direction angle ¢(r, d), as shown in Equation (3), to quantify

how a road segment r is towards to the destination and then
show how it can be transferred to model P(d|r, p).
e—r.5,d—r.

o (r,d) = cos(0(r, ) = A< IBAZED

|r.e —r.s|-|d—r.e|

where (-, -) denotes the inner product between two vectors and
| - | infers the norm of a vector.

We intend to model P(d|r) based on P(d|¢(r,d)). The rea-
son is that, from the above intuition we can find that given
a destination d and two road segments r; and r, such that
o(r,d) = ¢(rp, d), the choice of road segments made by users
on r; and that made by users on r, tend to be similar. Un-
der this observation, we cluster (r, d) pairs with similar ¢(r, d)
values together and assume they have the same selection proba-
bility. That is to say, ¢(r,d1) = @(r2,dr) — P(di|e(r1,dy)) =
P(d>|¢(r2, d>)). Obviously, this can address the data sparsity
problem since those (r, d) pairs with the same cosine value ¢
will be considered together. By Bayes’ theorem, P(d|¢(r, d))
can be transformed as shown in Equation (4). This means
that P(d|¢(r,d)) becomes tractable because P(¢(r, d)|d) and
P(p(r,d)) can be statistically estimated. In the following, we
explain how to derive P(¢(r, d)|d) and P(¢(r,d)).

Ple(r, dld)P(d)  Plp(r,d)|d)

P(e(r,d)) P(p(r,d))

To estimate P(¢(r,d)|d), a simple method is to draw the his-
togram of ¢(r, d) using all trips that are ended in d. Note that
for those destinations d and d’ that are spatially close, trips
ended in d’ can also be used in computing the histogram of
¢(r,d) since spatially close destinations are expected to share
similar distribution of ¢(r, d). We partition the whole map into
grids and assume the destinations in the same grid share the
same distributions. Figure 10(a) shows an example histogram
of P(¢(r,d)|d) w.r.t. a grid located in the middle of the map.

P(dlr) = P(dle(r,d)) = “

To estimate P(¢(r,d)), we draw the histogram by traversing
the whole map. As shown in Figure 10(b), the distribution of
¢(r, d) is nearly symmetric with 0.0 which is consistent with
our expectation because the grid we choose is in the central of
Singapore. Thus, the distribution of the cosine angle formed
by the roads on map and grid g is symmetric. In addition, the
density of ¢(r,d) = —1.0 and ¢(r,d) = 1.0, or equivalently
speaking, 0(r,d) = 0 and 6(r, d) = n, looks much larger than
the middle ones. This is because the mainland of Singapore
measures 50 kilometers from east to west and 26 kilometers
from north to south, in a rectangular shape with length longer
than the breadth.

After plotting the histograms of P(¢(r, d)|d) and P(¢(r, d)), we
can divide them corresponding to each interval of ¢(r, d) to get
the histogram of P(d|y(r, d)). Figure 10(c) shows the result
by dividing the histogram of Figure 10(a) and that of Fig-
ure 10(b). The distribution is consistent with our expectation.
¢(r,d) increases from -1.0 to 1.0 (i.e., 6(r, d) increases from
—m to ) monotonously, which means the direction of road r is
increasingly facing towards the destination and the probability
a person tends to choose r is also increased. Based on the
distribution of P(d|¢(r, d)), we use exponential distribution to
model it and finally the modelling of P(d|r,d) is addressed.
Note that we do not intend to discuss other input information
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such as temporal information due to the limitation of space
and it can be easily taken into consideration under our solution
framework.

EXPERIMENT

Dataset. We conduct a comprehensive experimental study
based on real trajectory dataset from Singapore. The dataset
contains 225,000 trajectories generated by about 15,000 taxis
from Jan. 1, 2011 to Jan. 15, 2011. The average sampling
interval of the trajectories is 30s. Please refer to [2] for a
detailed description of the dataset. The digital map we use
is from OpenStreetMap'. We conduct the experiments in
an area consisting of 577 road segments. The reason that
we do not use the full Singapore area is that some existing
classifiers, e.g., ANN and SR, are not able to get the answer
if we consider the whole area. On the other hand, we do
not observe any significant performance drops of our solution
when we increase the area to the full landscape of Singapore.
In addition, SMMD problem only restricts the origin of the
trip to be located within the area but not the destination.

For SMM, 10,000 GPS samples picked randomly from the
trajectories serve as test set. The ground truth is obtained
by the strategy introduced in Obtaining the Ground Truth
Section. For SMMD, we select the trajectory with BUSY
status that corresponds to a taxi journey and generate the
dataset containing the information of the pick-up position,
drop-off position, and the complete trajectory. The pick-up
as well as drop-off positions are input for SMMD, and the
complete trajectory is used for getting the ground truth of the
road segment w.r.t. the pick-up position. For SMMD problem,
in total 10,000 records are tested. In the following, we present
the competitors of PSMM and PSMMD models.

Classification Algorithms. As SMM/SMMD problem can be
formalized into a multi-class classification problem, we imple-
ment representative classification algorithms as competitors,
including softmax regression (SR) [4], Naive Bayes (NB) [4],
support vector machine with linear kernel (SVM;;eq,) [4] and
that with radial basis function (SVMgpr) kernel, artificial neu-
ral network with one hidden layer (ANN) [4], decision tree

Thttp://www.openstreetmap.org/
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Figure 11. GPS samples on a bidirectional road segment

(DT) [21] and k-nearest neighbor classification (kNN) [4]. For
ANN, the number of nodes in the hidden layer is set to 50.
For SVMs, the multi-class classification is implemented by
"one-against-one" approach; and for SVMgpr, the parameter
v is set to 1.0. For DT, the split criteria is Gini impurity [21].
For kNN, we set k = 20. We use the latitude and longitude
of the GPS position as the input feature. We would like to
highlight that, in addition to the position information, we have
tried to include other features such as the vertical distance
from the GPS point to each road segment to make the input
feature more informative. However, the results do not differ
too much from the original ones where we only consider GPS
point. Because the high dimension of the input feature will
vastly increase the training time of some classifiers, we only
consider GPS point feature in our experiments.

Simple Baseline Approach (SBA). Given a position p, SBA
locates p to the nearest road segment r. Given the fact that a
bidirectional road is represented by two segments with exactly
the same shape but opposite directions, two segments might
share the same shortest distance to p. If this is the case, one of
them is returned randomly with the same probability.

Baseline Approach (BA). Although a bidirectional road is
represented by two road segments with the same shape, in
reality, the width of bidirectional road segments is actually
non-negligible. Intuitively, the GPS samples on r tend to lay on
the right (left) side of r in countries with right-hand (left-hand)
traffic. Accordingly, in countries with right-hand (left-hand)
traffic, BA returns the road segment r of which p is on the
right (left) side. As shown in Figure 11, for all the solid points
that are on the left side of | in Singapore, r; will be reported
as the answer. Similarly, for hollow points, r, will be returned.

Baseline Approach with Destination (BAD). BAD is de-
signed as a baseline for SMMD. Similar to SBA/BA, it returns
the nearest road of p. However, when the nearest road is a
bidirectional road, e.g., {ry, 1>}, it returns the segment that is
towards the destination, i.e., r* = arg max,e, ) ¢, d).

Comparison of Accuracy

We first evaluate the accuracy of different approaches that can
support SMM or SMMD problems. We report the accuracy,
i.e., the ratio of the number of correctly-matched test samples
to the total number of test samples, in Table 1.

From the result, we observe that although SMM/SMMD can
be transferred into a classification problem, most of traditional
classification algorithms do not work well. Among the classifi-
cation algorithms we implement, ANN and SR suffer from low
accuracy. They both classify the objects by using a function
to approximate the posterior probability of each class. In the
training step, they both want to find a function to maximize
the likelihood (SR) or minimize the prediction error (ANN)
over the whole training dataset. When the number of classes
is large (e.g., 577), it is hard to find such a *function’ to model
the data which leads to the poor performance.



SMM | SMMD

ANN 317% | 3.63%
SR 15.13% | 17.23%
NB 50.77% | 53.8%
SVMimear | 44.73% | 45.21%
SVMzrsr | 50.51% | 50.89%
DT 5453% | 5712%
KNN 62.08% | 62.81%
SBA 4420% | 39.51%
BA 50.97% | 66.99%
BAD NA | 52.14%
76.52% | 77.59%

PSMMD N/A 82.58%

Table 1. Comparison of Accuracy

NB performs better than SR and ANN. This is because NB
is a generative model, which can capture more information
such as the prior P(r). SVM;neqr can only classify data via a
hyperplane or line. In SMM, the distributions of historical GPS
data on different road segments are not linear, which affects
the accuracy. On the other hand, although the distribution of
historical points can not be linearly separated, they are actually
near-linear since the shape of a road segment does not twist
heavily. When adopting SVMgpr, the feature can be mapped
into infinite kernel space which allows the data to be classified
linearly in the high-dimension kernel space. Thus, SVMgpr
improves the accuracy, as compared with SVMy;eq;-

DT performs a little bit better. The main reason is that DT
uses horizontal and vertical boundaries to split the data and
hence the performance of DT is not affected by the large
number of classes. Because DT boundaries posed on the
data are similar to the k-d tree’s boundaries to sub-divide
the dataset, for a bidirectional road, the decision boundary
will be greatly affected by the road shape, which may be
the key reason why it is inferior to kANN. kNN performs best
out of all the traditional classification approaches. The main
reason is that kNN classifies the data by returning the label
which has maximum votes of its nearest neighbors. For the
SMM/SMMD problem, the historical GPS points on the same
road segment tend to be clustered together, which implicitly
takes the bias and noise into consideration. However, as kNN
highly depends on the dense distribution of the GPS points, the
volume of historical data required by kNN (400, 000 points) is
much larger than that of other approaches (< 100, 000 points).

SBA generates the accuracy slightly below 50%, which is
below our expectation. If each road is bidirectional and the
matched road r is nearest to p, the accuracy shall be exactly
50%. We guess the main reason that SBA has accuracy below
50% is that the GPS has bias and noise, and some matched
road segments may not be the ones with the minimum distance
to p. Actually, in this dataset, about 15.3% ground truths are
not nearest to the GPS position. BA achieves a higher accuracy,
as compared with SBA. This means the driving direction does
provide useful information for SMM and SMMD problems.
We also notice that BAD outperforms SBA but not BA. This
means the destination indeed has an impact on the selection
of road segments, but its impact is smaller than that of the
distribution of points on a road segment.

PSMM and PSMMD models outperform all the existing ap-
proaches with significant improvement. An interesting ob-
servation is that most approaches perform better when the
destination is provided, although the improvement of PSMM

ANN SR NB SVM DT PSMM
time ¢ 312s 36.8s 2.28 303s 1.6s 1.0s
training count m | 30,000 | 50,000 | 90,000 | 50,000 | 70,000 | 80,000
L (unit: 10755) 1040 73.6 2.44 606 2.29 1.25

Table 2. Training Time

model is less significant. This is mainly caused by the differ-
ence among the datasets. Given a testing dataset, most of the
approaches tend to fit the data of those dense areas. As the test-
ing data is drawn from the same distribution of training data,
the testing samples in dense areas will be predicted correctly
which explains the improvement of the accuracy for most ap-
proaches. However, PSMM model focuses on the generation
of a GPS point. This means whether the point is located in a
dense area or a sparse area, it does not affect the way PSMM
locates the road segment. In other words, the distribution of
historical and testing data will not influence the performance
of PSMM model.

Training Time Comparison

In the second set of experiments, we report the training time
consumed by different models in Table 2. Note that kNN,
SBA, BA and BAD are excluded as kNN is a non-parametric
method and SBA, BA as well as BAD are not classifiers. Thus,
they do not require training process. Considering that different
classifiers need different number of training samples, we train
each classifier using different sizes of training samples which
allow them to perform nearly best. We also include the loading
time of training files. As PSMM model only needs to read the
training data and can get the answer analytically, it requires
very short training time, close to NB and DT which have no
iterations to adjust the model parameters. Note that SVM and
SR need iterations for training each road (such as SGD [4] and
SMO [23] algorithms in their implementation), which extend
the training time. ANN uses back-propagation to update the
parameters, and hence incurs the longest training time.

Confidence Test

In the third set of experiments, we report the performance of
our approaches under different confidence ratios. In our work,
notations p(r'*|y) and p(r**|y) refer to the highest and second
highest posterior probabilities of the candidate road segments
respectively, computed by PSMM or PSMMD. Here, y refers to
the input information, i.e., p for SMM or (p, d) for SMMD. We
define the confidence ratio of y as p(x) = p(r'*'lv)/ p(r*™|y).
Obviously, p(y) € [1, +00).

To study the performance under different confidence ratios,
we generate the testing dataset by excluding certain testing
samples from the testing dataset based on p values. To be
more specific, for a given py, all the data y” with p(x?) < pg
will be excluded from the testing dataset. We then conduct
experiments under this refined dataset and report its accuracy
corresponding to pg. In detail, we conduct this experiment
by varying pg from 1.0 to 4.0. The reason to conduct such an
experiment is that the accuracy under certain confidential ratio
po can be regarded as the confidence of our approach’s result
for a testing sample y if p(x) > po. It is not hard to find that
the accuracy under py = 1 is the accuracy on the complete
testing dataset without filtering any testing sample.
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Figure 12. Accuracy vs. confidence ratio

First, we plot the accuracy of PSMM model in different con-
fidence ratios under SMM dataset in Figure 12(a). We can
observe that with the increase of py, the accuracy is improved
which is consistent with our expectation. This is because
the higher the p is, the larger the gap between p(r'*|r) and
p(r™|r) will be. Consequently, the probability of returning
the right answer r'* becomes higher.

Next, we plot the accuracy of both PSMM and PSMMD for sup-
porting SMMD problem under SMMD dataset in Figure 12(b).
As PSMMD incorporates more information than PSMM, the accu-
racy is always superior to PSMM. We can observe that when the
confidence ratio is larger than 2.5, the accuracy of PSMMD ex-
ceeds 90%. In addition, when the confidence ratio p increases,
the gap between PSMMD and PSMM shrinks. The reason is that
as p increases, P(p,r) contributes more to the accuracy, as
compared with P(d|r) to the accuracy. Recall that although
the destination has an influence on the decision of the road
segment, the influence is still smaller than the distribution
of historical points as the performance of BAD is inferior to
BA. That explains why as p increases, the difference between
these two algorithms becomes smaller. As the performance of
PSMM and that of PSMMD are similar, when we perform further
studies on PSMM model to be reported below, we only plot the
result of PSMM model.

Road Type and Size of Slot

In this set of experiments, we evaluate the impact of slot size
in different road types. We evaluate four road types including
motorway, trunk way, primary way and secondary way, which
cover most of the traffic. Note that the type of road is obtained
from OpenStreetMap. The accuracy of our model under differ-
ent slot sizes and road types is reported in Figure 13(a). We
observe that motorway and trunk way have the lowest accu-
racy among these four types. The reason is that motorway and
trunk way are both express ways which have many lanes close
to each other, which leads to the difficulty of locating a GPS
position to a lane accurately. Note that the size of slots does
not have a significant impact on the result corresponding to
primary and secondary ways. The reason is that most of these
ways in the testing area are straight lines and the bias tends
to be consistent in these ways. For motorway, 55m is the best
setting for the slot size. For trunk way, it is 35m. For primary
way, the slot size does not affect the accuracy so much and for
secondary way, 5Sm is the best.

Online Learning

We also conduct an experiment to demonstrate the effective-
ness of online learning. Initially, the parameters of PSMM
model are set to their defaults i.e., b.(7) = 0, o.(1) = 1,
a(r)) = n(ry) = -++, and £.(s1) = £(s2) = ---. According
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Figure 13. Accuracy v.s. slot size and performance via online learning

to Equation (1), P(r, p) = C(rlr) X C(s|¢;) X UAT|0, g4y —
T) XN (5|b(n), a’z(n)). As the parameters 7 and ¢, of cat-
egorial distributions are all the same, C(7|7r) and C(s|{,) can
be regarded as constants. Given the fact that the uniform dis-
tribution is constant, the joint probability is only influenced
by the Gaussian. As all the slots share the same default b and
o, PSMM without any training performs as SBA does and the
result proves above analysis.

We start collecting the accuracy data when PSMM model has
received 10,000 feedback, with the average density being
10,000/577 =~ 17 feedbacks per road segment. The result is
plotted in Figure 13(b). We can observe that PSMM is able to
learn in a very fast speed. For example, when there are 17
feedbacks per road, the accuracy has already exceeded 70%.
This shows that PSMM model does not suffer from the cold
start problem and it can perform well after receiving a small
number of feedbacks. When more feedbacks are received, the
accuracy of PSMM improves and it is able to converge quickly.

Robustness Test

The sixth set of experiments is to demonstrate the robustness
of our approach. Recall that PSMM generates a latent road
segment based on the distribution of historical points to tackle
the issue of large bias and misalignment of map. Hence the
correctness of map does not affect its performance. However,
the baseline algorithms, including BA, SBA and BAD, locate
the answer road segment based on the position of p and its dis-
tances to different road segments. In other words, the accuracy
of the digital map will affect the performance of those baseline
algorithms. We also include PSMM model without using latent
road segment, denoted as PSMM', to study the potential impact
caused by the map errors on the accuracy. The performance
of classification algorithms is excluded from this set of experi-
ments because they train their models without considering the
digital map and their result will not be affected by the quality
of digital maps. As BA performs best among BA, SBA and
BAD, we include BA as the representative of them.

The first type of in-correctness we introduce to the maps is
map shifting. The shifting distance is varied in both horizontal
and vertical directions. It is observed from Figure 14(a) that
PSMM retains high accuracy under various shifting distances
as PSMM relies on the latent road which is independent of the
correctness of the digital map. PSMM’ suffers from the shifting
of the map as the GPS points are assigned to wrong slots which
does not allow the generative model to work. Obviously, this
finding well demonstrates the effectiveness of the latent road
strategy. BA is very sensitive to the shifting distance too
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Figure 14. Accuracy vs. digital map errors

because when map is shifted, the nearest road (unidirectional
or bidirectional) may not contain the ground truth.

The second type of in-correctness we introduce to the maps
is via perturbation, which simulates the situation of map mis-
alignment. Parameter 3 is introduced as the perturbation coef-
ficient. For each intermediate point p; € r.shape, it is moved
by a distance drawn from U(—p, ), in both vertical and hori-
zontal directions. The accuracy of different approaches under
various f3 values is plotted in Figure 14(b). As 8 increases from
0 to 5m, the accuracy of BA reduces drastically, from nearly
60% to 45%. When S exceeds Sm, the trend of reduction of
BA becomes gentle. This is because when the road shape
is wrong, BA can not leverage the left/right-handed driving
characteristic to determine the point on a bidirectional road.
Thus, BA will reduce to SBA as it chooses the segment almost
randomly as the shape of the road is wrong. The accuracy of
PSMM' also decreases with the increase of 8, which is consis-
tent with our expectation as the misalignment of roads will
lead to the difficulty of capturing the biases and noises. Recall
that our model assumes each position on the same slot shares
the same bias and noise and the in-correctness of the roads
will violate this assumption when latent road is not used.

Finding Misalignment Roads

In the last set of experiments, we want to demonstrate that our
model is also able to find out the misalignment roads. Recall
that before training the model, generating the latent road 7 is
useful for the accuracy of SMM/SMMD. Here, we make a
small change, instead of training the exact PSMM, we train the
PSMM’ introduced in the previous section. After training the
parameters, if a certain road segment r has several consecutive
slots with parameter b,(7,) larger than others, it is very likely
that the segment r in the digital map is misaligned. By figuring
out the roads with large bs, it is possible to help the map
producer to find out the misaligned road. Figure 15 shows two
roads with the largest bs. Figure 15(a) and Figure 15(c) plot the
historical GPS points on the roads. From these two figures, we
can observe that the distribution of those points is inconsistent
with the shape of the road. By checking the satellite images
from Google Map, i.e., Figure 15(b) and Figure 15(d), it can
be proved that these two roads found out by our model are
actually misaligned in the digital map (OpenStreetMap). This
demonstrates that our model can improve the quality of the
digital map especially non-commercial maps which are more
likely to have more misalignments than commercial maps.

RELATED WORK

There is a series of research on map matching for trajectories.
[3, 22, 32] map each GPS point with geometry information
which often have low accuracy. [18] utilizes the Kalman Filter
to map the trajectory to the map which is able to correct the
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Figure 15. Examples of misalignment roads

GPS position according to context. HMM-based methods not
only consider the context information but also the topology of
the map and they can achieve a considerably high performance
under high-sampling rate [20, 26, 31]. On the other hand,
there are several research works tackling low-sampling rate
trajectory data [15, 35] which are also based on the HMM
framework. Since low-sampling rate trajectory data have lost
a great deal of information, the accuracy is relatively low.
[5] studies the effect of sensor errors in map matching and
analyzes the percentage of many types of errors.

Although there is no research directly addressing the SMM
problem, there are some hardware-related approaches on re-
ducing the error of GPS signals. [9] uses wavelet to remove the
low to high-frequency GPS errors, where the low frequency
error includes bias resulted by multipath, ionospheric and tro-
pospheric delays, and the high frequency error refers to the
random measurement error. Besides, [11, 28] try to reduce
the bias generated by multipath. [27] also aims to mitigate the
effect of multipath, but it is designed for trajectory rather than
a single point. [13] corrects the bias for a vehicle through cam-
era images by the vision system. We claim that our approach
is the first try via a data-driven view and can also be adopted
after applying these hardware-based approaches.

CONCLUSION

In this paper, we have studied a ubiquitous problem, i.e., SMM
with historical data and proposed a generative model PSMM
which is the first attempt. Our model is carefully designed so
that it is able to model the fixed bias as well as random noises
properly with a closed form solution which makes it easy to
train and can be adopted to online learning. We also extend the
SMM problem to SMMD problem to show how to plug our
PSMM model into real applications with other information
available. We conduct experiments using real-world dataset
and the results validate the effectiveness and robustness of
our models, as compared with existing classifiers and three
baseline approaches. Our models can achieve the confidence
over 90% when the confidential ratio is larger than 3.0.
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