
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2017

Inferring smartphone keypress via smartwatch inertial sensing Inferring smartphone keypress via smartwatch inertial sensing

Sougata SEN
Singapore Management University, sougata.sen.2012@phdis.smu.edu.sg

Karan GROVER
Singapore Management University, karangrover@smu.edu.sg

Vigneshwaran SUBBARAJU
Singapore Management University, vigneshwaran@smu.edu.sg

Archan MISRA
Singapore Management University, archanm@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
SEN, Sougata; GROVER, Karan; SUBBARAJU, Vigneshwaran; and MISRA, Archan. Inferring smartphone
keypress via smartwatch inertial sensing. (2017). 2017 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops): Kona, HI, March 13-17. 685-690.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3583

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3583&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Inferring Smartphone KeyPress via Smartwatch
Inertial Sensing

Sougata Sen‡, Karan Grover†, Vigneshwaran Subbaraju‡, Archan Misra‡

‡Singapore Management University and †IIIT Delhi
‡{sougata.sen.2012, vigneshwaran, archanm}@smu.edu.sg, †{karan13048}@iiitd.ac.in

Abstract—Due to numerous benefits, sensor-rich smartwatches
and wrist-worn wearable devices are quickly gaining popularity.
The popularity of these devices also raises privacy concerns. In
this paper we explore one such privacy concern: the possibility of
extracting the location of a user’s touch-event on a smartphone,
using the inertial sensor data of a smartwatch worn by the user
on the same arm. This is a major concern not only because it
might be possible for an attacker to extract private and sensitive
information from the inputs provided but also because the attack
mode utilises a device (smartwatch) that is distinct from the
device being attacked (smartphone). Through a user study we
find that such attacks are possible. Specifically, we can infer the
user’s entry pattern on a qwerty keyboard, with an error bound
of ±2 neighboring keys, with 73.85% accuracy. As a possible
preventive mechanism, we also show that adding a little white
noise to inertial sensor data can reduce the inference accuracy
by almost 30%, without affecting the accuracy of macro-gesture
recognition.

I. INTRODUCTION

Wrist-worn smart devices such as smartwatches (e.g. [5])
and health monitoring devices such as FitBit [3] are becoming
increasingly popular. Also the sensors on such devices are
being exploited for a variety of innovative applications, such
as smoking detection [9] and food journaling [11]. However,
such sensor data can also be used to leak personal information.
In this paper, we investigate one such possible form of leak -
is it possible to localize the smartphone screen touch position
using data from the inertial sensors of the smartwatch when
the user is typing on the smartphone? And, if so, are there
any low-impact ways to minimise such leakage? Inferring such
screen touch locations on the smartphone can result in leakage
of sensitive personal information, such as mobile banking
passwords and search keywords in a browser. This is dangerous
because the attackers can compromise a smartphone without
actually compromising this device.

This problem of attacking one device using another device
as a host is, of course, not new. Work such as [12] and [13]
have shown that inertial sensor data from the smartwatch can
be used to determine key strokes on computer keyboards as
well as ATM keyboards. Our work is similar in spirit to such
past work, but with one distinctive difference: we investigate
a common interaction pattern, where the user wearing the
smartwatch is interacting with the handheld smartphone’s
touch-screen using a single finger. In this situation, the user’s
forearm exhibits little to no movement, with the touch activity
involving just finger displacement. In Figure 1 we can see
that even though there is slight wrist movement while typing,
however, there is little or no forearm displacement. In contrast,
past work has looked at situations where there is a clear

Fig. 1: Wrist position variation for different screen touch events

displacement of the arm itself during the process of interaction.
It is thus unclear if similar inertial sensing-based analysis is
useful when a person merely moves a finger around while
touching the screen. Moreover, to prevent attacks similar to
the ATM pin attack, various precautionary measures can be
taken - e.g. disabling the inertial sensors of the smartwatch
when a person is at a particular location (e.g. near ATM) or at
a particular time. However, such location specific strategies are
not useful for preventing leakage that can occur during regular
daily smartphone usage.

In this work, we investigate the possibility of using inertial
sensors to isolate the on-screen location of touch-based inte-
raction by a user with her smartphone. To localise the touch,
two challenges have to be addressed: (a) identifying when the
user touched the smartphone and (b) identifying where the
user touched. In this work we assume that we know when the
touch occurred and focus on identifying the second challenge
- where the touch occurred.
Key Contributions: This paper’s major contribution includes:

• We show that it is possible to identify the location of
a smartphone click using only the inertial sensor data
of a smartwatch. More specifically, we extract features
from the smartwatch’s inertial sensors and identify the
features which have the high discriminative power in
identifying the location of the on-screen touch events
performed by the user.

• Through a small user study, we show that with re-
asonable accuracy we can identify location of on-
screen touch event. For a 4.7′′ display divided into
2 partitions, it is possible to identify which partition
was touched with an accuracy of 86.32%. For a
regular qwerty keyboard, it is possible to identify the

(a) Grid Mode (b) Qwerty Mode

Fig. 2: Screenshot of application running on the Smartphone

key pressed, to within ±2 neighboring keys with an
accuracy of 73.85%.

• We also show that adding a small amount of white
Gaussian Noise to the inertial sensor data can reduce
button inference capability by almost 30%

II. METHODOLOGY

In this section, we first describe the data collection applica-
tion, then the user study details and finally, the data processing
pipeline. We start with the application details.

A. Application

For this study, we developed two android applications - a
smartwatch application and a smartphone application.

Smartwatch application: The smartwatch application con-
tinuously collects the accelerometer and gyroscope data from
the smartwatch at the highest sampling frequency. We have
used the LG Urbane W150 smartwatch for our studies which
has a sampling frequency of 200 Hz for both the sensors. The
data from the two sensors is stored locally and is later used to
localise the smartphone click.

Smartphone application: There are two data collection
modes in the smartphone application - (a) grid mode consisting
of 60 buttons which were arranged in 6 rows and 10 columns
(Figure 2a) and (b) qwerty mode which consisted of 39 buttons
(Figure 2b). All buttons are 6 mm in height with a 1.5 mm
gap between buttons. The width of buttons in grid mode is
6 mm, while it is 4 mm in qwerty mode (except spacebar).
The phone application collects the ground truth by logging the
time key press time and the key release time using Android’s
View.onTouchListener() callback method. For the grid mode,
for each button, the button click count information is displayed
on the button. Every time a button is clicked, the display
is updated to display the incremented button click count on
the clicked button. This was useful for our data collection.
Participants used the grid mode in landscape orientation and
the qwerty mode in portrait orientation.

B. Assumptions

Before discussing about the data collection and evaluation,
let us discuss the assumptions we have made in this work.
With some additional work (discussed in Section V), some of
these assumptions might be relaxed.

Fig. 3: Distribution of key pressed count

Firstly, we assume that an application has been installed
and is continuously running in the background of the smart-
watch to collect the inertial sensor data at the highest sampling
frequency. Currently Android does not require any special
permission to obtain these sensor readings. Thus, if the user
installs the application, this can continuously monitor hand
movements. While continuous data collection can cause high
energy overhead, we do not consider this issue in our current
analysis.

Further, we assume that the participant will be wearing
the watch on the dominant hand and will press the keys on
the phone with the thumb of the dominant hand, while being
seated comfortably. Exceptions to this assumption which we
have not tried in our studies are: the user holds the phone
with one hand and keys the button with their index finger of
the other hand, the person is walking around while pressing
the keys, the user uses both hands to input text etc.

In this work we also assume that we obtain the key press
and release time from the smartphone and we extract sensor
features corresponding to the interval between the key press
and release on the phone from the watch. We have discussed
various techniques in Section V to overcome this assumption.

C. Data Collection

To understand if the smartwatch can reveal the location in
the screen where a user touched, we collected data from 6
participants. All participant wore the LG Urbane W150 [5]
smartwatch on their dominant hand (for all participants, watch
face was on the same side as the participant’s knuckle) while
using a Samsung A3 smartphone [10] (with a 4.7′′ display)
which had our custom application running. The 6 participants
in the study included 4 males and 2 females, who were between
24 to 35 years of age. All participants were right handed
and regular smartphone users. Each one of the 6 participants
had worn a smartwatch on multiple occasions previously and
were comfortable using it. The smartwatch was strapped to
the wrist to ensure that the participant was comfortable with
the tightness, while at the same time, the watch did not rotate
around the wrist.

The data collection was divided into two parts: (a) grid
mode data collection and (b) qwerty mode data collection. Data
for grid mode was collected from all the participants on one
day, while the qwerty mode data was collected on another day.

Grid Mode: For the grid mode, participants were instructed
to hold the phone in landscape mode with both hands and press
keys in any order using only the thumb of their dominant hand.
The participants were instructed to click each key at least 5
times. There was no penalty in case a key was clicked more

Seq Feature Count Feature Type Description
1 Mean 4 S The mean of the three axis of sensor (3 features) and the mean of their magnitude(1 feature)
2 Variance 4 S The variance of the three axis of sensor (3 features) and the variance of their magnitude(1 feature)
3 Min 3 S Minimum sensor reading for each axis
4 Max 3 S Maximum sensor reading for each axis
5 MCR 3 S Mean Crossing Rate for each axis
6 Mean allAxis 1 S Mean of the summation of sensor values of all axes
7 Mean axisDistance 3 S The difference of Mean of (X,Y) axis, (Y,Z) axis and (Z,X) axis
8 Mean absolute 3 S mean of absolute of value of each axis
9 Energy 4 S Energy computed from the FFT of each axis (3 features) and magnitude (1 feature)
10 Duration 1 E Duration of the button click

TABLE I: The list of features extracted to identify the button pressed. Feature type S has been extracted independently for each
sensor and feature type E has been extracted for an episode.

(a) Top Left (b) Bottom Left (c) Center (d) Top Right (e) Bottom Right

Fig. 4: Change in the three gyroscope axis when user clicks different screen positions

than 5 times. For this mode, we recorded a total of 2698 key
presses for the 60 keys. Since users pressed the keys randomly
while ensuring at least 5 entries per key, the total number of
clicks each key received varied highly between 38 key presses
(for two of the keys) and 52 key presses (again for 2 keys).
Figure 3 shows the variation in count of key presses received
against the number of buttons receiving the key presses. The
average key presses received was ≈45 (7.5 clicks per user).

Qwerty mode: For the qwerty mode, participants were
instructed to hold the phone in portrait mode with their
dominant hand and type the word that appeared on the screen
of the mobile device using the thumb of the same hand. The
words were randomly selected from 300 most frequently used
words as listed in Word Frequency Data [14]. A total of 30
words were shown on screen. Since the words were randomly
picked, the same word could appear multiple times for the
same user. The words that were chosen varied between 1
and 10 characters in length and remained on screen till the
participant indicated that (s)he had finished typing the word
by pressing the spacebar. On spacebar click, the next word
appeared on screen. No spell check was done to verify if
the participant had typed in the word correctly, as we are
currently not trying to recognise individual words. For the 180
words that were typed, we recorded a total of 812 alphabet
presses, indicating that the average word length typed was 4.5
characters.

D. Data Processing

We now describe the entire data processing process. The
data processing steps are similar to many recent activity
recognition or gesture recognition works.

1) Pre-Processing and Framing: At the end of data col-
lection session, the accelerometer and gyroscope data from the
smartwatch is extracted and passed through the data processing
pipeline. The first step in the data processing pipeline is to
remove the gravity component from the data obtained from the

accelerometer sensor of the smartwatch. We used techniques
mentioned in [7] to eliminate the gravity components. In
parallel, key press time from the smartphone is extracted
and after synchronising the data from the watch and phone,
the smartwatch’s accelerometer and gyroscope sensor data
corresponding to key press (time obtained from smartphone)
is extracted and framed. The entire duration between a key-
press and a key-release is considered as one frame. Different
instances for the same key press could have varied frame size.
For our data we found that on average a key was pressed for
324 millisecond (SD = 168 millisecond) and inter key time is
461 milliseconds, ≈50% than typing on a POS terminal([6]).

2) Feature Extraction: For each frame, features described
in Table I is extracted. A feature can either be a sensor specific
feature (S) or temporal feature (E) for the frame (column -
Feature Type). All the features of type S are extracted indi-
vidually for both the accelerometer as well as the gyroscope
sensor. Features of type S are computed either for (a) the three
axis individually or (b) the three axis and magnitude of the
three axis (c) combination of all axis. The description column
has further description about each of the features. A total of 57
features (28 for accelerometer, 28 for gyroscope and 1 episode
feature) were extracted for our experiments. We computed the
information gain for each of the features in our dataset and
after ranking them based on their discriminatory power, we
found that the features with the highest information gain were:
(i) energy of magnitude of gyro, (ii) max of accel’s Z axis, (iii)
mean of absolute of accel’s Y axis, (iv) variance of gyro’s X
axis and (v) mean of distance between X and Z axis of accel.

3) Key Classification: Once the features for every key press
of every user is extracted, we combine the data of all the
users together and using a 10-fold cross-validation using the
Weka software [4], accuracy of the approach is determined.
We evaluated various classifiers and found that the accuracy
obtained using a Random Forest classifier is the highest.
We report the results obtained by using the Random Forest
classifier for all our studies.

Fig. 5: Prediction accuracy vs. num-
ber of screen divisions

Fig. 6: Heatmap showing which pre-
diction accuracy of different regions Fig. 7: Error(Distance) of the infer-

red screen button from actual screen
button for Grid mode

(a) 2 buckets (b) 6 buckets

(c) 12 buckets (d) Original (60 buckets)

Fig. 8: Division of screen in grid mode into buckets

III. EVALUATION

The evaluation of our system is divided into two parts -
evaluation for the grid mode (landscape orientation) and the
evaluation for the qwerty mode (portrait orientation). All the
evaluation is done using the data from the 6 users. We first
discuss the evaluation for grid mode.

A. Analysis of Landscape Orientation

The 2698 key press data (Section II-C) that was collected
from the 6 users was used in the grid mode analysis. Before
classifying, we plotted the gyroscope data when a user pressed
different positions of the screen. Figure 4 shows the variation
of the gyroscope reading when different screen positions are
pressed. From the figure we can see that the radians per second
variation for X axis is higher when the user is clicking buttons
located on the left side of the screen as compared to the right
side (user’s dominant hand is the right hand).

We used Weka’s implementation of Random Forest clas-
sifier and performed a 10-fold cross validation to identify
which button was pressed. We found that with 7.04% accuracy
we could identify which button was pressed (random guess
accuracy probability is 1 in 60 button = 1.67%), which
indicates a 4.2X improvement over the naı̈ve approach. We
had designed our application to have 60 buttons as 60 standard
sized buttons filled up the entire screen of the smartphone.
However, to leak some personal information, it is not necessary
that the entire screen has to be divided into 60 divisions (e.g.
identifying which one amongst the 10 digits was clicked can
reveal a digit of a PIN or which one amongst 26 alphabets
was clicked can leak text messages). Since we could see the
difference in sensor data pattern when a key on the left side
was pressed versus when a key on the right side was pressed,
we analysed the identification accuracy when buttons were

clustered together. We divided the 60 buttons into buckets
(a bucket consists of one or more buttons and all buckets
have the exact number of buttons) of various sizes (as shown
in Figure 8) and computed the prediction accuracy. Figure 5
shows the accuracy of predicting the correct bucket that was
clicked. We found that when we divide the screen into 2
buckets, where each bucket has 30 buttons (refer to Figure 8a),
the overall system accuracy is 86.32% (1.72X improvement
over naı̈ve). On computing the prediction accuracy for different
bucket sizes we see that when the number of buckets to be
classified are larger (more number of classes), the improvement
of our classification technique over the random guess approach
is higher.

For a screen with 60 divisions, we found that the average
classification accuracy was 7.04%. Does this mean that every
division in the screen has a 7.04% accuracy? To answer this
question, we computed the classification accuracy for each
button. Figure 6 shows the heatmap of prediction accuracy
of each button. In the figure, divisions on the top left corner
represent the buttons on the top left corner of the physical
device which our participants used. From the figure we see
that identification of keys towards the left or right corners is
better than that in the center. In fact, the prediction accuracy
for some keys on the left side is above 19%. Amongst the
keys in the center, the keys towards the bottom get higher
prediction accuracy as compared to the keys on the upper part
of the center screen.

In over 92% cases, we fail to identify the exact button
(6mm x 6mm). Given this, we next investigated the distance
between the predicted and the true button pressed. The distance
was computed based on how many buttons separated the actual
button from the predicted button. Buttons that were adjacent
got a distance of 1, while keys that were 2 hops away were
given a distance of 2 and so on. For example, based on this
calculation, the distance between (5,3) and (7,6) is 3.{(5,3)
1©−−→ (6,4)

2©−−→ (7,5)
3©−−→ (7,6)}. Figure 7 shows the CDF of the

distance between predicted button and actual button. From the
CDF we can see that for a screen with 60 buttons, in 63.08%
cases, the error distance was 2 buttons or less indicating that
in most cases we could identify approximately which part of
the screen was pressed.

Finally, we wanted to understand the impact of personalised
models. It is well known that a personalized classification
model usually perform better than a general model trained
on multiple user’s data. Accuracy results indicated above was
obtained by cross validating the results of the 6 users. We
next computed the classification accuracy of users individually
and found that for 60 divisions, the median of individual user

Fig. 9: Variation in accu-
racy for a personalized mo-
del

Fig. 10: CDF of distance
from actual key press in a
qwerty keyboard

accuracy was 8.72%. Figure 9 shows the box plot for prediction
accuracy on a per user data for different screen divisions. From
the plot we observe that for most screen divisions, the per-user
accuracy obtained for most users is better than the accuracy
obtained when a common model is used.

B. Analysis of Portrait Orientation

For the portrait orientation, we used the data extracted from
the entries of 180 words obtained from 6 users. We plotted
the accelerometer and gyroscope values when one of the users
typed the word TRY. Figure 11a shows the variation of the
accelerometer readings when a user typed, while Figure 11b
shows a variation of the gyroscope readings. From the plots,
we can see that similar to the grid mode, there was visible
variation when user typed in the qwerty mode. For a more
detailed analysis, 812 alphabets were keyed in by the users
while keying in the 180 words. These alphabets were used
for our analysis and we performed a 10-fold cross-validation
on features extract for these alphabets. Classification was
performed with the same features as mentioned in Table I,
using a Random Forest classifier. On classifying, we achieved
an accuracy of 20.67% when the class labels were the 26
English alphabets. This indicates a 5.37X improvement over
random key prediction ((1/26)∗100 = 3.84%).

Similar to the distance estimation in grid mode, we com-
puted the error in distance estimation to assess our prediction
accuracy. Since the keys in the three rows of the qwerty
keyboard are not aligned, we shifted the position of the
alphabet A so that it was considered to be in the same column
as Q and we aligned the alphabet Z so that it was considered
to be in the same column as W. From the results we found
that in 49.63% cases we had a ±1 key estimation error, which
increased to 73.85% for a ±2 estimation error. The CDF of
error in key distance prediction for the qwerty keyboard is
plotted in Figure 10. From the plot we can see that the error in
49.63% cases is within 1 button indicating that if alphabet pairs
are carefully pruned, one might identify words being typed
based on alphabet press sequence and using a threshold edit
distance to identify wrongly keyed alphabets.

IV. EFFECT OF ADDING NOISE

Since inference of click event location might lead to various
side channel attacks, we wanted to understand if this threat
could be mitigated by adding noise to the data. We added
two types of noise to the data collected for the grid mode: (a)
Gaussian white noise was added to the entire time series of the
inertial sensor data which was collected from the participants
and (b) after sensor readings from the inertial sensors were

(a) Accelerometer (b) Gyroscope

Fig. 11: Variation of accelerometer and gyroscope sensor data
for one participant typing TRY

extracted for a particular key press, for k key presses, we added
n random sensor readings (extracted from the sensor data of
the same user) to the sensor readings for the key press.

We extracted features for the new sensor readings and
performed a 10-fold cross validation on the entire dataset of
2698 key presses. For noise type (a), white Gaussian noise was
added to the original inertial sensor readings at an signal to
noise ratio of 20dB and 30dB. We found that for 20dB, the
accuracy of the system dropped from 7.04% to 4.98%. In case
of 30dB, the accuracy was at 5.74%, indicating that adding
little noise (30dB) causes an 18% drop in accuracy and mo-
derate noise (20dB) caused almost 30% drop in accuracy. For
noise type (b), for 20% of key presses (k = 540) we added 1
random reading (n= 1) and found that the accuracy dropped to
5.8% and when we increased the value of k to 2158 (80% key
presses) and added 1 random readings, the inference accuracy
was at 5.04%. This indicated that either adding Gaussian noise
to the entire sensor reading from the smartwatch or adding
random sensor values to the data can help in reducing the threat
of a side channel attack. However, there might be other useful
applications running on the smartwatch (e.g. [9], [11]) which
utilize the same inertial sensors and should not be affected
by the noise. Since these applications look at a larger data
window as compared to key press inference, the noise that
were introduced should have little effect on their performance.

V. DISCUSSION AND FUTURE WORK

In this work we show that it is possible to identify the
location on a smartphone’s screen that was clicked using
inertial sensor data from a smartwatch. However, this is just
an initial work and to extend this as a fully working system,
various directions have to be explored. In this section we
discuss some of those directions.

Distinguishing Key Presses: In this current work we ex-
tract key press times from the ground truth file and extract the
sensor data corresponding to that window. However, to make
the system realistic, we will have to automatically determine
the end of one key press and the starting of the next key press.
Work such as [2] has used microphone to distinguish between
alphabets when a person writes on a whiteboard, while [13]
uses the z axis movement to make this determination. We could
evaluate techniques similar to these ideas for our current work.
Alternately, an application running on the phone might be able
to use the phone’s vibration when a user types to determine
the key press and release time. Since inertial sensing does not
require additional permissions, this application can collect the
data while running in the background.

Two hand Typing: Currently we have assumed that the
user types with one hand using the thumb. This might not be
a valid assumption in certain cases, especially when the user
is holding the phone in landscape orientation and types with
both hands). In such cases we can use the inter word gap to
determine if a word has been pressed. For example, in case the
user is wearing the watch in the right hand and is typing the
word PLAY, where the user uses the right hand to type P, L
and Y and the left hand to type A. Since the inter alphabet gap
is predictable based on historical data (user takes average of
486 milliseconds to release L and press Y), if the gap between
alphabets pressed is more than the threshold gap, the multiple
of the threshold gap between the two alphabets can indicate
the number of alphabets keyed in with the non-watch hand.

Useful Application: Being able to identify screen click
locations might cause privacy concerns. However, that should
not prevent us from using it for useful scenarios. Various
augmented reality (AR) applications as well as virtual reality
(VR) applications can utilise this click localisation technique
as a new virtual input modality. An example of the usability in
VR applications might be if a virtual keyboard appears on the
VR display and the user has to type in her inputs. In such a
scenario, if the user is wearing a smartwatch and holding onto
a smartphone, then based on the wrist movement (detected
through smartwatch), the VR might be able to infer the button
towards which the hand is moving and on identifying click,
it can identify the user intention. Similarly, in case of AR
applications, inferring what a user types using data from the
smartwatch might be an alternate technique to camera based
inference.

VI. RELATED WORK

Using motion sensors on devices such as smartphones and
smartwatches to interpret gestural movements of the hand have
been studied in the literature for various purposes. The Pho-
nePoint Pen prototype [1] used the on board accelerometer in
smartphones to recognize human writing in the air. The advent
of smartwatches made the recognition of such hand gestures
much more accurate and easier. In [15], the accelerometer and
gyroscope sensors of a wrist worn device was used to recognize
finger gestures such as ’Index finger click’, ’zoom in’ and
’zoom out’ with a high level of accuracy. A similar approach
was also used to recognize the alphabet traced by the user’s
finger on a surface with an accuracy of 95%.

Wang et al. in [12] showed that the motion sensors on wrist
worn devices can be used to reproduce the trajectories of the
user’s hand movements thereby presenting and opportunity to
reveal the secret key entries. However, the study focused on
surfaces such as key pads on ATMs and keyboards. Similarly,
[2] showed that motion sensor data collected on a smartwatch
may be used to infer text written on a white board. [13]
and [6] again used a similar approaches to detect keys pressed
on laptop keyboards. But these studies did not consider small
surfaces such as smartphone keypads, which are held in the
same hand as the smartwatch and where the range of motion
is typically limited to just finger movements.

The work in [8] may be the one that is most similar to
the approach used in this paper. In [8], the accelerometer in
the smartphone was used to identify the key and the on-screen

location that was pressed on the smartphone’s keypad. This
study showed that the approach may be used to expose user’s
passwords and hence represents a security hazard. Approaches
to mitigate this security risk were also discussed in [8].
However, our study addresses a different problem, where the
sensors of the smartwatch are used to infer the keypress events
on the smartphone. The consequent security risk in even more
difficult to mitigate since the malware is not present on the
device that is being compromised.

VII. CONCLUSION

In this paper we show that it is possible to localize the
screen click position on a smartphone using the inertial sensor
data from a smartwatch with a reasonable accuracy. Through
a small user study we have shown that we could achieve more
than 4.2X improvement in predicting the location of a click
over the naı̈ve prediction approach. In the case of a qwerty
keyboard, our alphabet prediction accuracy was above 20%
for a 26 class classification; however the accuracy jumps to
73% when we allow a tolerance of ±2 keys. However, the
addition of a modest amount of noise proves effective against
such eavesdropping attacks.

REFERENCES

[1] Agrawal, S., Constandache, I., Gaonkar, S., Roy Choudhury, R., Ca-
ves, K., and DeRuyter, F. Using mobile phones to write in air.
Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’11.

[2] Ardser, L., Bissig, P., Brandes, P., and Wattenhofer, R. Recognizing
text using motion data from a smartwatch. Pervasive Computing and
Communication Workshops (PerCom Workshops), 2016.

[3] Fitbit. http://www.fitbit.com/, November 2016.
[4] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H. The weka data mining software: an update. ACM SIGKDD
explorations newsletter, 2009.

[5] Lg urbane w150. http://www.lg.com/us/smart-watches/
lg-W150-lg-watch-urbane, November 2016.

[6] Liu, X., Zhou, Z., Diao, W., Li, Z., and Zhang, K. When good
becomes evil: Keystroke inference with smartwatch. Proceedings of
22nd Conference on Computer and Communications Security, CCS ’15.

[7] Mizell, D. Using gravity to estimate accelerometer orientation. Proc.
7th IEEE Int. Symposium on Wearable Computers ISWC, 2003.

[8] Owusu, E., Han, J., Das, S., Perrig, A., and Zhang, J. Accessory: Pas-
sword inference using accelerometers on smartphones. 12th Workshop
on Mobile Computing Systems & Applications, HotMobile ’12.

[9] Parate, A., Chiu, M.-C., Chadowitz, C., Ganesan, D., and Kalogera-
kis, E. Risq: Recognizing smoking gestures with inertial sensors on a
wristband. Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys ’14.

[10] Samsung a3. http://www.samsung.com/sg/smartphones/
galaxy-a3-2016-a310/SM-A310FZDDXSP/, November 2016.

[11] Sen, S., Subbaraju, V., Misra, A., Balan, R. K., and Lee, Y. The
case for smartwatch-based diet monitoring. Pervasive Computing and
Communication Workshops (PerCom Workshops), 2015.

[12] Wang, C., Guo, X., Wang, Y., Chen, Y., and Liu, B. Friend or foe?: Your
wearable devices reveal your personal pin. Proceedings of 11th Asia
Conference on Computer and Communications Security, ASIA CCS’16.

[13] Wang, H., Lai, T. T.-T., and Roy Choudhury, R. Mole: Motion leaks
through smartwatch sensors. Proceedings of 21st Annual International
Conference on Mobile Computing and Networking, MobiCom ’15.

[14] Word frequency data. http://www.wordfrequency.info/, November 2016.
[15] Xu, C., Pathak, P. H., and Mohapatra, P. Finger-writing with smartwa-

tch: A case for finger and hand gesture recognition using smartwatch.
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, HotMobile ’15.

	Inferring smartphone keypress via smartwatch inertial sensing
	Citation

	tmp.1491811524.pdf.ruOSZ

