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Many emerging pervasive health-care applications require the determination of a variety of context attributes of 

an individual's activities and medical parameters and her surrounding environment. Context is a high-level 

representation of an entity's state, which captures activities, relationships, capabilities, etc. In practice, high-level 

context measures are often difficult to sense from a single data source and must instead be inferred using multiple 

sensors embedded in the environment. A key challenge in deploying context-driven health-care applications 

involves energy-efficient determination or inference of high-level context information from low-level sensor data 

streams. Because this abstraction has the potential to reduce the quality of the context information, it is also 

necessary to model the tradeoff between the cost of sensor data collection and the quality of the inferred context. 

This article describes a model of context inference in pervasive computing, the associated research challenges, 

and the significant practical impact of intelligent use of such context in pervasive health-care environments. 

The wide availability of smart health-care appliances and a variety of standalone and integrated sensor devices 

makes it increasingly easy to ubiquitously and continuously monitor an individual's health-related vital signals 

and her activity behavior and to integrate such medical and activity data into health-care information systems. We 

are already witnessing early commercial activity in this space, centered on remote monitoring of elderly 

individuals and chronically ill patients within smart assisted-living homes. A combination of body-worn medical 

and nonmedical sensors (e.g., sensors to monitor blood oxygenation or accelerometers to monitor movements) 

and in situ sensors (e.g., thermal and motion detectors) is used to continuously monitor and automatically 

determine an individual's context in such smart environments. Broadly speaking, context here refers to a variety 

of dynamically changing states, related to either an individual's specific activities (e.g., walking versus sleeping) 

or biomedical conditions (e.g., elevated blood pressure, shortness of breath, or arrhythmia), or to surrounding 

environmental conditions (e.g., atmospheric ozone levels or ambient temperature). In many health- and wellness-

related applications, such context is the critical enabler of various capabilities, such as alerting a first responder if 

the individual is judged to be sleeping for an abnormal period of time or flagging a potential health risk by 

analyzing wellness data to detect shortness of breath after everyday physical activities. 

In many scenarios of practical interest, the data streams are generated by a variety of battery-operated standalone 

or embedded sensors (e.g., accelerometers on a smartphone), and the act of transmitting the sensor streams to a 

backend server for context extraction can impose a significant energy burden. Accordingly, a crucial technical 

challenge in the area of sensor-based pervasive health-care applications centers on the question of how one can 

efficiently and reliably convert streams of low-level sensor-generated data into high-level abstractions of context. 

Previous work in the broader field of sensor-driven context inferencing has largely assumed that the type and 

amount of low-level sensor data available to a specific application are invariant. This prior work has therefore 

focused on how to 1) automatically map low-level sensor data to appropriate abstractions of context states and 2) 

empirically establish whether the accuracy of inferred context is sufficient to enable automated adaptation [4]. 

In this article, we take a somewhat contrarian view and ask the question: How can we support the varying context 

requirements of multiple emerging context-dependent health applications while simultaneously trying to minimize 

the energy overhead of the sensor data collection process? In contrast, our previous work dealt with a single 

http://doi.org/10.1109/MSMC.2015.2501163
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context-dependent health application [12]. Our work is influenced by the observation that the landscape of remote 

health/wellness monitoring applications is changing from the earlier stove-piped model (where each application 

was customized for an explicit set of sensor devices) to a more fungible, standards-based model, where the 

underlying sensors are viewed as common, shareable resources that are simultaneously utilized by multiple 

applications. 

 Smart assisted-living environments are gradually being equipped with a variety of different networked 

sensors (e.g., cameras, motion sensors, or light sensors) capable of programmatic data retrieval and 

control. 

 Sensor-based health monitoring applications are growing, both in number and in the variety of medical 

contexts being monitored. In large part, the explosion of apps on the Apple AppStore and Google 

Googleplay are responsible for these recent phenomena—prominent examples of health-care-related 

applications include Stress Check, Stress Doctor, Instant Heart 

Rate (http://www.azumio.com/), SmartRunner (http://www.smartrunner.com/pages/), etc. 

As an illustration, consider a remote context monitoring scenario (shown in Figure 1) in a smart assisted-living 

environment in which an elderly person resides. The smart home may be equipped with many sensors [light, 

humidity, electrocardiogram (ECG) electromyography, etc.], some of which may be body-worn while others may 

be embedded in the environment. A variety of applications and stakeholders (e.g., fall monitoring by a caregiver, 

wellness activity monitoring by a doctor, or vital sign monitoring by a nurse) need to access this low-level sensed 

information to abstract high level context (both physiological and activity) about the resident. An important 

observation is that a specific application's context can be satisfied by different possible combinations of sensor 

data types. For example, the fall-detection application may utilize data either from multiple video cameras, from a 

set of body-worn accelerometer and wall-mounted motion sensors, from a set of audio sensors, or from some 

arbitrary combination of these. 

  
 

Figure 1. Multiapplication multicontext inferencing in a sensor-rich pervasive health-care environment. 

 

http://www.azumio.com/
http://www.smartrunner.com/pages/
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-1-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-1-large.gif
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The preceding example motivates the need for a matchmaking software infrastructure that mediates between the 

context-driven health and wellness applications and the set of available sensors in a way that minimizes the 

energy overhead, while still ensuring that the applications' needs for high-quality context inferences are met. To 

enable such a dynamic and automated association between application requirements and the available sensor 

resources in any environment, we make the following two key contributions in this article. 

 First, we suggest the use of an explicit functional model to relate the accuracy of any inferred context to a 

measure of uncertainty about the true values of the sensor data. 

 Then, we develop and evaluate an optimization-based heuristic that uses the model to dynamically select 

both a set of sensors and the parameters of the sensors to satisfy the context requirements of multiple 

context-aware applications, while minimizing the energy overhead of sensor-data transmission. 

A Formal Model for Context Inference 

Our goal is to determine the automated adaptation of sensors so as to reduce the energy overheads associated with 

data transmission from the sensors without compromising the context requirements of any of the health and 

wellness applications. In achieving this objective, the accuracy or fidelity requirements associated with the 

context requirement are highly application dependent; for example, the fall-monitoring application may find an 

accuracy of 90% acceptable (i.e., it misses one out of ten cases of falls/stumbles), and the vital-signs-monitoring 

application may require a much higher accuracy of 99.999%, while the wellness application may satisfied with a 

much lower fidelity of 50% in detecting the amount walked during the day (i.e., it is okay to under- or overcount 

the amount of time spent walking by ≈ 50%). Accordingly, we must first establish a formal functional model that 

relates the underlying accuracy/fidelity of the sensor data to the accuracy of the specific inferred context. 

Given that a context metric is inferred from the combination of values from multiple low-level sensors, we define 

the quality of inference (QoINF) as the error probability in estimating a context state, given the imprecision in the 

values of the contributing sensors. Concretely, we compute QoINF based on the average estimation error of the 

context; alternative definitions of accuracy (such as the percentage of false positives or false negatives) are 

equally reasonable and do not affect the remaining description of our model. Two key observations drive our use 

of QoINF. 

1. While different combinations of sensor types may be used to infer the same high-level context at different 

levels of accuracy, it is almost universally true that the accuracy of the inferred context increases with an 

increase in the number and type of sensors utilized in the inferencing process. As a simple example, a 

combination of data from a body-worn accelerometer and ceiling-mounted motion sensors provides a 

more accurate estimation of whether a person is immobile after a fall, compared to deductions based 

solely on one sensor or the other. 

2. The quality of the inferred context is not just a function of the set of chosen sensors but also of the 

permitted inaccuracy in the data values associated with each individual sensor. For example, the quality 

of the estimation of the heart activity context will be less accurate if the blood pressure sensor's tolerance 

range is ±20% (indicating that the true reading may be up to 20% higher or lower than the reported value) 

in comparison to a tolerance range of ±5%. 

Mathematically, we can then say that the quality of inference function, denoted as QoINF, for any given context 

will be a function of i (the set of sensors used in the context inferencing process) and the qi values (called the 

tolerance range) associated with each sensor si. Conceptually, the job of our matchmaking algorithms is to find, 
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given a specific QoINF function, the set i and the associated qi values (for those selected sensors) that minimize 

the communication energy overhead. 

 

Quality of Inference for a Single Sensor 

To simultaneously model the context accuracy and communication overheads associated with different values 

of qi for a single sensor, we assume that each sensor utilizes the widely adopted event-driven reporting strategy, 

where it transmits a new sample only when its sensed value deviates from the previously transmitted sample 

by ±qi. In effect, this means that, at any instant, the context inferencing process is not aware of the sensor's true 

current value but knows that this value will be within ±qi of the last value transmitted by the sensor. Of course, a 

larger tolerance range results in a reduction in a sensor's reporting rate (frequency) and thus dramatically lowers 

its communication energy overheads [1], [2]. 

While many functional forms of the QoINF function are possible, we initially advocate and explore an inverse 

exponential functional model, where the accuracy of context inference or QoINF (for a specific application) for a 

specific sensor si and its associated qi value are related via the model 

 
where ηiνi are simply scalar constants. The choice of this inverse-exponential model is both mathematically 

motivated and empirically validated: not only does this functional model make our eventual goal of multicontext 

matchmaking tractable, it is also consistent with experimental results we have conducted using a variety of 

sensors (such as light, accelerometer, and motion sensors). 

Context Inference with Multiple Sensors and Applications 

Having established the formal relationship between a single sensor and a single context attribute, we now consider 

our target scenario: multiple applications, each requiring different context inferences, potentially utilizing data 

from multiple available sensors. To precisely elucidate our approach, we assume an underlying set Ѕ of sensors. 

Determining the value of some context metric C may be viewed as a multidimensional mapping that uses the 

values sensed by some subset θ of the available sensors (formally, θ ⊆ Ѕ) and maps them to one of the values 

associated with the context metric. To understand this relationship better, consider the case illustrated in Figure 2, 

which depicts nine different sensors that may be used to support smart health-care applications. An application 

that senses heart activity may choose some subset of these sensors to assess its context; for example, heart activity 

can be assessed by the combination of a blood-pressure and a blood-flow sensor. A domain-specific inference 

function uses these two low-level values and outputs a measure of heart activity. 

 

  
Figure 2. The impact of different sensor subsets on QoINF (without considering tolerance ranges). 

 

To capture the reality that the same context may be inferred to varying degrees of accuracy using different sensor 

subsets, we associate a function that represents the accuracy of a certain subset of sensors with respect to a given 

context metric. That is, QoINFc(θ) gives the expected accuracy of inferring a context metric C using the sensors in 

the subset θ. Figure 2 (where we implicitly assume that each of the sensors has a predefined tolerance range of 

0.10) further illustrates this notion of multiple sensors and the QoINF values associated with different context 

variables. For example, the context measure activity state of an individual may be computed with an inferencing 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-2-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-2-large.gif
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accuracy of 0.90 (i.e., with a 10% error rate) using a respiratory sensor but only with 0.80 accuracy using a low-

quality ECG sensor. However, by combining the data available from both sensors, we can achieve an inferencing 

accuracy of 0.98. Of course, this mapping itself will be a function of the tolerance ranges associated with each 

sensor. For example, if the tolerance range for the respiratory sensor degrades to 0.20 and the ECG sensor to 0.15, 

it is likely that the inferencing accuracy based on the combination of these two sensors will drop from 0.98 to 

0.90. We describe a precise approach for expressing such composite QoINF functional models in the “Choosing a 

QoINF Function for Multiple Sensors” section. 

 

A Quality-Aware Context Architecture 

Based on the preceding observations, we now present the high-level functional components of a QoINF-aware 

context-determination service, i.e., the matchmaking functionality (Figure 3). External applications subscribe to 

specific context measures and indicate minimally acceptable QoINF values. The context optimizer determines the 

best (least-cost) combination of sensors and their tolerance ranges that can meet the specified QoINF requirement. 

The transmitted sensor data are received by the context estimator, which continuously updates the application on 

the value inferred for the requested context measure(s). 

 
 

 
Figure 3. An architecture for QoINF-aware context determination. 

 

The rest of this article focuses on the logic of the context optimizer. We describe how we can determine the subset 

of sensors and their associated tolerance ranges that best satisfy the varying context requirements of multiple 

subscribing applications at the minimum cost. While many other measures of cost can be considered, we have 

explicitly focused on minimizing the sum of the transmission costs associated with each individual sensor (as 

wireless transmissions cost is one of the most significant energy burdens in sensor-based contextual applications). 

From past work [2], costi(qi) (the average transmission energy overhead associated with sensor si) is proportional 

to both the number of wireless hops (hi) utilized to transport the samples to the context estimator and the tolerance 

range qi 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-3-large.gif
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Choosing a QoINF Function for Multiple Sensors 

A QoINF function explicitly relates the quality of a context measure to the sensors (and their tolerance ranges) 

that contribute the actual data. Similar work has used decision fusion rules based on counting policy using a 

Poisson sensor distribution model [6] or by exploiting statistical dependencies (and independencies) of 

sensors [3]. If the QoINF function was completely arbitrary, the context optimizer would have the mathematically 

intractable task of performing an exhaustive search of all possible combinations of sensors and tolerance ranges. 

For a mathematically tractable approach (which is also supported well by our empirical results), we assume that 

the estimation error for each sensor is statistically independent of the others [11]. We can then define the QoINF 

value for a particular combination of sensors θ (with the ith sensor having its own tolerance range qi) by 

 

where QoINF(i) is defined in (1). This definition satisfies all the following observations about valid QoINF 

measures: 1) its value is within (0,1) and 2) QoINF is nondecreasing in the size of θ (i.e., incorporating data from 

an additional sensor cannot degrade the inference quality) and degrades with increasing qi. 

 

Context Optimization: Selecting Sensor Settings 

We now focus on explaining our second contribution, i.e., describing a process by which the context optimizer 

can determine the best set of sensors and their tolerance ranges. Figure 4 shows two complementary views of the 

internal details of the context optimizer. We first examine the basic problem: that of selecting the appropriate set 

of sensors and their settings, given a single context to estimate. We will then look at the more complex problem of 

simultaneously estimating multiple contexts. 
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Figure 4. Context optimization in a QoINF-aware architecture. (a) A generic view and (b) A parametric view. 

 

Single Context Optimization 

Given a single context measure, the goal is to choose a subset θ of sensors (and their tolerance ranges) to infer that 

context measure with a QoINF value that is at least equal to the application-specified minimum required fidelity 

at a minimum communication overhead. If the subset, θ, of sensors is predefined, then determining the best 

tolerance ranges (qi values) is a straightforward Lagrangian optimization problem. Accordingly, the challenge 

here is to determine, in the first place, which θ to use. Clearly, one solution is to iterate through all possible 

combinations of available sensors. However, as sensors become increasingly ubiquitous in our targeted smart-

assisted living environments, such an approach is excessively computationally expensive. A heuristic search can 

drastically reduce the computational cost by performing an intelligent exploration of the possibilities. 

 

Our proposed heuristic is based on the observation that the additional cost in adding another sensor to the set θ is 

dependent on the sensor's hop count from the context estimator and the sensor's sensitivity factors 

[the η and ν terms in (1)]. Specifically, the algorithm favors sensors with lower hop counts (indicating a small 

update cost) and lower sensitivity factors (indicating a smaller degradation in QoINF with increasing tolerance 

ranges) [12]. The heuristic algorithm first sorts the available sensors based on their hop counts and sensitivity 

factors. It then incrementally considers larger sets of sensors, starting with the singleton set of the first sensor in 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-4-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-4-large.gif


8 

 

the list. The algorithm computes the tolerance ranges (for each individual member of the set) needed to ensure 

that the application-specified QoINF bound is satisfied and then computes the transmission cost associated with 

using those sensors with the corresponding tolerance ranges. If the QoINF requirement is not achievable with the 

considered set, the cost is set to ∞. The algorithm then compares this cost to the cost calculated in the previous 

round. If the cost has decreased, the algorithm continues its iterative exploration by growing θ. If the cost has 

increased, the set computed in the previous round (and its associated tolerance ranges) is assumed to be the 

preferred solution [11]. 

Multicontext Optimization 

To address our eventual vision of a smart matchmaking service that lets numerous health-care-related applications 

and services make the best possible concurrent use of an underlying substrate of multimodal sensors, we must 

extend the algorithm to consider the optimization of multiple distinct contexts [14]. As a tangible illustration of 

this scenario, consider again a smart-home assisted-living deployment scenario depicted in Figure 1, with several 

sensors: [blood pressure (BP), ECG, passive infrared sensor (PIR), force-sensitive resistor (FSR), accelerometer, 

ultrasonic, electromyography (EMG), motion, light, etc.]. Some of these (i.e., motion, light, PIR, FSR, and 

ultrasonic) are embedded in the environment, and some (i.e., BP, ECG, accelerometer, and EMG) are worn on the 

body. Multiple applications, like vital-signs monitoring, fall monitoring, and wellness management, execute 

simultaneously using these sensors and require different context attributes at different levels of accuracy. For 

example, the fall-monitoring application may require a person's movement context to be inferred using BP, FSR, 

and accelerometer sensors, while for the wellness-management application, context describing a person's sleeping 

state with required accuracy can be achieved jointly by accelerometer, PIR, and ultrasonic sensors. In this simple 

example, all of the contexts required by different applications can be satisfied by using only the BP, FSR, and 

accelerometer sensors (with the required accuracy and imposed tolerance ranges); the other sensors (ECG, PIR, 

and ultrasonic) may be then turned off to conserve energy. 

The preceding scenario can be expressed as a multiattribute optimization problem, whose goal is to achieve the 

required QoINF of multiple applications, while simultaneously minimizing the total communication 

overhead [12]. The extended heuristic algorithm for solving the multicontext problem considers the added 

dimension of the problem; specifically, the set θ that is best for a particular context metric in isolation may no 

longer be ideal when considering contexts jointly. The heuristic algorithm still favors sensors with lower hop 

counts and lower sensitivity factors, but a sensor's sensitivity factors are dependent on the particular context being 

inferred. As a result, if we have L different contexts to jointly estimate, we have L sorted lists of the available 

sensors. Our goal is to satisfy all L contexts at the same time; our algorithm considers them sequentially. When 

only the first context (C1) is considered, its sorted list is used, and θ is constructed exactly as in the single context 

case. When the algorithm moves on to the second context (C2) , it first determines whether the existing θ  is 

sufficient for estimating C2. If not, the algorithm adds new sensors using C2's sorted list. As it does so, it also tests 

whether any sensors that were added to support C1 have become redundant; if so, they are removed. The 

algorithm continues this process incrementally until it has considered all L contexts. 

 

A Range-Based Sensor Selection for Multiple Contexts 

Here, we discuss an enhanced version of the previous heuristic algorithm that, for each additional context, tries to 

compare the total cost from the following two approaches: 1) using the current set of sensors and determining if a 

modification of the tolerance ranges of this current set is enough to satisfy the QoINF requirement of the 

additional context metric or 2) adding an additional sensor to the set of sensors and seeing what tolerance ranges 

this modified set must have to satisfy all the QoINF requirements of the contexts considered thus far. After 

computing the costs of each approach, this second heuristic selects the one that both satisfies the QoINF 

requirements of all of the considered contexts and has the lowest cost. This is in contrast to the approach in the 

previous algorithm, where the comparison was made only between adding a new sensor and the cost incurred by 

the current set of sensors (with their tolerance ranges unmodified). In other words, the previous approach did not 
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explore the option that one could satisfy the QoINF of the additional contexts, without altering the set of activated 

sensors, simply by tightening the tolerance ranges of the current set of selected sensors. 

We have thus far assumed that, for a given context, the user is only in one context state at a time, i.e., either the 

user is in the sitting state, in the walking state, or in the running state. There are, however, other scenarios like 

watching television (TV) and speaking on the phone, which may happen concurrently. Such concurrent context 

states can also be determined using our model. As shown in our model, the minimum QoINF value and sensitivity 

factors for these multiple context states will be fundamentally different. For example, consider that we have one 

acoustic sensor for detecting the watching TV context state and one microphone sensor for recognizing the 

speaking on the phone context state. The operating analytics (tolerance range, etc.) of these two sensors can be 

computed by our proposed model while still maintaining the underlying objective of sharing sensor data streams 

to improve the accuracy and minimize the network cost. 

 

Evaluation 

To illustrate the promise of this formal model-based approach, we experimented with a laboratory-based 

deployment in which individuals were monitored with body-worn sensors taking readings from a motion sensor 

(an accelerometer), a light sensor, and a temperature sensor. We have performed experiments with SunSPOT 

(www.sunspotworld.com) and Shimmer sensors (http://www.shimmer-research.com/). Specifically, we have used 

a three-axis accelerometer, a light, and an embedded external gyro sensor on the SunSPOT platform and a three-

axis accelerometer and gyro sensor on the Shimmer platform. This initial deployment gives important insights in 

the nature of context inference and the use of awareness of quality to direct the acquisition tasks [11], [12]. Our 

experimental data and results can be summarized via the following key observations. 

 A clear relationship between QoINF and tolerance range exists, but this relationship is neither linear nor 

continuous; for some data types, the quality of (context) inference possible using the data type can drop 

precipitously with just a small change in tolerance range. 

 The expected relationship between cost and tolerance range exists: raising the tolerance range decreases 

the cost. Taken with the previous observation, it is possible to exploit the tradeoff between quality and 

cost by tinkering with the tolerance ranges, and this tinkering is specific to particular data types. Figure 

5 shows this tradeoff for the motion sensors we used in our experimental deployment. 

 Using multiple sensor types to jointly infer a single context metric provides a clear benefit, and our basic 

and extended heuristic algorithms take advantage of this benefit of joint sensing. 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/document/www.sunspotworld.com
http://www.shimmer-research.com/
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Figure 5. Communication overhead and accuracy tradeoffs. 

 

A Performance of the Range-Heuristic 

Our range-based heuristic can achieve application-specified quality and reduce network resource usage 

substantially. We compare our range-based heuristic algorithm with the naïve heuristic and brute-force search. 

Based on the derived sensitivity factors, we sort all of the sensors and generate the following sorted lists: К1 = 

{Shimmer Accel, SunSPOT Accel, Shimmer Gyro} for context sitting; К2 = {SunSPOT Accel, Shimmer Gyro, 

Shimmer Accel} for context walking; and К3 = {Shimmer Gyro, Shimmer Accel, SunSPOT Accel} for context 

running. We use each approach to compute the optimal sensor set Ӫ and associated tolerance ranges Q(Ӫ) that 

minimize the  for a target QoINF. We also use the range-heuristic to compute the q values for a 

target QoINFmin and then use those q values to determine the achievable QoINF. 

 

Figure 6 plots the minimal cost associated with the three search methods to determine the optimal subset of 

sensors and their tolerance ranges for the first context state considered, sitting in our case. In this example, the 

range-based heuristic and heuristic perform exactly as the brute force in finding the optimal sensor subset with 

minimum cost. Figure 7 compares the performance of these three algorithms for the context walking. The range-

based heuristic performs better than the heuristic, and it performs close to brute force. Similarly, Figure 8 plots the 

performance for the running context, where again the range-based heuristic algorithm outperforms the naïve 

heuristic. Due to the simple set theoretic addition of sensors from one context to another (without examining the 

existing sensor set's satisfiability for the new context) in the heuristic algorithm, we observe that first just the 

Shimmer accelerometer has been selected for the sitting context; then for walking, both the Shimmer and 

SunSPOT accelerometers have been selected; and then for running, all three available sensors have been chosen. 

In the range-based heuristic, only the Shimmer accelerometer is selected for all the contexts at the minimal cost 

by tightening the tolerance range. 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-5-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-5-large.gif
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Figure 6. A range heuristic, heuristic, and brute-force minimal cost comparison for sitting. 

  
 

Figure 7. A range heuristic, heuristic, and brute-force minimal cost comparison for walking. 

 

 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-6-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-6-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-7-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-7-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-8-large.gif
http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-8-large.gif
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Figure 8. A range heuristic, heuristic, and brute-force minimal cost comparison for running. 

 

We also evaluate our range-based heuristic's ability to attain the application's desired QoINF. First, we calculate 

the tolerance ranges for the chosen optimal subset of sensors at minimal cost. Then with those specified tolerance 

ranges and the determined sensor set, we run our emulation on the already collected data traces to determine the 

empirically achieved accuracy of the algorithm. Figure 9 plots the QoINF achieved by the range-based heuristic 

algorithm for the context running. The range-based heuristic performs well at no more than 10% lower than the 

target QoINF. Nevertheless, we do notice that our range-based heuristic does not perform well in achieving target 

QoINF accuracy for the other two context states. We believe this is a result of the large approximation in our 

curve-fitting approach. This incurs errors in determining the sensitivity factors and therefore introduces a larger 

deviation in the q values, which ultimately affects the attainable QoINF accuracy of the range-heuristic algorithm 

with respect to the target QoINF metric. Adding more sensors to the selection process (as is likely in future 

pervasive computing scenarios) would be expected to help limit this negative impact. 

 

http://ieeexplore.ieee.org.libproxy.smu.edu.sg/mediastore/IEEE/content/media/6745853/7549153/7549233/7549233-fig-9-large.gif
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Figure 9. A range-based heuristic on achieving target QoINF for running. 

 

Insights and Challenges 

Our initial work with this framework and its implementation provides enough evidence that our suggested 

approach of a) building formal functional models to characterize the relationship between context attributes and 

individual sensors and b) applying joint optimization of multiple contexts over a common substrate of sensors can 

provide significant savings in energy overheads for representative health and wellness applications. Accordingly, 

we believe that the technical community should explore this approach further. Our experience with the design and 

development of this framework has also left us with several insights and open Questions. 

 What is the right QoINF function for a given context measure? One of the main challenges in the 

application of our framework is establishing appropriate QoINF functions for context variables. Much of 

the work on utility-based context models faces the practical difficulty of computing useful utility 

functions [4]. We have used our inverse-exponential model and employed regression techniques on 

training data to derive the parameters for this model [12]. In reality, the functional relationship may be not 

only different (for instance, we already know that the q0 inf() function can be discontinuous) but also 

deployment specific (e.g., the correlation between a specific user's movements and motion sensor data 

may vary significantly based on individual behavioral characteristics or the layout of an assisted-living 

facility), and a separate training phase may be impractical. In such situations, we need to explore a more 

continuous, adaptive learning framework, where the system dynamically learns the relationship between 

different sensor parameters and the true user context, perhaps obtained from explicit user feedback or 

implicit user actions (e.g., [4]). 

 How does one distinguish and combine between tolerance ranges and sensor errors? In our model, 

the tolerance range is not an intrinsic characteristic of a sensor, but it is determined by the context 

optimizer: e.g., if qi = ±10 and the last reported value is 120, the true value of the sensor must lie in the 

interval (110, 130). Sensing errors (e.g., errors in sampling and calibration) are, on the other hand, 

intrinsic to a sensor and not application specific. For instance, if a sensor has an error of ±2, a reading of 

120 could correspond to a ground truth of (118, 122). One way to view the relationship between these two 

variables is to note that, given q and e and a last reported value of ν, the ground truth of the sensed 

attribute should lie between (ν – q – e, ν + q +e). For our approach to work with sensors from different 

manufacturers and with different error characteristics, the context optimizer must be able to automatically 

derive and combine these two independent parameters. One practical approach to this issue may be to 
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have different sensors automatically publish their error ranges in a standard format [e.g., using the 

SensorML format (http://www.opengeospatial.org/standards/sensorm1)] so that our framework can 

automatically incorporate these values. However, as it is well known that sensors will deviate from these 

nominal values over time, we need more research to establish how such deviations can be automatically 

detected under our qi-based reporting approach. 

  

 How do we extend our QoINF-based model to consider concurrent and correlated context? In our 

formulation thus far, we have implicitly assumed that a context metric takes on only a single value at a 

time (e.g., a wellness management application assumes that the user is in only one of [sitting, walking, 

running] states at any instant) and that the different context attributes are mutually uncorrelated (e.g., the 

determination of a person's walking context is uncorrelated to her agitated with high BP context). In 

practice, if activity is defined to include both watching TV and talking on the phone, it is possible for an 

individual to be engaged simultaneously in both. Similarly, there will be statistical dependencies across 

contexts; for example, it is unlikely for a person to be agitated with high BP to be also simultaneously in 

the sleeping state. A more advanced framework is needed (perhaps employing semantic reasoning over 

contexts [13] or a hierarchical context inference model [9], [10]) to automatically detect such correlations 

and concurrency constraints and exploit them in selecting and tasking available sensors. 

 

Related Work 

The tradeoff between communication overhead (cost) and the quality of fused data has been studied with respect 

to the effect of the tolerance ranges on the relative frequency of sink-initiated fetching (data pull) versus source-

initiated refreshes (data push) [7]. The focus, however, has been on snapshot queries and not long-running 

subscription queries [8]. Temporal correlations across successive samples have also been exploited to reduce 

communication overhead of snapshot queries [1]; this approach used training data to parameterize a jointly 

normal density function. The collective adaptive precision setting algorithm [2] is designed for long-running 

aggregation queries (such as {min, max} and computes the optimal set of tolerance ranges for a given set of 

sensors that minimizes communication overhead. Unlike such work, which focused purely on structured-query-

language-like aggregation queries over a preordained set of sensors, our goal is not only to support generalized 

context queries but also to simultaneously find the best subset of available sensors and their associated tolerance 

ranges. An energy management framework for wireless sensor networks that simultaneously considers QoINF 

requirements with energy constraints was presented in [5] that views the consumption of energy versus QoINF 

gains game theoretically and can decide to provide lower QoINF if the cost of data acquisition is too high; in 

contrast, we focus on health-care-related environments, where the QoINF requirement is considered to be 

inviolable. 

 

Conclusions 

We motivate the need for a formal framework for energy-efficient determination of physiological context in 

pervasive health-care deployments, specifically using the scenario of remotely monitored assisted living. To this 

end, we introduce a formal framework for reasoning about the inherent tradeoffs between quality of context and 

the cost of acquiring it, followed by the use of this formalization to derive two heuristic algorithms for computing 

the context inference supporting structure. The key idea is to express the accuracy of context inference through a 

QoINF function that captures the dependence of context estimation accuracy on both the set of sensors selected to 

support context acquisition and their specified parameters of sensing. Such explicit recognition of the quality of 

sensed context within applications is an essential component of future context-aware ubiquitous health-care 

applications and software infrastructures. 

 

http://www.opengeospatial.org/standards/sensorm1
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