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AmaLgam+: Composing Rich Information Sources for Accurate
Bug Localization

Shaowei Wang*,† and David Lo

School of Information Systems, Singapore Management University, Singapore

ABSTRACT

During the evolution of a software system, a large number of bug reports are submitted. Locating the source
code files that need to be fixed to resolve the bugs is a challenging problem. Thus, there is a need for a tech-
nique that can automatically figure out these buggy files. A number of bug localization solutions that take in
a bug report and output a ranked list of files sorted based on their likelihood to be buggy have been proposed
in the literature. However, the accuracy of these tools still needs to be improved. In this paper, to address this
need, we propose AmaLgam+, which is a method for locating relevant buggy files that puts together fives
sources of information, namely, version history, similar reports, structure, stack traces, and reporter informa-
tion. We perform a large-scale experiment on four open source projects, namely, AspectJ, Eclipse, SWT, and
ZXing to localize more than 3000 bugs. We compare AmaLgam+with several state-of-the-art approaches
including AmaLgam, BLUiR+, BRtracer+, BugLocator, and TFIDF-DHbPd. These approaches leverage
one or several of the sources of information analyzed by AmaLgam+, but not all of them. On average,
AmaLgam+ achieves a 6.0% improvement over AmaLgam, which merges three sources of information, in
terms of Mean Average Precision (MAP). For AspectJ and Eclipse datasets, in which there are many bug
reports with stack traces and many reporters submit multiple bug reports, AmaLgam+ achieves a 12.0% im-
provement over AmaLgam in terms of MAP. Compared with the other state-of-the-art approaches, AmaL-
gam+ achieves an improvement of 20.3%, 22.5%, 33.1%, and 73.9% over BLUiR+, BRtracer+,
BugLocator, and TFIDF-DHbPd in terms of MAP, respectively. Copyright © 2016 John Wiley & Sons, Ltd.

Received 31 October 2014; Revised 13 August 2015; Accepted 16 June 2016
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1. INTRODUCTION

Software systems are often plagued with bugs. To improve the reliability of systems, developers often
allow users to submit bug reports to bug tracking systems. Unfortunately, the number of these reports is
often too large for the developers to handle manually in a timely manner. Anvik et al. cited a Mozilla
triager that mentioned ‘Everyday, almost 300 bugs appear that need triaging. This is far too much for
Mozilla programmers to handle’ [1]. One of the most time-consuming task to resolve a bug report is to
find the buggy files that are responsible for a reported bug. A system may contain thousands or more
files, and often only one or a few of these files need to be changed to fix a bug. Lucia et al. analyze 374
bugs from Rhino, AspectJ, and Lucene and find that 84–93% of the bugs reside in 1 and 2 source code
files [2]. Thus, localizing these buggy files is like finding one or two needles in a big haystack.

To address the previous mentioned challenge, a number of studies have proposed ways to identify
buggy program files given a bug report. Many of these approaches are information retrieval based, and
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they work by computing similarities between a reported bug and source code files [3–8]. The source
code files are then ranked based on their similarities to a reported bug.

Sisman and Kak leverage version history data for bug localization based on the intuition that files
that are often buggy in the past are likely to be buggy in the future [5]. Several variants of their
approach are proposed, and the best performing one is named TFIDF-DHbPd. Zhou et al. leverage
similarities among bug reports for bug localization [8]. Given a new bug report, their approach,
named BugLocator, finds files that are fixed to resolve similar older bug reports to locate buggy files
of the new report. Saha et al. propose an approach named BLUiR, which leverages the structure of a
bug report and a source code file [4]. BLUiR transforms a bug report and source code files to their
constituent parts (i.e., a source code file is separated to four groups of identifiers, namely, class
names, method names, variable names, and comments, and a bug report is separated to two groups
of text, namely, summary and description) and employs structured information retrieval to compute
their similarities. Saha et al. also propose BLUiR+ that extends BLUiR by leveraging similarities
among bug reports following BugLocator. Also recently, Wong et al. present an approach named
BRTracer, which separates stack trace from other text in a bug report and assigns a score to source
code files by analyzing the stack trace [7]. Wong et al. also propose a BRTracer + that extends
BRTracer by leveraging similarities among bug reports following BugLocator.

Despite the fact that many bug localization approaches are proposed in the literature, the accuracy of
these approaches still needs to be improved. In this work, we would like to improve the accuracy of
existing bug localization approaches by proposing a new approach named AmaLgam+ that leverages
five sources of information: version history, similar bug reports, structure, stack trace, and reporter
information. The first four sources of information have been considered by prior works; however,
none of them consider all of them together. Furthermore, we also add one additional source of
information, namely, reporter information. Our hypothesis is a bug reporter that is likely to report
issues affecting the same/similar software components. Thus, for new bug reports submitted by the
same reporter, we make use of bug reports that the reporter has submitted before, to help identify
packages that are more likely to contain buggy files. This paper substantially extends our
preliminary work, named AmaLgam, which was published as an ICPC (International Conference on
Program Comprehension) 2014 conference paper [6]. AmaLgam only considers three sources of
information (i.e., version history, similar bug reports, and structure) while AmaLgam+considers five.
We succinctly describe the similarities and differences between AmaLgam+and prior studies in Table I.

The way AmaLgam+combines historical information that is different from that of Sisman and Kak
in the following respects:

1. Our approach uses a well-tested bug prediction formula that is used in Google, and it takes into
consideration the effect of change burst [9].

2. Sisman and Kak consider the complete version history to compute a probability. Our approach
only considers very recent version history and totally discards historical information that are
more than k days away from the time a new bug report is submitted.

3. Sisman and Kak simply sums up the probability of a file to be buggy and the similarity of a bug
report to the file. Our approach assigns weights that govern the contribution of the probability of a
file to be buggy (computed by the bug prediction technique) and the similarity of a bug report to a
file (computed by integrating BugLocator and BLUiR).

Table I. Comparison of our approach to state-of-the-art bug localization techniques.

Approach Version history Similar report Structure Stack trace Reporter information

TFIDF-DHbPd [5] Yes No No No No
BugLocator [8] No Yes No No No
BLUiR [4] No No Yes No No
BLUiR+ [4] No Yes Yes No No
BRTracer [7] No No No Yes No
BRTracer + [7] No Yes No Yes No
AmaLgam [6] Yes Yes Yes No No
AmaLgam+ Yes Yes Yes Yes Yes
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We have evaluated AmaLgam+on a dataset of more than 3000 bug reports from AspectJ, Eclipse,
SWT, and ZXing. The AspectJ bug reports are taken from the iBugs benchmark [10], which have been
used to evaluate the approaches of Sisman and Kak, Zhou et al., Saha et al., and Wong et al. The
experiment results show that AmaLgam+can achieve an MAP (i.e., Mean Average Precision) scores
of 0.40, 0.36, 0.62, and 0.41 for AspectJ, Eclipse, SWT, and ZXing bug reports, respectively. These
results are better than those achieved by existing state-of-the-art approaches by 6.0% to 73.9%.

The contributions of our work are as follows:

1. We are the first to put together version history, similar reports, structure, stack trace, and reporter
information for bug localization. Past bug localization studies have only used one or several (but
not all) of these five sources of information.

2. We have evaluated our approach AmaLgam+on more than 3000 bug reports from four open
source programs: AspectJ, Eclipse, SWT, and ZXing. Our experiments show that AmaLgam
+can improve the MAP scores of existing state-of-the-art approaches by a substantial margin.

The structure of the remainder of the paper is as follows. In Section 2, we first present preliminary
information on bug reports and some motivating examples. We elaborate the details of AmaLgam+ in
Section 3. We describe our experimental setup and results in Section 4. We describe related work in
Section 5. We finally conclude and mention future work in Section 6.

2. PRELIMINARIES AND EXAMPLE

In this section, we first describe some preliminary information on bug reports. We then outline some text
pre-processing steps that are applied to the bug reports. Finally, we show an example to illustrate why it
is useful to consider version history, similar report, structure, stack trace, and reporter information.

2.1. Bug reports

A bug report is a document submitted by users to describe an error that they experience when they use
a system. A bug report contains a number of fields; we are particularly interested in four of them,
namely, bug identifier (id), the date a bug report was submitted (open date), summary of the error
(summary), and more detailed description of the error (description).

We present a bug report from Eclipse in Figure 1, which can be downloaded from Eclipse’s
Bugzilla.1 The identifier of this bug report is 76138, and it describes a problem with the ant editor,

1https://bugs.eclipse.org/bugs/show_bug.cgi?id=76138

Figure 1. An eclipse’s bug report and the buggy source code files corresponding to it.
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which does not follow a display setting. The bug ID provides a reference number that can be used to
identify commits in version control systems that fix it, c.f. [8]. The open date helps us to identify bug
reports that are submitted a number of days prior to bug 76138. The summary and description fields
help us to understand the error that the user experienced.

]A bug localization tool takes as input a bug report and returns the potential buggy files. The
corresponding buggy Java files for the bug report shown in Figure 1, which are identified
by checking the corresponding bug fixing commits, are AntEditor.java and
AntEditorSourceViewerConfiguration.java.

2.2. Text pre-processing

An information-retrieval based bug localization technique usually performs three pre-processing steps:
text normalization, stopword removal, and stemming. The goal of the text pre-processing steps is to
break a bug report or a source code file into terms that can then be analyzed by an information
retrieval technique. In the pre-processing step, some compound words (e.g., program identifiers) are
broken into parts, and some related words are mapped to the same term. We briefly describe these
three pre-processing steps as follows.

First, text normalization would be performed which involves the removal of punctuation marks,
tokenization (i.e., extraction of words from paragraphs or identifiers from source code), and identifier
splitting. During this step, when a source code is processed, it would be converted into an Abstract
Syntax Tree (AST), and using this tree, identifiers would be identified. These identifiers are split into
its constituent words following Camel Case splitting [11]. For example, the identifier
‘getMethodName’ is split to ‘get’, ‘Method’, and ‘name’. In this study, both the split words and the
full identifier name are kept. For example, for the class name ‘AntEditorSourceViewerConfiguration,’
which is one of the buggy files corresponding to the bug report shown in Figure 1, we convert it to
six words: ‘ant’, ‘editor’, ‘source’, ‘viewer’, ‘configuration,’ and the full identifier name
‘AntEditorSourceViewerConfiguration’.

Second, we remove stopwords such as ‘on’,’the’, ‘are’, ‘is’, and so on. These stopwords carry little
meaning and thus we remove them. Finally, we perform stemming which reduces inflected or derived
words into a common root form. For example, the word ‘“reading’ and ‘reads’ are reduced to the root
form ‘read’. By doing this, similar words would be represented using the same term. We use the
standard Porter Stemmer [12] to perform this stemming step.2

2.3. Motivating example

A traditional information retrieval (IR)-based bug localization approach usually first performs text pre-
processing on a query (a bug report) and the documents in a corpus (source code files). Then, a
similarity score between the query and each of the documents would be computed based on a
particular information retrieval technique (e.g., TFIDF, latent Dirichlet allocation (LDA), and latent
semantic indexing), for example, [3]. From Figure 1, we note that the buggy source code file names
share a number of common words with the summary and description of the bug report, that is, ‘ant’
and ‘editor’. Based on these common words, a traditional IR-based bug localization approach would
try to link the bug report with the source code files. In this sub-section, we highlight how version
history, similar reports, structure, stack trace, and reporter information can be used to improve the
accuracy of traditional IR-based bug localization techniques.

2.3.1. VERSION HISTORY

There are lots of historical data of changes to source code files that are stored in a version control
system during program evolution. This historical data can be used to improve bug localization
performance. Kim et al. found that bugs happen in bursts, and not in isolation [13]. The files
responsible for a bug recently are more likely to be responsible for other bugs in the near future.

2http://tartarus.org/martin/PorterStemmer/
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Figure 2 presents the commit logs of Eclipse before bug 76138 occurred. We could see that the class
files ‘AntEditor.java’ and ‘AntEditorSourceViewerConfiguration.java’, which were responsible for
bug 76138, were also responsible for other bugs that happen prior to the reporting of bug 76138
(they are highlighted in bold). ‘AntEditor.java’ is fixed just 1 day prior to the reporting of bug
76138, and ‘AntEditorSourceViewerConfiguration.java’ is fixed just 7 days prior to the reporting of
bug 76138. Thus, we could see that historical data can be used to better locate bug.

2.3.2. SIMILAR REPORTS

User often submits many similar bug reports that correspond to different errors that affect the same
buggy program elements. For example, Figure 3 shows an older report with identifier 50303,3 which
were reported 9months before bug report 76138. Note that this report shares the common words
‘ant’ and ‘editor’ with bug report 76138. Bug report 50303 was fixed on March 17, 2004 and was
re-fixed on March 18, 2004, and ‘AntEditor.java’ was modified on both fix instances. By analyzing
bug report 50303, we can obtain a hint on files that need to be changed to fix 76138. From the
example, we could see that similar reports can be used to better locate bug.

2.3.3. STRUCTURE

Bug reports and source code files have structures. Bug reports have several fields including summary
and description. Source code files can be split into class names, method names, variable names, and
comments. This structural information can be leveraged for bug localization. Traditional IR-based
bug localization approaches compute the similarity between a bug report and the entire content of a
source code file (which contains a class name, many variable names, and many comments). For
localizing the bug report in Figure 1, the class names contain the most important terms.
Unfortunately, the impact of the terms ‘ant’ and ‘editor’ in the class names would be weaken by
other tokens, which would make the performance poor. Structural information could be used to
overcome this problem by computing the similarities of a query against different fields (e.g., class,

3https://bugs.eclipse.org/bugs/show bug. cgi ? id = 50303

Figure 2. Recent commit logs prior to the reporting of bug report 76138.
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method, variable, and comment) in a source code file separately and summing up those similarities. In
this way, the tokens ‘ant’ and ‘editor’ would have stronger impact to the overall similarity. Thus, we
could see that structure can be used to better locate bug.

2.3.4. STACK TRACE

A past study by Schroter et al. [14] shows that top 10 methods in stack traces are more likely to contain
the root causes of bugs. Hence, stack trace information included in the bug report can be used as
important information for bug localization. Figure 4 presents an example of a stack trace contained
in a bug report of AspectJ. The buggy file for this bug report is ‘AsmRelationshipProvider.java’,
which is located at the top of the stack trace. From this example, we can observe that we may be
able to locate buggy files by analyzing the stack trace if it is included in a bug report.

2.3.5. REPORTER INFORMATION

In our dataset, 3479 bugs are reported by 2294 reporters. In other words, some reporters submitted
more than one bugs. A user typically focuses on certain components or functionalities of a software
system. Therefore, we could use information about buggy files of past bug reports that are submitted
by a reporter to help to predict files, which are responsible for a new bug report that is submitted by
the same reporter. Those buggy files are likely to be located close to one another in the
directory/package structure (e.g., in the same package). In Table II, we present bug reports
submitted by a reporter whose ID is bpasero. We can observe that buggy files of bug reports
100095 and 88717 are located within the same package, that is, ‘eclipse.swt.dnd’.

3. APPROACH

In this section, we first describe the overall framework of AmaLgam+. We then present each of the five
main components of AmaLgam+ .

Figure 3. An older eclipse’s bug report and the buggy source code files corresponding to it.

Figure 4. Stack trace included in an Aspectj bug with ID 44117 – NPE on compile.
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3.1. Overall framework of AmaLgam+

Figure 5 presents the overall framework of AmaLgam+. AmaLgam+ takes as input a bug report to be
localized (new bug report), a set of source code files of the system for which the bug report is submitted
(source code files), a historyof commits made to the system as stored in a version control system
(version history data), and a set of older bug reports stored in a bug tracking system (bug repository).

The inputs would be processed by five components of AmaLgam+ ,namely: version history
component (VHC), similar report component (SRC), structure component (SC), stack trace
component (STC), and reporter information component (RIC). Version history component makes
use of version history information to rank files. Similar report component makes use of older reports
in bug repository to rank files. Structure component makes use of the structure of bug reports and
source code files to rank files. Stack trace component makes use of the stack traces in the submitted
bug report to rank files. Reporter information component makes use of reporter’s previous bug
reports to rank files. The five components each output a suspiciousness score for each source code
file. These five sets of suspiciousness scores are input to the composer component, which produces
the final ranked files.

3.2. Version history component

For the version history component, we make use of studies on bug prediction whose goal is to predict
which files are likely to be buggy in the future, for example, [13, 15]. Kim et al. propose BugCache,
which predicts future bugs by maintaining a relatively short list of most fault-prone program entities
[13]. Rahman et al. propose a cheaper algorithm, which only sorts files based on the number of bug
fixing commits that touch each of them [15]. Rahman et al. show that this simple and cheap

Figure 5. The overall framework of AmaLgam+. The asterisk symbol represents the newly added compo-
nents over those proposed in our conference paper (i.e., AmaLgam) [6].

Table II. Buggy files of bug reports submitted by bpasero.

Bug ID Fixed files

100095 eclipse.swt.dnd.URLTransfer.java
79481 eclipse.swt.custom.SashForm.java
88717 eclipse.swt.dnd.TableDragUnderEffect.java

eclipse.swt.dnd.TreeDragUnderEffect.java
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approach achieves almost the same performance as BugCache. Google developers adapt the simple
algorithm proposed by Rahman et al. to predict bugs on their large systems [9]. The resulting
algorithm is simple and fast. Thus, we decide to adapt this well-tested bug prediction algorithm of
Google developers as our version history component. We briefly describe how we adapt this
algorithm in the following paragraphs.

The algorithm takes as input commit logs and outputs a list of files with their suspiciousness scores.
It first identifies relevant bug-fixing commits. The relevant bug fixing commits are identified by
following two rules:

1. The commit log must match the following regular expression regex: (. * fix.*)|(. * bug.*). This reg-
ular expression specifies that all commit logs containing the word ‘fix’ or ‘bug’would be matched.

2. The commit must be made in the past k days.

We modify Google developers approach by including the second requirement. Our experience
shows that including older bug-fixing commits do not affect performance much and even can
slightly decrease performance. Also, it is computationally cheaper to onlyconsider recent commits.
Parameter k could be set empirically. By default, we set k to 15. The algorithm analyzes these
relevant commits and assigns a suspiciousness score to each source file f using the following equation:

scoreH f ; k;Rð Þ ¼ ∑
c∈R∧f ∈c

1

1þ e12 1� k�tcð Þ=kð Þð Þ (1)

In the previous equation, R refers to the set of relevant commits, and tc is the number of days that has
elapsed between a commit c and the input bug report. The output of this algorithm is a set of
suspiciousness scores, one for each file. We denote the suspiciousness score of file f assigned by the
version history component as SuspH(f).

Example
Consider the input bug report in Figure 1 and the two commit logs in Figure 2. For simplicity sake, let
us assume that there are no other commit logs. We would like to illustrate how Equation (1) is used to
compute the suspiciousness scores of files AntEditor.java and AntEditorSourceViewerConfiguration.
java. As both commits with identifiers 3532306 and 3d1a68b contain the word ‘bug’ and they are com-
mitted within 15 days before the time bug report 76138 was submitted (i.e., October 12, 2004, at
21:53:00), they are considered relevant bug fixing commits. The value of (k� tc)/k for commit
3532306 is 0.95 (because the commit was made around 17 h, that is, 0.7 day, before the time bug report
76138 was submitted). Thus, the suspiciousness score for AntEditor.java is 1.82. The suspiciousness
score of AntEditorSourceViewerConfiguration.java can be computed in a similar way, and it is 0.009.

3.3. Similar report component

For our similar report component, we adapt BugLocator [8], in particular the algorithm that computes
SimiRank scores. We describe briefly how we use this algorithm in the following paragraphs.

The algorithm takes in an input bug report and older bug reports that have been fixed in the bug
repository. It then measures the similarity of the input bug report to the older fixed bug reports.
Based on the similarity scores of the bug reports and the number of files that are modified to fix
each bug report, we compute a suspiciousness score for each source code file.

To measure the similarity of two bug reports, the following steps are followed. First, each bug report
is represented by their constituent pre-processed terms. Considering the universe of all terms as {t1,…,
tn}, we can compute for a bug report b, a vector →b:

→b ¼ tf b t1ð Þidf t1ð Þ; tf b t2ð Þidf t2ð Þ;…; tf d tnð Þidf tnð Þ (2)

In the previous formula, tfb(ti) corresponds to the number of times term ti appears in bug report b,
and idf(ti) corresponds to the reciprocal of the number of documents that contain term ti. Given
vector representations of two bug reports →b1 and →b2 , their similarity can be measured by
computing the standard cosine similarity [16] of their vector representations.
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To compute a suspiciousness score for source code file f, we use the following equation:

scoreR f ; b;Bð Þ ¼ ∑
b′∈ b′jb′∈B∧f ∈b′:Fixf g

sim b; b′
� �

b′:Fix
�� �� (3)

In the previous equation, b is the input bug report; B is the set of older fixed bug reports, and sim(b,b
′) is the similarity of bug report b and b′, b′. Fix is the set of files that are modified to fix bug report b′,
and |b′.Fix| is the size of set b′.Fix. The output of this algorithm is a set of suspiciousness scores, one
for each file. In this component, we do not enforce a similarity threshold following what Zhou et al. did
in their work [8]. We take all older bug reports to compute the suspiciousness score. We denote the
suspiciousness score of file f assigned by the similar report component as SuspR(f).

Example
Consider the input bug report shown in Figure 1 and the older bug report in Figure 3. For simplicity
sake, let us assume that there are no other bug reports in the bug repository. We would like to illustrate
how Equation (3) is used to compute the suspiciousness scores of files AntEditor.java. Let us assume
for simplicity sake that the similarity of the two bug reports is 0.15. The suspiciousness score of
AntEditor.java can then be computed as 0.15/8 = 0.01875.

3.4. Structure component

For the structure component, we use BLUiR [4] which performs structured retrieval for bug
localization. For completeness-sake, we briefly describe BLUiR in the following paragraphs.

BLUiR breaks a bug report into two parts: summary and description. It breaks a source code file into
four parts: class names, method names, variable names, and comments. Each of these parts can be
converted into a vector following a similar procedure described in Section 3.3. The suspiciousness
score of a source code file f given an input bug report b can then be computed as follows:

scoreS f ; bð Þ ¼ ∑
f p∈f

∑
bp∈b

sim f p; bpð Þ (4)

where fp is a part of file f, bp is a field in bug report b, and sim(fp,bp) is the cosine similarity of the
vector representations of fp and bp. The output of the structure component is a set of suspiciousness
scores, one for each file. We denote the suspiciousness score of file f assigned by the structure
component as SuspS(f).

Example
Consider a bug report and a file shown in Figure 6. After pre-processing (text normalization, stopword
removal, and stemming), the terms in the summary field of the bug report are ‘bug’, ‘averag’, and

Figure 6. Example bug report and source code file.
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‘function’. The terms in the description field of the bug report are ‘us’, ‘averag’, ‘function’, ‘measur’,
‘class’, ‘comput’, ‘got’, ‘wrong’, and ‘result’. The term in the class name of the file is ‘measur’. The
term in the method name of the file is ‘averag’. The terms in the variable names of the file are ‘list’,
‘sum’, and ‘d’. The set of terms in the comments of the file is Ø. Based on these fields of the bug report
and these parts of the source code file, we can compute a suspiciousness score, which would be a sum-
mation of eight similarity scores.

3.5. Stack trace component

Bug reports may contain stack trace, which may provide clues for possible buggy files. Most IR-based
bug localization approaches directly convert the entire bug description, which may include both text
and stack trace, as a bag of words. Stack trace information is not separated from other text and
analyzed differently. In this component, different from many existing approaches, we separate stack
trace from other text and perform a specialized analysis on it. Our analysis is based on the intuition
that the closer a reference to a file appears in a stack trace (i.e., the closer it is to the location of the
failure/crash) the more likely the file is buggy.

To check for the presence of a stack trace in a bug report and to identify files that are referenced in
the stack trace, we use a regular expression ‘at [∼ ()] + ([∼ ()] + .java:[0–9]*)’. We are looking for the
presence of a substring in the description of a bug report that starts with an ‘at’ and ending with a class
name followed by a number indicating the line of error, which is located in between a pair of
parentheses (e.g., at …Target.run(CflowCycles.java:24)). [∼ ()] is used to match anything except a
pair of parentheses. After the previous step, we obtain a set of java class files from a stack trace (if
it exists). We then sort them based on their locations in the stack trace and remove the duplicate
ones. After the above processing steps, we get an ordered set of Java files. Given the ranked files,
the suspiciousness score of a source code file f in the stack trace of an input bug report b can then
be computed as follows:

scoreST f ; bð Þ ¼ 1=Rankf ;b; if f is in thestack traceof b

0 ; otherwise

�
(5)

In the previous equation, Rankf,b is the rank of file f in the stack trace contained in bug report b. The
equation will assign a higher suspiciousness score to a file that appears closer to the top of the stack
trace. We denote the suspiciousness score of file f assigned by the stack trace component as SuspST(f).

Example
Consider the stack trace presented in Figure 4. The sorted set of Java files that appears in the stack trace
along with their suspiciousness scores are shown in Table III.

3.6. Reporter information component

In this component, we make use of the reporter’s information to compute to the suspiciousness of a
given file. A user typically focuses on using one or a few functionalities of a software system rather
than the whole range of functionalities provided by the system. This is especially true if the system

Table III. Sorted set of java files that appear in the stack trace shown in Figure 4
along with their suspiciousness scores.

Rank File Score

1 AsmRelationshipProvider 1.00
2 Checker 0.50
3 BcelWeaver 0.33
4 BcelClassWeaver 0.25
5 AjBuildManager 0.20
6 CompilerAdapter 0.17
7 AspectJBuildManager 0.14
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is large and has quite a large number of functionalities. Based on this intuition, we compute the score of
a file f, given a bug report b, submitted by reporter r, as follows:

1. Find past bug reports that are submitted by r.
2. Extract the names of the buggy files that are modified to fix the past bugs.
3. Extract the names of packages (denoted as r.P) that contain the buggy files.
4. Calculate the suspiciousness score of a file f following Equation (6).

scoreRI f ; b; rð Þ ¼ 1 ; if f is in r:P

0 ; otherwise

�
(6)

We denote the suspiciousness score of file f assigned by the reporter information component as
SuspRI(f).

Example
To illustrate how the reporter information component works, consider the example shown in Table II.
Let us consider bug report 100095, which is submitted by bpasero, as anew bug report. When this
new bug report is processed, the reporter information component will first find past bug reports that are
submitted by bpasero (i.e., 79481 and 88717). Next, this component will extract the buggy files that
are modifiedto resolve bug reports 79481 and 88717. They are ‘eclipse.swt.custom.SashForm.java’,
‘eclipse.swt.dnd.TableDragUnderEffect.java’, and ‘eclipse.swt.dnd.TreeDragUnderEffect.java’. Then,
we extract the package name of those buggy files, which are ‘eclipse.swt.dnd’ and ‘eclipse.swt.cus-
tom’. Finally, we assign score 1 to files in packages ‘eclipse.swt.dnd’ and ‘eclipse.swt.custom’ and
score 0 to files in other packages.

3.7. Composer component

This component processes the five sets of suspiciousness scores output by the five components of
AmaLgam+and computes a set of final suspiciousness scores. The composer component combines
the scores output by the five components for a file f as follows:

SuspS;R;H ;ST ;RI fð Þ ¼
w1�SuspS fð Þ þ w2�SuspR fð Þ þ w3�SuspH fð Þþ

w4�SuspST fð Þ þ w5�SuspRI fð Þ; if SuspS fð Þ or SuspR fð Þ > 0

0; otherwise

(7)

In the formula, we have five weights w1, w2, w3, w4, and w5, which represent the contributions
made by each component, to tune. In this work, we use genetic algorithm (GA) [17] to tune the
weights by analyzing a training set of bug reports whose buggy files have been localized. GA
works by first constructing an initial population of chromosomes; this population is then evolved
by performing multiple iterations of selection, crossover, and mutation. In our setting, a
chromosome is a combination of the five weights. In each iteration, a new population of
chromosomes is created in which the ‘fittest’ chromosomes will be included. We create the initial
population randomly (i.e., we randomly create chromosomes and added them to the initial
population). We use the standard selection, crossover, and mutation operations described in [17].
The selection operation requires an objective function to guide the selection of the ‘fittest’
chromosomes. In effect, GA will try to search for a combination of five weights that maximize
this objective function on the training data.

Before defining the objective function, we first define several commonly used metrics to measure the
effectiveness of a bug localization approach as follows:

• Mean Average Precision: MAP is the most commonly used IR metric to evaluate ranking ap-
proaches. It considers the ranks of all buggy files into consideration. Therefore, MAP emphasizes
all of the buggy files. MAP is computed by taking the mean of the average precision scores across
all queries. The average precision of a single query is computed as follows:
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AP ¼ ∑
M

k¼1

P kð Þ�pos kð Þ
numberof positiveinstances

; (8)

where k is a rank in the returned ranked files, M is the number of ranked files, and pos(k) indicates
whether the kth file is a buggy file or not. P(k) is the precision at a given top k files and is computed
as follows:

P kð Þ ¼ #buggy files
k

: (9)

• Mean Reciprocal Rank (MRR): The reciprocal rank for a query is the reciprocal of the position of
the first buggy file in the returned ranked files. MRR is the mean of the reciprocal ranks over a set
of queries Q, and it can be computed by following equation:

MRR ¼ 1
Qj j ∑

Qj j

i¼1

1
ranki

(10)

where ranki is the position of the first buggy file in the returned ranked files for the first query in Q.
Our goal is to maximize MAP and MRR on the training data; the higher their values are, the more

effective a bug localization technique is. Thus, we define the objective function as follow:

ObjFunction ¼ e MAPþMRRð Þ (11)

We give an equal weight to MAP and MRR because both of them are important. MAP is important
if a developer is interested to find all buggy files by reading the recommended files one by one. MRR is
important if a developer is interested in only finding the first buggy file.

In this work, we use a publicly available GA library called JGAP4 to implement our approach. We
set the values of maximum number of iterations and population size parameters to 200 and 50,
respectively. We use JGAP default values for the other parameters.

In the end, the composer component would sort all source code files based on their final
suspiciousness scores, and this ranked list of files would be the output of AmaLgam+ .

4. EXPERIMENTS

In this section, we first describe the dataset that we use to evaluate our approach. Next, we describe our
experimental settings, followed by our research questions. Finally, we describe our experiment results,
which answer the research questions.

4.1. Dataset

We use the same dataset used by Wang et al., Zhou et al., and Saha et al. to evaluate BugLocator and
BLUiR, respectively [4, 6, 8]. This dataset contains a total of 3379 bug reports from four popular open
source projects, AspectJ, Eclipse, SWT, and ZXing. For each bug report, information on files that were
modified to fix the bug is also provided in the dataset. The AspectJ bug reports originate from the iBugs
benchmark [10] which was also used by Sisman and Kak to evaluate their proposed approach [5]. The
AspectJ, Eclipse, and SWT bug reports were also used by Wong et al. to evaluate BRTracer + [7].
Table IV describes the dataset in more detail. For our version history component, we collect commit
logs from Git repositories of those four projects.

4.2. Experimental setting

We compare the performance of AmaLgam+with a number of baselines: AmaLgam [6], BLUiR+ [4],
BRTracer + [7], BugLocator [8], and TFIDF-DHbPd [5]. We use MAP and MRR presented in

4http://jgap.sourceforge.net/
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Section 3.7 as two evaluation metrics. In addition, following prior bug localization studies [4, 6, 8], we
also use Top-N Rank or Hit@N defined as follows:

1. Top-N Rank (Hit@N): This metric calculates the number of bug reports where one of the buggy
files appears in the top N (i.e., 1, 5, and 10) ranked files. Given a bug report, if at least one of its
buggy files is in the top N results, we consider the bug is successfully located. The higher the
value of this metric is, the better the performance of an approach is.

In the experiment, we randomly sample 5% of the bug reports as the training data to train the
weights w1 to w5 of AmaLgam+, and take the rest of the bug reports as the test data. Because of this
random selection process and the fact that GA involves randomness, following the guidelines given
by Arcuri and Briand [18], we repeat the experiment 100 times and report the average scores of the
evaluation metrics. Note that the baselines do not require the tuning of weights and do not involve
randomness and thus we do not repeat them 100 times and we use all of the bug reports to evaluate
them. Although some of the baselines have weights, i.e., [4, 6, 8], these weights have been manually
tuned and optimized on the dataset used to evaluate them (which is the same as our dataset). In
effect, their parameters are manually tuned on all bug reports in the dataset, while ours are
automatically tuned only on the training dataset.

We conduct all our experiments on a Windows 2008 server with 8 Intel R 2.53GHz cores and 24GB
of RAM.

4.3. Research questions

Research Question 1 How effective is AmaLgam+ for bug localization?

To answer this research question, we apply AmaLgam+ to the four sets of bug reports in our dataset.
We then evaluate the returned ranked lists and compute Hit@N, MAP, and MRR to characterize the
effectiveness of AmaLgam+ .

Research Question 2 Does AmaLgam+outperform other bug localization techniques?

In this research question, we compare the performance of AmaLgam+against five state-of-the-art
approaches: AmaLgam by Wang and Lo [6], BLUiR+ by Saha et al. [4], BRtrace + by Wong et al.
[7], BugLocator by Zhou et al. [8], and TFIDF-DHbPd by Sisman and Kak [5]. We compare the
performance of AmaLgam+with the performance of these baselines reported in their original
papers. We would like to investigate whether and to what extentAmaLgam+outperforms these
existing state-of-the-art approaches.

Research Question 3 How complementary is each of AmaLgam+components?

In this research question, we want to analyze the complementarity of the five components of
AmaLgam+by using Principal Component Analysis (PCA). PCA is a statistical technique able to
identify various orthogonal dimensions (principal components) captured in the data (in our case:
suspiciousness scores produced by each of AmaLgam+components) and the relative contributions

Table IV. Dataset details.

Project Description Period
# of fixed

bugs
# of source

files
# of stack
traces

# of
reporter

# of terms in
bug reports
(Avg.)

AspectJ Aspect-oriented
extension of Java

07/2002–10/2010 286 6485 91 (32%) 101 233.1

Eclipse Open source IDE 10/2004–03/2011 3075 12863 452 (15%) 2116 131.2
SWT Open source widget

toolkit
10/2004–04/2010 98 484 4 (4%) 61 112.6

ZXing Barcode image
processing library
for Android
platform

03/2010–09/2010 20 391 1 (5%) 16 218.5
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of each of AmaLgam+components to each of these orthogonal dimensions. PCA has been used in
many prior software engineering studies, for example, [19].

4.4. Experiment results

The following subsections describe our experimental results, which answer the five research questions.
We answer one research question at a time.

4.4.1. RQ1: effectiveness of AmaLgam+. To answer RQ1, we measure the effectiveness of
AmaLgam+ in terms of the metrics we listed in Sections 3.7 and 4.2. Table V presents the results
for all projects. For 141 (49.4%) AspectJ bug reports, AmaLgam+successfully locates a buggy
source code file in the top 1 ranked file. For 208 (72.7%) AspectJ bugs, at least one buggy source
code file is among the top 5 ranked files. For 230 (80.3%) AspectJ bugs, at least one buggy source
code file is among the top 10 ranked files. In terms of MAP and MRR, AmaLgam+achieves a score
of 0.40 and 0.60, respectively.

For Eclipse, 1097 (35.7%) and 1856 (60.3%) bugs could be localized by inspecting top 1 and 5
ranked files, respectively. Also, 2124 (69.1%) bugs could be localized when only the top 10 ranked
files are inspected. The scores of MAP and MRR that AmaLgam+achieve for Eclipse are 0.36 and
0.47, respectively. For SWT, 61 (62.2%) bugs have a buggy file at the top 1 ranked file. Also, 79
(80.6%) and 88 (89.8%) bugs are successfully localized when only the top 5 and 10 ranked files are
inspected, respectively. AmaLgam+achieves MAP and MRR scores of 0.62 and 0.71, respectively.
For ZXing, AmaLgam+ is able to localize 8 (40.0%), 13 (65.0%), and 14 (70%) bugs when only the
top 1, 5, and 10 ranked files are inspected, respectively. In terms of MAP and MRR, AmaLgam
+achieves a score of 0.41 and 0.51, respectively.

4.4.2. RQ2: AmaLgam versus other bug localization approaches. Table V compares the results of
AmaLgam+with those of AmaLgam, BLUiR+, BRtrace+, BugLocator, and TFIDF-DHbPd in terms
of Hit@1, Hit@5, Hit@10, MAP, and MRR.

Table V. Comparison among AmaLgam+, AmaLgam, BLUiR+, BRTracer+, BugLocator, and TFIDF-
DHbPd. The most effective approaches for the four project are highlighted in bold font.

Project Approach Hit@1 Hit@5 Hit@10 MAP MRR

AspectJ AmaLgam+ 141 (49.4%) 208 (72.7%) 230 (80.3%) 0.40 0.60
AmaLgam 127 (44.4%) 187 (65.4%) 209 (73.1%) 0.33 0.54
BLUiR+ 97 (33.9%) 150 (52.4%) 176 (61.5%) 0.25 0.43
BRTracer+ 113 (39.5%) 173 (60.5%) 197 (68.9%) 0.29 0.49
BugLocator 88 (30.8%) 146 (50.1%) 170 (59.4%) 0.22 0.41
TFIDF-DHbPd N/A N/A N/A 0.23 N/A

Eclipse AmaLgam+ 1097 (35.7%) 1856 (60.3%) 2124 (69.1%) 0.36 0.47
AmaLgam 1060 (34.5%) 1775 (57.7%) 2059 (67.0%) 0.35 0.45
BLUiR+ 1013 (32.9%) 1729 (56.2%) 2010 (65.4%) 0.33 0.44
BRTracer+ 1002 (32.6%) 1719 (55.9%) 2005 (65.2%) 0.33 0.43
BugLocator 896 (29.1%) 1653 (53.8%) 1925 (62.6%) 0.30 0.41

SWT AmaLgam+ 62 (63.3%) 79 (80.6%) 88 (89.8%) 0.62 0.71
AmaLgam 61 (62.2%) 80 (81.6%) 88 (89.8%) 0.62 0.71
BLUiR+ 55 (56.1%) 75 (76.5%) 86 (87.8%) 0.58 0.66
BRTracer+ 46 (46.9%) 78 (79.6%) 87 (88.8%) 0.53 0.60
BugLocator 39 (39.8%) 66 (67.3%) 81 (62.6%) 0.45 0.53

ZXing AmaLgam+ 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.41 0.51
AmaLgam 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.41 0.51
BLUiR+ 8 (40.0%) 13 (65.0%) 14 (70.0%) 0.39 0.49
BRTracer+ NA NA NA NA NA
BugLocator 8 (40.0%) 12 (60.0%) 14 (70.0%) 0.44 0.50
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4.2.2.1. AMALGAM+VERSUS AMALGAM

For AspectJ, in terms of Hit@1, AmaLgam+achieves a 11.0% improvement over AmaLgam score. By
only inspecting the top 5 and 10 ranked files, using AmaLgam+, a debugger can locate 21 more bugs
than if he/she uses AmaLgam; this corresponds to an improvement of Hit@5 and Hit@10 of 11.2%
and 10.0%, respectively. In terms of MAP and MRR, AmaLgam+ improves AmaLgam’s scores by
21.2% and 11.1%, respectively. For Eclipse, AmaLgam+ improves AmaLgam by 3.5%, 4.6%,
3.2%, 2.9%, and 4.4% in terms of Hit@1, Hit@5, Hit@10, MAP, and MRR, respectively. For SWT
and ZXing bug reports, AmaLgam+and AmaLgam have the same/similar effectiveness in terms of
each of the metrics.

On average, AmaLgam+achieves a 6.0% and 3.9% improvement over AmaLgam in terms of MAP
and MRR, respectively. If we only consider AspectJ and Eclipse, on average, AmaLgam+achieves a
12.0% and 7.8% improvement over AmaLgam in terms of MAP and MRR, respectively. From these
results, we can see that AmaLgam+ is able improve AmaLgam when there is enough information
coming from stack traces and reporters.

4.2.2.2. AmaLgam+versus other baselines. Comparing AmaLgam+with BLUiR+, we could note
that AmaLgam+consistently outperforms BLUiR+ in terms of MAP and MRR for all programs.
The Hit@N scores of AmaLgam+ is better than those of BLUiR+ for all programs except ZXing.
For ZXing, the Hit@N scores of AmaLgam+are the same with those of BLUiR+. On average,
AmaLgam+ improves the MAP and MRR scores of BLUiR+ by 20.3% and 14.5%, respectively.
We can note that AmaLgam+consistently outperforms BRTracer + in terms of Hit@N, MAP, and
MRR for three programs (we exclude ZXing, as BRTracer +was not evaluated on ZXing bug
reports). On average, AmaLgam+ improves the MAP and MRR scores of BRTracer + by 21.3% and
16.7%, respectively.

Comparing our approach with BugLocator, AmaLgam+outperforms BugLocator with respect to all
metrics for AspectJ, Eclipse, and SWT bug reports. Both techniques have the same performance in
terms of Hit@1, and Hit@10 for ZXing. For ZXing, AmaLgam+ improves BugLocator in terms of
MRR and Hit@5 but marginally loses to BugLocator in terms of MAP. On average, AmaLgam
+ improves the MAP and MRR scores of BugLocator by 33.1% and 24.2%, respectively. For
TFIDF-DHbPd, Sisman and Kak only evaluates it using AspectJ bug reports from the iBugs
benchmark. They also did not compute Hit@N or MRR. Because TFIDF-DHbPd code is not
publicly available and Sisman and Kak evaluate the performance of TFIDF-DHbPd only on
AspectJ, in the table, we only show the MAP score of TFIDF-DHbPd for AspectJ. Comparing our
approach with TFIDF-DHbPd, we can improve their approach’s MAP score on AspectJ bug reports
by 73.9%.

4.2.2.3. Statistical tests. We have performed Wilcoxon signed-rank test [20] to test whether the
improvement obtained by AmaLgam+over AmaLgam (the best performing baseline) is significant
with p-value set to 0.5. We find that the improvements in terms of MAP and MRR are significant
(p-value< 0.0001). To investigate if the differences of MAP and MRR scores of AmaLgam+and
AmaLgam are substantial, we also compute Cohen’s d [21], which measures effect size. Cohen
defined an effect size of 0.2, 0.5, and 0.8 to be small, medium, and large, respectively. If the effect
size is close to 0, it means that the difference is not substantial. We find that the effect sizes for the
MAP and MRR differences are 0.20 and 0.21 respectively, which indicate small but substantial
differences. If we only consider AspectJ and Eclipse bug reports, where there are many with stack
traces and many bug reporters submit more than one bug report, the effect sizes for the MAP and
MRR differences are 2.05 and 0.66, respectively, which indicate large and medium differences,
respectively.

4.2.2.4. Further analysis. Comparing AmaLgam+and AmaLgam, the results for SWT are not as
encouraging as the results for AspectJ and Eclipse, because only four SWT bug reports contain
stack traces and only 17 reporters submit more than one bug report. Similarly the results are not as
encouraging for ZXing, because there is only one bug report that contains a stack trace, and only
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one reporter submits more than one bug report. Thus, for SWT and ZXing, the stack trace and reporter
information components contribute very little to the final results.

Furthermore, we note that for ZXing, the results for all baselines (AmaLgam, BLUiR+, and
BugLocator) and AmaLgam+are very similar. Upon manual inspection, we find that the
suspiciousness scores generated by three components of AmaLgam+ (i.e., version history, stack
trace, and reporter information components) are close to zeroes or are relatively small to affect the
overall suspiciousness scores. Thus, version history, stack trace, and reporter information do not
help much. We have described the reasons why the stack trace and reporter information components
do not work well in the previous paragraph. The version history component does not work well
because few commits were made in the 15 days prior to the submission of most of ZXing bug
reports. Because the performance of BLUiR+ and BugLocator is similar, we can also infer that the
effectiveness boost gained by performing structured information retrieval is also not much. This is
because most of the relevant class names and method names (or their constituent words) do not
appear in the summary or description of ZXing bug reports. BLUiR+ works by splitting identifier
names into groups such that less important groups (e.g., comments, variable names) do not create
noise that affects the more important ones (e.g., class names, method names). Unfortunately, for
ZXing, identifiers in the more important groups do not match words that appear in the summary and
description fields. We have also contrasted the performance of BLUiR and BLUiR+ (not shown in
Table V) and find that their performance also does not differ much. This suggests that the benefit
gained by leveraging similar bug reports is not much. This is the case because compared with
Eclipse, AspectJ, and SWT, there are much fewer bug reports for ZXing; thus, only very few similar
bug reports could be found when a new bug report is submitted. The results for ZXing need to be
considered with a grain of salt although because there are only 20 bug reports in the ZXing dataset.

In most cases, AmaLgam+performs better than the other baselines, which demonstrate that our
approach could better locate buggy files. For example, for the AspectJ bug report with ID 44117
whose stack trace is shown in Figure 4, AmaLgam+can locate the buggy file org.aspectj.weaver.
AsmRelationshipProvider.java at the top 1 position in the result list because it appears in the stack
trace. However, many other baselines cannot locate it. For example, for the result list produced by
BLUiR+, the buggy file does not appear in the first 50 files. However, in a few cases, some
components in AmaLgam+can bring in noise to the final results and make it performs worse than
other baseline approaches. For example, the version history component can bring in some noise to
adversely affect the final results. When locating the buggy files for the AspectJ bug report with ID
36234, BLUiR+ ranks the buggy file org.aspectj.tools.ajc.Main.java at the fourth position. However,
AmaLgam+ ranks it at the sixth position. This is because the version history component assigns two
files (i.e., AjBuildConfig.java and AjState.java from org.aspectj.ajdt.internal.core.builder package)
with scores higher than that of the buggy file as they were frequently modified in the previous
15 days before bug report 36234 was submitted.

4.4.3. RQ3: complementarity analysis on the components of AmaLgam+. We use PCA to analyze the
complementarity of five components (i.e., VHC, SRC, SC, STC, and RIC) of AmaLgam+. Table VI
presents the results obtained by comparing the suspiciousness scores of each AmaLgam+component
on the four datasets. We can note that PCA identifies five principal components.

The first principal component (C1) explains (i.e., accounts for) the majority of the overall variability
ranging from 66.21% to 81.45% (across the four datasets). We can notice that the SC contributes most
to C1. The second principal component (C2) explains 14.69% to 23.95% of the overall variability.
Among the four datasets, we can note that the VHC contributes most to C2 for AspectJ and SWT
datasets, while SRC contributes most to C2 for Eclipse and ZXing datasets. The first two
components explain at least 85.98% of the overall variability across the four datasets. For C3, the
STC contributes the most for AspectJ and ZXing datasets, while SRC and VHC contribute more
than other components for SWT and Eclipse datasets, respectively. For C4, different components
contribute the most for different datasets. For C5, only the RIC contributes to it across the four datasets.

The results show that the structure component makes the most contributions to capture the
variability in the datasets. The reporter information component makes the least contribution. The
other three components perform differently on different datasets. Additionally, because the
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contributions of each PCA component across the four datasets are non-zeroes and each of the
AmaLgam+components contributes to at least one PCA component, none of the AmaLgam
+components are useless in explaining the variability in the datasets. Furthermore, we can note that
for each PCA component, one of the AmaLgam+components significantly dominates the rest (i.e.,
its contribution is significantly larger than other AmaLgam+components); this shows that the
components are reasonably orthogonal to one another and are not rendered redundant due to the
presence of other components.

4.5. Threats to validity

Threats to internal validity include experimenter bias. To reduce this threat, we reuse the bug report
dataset that has been used before to evaluate prior approaches. Thus, the evaluation is not biased to
our approach.

Threats to external validity relate to the generalizability of our findings. To reduce this threat, we
have analyzed more than 3000 bug reports from four popular projects. Still in the future, we plan to
reduce these threats further by analyzing more bug reports from more projects written in multiple
programming languages.

Threats to construct validity refer to the suitability of the set of evaluation metrics that we use in this
study. Three metrics are used namely Hit@N, MAP, and MRR. These metrics are well-known
information retrieval metrics and have been used before to evaluate many past bug localization
approaches, for example, [3–5, 8]. Thus, we believe there is little threat to construct validity.

5. RELATED WORK

In this section, we first describe a number of bug localization works. We then describe some bug
prediction and feature location works. The survey here is by no means complete.

5.1. Bug localization

In recent years, many bug localization approaches have been proposed. These methods can be
categorized into two: dynamic and static approaches.

Generally, dynamic approaches can localize a bug much more precisely than static approaches, for
example, pinpoint a buggy statement or basic block. However, they usually require a test suite to
execute a program to collect passing and failure execution traces. Thus, the effectiveness of a
dynamic approach is often dependent on the quality of a test suite. Unfortunately, Kocchar et al.
have shown that the adoption of software testing in many projects is often poor [22]. Spectrum-
based fault localization, for example, [23–26] and model-based fault localization, for example, [27,
28], are some of the well-known dynamic approaches. Spectrum-based fault localization approaches
often use program traces to correlate program elements at various granularity levels (e.g., statements,
basic blocks, functions, and components) with program failures often with the help of a statistical
analysis. Tarantula [24] and Ochiai [1] are two well-known techniques, and they are proposed to
rank program elements according to their suspiciousness scores computed based on the executions
of a program with a test suite. The basic idea of Tarantula and Ochiai is that a program element is
considered to be more suspicious if it appears more frequently in failed executions than in correct
ones. Saha et al. propose a customized automated fault localization technique for data-centric
programs, which interact with databases [26]. Model-based fault localization approaches, for
example, [27, 28] are based on more expensive logic reasoning over formal models of programs,
which are often more accurate than spectrum-based fault localization approaches.

Static approaches do not require any test suite to be run to generate execution traces. They only need
program source code files and bug reports to localize a bug. The static approaches usually can be
categorized into two groups: program analysis-based approaches and IR-based approaches.
FindBugs is a program analysis-based approach that locates a bug based on some predefined bug
patterns [29]. However, it often detects too many false positives and misses many real bugs [30].
IR-based approaches use information retrieval techniques (such as TFIDF, LSA, and LDA) to
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calculate the similarity between a bug report and a source code file. Rao and Kak investigate many
standard information retrieval techniques for bug localization and find that simpler techniques, for
example, TFIDF and SUM, perform the best [3]. Lukins et al. use LDA, which is a well-known
topic modeling approach, to localize bug [31]. Wang et al. propose to compose various vector space
models with various term frequency-inverse document frequency (tf-idf) weighting schemes where
the weights of the models are learned using a genetic algorithm (GA) [32]. They demonstrate that
the compositional vector space model can outperform standard vector space model when it is being
used individually or integrated with another bug localization technique.

Sisman and Kak propose a history-aware IR-based bug localization solution to achieve a better
result [5]. Zhou et al. propose BugLocator, which leverages similarities among bug reports and uses
a refined vector space model to perform bug localization [8]. Saha et al. consider the structure of
bug reports and source code files and employ structured retrieval to achieve a better result [4].
Moreno et al. present an approach, namely, Lobster, which uses a text retrieval based technique and
stack trace analysis to perform bug localization [33]. To locate buggy files, Lobster combines the
textual similarity between a bug report and a code unit and the structural similarity between the
stack trace and the code unit. The structural similarity is measured as the shortest path from the
elements in the stack trace and the target code unit. Wong et al. propose an approach that uses a
variant of vector space model and stack trace analysis to perform bug localization [7]. They extract
the stack traces and compute a suspiciousness boost score of each file in the stack traces. For files
that are listed among the top-10 files in the stack trace, the suspiciousness boost scores of the files
are the reciprocal of their ranks; on the other hand, the suspiciousness scores of other files are set to
either 0.1 (if they also appear in the stack trace or are directly used by a file in the stack trace) or 0.
Different from the existing IR-based bug localization approaches, we put together version history,
similar report, structure, stack traces, and reporter information to achieve better performance.

5.2. Bug prediction

There are many approaches proposed for bug prediction. One family of bug prediction approaches uses
change logs to predict buggy files. Change log-based approaches extract historical information from a
version control system and assume that recently or frequently changed files have the most potential to
be buggy. Hassan measures the complexity of a code change and proposes several code change
models, which are based on the concept of entropy and show that the code change models can be
used to predict future faults [34]. Kim et al. propose BugCache, which stores a list of recent buggy
files in a cache and uses it to predict future buggy files [13]. BugCache is based on an assumption
that similar bugs happen in bursts and not in isolation. Rahman et al. perform an empirical study to
evaluate BugCache and show that it is not substantially better than a basic prediction model, which
computes the suspiciousness of a file based on the number of bug-fixing commits that touch the
file [15].

Another family of approaches does not require historical data but only analyzes the current version
of a system using various metrics. One well-known set of metrics is the Chidamber and Kemerer
metrics [35]. These metrics and several coupling metrics have been used by El Emam et al. to
predict faults on commercial Java application [36]. Nagappan et al. use a number of source code
metrics (including Chidamber and Kemerer metrics) to predict module-level defects on five
Microsoft systems [37]. They find that no predictor could perform well on all the projects. Marcus
et al. propose the notion of conceptual cohesion of classes (C3), which is based on the analysis of
unstructured text (e.g., comments and identifiers) in a code base, and use C3 for defect prediction [38].

There are also other approaches that do not belong to the two families described earlier. For
example, Zimmermann and Nagappan use network analysis to analyze the dependencies between
binaries in Windows server 2003 and predict defects based on that analysis [39].

5.3. Feature/concept/concern location

Feature/concept/concern location is a task that is closely related to bug localization. Its goal is to map a
description of a feature or concept or concern to the program units (e.g., package, file, and method) that
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implement it. Many approaches have been proposed to perform feature/concept/concern localization
with information retrieval techniques.

Poshyvanyk et al. make use of latent semantic indexing to map a software feature to its relevant
program units and then apply Formal Concept Analysis to cluster the results [40]. In another work,
they also make use of execution traces in addition to textual description of a feature to locate
relevant program units [41]. Dit et al. combine information retrieval, execution, and link analysis
algorithms to improve feature location techniques that analyze textual description and execution
traces by using data fusion model [42]. Gethers et al. combine IR, dynamic analysis, and software
repository mining techniques to recommend relevant source code entities given a change request and
its contextual information, that is, execution trace and initial source code entity to be changed [43].
Wang et al. perform an empirical study on Linux kernel to evaluate the performance of 10 different
IR models for feature location [44]. They show that vector space model outperforms other models.
There are many other feature location approaches. For a comprehensive description of these studies,
please refer to a recent survey paper by Dit et al. [45].

6. CONCLUSION AND FUTURE WORK

A large number of bug reports are submitted during the evolution of a software system. For a large
system, locating the source code files responsible for a bug is a tedious and expensive work. Thus,
there is a need to develop a technique that can automatically figure out these buggy files given a
bug report. A number of bug localization tools have been proposed in recent years. However, the
effectiveness of these tools still needs to be improved further. In this paper, to localize bugs more
effectively, we propose a new approach named AmaLgam+which integrates five sources of
information: version history, similar reports, structure, stack trace, and reporter information.

We perform a large-scale experiment on more than 3000 bugs in four projects, namely, AspectJ,
Eclipse, SWT, and ZXing, to evaluate the effectiveness of AmaLgam+and compare it with a number
of existing state-of-the-art bug localization approaches. Compared with a history-aware bug
localization approach proposed by Sisman and Kak, AmaLgam+achieves a 73.9% improvement in
terms of MAP. Compared with BugLocator, which considers similar reports, AmaLgam+, on
average, achieves a 33.1% improvement in terms of MAP. Compared with BLUiR+, which considers
structural information and similar reports, AmaLgam+, on average, achieves a 20.3% improvement in
terms of MAP. Furthermore, AmaLgam+also outperforms BRTracer+, which considers stack trace
information and similar reports, on average by 21.3% in terms of MAP. AmaLgam+boosts the
performance of the preliminary version of this work, named AmaLgam [6], which integrates three
sources of information (i.e., version history, similar reports, and structure); for AspectJ and Eclipse
bug reports, on average, AmaLgam+outperforms AmaLgam by 12.0% in terms of MAP.

In the future, we would like to reduce the threats to external validity further by applying our
approach on more bug reports from various systems. We plan to do a large scale empirical study
using data from at least 20 projects and investigate the effectiveness of 5–10 existing bug
localization approaches. We are also interested to integrate other bug localization approaches to
AmaLgam+ .
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