
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2016

Practitioners' expectations on automated fault localization Practitioners' expectations on automated fault localization

Pavneet Singh KOCHHAR

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Shanping LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Digital Communications and Networking Commons, and the Software Engineering

Commons

Citation Citation
KOCHHAR, Pavneet Singh; XIA, Xin; David LO; and LI, Shanping. Practitioners' expectations on automated
fault localization. (2016). Proceedings of the 25th ACM International Symposium on Software Testing and
Analysis: ISSTA 2016, Saarbrucken, Germany; 2016 July 18-20.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3575

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3575&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Practitioners’ Expectations
on Automated Fault Localization

Pavneet Singh Kochhar1, Xin Xia2∗, David Lo1, and Shanping Li2
1School of Information Systems, Singapore Management University, Singapore

2College of Computer Science and Technology, Zhejiang University, China
{kochharps.2012,davidlo}@smu.edu.sg, {xxia,shan}@zju.edu.cn

ABSTRACT
Software engineering practitioners often spend significant
amount of time and effort to debug. To help practitioners
perform this crucial task, hundreds of papers have proposed
various fault localization techniques. Fault localization helps
practitioners to find the location of a defect given its symp-
toms (e.g., program failures). These localization techniques
have pinpointed the locations of bugs of various systems of
diverse sizes, with varying degrees of success, and for various
usage scenarios. Unfortunately, it is unclear whether prac-
titioners appreciate this line of research. To fill this gap,
we performed an empirical study by surveying 386 prac-
titioners from more than 30 countries across 5 continents
about their expectations of research in fault localization. In
particular, we investigated a number of factors that impact
practitioners’ willingness to adopt a fault localization tech-
nique. We then compared what practitioners need and the
current state-of-research by performing a literature review
of papers on fault localization techniques published in ICSE,
FSE, ESEC-FSE, ISSTA, TSE, and TOSEM in the last 5
years (2011-2015). From this comparison, we highlight the
directions where researchers need to put effort to develop
fault localization techniques that matter to practitioners.

CCS Concepts
•Software defect analysis→ Software testing and de-
bugging;

Keywords
Fault Localization, Empirical Study, Practitioners’ Expec-
tations

1. INTRODUCTION
Software bugs can have profound consequences across var-

ious sectors of the economy. A study by U.S. National Insti-
tute of Standards and Technology estimated that 59.5 billion

∗Corresponding author.

dollars are lost due to software bugs annually [46]. Finding
and fixing defect requires practitioners to put in significant
amount of time and effort. To reduce practitioner workload,
literally hundreds of papers1 have presented various tech-
niques to pinpoint the locations of bugs given its symptoms,
e.g., [4,5,19,44,55,56,57,60]. These techniques consider dif-
ferent usage scenarios, are evaluated on programs of varying
sizes, and achieve different levels of success, which in turn is
measured in different ways.

Despite numerous studies on fault localization, unfortu-
nately, few studies have investigated the expectations of
practitioners on research in fault localization. It is unclear
whether practitioners appreciate this line of research. Even
if they do, it is unclear whether they would adopt fault lo-
calization techniques, what factors affect their decisions to
adopt, and what are their minimum thresholds for adoption.
Practitioners’ perspective is important to help guide soft-
ware engineering researchers to create solutions that matter
to our “clients”.

To gain insights into practitioners’ expectations on fault
localization, we surveyed thousands of practitioners from
various companies spread across the globe and obtained 386
responses. To get these thousands of practitioners, we sent
emails to our contacts in IT industry (Microsoft, Google,
Cisco, LinkedIn, ABB, Box.com, Huawei, Infosys, Tata Con-
sultancy Services and many other small to large IT compa-
nies in various countries) to disseminate our survey form
to their colleagues. We also sent emails to practitioners
contributing to open source projects hosted on GitHub. In
our survey, we first collected demographic information from
respondents, e.g., whether they are professional software
engineers, whether they have contributed to open source
projects, their experience level, their job roles, their En-
glish proficiency level, and their country of residence. Next,
we gave a brief overview of research in fault localization,
and asked our respondents about their views of the impor-
tance of this research area. We allowed respondents to an-
swer “I don’t understand” to filter out those with insufficient
background knowledge. Next, we investigated practitioners’
willingness to adopt fault localization techniques, and their
thresholds for adoption measured in terms of various factors:
debugging data availability, granularity level, success crite-
rion, success rate, scalability, efficiency, ability to provide
rationale, and IDE integration.

After the survey, we performed a literature review. We

1Well-known papers on fault localization techniques,
e.g., [17, 38, 58], have received hundreds of citations mostly
by papers proposing more recent techniques.

went through papers published in ACM/IEEE International
Conference on Software Engineering (ICSE), ACM SIGSOFT
Symposium on Foundations of Software Engineering (FSE),
Joint Meeting of the European Software Engineering Con-
ference and the ACM SIGSOFT Symposium on Founda-
tions of Software Engineering (ESEC-FSE), ACM Interna-
tional Symposium on Software Testing and Analysis (IS-
STA), IEEE Transactions on Software Engineering (TSE),
and ACM Transactions on Software Engineering Methodol-
ogy (TOSEM) in the last 5 years and identified those that
proposed fault localization techniques. We then compared
the techniques proposed in the papers against the criteria
that practitioners have for adoption.

We investigated the following research questions in our
survey and literature review:

RQ1 Do practitioners value research on fault localiza-
tion?

RQ2 What debugging data are available to practitioners
during their debugging sessions?

RQ3 Which granularity levels (e.g., components, classes,
methods, basic blocks, statements) should a fault lo-
calization technique work on?

RQ4 When would a practitioner view a fault localization
technique to be successful in localizing bugs?

RQ5 How trustworthy (reliable) must a fault localization
technique be before a practitioner will consider its
adoption?

RQ6 How scalable must a fault localization technique be
before a practitioner will consider its adoption?

RQ7 How efficient must a fault localization technique be
before a practitioner will consider its adoption?

RQ8 Will a practitioner adopt a trustworthy, scalable,
and efficient fault localization technique?

RQ9 What additional criteria aside from trustworthiness,
scalability, and efficiency, must a fault localization
technique meet before some practitioners will con-
sider its adoption?

RQ10 How close are the current state-of-research to satisfy
practitioner needs and demands before adoption?

We investigated RQ1 to understand the general views of
practitioners on research in fault localization. In RQ2 to
RQ7, we probed the practitioners to better understand their
minimum thresholds for adopting a fault localization tech-
nique considering different factors. We considered availabil-
ity of debugging data and preferred granularity level in RQ2
and RQ3. Prior studies have considered a variety of data and
focused on different granularity levels. Unfortunately, none
has checked with practitioners whether they are available or
preferred. In RQ4 and RQ5, we considered success criterion
and success rate (i.e., the proportion of time the success cri-
terion is met) since they were measured in various ways to
evaluate past fault localization techniques [14,28,49,51]. We
considered scalability in RQ6 due to a recent shift in fault
localization studies that analyze larger programs, beyond
those in Siemens suite [13]. We considered efficiency, i.e.,
the amount of time a technique takes to produce results, in
RQ7, since it is often used as a criterion to evaluate program
analysis tools (e.g., [42]). We considered RQ8 to understand
the willingness of practitioners to adopt a tool which satis-
fies a set of desirable properties. We investigated additional
criteria aside from trustworthiness, scalability, and efficiency

in RQ9. We considered RQ10 to evaluate the extent current
state-of-research matches practitioners’ expectations.

Our research is meant to stimulate researchers to consider
the needs of practitioners to continue in the development
of better fault localization techniques that can eventually
result in high adoption and satisfaction rate. The following
is our list of contributions:

1. We surveyed 386 practitioners from more than 30 coun-
tries to answer 9 important research questions that shed
light on practitioners’ expectations, which include their
views on importance of fault localization and their thresh-
olds and reasons for adopting or not adopting such tech-
niques.

2. We performed a literature review of papers published in
ICSE, FSE, ESEC-FSE, ISSTA, TSE, and TOSEM in the
last 5 years, compared the current state-of-research with
what practitioners want, and highlight what can be done
next to meet our “client”’s needs and demands.

The structure for the remainder of our paper is as follows.
In Section 2, we describe the methodology of our study in de-
tail. In Section 3, we present findings from our survey which
answer the first 9 research questions. In Section 4, we high-
light findings from our literature review which answer the
last research question. In Section 5, we discuss implications
of our findings and limitations of our study. We discuss re-
lated studies in Section 6. We conclude and mention future
work in Section 7.

2. RESEARCH METHODOLOGY
Our study consists of two parts: practitioner survey and

literature review. We first conducted a survey and then
performed a literature review. The goal of the first part
is to assess practitioners’ expectations on fault localization
which include their thresholds for adoption, while the sec-
ond part analyzes whether and to what extent current state-
of-research has satisfied practitioners’ needs and demands.
We present the methodologies we follow for our practitioner
survey in Section 2.1, while Section 2.2 elaborates the steps
performed in the literature review.

2.1 Practitioner Survey

2.1.1 Respondent Recruitment
Our goal is to get a sufficient number of practitioners from

diverse backgrounds. We followed a multi-pronged strategy
to get respondents:

• First, we contacted professionals from various countries
and IT companies and asked their help to disseminate
our survey within their organizations. We sent emails to
our contacts in Microsoft, Google, Cisco, LinkedIn, ABB,
Box.com, Huawei, Infosys, Tata Consultancy Services and
many other small to large companies in various countries
to fill up the survey and disseminate it to some of their
colleagues. By following this strategy we can get respon-
dents from diverse organizations.

• Second, we sent emails to 3,300 practitioners contributing
to open source projects on GitHub, out of which around
150 were not delivered, and around 50 emails received au-
tomatic replies notifying the receiver’s absence. By send-
ing to GitHub developers we get respondents who are open
source practitioners in addition to professionals working
in industry.

We included practitioners working on open source and
closed source projects, those working in small as well as large
organizations, and those from different nationalities across
the globe. A similar methodology of collecting responses
through contacts in industry has been used in previous stud-
ies, e.g., [50].

2.1.2 Survey Design
We collected the following pieces of information.

Demographics:

• Professional software engineer: Yes / No

• Involvement in open source development: Yes / No

• Role: Software development / Software testing / Project
management / Other (Pick all that apply)

• Experience in years (decimal value)

• English proficiency: Very good / Good / Mediocre / Poor
/ Very poor (Pick one)

• Current country of residence

The demographic information is used to: 1) filter respon-
dents who may not understand our survey (i.e., respondents
with less relevant job roles, respondents with poor/very poor
English proficiency), 2) break down results by groups (e.g.,
by roles, by experience levels, etc.).

Practitioners’ Expectations:

Importance. We provided respondents a brief description of
research in fault localization and asked them how they per-
ceive the importance of such line of research. We described
fault localization as an approach that generates a ranked list
of suspicious program locations given debugging data (e.g.,
a crash or a program failure). We asked respondents to
pick one of the following ratings: “Essential”, “Worthwhile”,
“Unimportant”, “Unwise”, and “I don’t understand”. The
ratings are the same as those used in prior studies by Begel
and Zimmermann [6] and Lo et al. [27]. We included the cat-
egory “I don’t understand” to filter respondents who do not
understand our brief description. For respondents who se-
lected “Unimportant” or “Unwise”, we asked why they think
research in fault localization is unimportant/unwise. They
may or may not provide answers to this optional question.
Adoption. Next, we asked respondents factors that affect
their likelihood to adopt a fault localization technique. We
elicited the following pieces of information:

• Availability of debugging data: mathematical specifica-
tion, textual specification, one failing test case, multiple
failing test cases, passing test cases, textual description of
a defect. (Options: all the time, sometimes, rarely, never)

• Preferred granularity levels: pinpoint buggy components,
pinpoint buggy classes, pinpoint buggy methods, pinpoint
buggy basic blocks, pinpoint buggy statements (Pick all
that apply)

• Minimum success criteria: Top 12 / Top 5 / Top 10 / Top
50 / Other (Pick one)

• Minimum success rate: at least 5% / 20% / 50% / 75% /
90% / Other (Pick one)

• Minimum scalability: Programs of size 1-100 / 1-1,000 /
1-10,000 / 1-100,000 / 1-1,000,000 lines of code (LOC) /
Other (Pick one)

2A buggy program element exists in the top 1 position of a
ranked list returned by a fault localization technique.

• Minimum efficiency: Return result in less than 1 second
/ 1 minute / 30 minutes / 1 hour / 1 day / Other (Pick
one)

We then asked respondents whether they will adopt a fault
localization technique which is trustworthy (i.e., satisfies a
minimum success rate), scalable, and efficient. If a respon-
dent answered “No”, we asked the respondent his/her reason
to not adopt such a technique. The respondent may or may
not answer this optional question.

Next, we asked respondents to indicate their level of agree-
ment (disagreement) with the following statements:

• A fault localization technique must provide a rationale
why some program locations are marked as suspicious.
(Options: Strongly agree, Agree, Neutral, Disagree, Strongly
disagree)

• I will still adopt an efficient, scalable, and trustworthy
fault localization technique, even if it cannot provide ra-
tionales. (Options: Strongly agree, Agree, Neutral, Dis-
agree, Strongly disagree)

• A fault localization technique must be integrated well to
my favourite IDE. (Options: Strongly agree, Agree, Neu-
tral, Disagree, Strongly disagree)

• I will still adopt a an efficient, scalable, and trustworthy-
fault localization technique, even if it is not integrated
well to my favorite IDE. (Options: Strongly agree, Agree,
Neutral, Disagree, Strongly disagree)

We considered the above statements to validate the ob-
servations that “more context [is] needed” for debugging and
there is a need for a“complete ecosystem for debugging” [31].
If a respondent chose “Disagree” or “Strongly Disagree” for
either the second or fourth statement above, we asked their
reasons to disagree. A respondent may or may not answer
these optional questions.

At the end of the survey, we allowed respondents to pro-
vide free-text comments, suggestions, and opinions about
fault localization and our survey. A respondent may or may
not provide any final comment.

To support respondents from China, we translated our
survey to Chinese before distributing it to them. We chose
to make our survey available in Chinese and English as the
earlier is the most spoken language and the latter is an in-
ternational lingua franca. A large number of our survey
recipients are expected to be fluent in one of these two lan-
guages. Moreover, prior to sending our survey to a large
number of potential respondents, we asked a few practition-
ers that we know to take a preliminary version of our survey
and give comments. They found that overall the survey was
easy to understand and gave some feedback to improve it
further. We made some minor modifications to the survey
based on their feedback. We discarded responses that we
received from these pilot respondents. The full text of this
survey is publicly available [1].

2.1.3 Data Analysis
Based on our survey responses, we set out to answer the

first 9 research questions described in Section 1. We plotted
practitioners’ responses as charts and used them to answer
the research questions. Considering different factors (e.g.,
trustworthiness, scalability, etc.), we identified thresholds
to achieve 50%, 75%, and 90% satisfaction rates (i.e., 50%,
75%, and 90% of respondents are happy with a fault local-
ization technique if the thresholds are met). Moreover, we

summarized respondents’ reasons for their unwillingness to
adopt and their final comments.

2.2 Literature Review
We went through full research papers published in ICSE,

FSE, ESEC-FSE, ISSTA, TSE, and TOSEM from 2011 to
2015. We have a total of 417, 255, 169, 350, and 137 ICSE,
FSE/ESEC-FSE, ISSTA, TSE, and TOSEM papers to con-
sider, respectively. We selected papers from the above con-
ferences and journals as they are premier publication venues
in software engineering research community and state-of-
the-art latest findings are published in these conferences and
journals.

We read the titles and abstracts of these papers and judged
whether each of the papers proposes a new fault localization
technique that can help practitioners pinpoint the root cause
of a failure. We included papers on spectrum-based fault
localization (e.g., [49]), information-retrieval-based fault lo-
calization (e.g., [60]), and specialized fault localization tech-
niques (e.g., [29]). We excluded papers on automatic repair
(e.g., [18,25]), empirical study on debugging (e.g., [36]), the-
oretical analysis of existing debugging techniques (e.g., [53]),
failure reproduction (e.g., [14]), debugging comprehension
(e.g., [18, 39]), failure clustering (e.g., [12]), bug prediction
(e.g., [37]), and bug detection (e.g., [30]). Debugging com-
prehension and failure clustering techniques do not produce
a ranked list of potential buggy program locations. Bug pre-
diction focuses on future bugs, while bug detection focuses
on detecting unknown bugs that have not manifested as fail-
ures.

For each fault localization paper, we read its content and
analyzed the capabilities of the proposed technique in terms
of the following factors: debugging data required, granular-
ity level, success rate, scalability, efficiency, ability to pro-
vide rationale, and IDE integration. We compared the capa-
bilities of techniques proposed in the papers with practition-
ers’ thresholds for adoption. To check for IDE integration,
we also searched if the authors publish any tool papers based
on the original papers. If they do, we checked the contents
of the tool papers (and accompanying videos, if any) too.
We then identified discrepancies between the current state-
of-research and practitioners’ needs and demands.

This study is a first cut in assessing the extent exist-
ing research studies match up to practitioners’ expectations.
In-depth assessments and comparisons of success rate, effi-
ciency or scalability require a more comprehensive and head-
to-head evaluation of the techniques over a representative
bug collection, which we leave as future work.

3. PRACTITIONERS’ EXPECTATIONS
We first highlight statistics of responses that we have re-

ceived in Section 3.1 and then describe our findings that
answer the first 9 research questions in Section 3.2. Finally,
we highlight respondents’ final comments in Section 3.3.

3.1 Statistics of Responses Received
In total we received 403 responses. These responses were

made by respondents from 33 countries across five continents
– see Figure 1. The top two countries where the respondents
reside are China and the United States.

We excluded 3 responses made by respondents who are
neither professional software engineers nor open source de-
velopers, and whose job roles are neither software devel-

Figure 1: Countries Our Survey Respondents Reside

opment, software testing, or project management. These
respondents have the following roles: Linux operation and
maintenance, business analyst, and cloud migration support.
We also excluded 8 responses made by respondents who did
not understand our description of fault localization (i.e.,
he/she chose the “I don’t understand” option). Moreover,
we excluded 6 responses from respondents who participated
in the English version of our survey but indicated their En-
glish language proficiency level as “Poor” or “Very Poor”. At
the end, we had a set of 386 responses.

Out of the 386 respondents, 80.83%, 30.05%, and 17.10%
described software development, software testing, and project
management as their job role respectively. Note the per-
centages do not add up to 100% since some respondents
perform multiple roles (especially for respondents in small
to medium sized companies, or from open-source projects).
Based on their experience level, we grouped respondents into
three categories: low, medium, high. We first sorted re-
spondents based on their experience in years. Respondents
in the bottom and top quartile were put in the low and
high categories respectively, while the others were put in
the medium category. Out of the 386 respondents, 78.13%
and 44.24% are professional and open-source software devel-
opers, respectively. Note that the percentages do not add up
to 100% since some respondents are both professional and
open-source software developers.

3.2 Findings
RQ1: Importance of Fault Localization. Figure 2 shows
the percentages of ratings of various categories (i.e., Essen-
tial, Worthwhile, Unimportant, Unwise) given by respon-
dents from the following demographic groups:

• All respondents (All)

• Respondents with software development role (Dev)

• Respondents with software testing role (Test)

• Respondents with project management role (PM)

• Respondents with low experience (ExpLow)

• Respondents with medium experience (ExpMed)

• Respondents with high experience (ExpHigh)

• Respondents who are open source practitioners (OS)

• Respondents who are professional software engineers (Prof)

From Figure 2, we can notice that most respondents gave
“Essential” and “Worthwhile” ratings. Only a minority gave
“Unimportant” and “Unwise” ratings (less than 10%) across
all demographic groups. Around 20-35% of respondents
across demographic groups rated fault localization as an“Es-
sential” research topic.

We notice that testers value fault localization techniques
slightly more than developers and project managers (less

percentage of testers marked fault localization as “Unimpor-
tant” or “Unwise”). To check whether this difference is sta-
tistically significant, we performed the Fisher’s exact test [9]
and found no significant difference (p-value = 0.265).

As experience level increases, less percentage of respon-
dents view fault localization as “Essential”. We can espe-
cially notice a sharp drop in the percentage of respondents
rating fault localization as “Essential” between ExpMed and
ExpHigh groups. Again, we performed the Fisher’s exact
test and this time we found that the difference is statisti-
cally significant (p-value = 0.014). We also performed the
Spearman correlation test [43] and found that there is a sig-
nificant (p-value = 0.007) yet small negative correlation (ρ
= -0.14) between experience (in years) and ratings (mapped
to a value between 1 (“Unwise”) to 4 (“Essential”)). These
results suggest that more experienced developers perceive
fault localization to be less “Essential” than less experienced
ones.

For respondents who rated “Unimportant” and “Unwise”,
some of them described their reasons, as follows:

• Disbelief that fault localization techniques can deal with
difficult bugs, e.g.,

– “Hairy bugs hide in interaction between various compo-
nents and I don’t think automated tools help much. I’m
well aware of what static analysis can do and very few
hard bugs would be solved with it.”

– “My opinion is scoped by the web development, but still:
different frameworks, different technologies and for each
one you’ll need to adapt your potential tool to solve spe-
cific bugs ...”

• Disbelief that fault localization techniques can provide ra-
tionale, e.g.,

– “I doubt any automated software can explain the rea-
son for things such as broken backwards compatibility,
unclear documentation, what really should happen etc.
They require human analysis.”

• Belief that the status quo is good enough, e.g.,

– “... And even if you will succeed, I don’t think personally
I would pay for it, because for my cases usual stack trace
is over than enough.”

Figure 2: Importance of Fault Localization Research
to Respondents of Various Demographic Groups

RQ2: Availability of Debugging Data. Figure 3 shows
practitioners’ feedback on availability of different debugging
data, which were assumed to be available by prior fault lo-
calization studies: specification (e.g., [11]), single failing test
case (e.g., [35]), multiple failing test cases (e.g., [5]), pass-
ing test cases (e.g., [5]), and bug reports (e.g., [60]). The
following are our findings:

• Most respondents indicated that mathematical specifica-
tions are rarely or never available. Textual specifications
are more common with almost 70% of the respondents
indicated that they are available “all the time” or “some-
times”.

• Test cases are more commonly available than specifica-
tions. More than 70% of the respondents mentioned that
these debugging data are available “all the time”or“some-
times”.

• Bug reports are also commonly available with close to 80%
of the respondents mentioned that they are available “all
the time” or “sometimes”.

Figure 3: Availability of Debugging Data to Prac-
titioners (Math-Spec = Mathematical specification,
Text-Spec = Textual specification, One-Test= One
test case, Multi-Tests = Multiple test cases, Suc-
Tests = Successful test cases, Text-Desc = Textual
description)

RQ3: Preferred Granularity Level. Different fault lo-
calization techniques pinpoint bugs at different granularity
levels, e.g., class (file) [60], method [54], basic block [28],
statement [17]. Figure 4 shows practitioners’ preferred gran-
ularity levels. Note that the percentages do not add up to
100% since a respondent can indicate more than one pre-
ferred granularity level. We notice that the top-3 preferred
granularity levels are: method, statement, and block, respec-
tively. There is no clear winner among these three granu-
larity levels, with method being slightly preferred by prac-
titioners. Class and component are too coarse granularity
levels to many respondents. A technique that can pinpoint
the right buggy component or class may still require practi-
tioners to manually check a large chunk of code.

Figure 4: Percentages of Respondents Specifying
Various Preferred Granularity Levels

RQ4: Minimum Success Criterion. Fault localization
techniques return a list of suspicious program elements. If
buggy program elements appear at the end of a long list,
practitioners may be better off doing manual debugging.
Figure 5 shows percentages of respondents with their min-
imum success criteria. Around 9 percent of respondents
did not consider a fault localization session that requires
him/her to inspect more than one program element to find
a bug as successful. The threshold was 5 program elements
for 73.58% of the respondents. Moreover, almost all respon-
dents (close to 98%) agreed that inspecting more than ten
program elements is beyond their acceptability level.

Figure 5: Percentage of Respondents Specifying
Various Minimum Success Criteria

RQ5: Trustworthiness. Intuitively, a technique that is
unsuccessful most of time will be considered as untrustwor-
thy (unreliable) and is less likely to be used. Figure 6 shows
the percentages of respondents who were satisfied with dif-
ferent success rates. A very small proportion of respondents
can tolerate a fault localization technique that is only suc-
cessful 5% of the time. Around twelve percent of respon-
dents were satisfied with a technique that has a 20% success
rate. To achieve a satisfaction rate of 50%, 75%, and 90%, a
fault localization technique needs to be successful 50%, 75%,
and 90% of the time, respectively.

Figure 6: Minimum Success Rate vs. Satisfaction
Rate

RQ6: Scalability. Figure 7 shows the minimum program
sizes that fault localization techniques need to support be-
fore practitioners consider them useful. To achieve a satis-
faction rate of 50%, 75%, and 90%, a fault localization tech-
nique needs to be scalable enough to deal with programs of
size 10,000 LOC, 100,000 LOC, and 1,000,000 LOC, respec-
tively.

Figure 7: Minimum Program Size vs. Satisfaction
Rate

RQ7: Efficiency. Figure 8 shows the maximum amount of
time practitioners are willing to wait for a fault localization
technique to provide a recommendation. Few respondents
were willing to wait more than an hour for a fault localiza-
tion technique to do its job (less than 9%). To achieve a
satisfaction rate of at least 50%, a fault localization tech-
nique needs to finish its computation in less than a minute.
This efficiency threshold satisfied more than 90% of the re-
spondents.

Figure 8: Maximum Runtime vs. Satisfaction Rate

RQ8: Willingness to Adopt. We find that almost all
the respondents (except less than 2 percent) were willing to
adopt a trustworthy, scalable, and efficient fault localization
technique. The main reasons why some of the respondents
were still unwilling to adopt are as follows:

• Resistance to change

– “Since I already have one and to use another would re-
quire training time and time to get used to it”

– “I would probably prefer traditional breakpoint / sin-
gle stepping debugging watching what the program does.
This of course depends on the kind of bugs. If it could
find difficult to locate bugs”

• More information needed

– “would it be open source? Would it work with my main
programming language? Would it work with distributed
environments? These are important aspects and I can-
not commit to adoption without the answers.”

• Disbelief of possibility of success

– “I don’t think you can do it.”

RQ9: Other Factors. After asking respondent willingness
to adopt a trustworthy, scalable, and efficient fault localiza-
tion technique, we ask about two additional factors: ability

to provide rationale and IDE integration. We provided prac-
titioners with four statements (listed in Section 2.1.2) and
asked respondents to indicate their levels of agreement or
disagreement with the statements. Figure 9 shows respon-
dents’ agreement levels for the four statements.

From the figure, we find that more than 85% of our re-
spondents strongly agreed or agreed that ability to provide
rationale is important. Adoption rate reduces for fault local-
ization techniques that cannot provide rationale – more than
15% disagreed or strongly disagreed that they will still use
a trustworthy, scalable, and efficient fault localization tech-
nique if it cannot provide rationale why some program loca-
tions are marked as suspicious, and many were on the fence
(around 40% chose “Neutral”). Reasons why they chose not
to adopt (i.e., they picked “Disagree” or “Strongly disagree”)
include:

• Lack of trust due to possibilities of false positives

– “False positives are worst than false negatives in my
opinion. That is, if the tool tells me where the bug is
but that’s not actually true, that annoys me greatly.”

– “I need to know why the debugger considers code faulty,
otherwise I will consider it a false positive and ignore.
Not providing a rationale also means I have to investi-
gate code that might be a false positive, which is a waste
of my time.”

– “Software development is all about logic. Debugging is
done logically and rationally. Therefore any tool should
facilitate in the rational thinking of the developer and
not intuitive thinking”

• Rationale is needed for bug fixing and code quality im-
provement

– “Because to make a decisions about bug fixing I want to
exactly know why the automated tool “thinks” that the
code have a bug.”

– “... I would also need to provide the fix, so I feel some
rationale would also help with that.”

– “Rationale gives understanding which will help in im-
proving the code quality for future”

• Rationale is needed to incorporate practitioners’ own do-
main knowledge

– “So that I can filter the results through my own knowl-
edge ...”

Furthermore, we find that IDE integration is less impor-
tant than ability to provide rationale – only less than 65%
agreed or strongly agreed that IDE integration is neces-
sary. Without IDE integration, adoption rate is likely to
reduce (albeit less substantially than when rationale is not
provided) – more than 5% disagreed or strongly disagreed
that they will still use a trustworthy, scalable, and efficient
fault localization technique if it is not integrated to their
favourite IDE, and many were on the fence (around 40%
chose “Neutral”). Reasons why they chose not to adopt (i.e.,
they picked “Disagree” or “Strongly disagree”) include:

• Extra steps are needed which affects debugging speed

– “Testing is awkward and should be made as easy as pos-
sible. No integration means extra steps which means
testing will be more cumbersome and hence less used.”

– “debugging needs to be fast and efficient”

• Developers have a strong reliance on IDE

– “Currently Visual Studio 2013 provides all the tools re-
quired to build, test and deploy and application. It is
not worthwhile attempting to use a different tool for de-
bugging.”

– “IDE is our environment. If I can’t add something into
my environment, it’s useless.”

• Developers refuse to change personal workflow for conve-
nience reason

– “If it doesn’t fit into my workflow, then it’s more trouble
than it’s worth.”

– “Personal habits, or feel inconvenient.”
– “Convenience.”

Figure 9: Other Factors Affecting Adoption

3.3 Respondents’ Final Comments
Some respondents provided additional comments and sug-

gestions:

• Integration with continuous integration tool would be a
plus

– “I would be interested in running an automated debug-
ging tool as part of continuous integration, so that rather
than the test just failing, it gives a report on what the
likely cause of the problem is.”

– “Would be nice if it will be pluggable to the build systems
such as Gradle, Maven, SBT, etc. For example, auto-
run after failed test on the CI.”

– “... Can I also run it offline i.e. CLI, CI server, via
SonarQube or SonarGraph, etc..? ...”

• Need to support multiple languages and workflows

– “Should be able to run from cmd-line. Doesn’t need ra-
tional, just needs to give me suggestions of where to look
at in the code with many objects interacting, it is some-
times hard to determine the cause. Should work with
most programming languages.”

– “A debugging or bug-finding tool should be easily inte-
grable into other workflows. Portability and ability to
be used with other tools is the most important charac-
teristic for me when choosing the tools to integrate into
a development process.”

• Extension of work to evaluate claim of bug existence is
needed

– “... Having an automated tool would be useful to not
only locate the source of a bug, but to evaluate the orig-
inal claim of a bugs existence. Having a tool automat-
ically confirm a bug and perhaps where to look to fix it
would easily convince a maintainer that this bug report
is worth looking at. ...”

4. CURRENT STATE-OF-RESEARCH
At the end of our literature review process, we identi-

fied 2, 5, 3, 2, and 4 fault localization papers from ICSE,
FSE/ESEC-FSE, ISSTA, TSE, and TOSEM, respectively.
Jin and Orso presented their technique F3 in ISSTA 2013 [15]
and TOSEM 2015 [16]. In this study, we considered the jour-
nal version. Table 1 shows the capabilities of state-of-the-art
fault localization techniques in terms of seven factors.

Debugging Data: From Table 1, we notice most of the
papers use test cases as debugging data, followed by bug
reports. From Section 3, we find that most of the respon-
dents mention that these data are available “all the time”
or “sometimes” during their debugging sessions. No paper
relies on manually created specification as debugging data
which are often unavailable. The work by Mariani et al. used
automatically generated specifications to help automated de-
bugging [29].

Granularity Level: From Table 1, we notice that only two
papers (i.e., [24, 52]) work at method level granularity –
which is the most preferred option. Most papers work at
statement level granularity, which is the second most pre-
ferred option. There are several papers that work at class
(file) level granularity which most respondents found to be
too coarse-grained.

Trustworthiness: We analyzed the papers using the most
popular success criterion indicated by our respondents, i.e.,
buggy program elements must appear in the top-5 positions
(Top 5). Using this criterion, we read the papers and checked
the success rates of the techniques proposed in them. By
comparing a technique’s success rate with our survey re-
sults, we can derive a satisfaction rate. Our survey results
point out that a fault localization technique with a success
rate of 50%, 75%, and 90% satisfies at least 50%, 75%, and
90% of our respondents, respectively. From Table 1, we can
note that none of the papers can satisfy at least 75% of our
respondents. Five papers can satisfy at least 50% of our
respondents. These papers are those that use bug reports
as debugging data instead of test cases. Unfortunately, they
work at a coarser level of granularity (i.e., class (file)) that is
not preferred by a large majority of our respondents. We put
some papers in category “?” since we cannot ascertain the
success rates of the fault localization techniques presented
in those papers.

Scalability: Our survey results point out that a fault lo-
calization technique that supports at least 1,000,000 LOC,
100,000 LOC, and 10,000 LOC satisfies at least 90%, 75%,
and 50% of the respondents, respectively. Table 1 shows that
6 papers can satisfy at least 75% of our respondents, while
7 can satisfy at least 50% of our respondents. We put the
work by Kim et al. [19] in category “?” since the paper does
not mention the number of lines of code of programs used
to evaluate their work (i.e., various components of Mozilla
Firefox and Core programs).

Efficiency: Our survey results point out that a fault lo-
calization technique that can produce output in less than a
minute satisfies at least 90% of the respondents. From Ta-
ble 1, we find that 5 papers can satisfy at least 90% of our
respondents. Some papers do not describe the runtime of
their proposed techniques and thus we put them in the “?”
category.

Table 1: Capabilities of Current State-of-Research
Factor Type Papers

Debugging Data
Specification -
Test Cases [4], [5], [24], [29],

[35], [40], [44] [55],
[57], [59]

Bug Reports [16], [19], [24],
[52]5, [56], [60]

Granularity
Method [24], [52]

Statement [4], [5], [29]6, [35],
[44], [55], [57] [59]

Basic Block [16]
Other [19], [40], [56], [60]

Factor Sat. Rate Papers

Success Rate
90% -
75% -
50% [16], [19], [35], [40],

[52], [56], [59], [60]
? [4]7, [5]8, [29]9,

[55]7, [57]8

Scalability
90% [29], [52]
75% [16], [24], [56], [59],

[60]
50% [4], [5], [35], [40],

[44], [55], [57]
? [19]

Efficiency
90% [4], [24], [40], [44],

[56]
? [16], [19], [29], [52],

[57], [60]

Factor Support? Papers

Rationale Yes [29]10, [44]10

IDE Integration Yes -

Provide Rationale: Most fault localization techniques only
highlight potentially buggy program elements. Practitioners
can understand why these program elements are highlighted
by reading the description of the heuristics employed by the
techniques, e.g., they are highlighted because they are exe-
cuted more often by failed test cases, but rarely or never by
successful test cases (e.g., [5, 55]), they are highlighted be-
cause they contain contents that are textually similar to the
content of the input bug report (e.g., [56, 60]), etc. Unfor-
tunately, these basic rationales are not likely to be sufficient
to help practitioners separate false positives from real bug
locations or fix bugs – c.f., [31].

We highlight two papers by Sun and Khoo [44] and Mari-
ani et al. [29] which go an extra mile. Both papers provide a
graph-based structure that a practitioner can inspect to bet-
ter understand why a program element is flagged as poten-
tially buggy – which is referred to as a bug signature by Sun
and Khoo. However, since no user study has been conducted

5The technique proposed in the paper uses crash traces.
6The technique identifies faulty method invocations.
7Most likely its satisfaction rate is below 50%. The mean
number of program elements to check to locate bugs is sub-
stantially larger than 5.
8Only relative evaluation scores are shown in the paper.
9The technique returns connected components containing
method invocations. The size of each component is not re-
ported.

10To some extent (see paragraph).

to evaluate the graph-based structures that are returned by
these approaches, it is unclear whether these graph-based
structures can help practitioners to debug better.

IDE Integration: None of the fault localization techniques
proposed in the 15 papers that we have reviewed has been
integrated into a popular IDE. We find that the work by
Zhou et al. [60] has been integrated into Bugzilla by Thung
et al. [47], however, Bugzilla is not an IDE. IDE integra-
tion requirement is expressed as one of the prerequisites for
adoption by some of our survey respondents.

5. DISCUSSION

5.1 Implications
Large demand for fault localization solutions. De-
vanbu et al. recommended disseminating empirical findings
and giving attention to practitioner beliefs, in particular
where results are preliminary [8]. Fault localization tools
are currently research prototypes. Thus, participants may
not have used them before. Our survey is a practical way
to reach out to a large number of practitioners and get their
feedback. It is similar to a requirement elicitation phase
in a typical software project where a developer tries to un-
derstand client’s requirement (without a system being com-
pleted). Several studies have also tried to understand the
adoption factors of tools in a similar way [50]. Our survey
highlights the importance of research in fault localization.
More than 97% marked this field of research as “Essential”
or“Worthwhile”. Almost all respondents indicated that they
are willing to adopt a fault localization technique that sat-
isfies some criteria. Thus, although there are challenges in
this research area, we encourage researchers to continue in-
novating since there is still a wide“market”awaiting working
solutions.

High adoption barrier exists. Despite practitioners’ en-
thusiasm in this field of research, they have high thresholds
for adoption. More than eighty percent of respondents indi-
cated that they view a fault localization session as successful
only if it can localize bugs in the top 5 positions. To sat-
isfy 75% of our respondents, a fault localization technique
needs to be successful 75% of the time, be able to process
programs of size 100,000 LOC, and complete its process-
ing in less than a minute. Inability to provide rationales of
why program elements are marked as potentially buggy and
poor integration to practitioners’ favorite IDEs are likely
to reduce practitioners’ willingness to adopt (with around
5-15% of respondents indicated that they would withdraw
their willingness to adopt, and about 40% of respondents sat
on the fence).

Large improvement in trustworthiness (reliability)
of existing techniques is needed. Our literature review
highlights that the most crucial issue with existing fault lo-
calization techniques is their trustworthiness. Without this
quality, practitioners may ignore outputs of fault localiza-
tion techniques. The best performing studies cannot satisfy
75% of the respondents or more. Even many of those that
can satisfy at least 50% of the respondents work at a gran-
ularity level that is considered too coarse by most of the
respondents (i.e., class (file)). One of the studies by Qi et
al. [35] work at a preferred granularity level and can satisfy
more than 50% of the respondents (its success rate is beyond
50%) – however its effectiveness has only been tested on 5

different bugs from small to medium sized programs (less
than 100 kLOC). Recent efforts have mitigated this issue by
developing techniques that can help practitioners estimate
reliability of a fault localization output [22,23].

Some improvement in scalability is needed. Another
issue with existing fault localization techniques is their scal-
ability. To achieve 90% satisfaction rate, such techniques
need to work on programs of size 1,000,000 LOC. Only 2
papers [29, 52] have demonstrated that the proposed tech-
niques are able to satisfy such requirement.

Research on ways to provide suitable debugging ra-
tionale is needed. Among the papers that we investigate,
there are only 2 papers proposing techniques that can of-
fer some explicit rationales behind their recommendations
in the form of graph-based bug signatures. However, more
user studies are needed to check if these signatures are use-
ful to help debugging. Future research should be devoted on
designing more advanced fault localization techniques that
can provide explicit and useful rationales to help practition-
ers debug better.

Community-wide effort to integrate state-of-the-art
fault localization techniques to popular IDEs is needed.
None of the papers investigated in our literature survey de-
scribe integration to a popular IDE. There is a need for a
community-wide effort to encourage the integration of state-
of-the-art fault localization techniques to popular IDEs. Cam-
pos et al. [7] and Pastore et al. [32] have released Eclipse
plugins that implement two existing fault localization tech-
niques, i.e., [2] and [33], respectively. However, many latest
techniques (including those analyzed in Section 4) have not
been integrated to IDEs yet.

5.2 Limitations
Noisy Responses. It is possible that some of our sur-
vey respondents do not understand fault localization or our
questions well, and thus their responses may introduce noise
to the data that we collect. To reduce this threat to valid-
ity, we drop responses that are submitted by people who
are neither professional software engineers nor participants
of open source projects, and whose job roles are none of
these: software development, testing, and project manage-
ment. We also drop responses by respondents who select
the “I don’t understand” option, or declare to have “Poor”
or “Very poor” English proficiency level. We also translate
our survey to Chinese to ensure that respondents from China
can understand our survey well. Still, we cannot fully ascer-
tain whether participant responses are accurate reflections
of their beliefs. This is a common and tolerable threat to va-
lidity in many past studies about practitioners’ perceptions
and expectations, e.g., [20], which assume that the majority
of responses truly reflect what respondents truly believe.

Generalizability. To improve the generalizability of our
findings, we have surveyed 386 respondents from more than
30 countries across 5 continents working for various com-
panies (including Microsoft, Google, Cisco, LinkedIn, ABB,
Box.com, Huawei, Infosys, Tata Consultancy Services and
many more) or contributing to open source projects hosted
on GitHub, in various roles. Still, our findings may not
generalize to represent the expectations of all software engi-
neers. For example, practitioners who are not proficient in
either English or Chinese are not represented in our survey.

Overall Expectation. We consider practitioners’ overall
expectation for “all spectrum” of bug types. Practitioners’
expectations for a particular type of bugs (e.g., concurrency
bugs) may differ. We also consider “all spectrum” of practi-
tioners. In the future, we plan to collect, and even control
for practitioners’ prior experience with automated debug-
ging tools, or even automated test generation or automated
bug finding tools. Such exposure, may bring down the ex-
pectations of users, while making them realize the utility of
such tools.

Adoption Factors. We have only considered several fac-
tors that may affect the adoption of a fault localization
technique: debugging data availability, preferred granularity
level, success criterion, success rate, scalability, efficiency,
ability to provide rationale, and IDE integration. There
could be other factors that contribute to adoption that we
have not investigated. We plan to consider these factors in
a future study.

Willingness to Adopt vs. Actual Adoption. Our sur-
vey can only estimate practitioners’ willingness to adopt.
Actual adoption is a complex process which involves not
only individual attitudes (e.g., perceived usefulness) but also
organizational support (e.g., training, incentives) and social
influence (e.g., support by peers/colleagues) – c.f., [3,26,45].
Still, individual attitudes is one factor that leads to actual
adoption and our survey measures such factor. When state-
of-the-art fault localization techniques achieve practitioners’
perceived thresholds for adoption, it would be interesting to
perform industrial studies to let practitioners use such tech-
niques for a substantially long period of time (to overcome
their resistance to change) and under various settings for a
thorough evaluation, and collect further feedback.

6. RELATED WORK
Practitioners’ Perception, Expectation, and Activ-
ities: Lo et al. surveyed hundreds of practitioners in Mi-
crosoft on how they perceive the relevance of 517 papers
published in ICSE and FSE in 2009-2014 [27]. They asked
each respondent to rate 40 randomly selected papers by an-
swering a question: “In your opinion, how important are
the following pieces of research?”. In this work, we focus on
adoption rather than relevance, and fault localization rather
than all software engineering studies. Since this study is fo-
cused rather than general, we can consider more in-depth
questions on thresholds for adoption, and get more respon-
dents to comment on one topic of interest.

Perscheid et al. studied debugging practice of professional
software developers [34]. Different from them, we investigate
what practitioners want for a future tool, rather than the
current state-of-practice. In particular, our study estimates
practitioners’ thresholds for adopting fault localization tools.

Empirical Study on Fault Localization: Ruthruff et al.
investigated the effectiveness of a fault localization technique
applied on spreadsheets [41]. Jones and Harrold performed
an empirical study to evaluate Tarantula against four other
fault localization techniques on programs from Siemens test
suite [17]. Kochhar et al. presented a number of threats that
researchers need to consider (e.g., misclassification, incorrect
ground truths, etc.) when designing experiments to evaluate
information-retrieval-based techniques [21].

Parnin and Orso [31] investigated the usability of a spectrum-
based fault localization technique named Tarantula [17]. They

performed a user study using a defect in a Tetris applica-
tion and another defect in NanoXML. They observed how
participants debug with and without Tarantula. The user
study highlights that (1) absolute rank should be used as the
evaluation metric, (2) the combination of search and ranking
should be considered, (3) a complete ecosystem for debug-
ging is needed, (4) more studies on how “richer information”
can be used to help debugging is needed.

Wang et al. [48] investigated the usability of an information-
retrieval based bug localization technique named BugLoca-
tor [60]. They analyzed what information in a bug report
tends to produce good results, how their user study par-
ticipants used information in bug reports, and whether the
participants behaved differently when they use BugLocator
than without it. In their user study using 8 bugs from SWT,
they find that BugLocator is only useful if bug reports come
“without rich, identifiable information” and bad bug local-
ization outputs “harm developers’ performance”.

Our work extends and complements the above mentioned
studies in several novel ways: first, we analyzed the expecta-
tions of 386 practitioners spread across more than 30 coun-
tries on the importance of research in fault localization and
their willingness to adopt a fault localization technique; sec-
ond, we investigated thresholds for adoption measured in
terms of a number of factors; third, our findings shed new
light to many research questions that were not considered
before. Due to page limitation we cannot elaborate further.

7. CONCLUSION AND FUTURE WORK
Fault localization is a popular area of research. In this

work, we surveyed 386 practitioners from diverse backgrounds
on their expectations on fault localization, which include
their views on the importance of research in fault localiza-
tion, and their thresholds for adopting it in their day-to-day
work. We find that although practitioners are enthusiastic
about research in fault localization, they have high thresh-
olds for adoption. Practitioners expect a fault localization
technique to satisfy some criteria in terms of debugging data
availability, granularity level, trustworthiness (reliability),
scalability, efficiency, ability to provide rationale, and IDE
integration. We also compared capabilities of current state-
of-research in fault localization with practitioner thresholds
for adoption and identified discrepancies. These include the
need to make state-of-the-art fault localization techniques
more trustworthy, scalable, able to provide insightful ratio-
nales, and integrated to popular IDEs. Our study points to
avenues for future work to make fault localization techniques
well-adopted by practitioners.

In the future, we plan to develop fault localization tech-
niques that can bring current state-of-research closer to the
adoption thresholds that practitioners prescribe in this work.
Our study also opens doors to other interesting questions
that we plan to explore in the future, e.g., why practitioners
prefer some of the coarser granularities? why more experi-
enced developers are less enthused on automated fault local-
ization? how different are the expectations of open source
and professional practitioners? It would be hard to answer
all questions in one study since putting too many questions
in one survey adversely impacts participation and response
quality [10]. Also, the page limitation prevents us to per-
form and report additional analyses on our data. As another
future work, we plan to replicate and expand our study to
address its limitations, which are highlighted in Section 5.

8. REFERENCES
[1] Survey form.

https://github.com/smusis/automated-debugging.
Accessed: 2016-05-20.

[2] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van
Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software,
82(11):1780–1792, 2009.

[3] S. Al-Gahtani and M. King. Attitudes, satisfaction
and usage: Factors contributing to each in the
acceptance of information technology. Behaviour and
Information Technology, 18:277–297, 4 1999.

[4] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Fault
localization for dynamic web applications. IEEE
Transactions on Software Engineering, 38(2):314–335,
2012.

[5] G. K. Baah, A. Podgurski, and M. J. Harrold.
Mitigating the confounding effects of program
dependences for effective fault localization. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, pages 146–156. ACM, 2011.

[6] A. Begel and T. Zimmermann. Analyze this! 145
questions for data scientists in software engineering. In
36th International Conference on Software
Engineering, pages 12–13, 2014.

[7] J. Campos, A. Riboira, A. Perez, and R. Abreu.
Gzoltar: An eclipse plug-in for testing and debugging.
In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages
378–381, 2012.

[8] P. Devanbu, T. Zimmermann, and C. Bird. Belief &
evidence in empirical software engineering. In
Proceedings of the 38th International Conference on
Software Engineering (ICSE), pages 108–119, 2016.

[9] R. A. Fisher. On the interpretation of X2 from
contingency tables, and the calculation of p. Journal
of the Royal Statistical Society, 85(1):pp. 87–94, 1922.

[10] M. Galesic and M. Bosnjak. Effects of questionnaire
length on participation and indicators of response
quality in a web survey. Public Opinion Quarterly,
73(2):349–360, 2009.

[11] D. Gopinath, R. N. Zaeem, and S. Khurshid.
Improving the effectiveness of spectra-based fault
localization using specifications. In IEEE/ACM
International Conference on Automated Software
Engineering, ASE’12, Essen, Germany, September
3-7, 2012, pages 40–49, 2012.

[12] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie.
Performance debugging in the large via mining
millions of stack traces. In Proceedings of the 34th
International Conference on Software Engineering,
pages 145–155. IEEE Press, 2012.

[13] M. Hutchins, H. Foster, T. Goradia, and T. J.
Ostrand. Experiments of the effectiveness of dataflow-
and controlflow-based test adequacy criteria. In
Proceedings of the 16th International Conference on
Software Engineering, Sorrento, Italy, May 16-21,
1994., pages 191–200, 1994.

[14] W. Jin and A. Orso. Bugredux: reproducing field
failures for in-house debugging. In Proceedings of the
34th International Conference on Software
Engineering, pages 474–484. IEEE Press, 2012.

[15] W. Jin and A. Orso. F3: Fault localization for field
failures. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis
(ISSTA), pages 213–223, 2013.

[16] W. Jin and A. Orso. Automated support for
reproducing and debugging field failures. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 24(4):26:1–26:35, 2015.

[17] J. A. Jones and M. J. Harrold. Empirical evaluation of
the tarantula automatic fault-localization technique.
In 20th IEEE/ACM International Conference on
Automated Software Engineering, pages 273–282, 2005.

[18] S. Khoshnood, M. Kusano, and C. Wang.
Concbugassist: Constraint solving for diagnosis and
repair of concurrency bugs. In Proceedings of the 2015
International Symposium on Software Testing and
Analysis (ISSTA), pages 165–176, 2015.

[19] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should
we fix this bug? a two-phase recommendation model.
IEEE Transactions on Software Engineering,
39(11):1597–1610, 2013.

[20] M. Kim, T. Zimmermann, and N. Nagappan. An
empirical study of refactoring challenges and benefits
at microsoft. IEEE Transactions on Software
Engineering, 40(7):633–649, 2014.

[21] P. S. Kochhar, Y. Tian, and D. Lo. Potential biases in
bug localization: do they matter? In ACM/IEEE
International Conference on Automated Software
Engineering, pages 803–814, 2014.

[22] T. B. Le, D. Lo, and F. Thung. Should I follow this
fault localization tool’s output? - automated
prediction of fault localization effectiveness. Empirical
Software Engineering, 20(5):1237–1274, 2015.

[23] T. B. Le, F. Thung, and D. Lo. Predicting
effectiveness of IR-based bug localization techniques.
In 25th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2014, Naples, Italy,
November 3-6, 2014, pages 335–345, 2014.

[24] T.-D. B. Le, R. J. Oentaryo, and D. Lo. Information
retrieval and spectrum based bug localization: Better
together. In FSE, 2015.

[25] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In 2012 34th International Conference on Software
Engineering (ICSE), pages 3–13. IEEE, 2012.

[26] W. Lewis, R. Agarwal, and V. Sambamurthy. Sources
of influence on beliefs about information technology
use: An empirical study of knowledge workers. MIS
Quarterly, 27:657–678, 4 2003.

[27] D. Lo, N. Nagappan, and T. Zimmermann. How
practitioners perceive the relevance of software
engineering research. In FSE, 2015.

[28] Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi.
Extended comprehensive study of association
measures for fault localization. Journal of Software:
Evolution and Process, 26(2):172–219, 2014.

[29] L. Mariani, F. Pastore, and M. Pezze. Dynamic
analysis for diagnosing integration faults. IEEE
Transactions on Software Engineering, 37(4):486–508,
2011.

https://github.com/smusis/automated-debugging

[30] S. McPeak, C.-H. Gros, and M. K. Ramanathan.
Scalable and incremental software bug detection. In
FSE, pages 554–564, 2013.

[31] C. Parnin and A. Orso. Are automated debugging
techniques actually helping programmers? In
Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 199–209, 2011.

[32] F. Pastore, L. Mariani, and A. Goffi. Radar: A tool
for debugging regression problems in c/c++ software.
In Proceedings of the 2013 International Conference
on Software Engineering, pages 1335–1338, 2013.

[33] F. Pastore, L. Mariani, A. Goffi, M. Oriol, and
M. Wahler. Dynamic analysis of upgrades in c/c++
software. In ISSRE, pages 91–100, 2012.

[34] M. Perscheid, B. Siegmund, M. Taeumel, and
R. Hirschfeld. Studying the advancement in debugging
practice of professional software developers. Software
Quality Journal, 2016.

[35] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani.
Darwin: An approach to debugging evolving
programs. ACM Transactions on Software Engineering
and Methodology, 21(3):19:1–19:29, 2012.

[36] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu.
Comparing static bug finders and statistical
prediction. In Proceedings of the 36th International
Conference on Software Engineering, pages 424–434.
ACM, 2014.

[37] F. Rahman, D. Posnett, A. Hindle, E. Barr, and
P. Devanbu. Bugcache for inspections: hit or miss? In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, pages 322–331. ACM, 2011.

[38] M. Renieres and S. Reiss. Fault localization with
nearest neighbor queries. In Proceedings. 18th IEEE
International Conference on Automated Software
Engineering, pages 30–39, 2003.

[39] J. Ressia, A. Bergel, and O. Nierstrasz. Object-centric
debugging. In Proceedings of the 34th International
Conference on Software Engineering, pages 485–495.
IEEE Press, 2012.

[40] J. Roβler, G. Fraser, A. Zeller, and A. Orso. Isolating
failure causes through test case generation. In
Proceedings of the 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, pages
309–319, 2012.

[41] J. R. Ruthruff, M. M. Burnett, and G. Rothermel. An
empirical study of fault localization for end-user
programmers. In 27th International Conference on
Software Engineering, pages 352–361, 2005.

[42] G. Singh, M. Püschel, and M. Vechev. Making
numerical program analysis fast. In PLDI, pages
303–313, 2015.

[43] C. Spearman. The proof and measurement of
association between two things. American Journal of
Psychology, 15:88–103, 1904.

[44] C. Sun and S. Khoo. Mining succinct predicated bug
signatures. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pages 576–586, 2013.

[45] M. Talukder and A. Quazi. The impact of social
influence on individuals’ adoption of innovation.

Journal of Organizational Computing and Electronic
Commerce, 21:111–135, 2011.

[46] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National Institute
of Standards and Technology. Planning Report
02-3.2002, 2002.

[47] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo.
Buglocalizer: Integrated tool support for bug
localization. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 767–770, 2014.

[48] Q. Wang, C. Parnin, and A. Orso. Evaluating the
usefulness of IR-based fault localization techniques. In
Proceedings of the 2015 International Symposium on
Software Testing, pages 1–11, 2015.

[49] W. Wen. Software fault localization based on program
slicing spectrum. In Proceedings of the 34th
International Conference on Software Engineering,
pages 1511–1514. IEEE Press, 2012.

[50] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill,
C. Mayhorn, and T. Zimmermann. Quantifying
developers’ adoption of security tools. In Proceedings
of the 2015 10th Joint Meeting on Foundations of
Software Engineering (FSE), pages 260–271, 2015.

[51] W. E. Wong and V. Debroy. A survey of software fault
localization. In Technical Report UTDCS-45-09, 2009.

[52] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim.
Crashlocator: Locating crashing faults based on crash
stacks. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis
(ISSTA), pages 204–214, 2014.

[53] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. A theoretical
analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions
on Software Engineering and Methodology, 2013.

[54] J. Xuan and M. Monperrus. Learning to combine
multiple ranking metrics for fault localization. In 2014
IEEE International Conference on Software
Maintenance and Evolution, pages 191–200, 2014.

[55] J. Xuan and M. Monperrus. Test case purification for
improving fault localization. In FSE, pages 52–63.
ACM, 2014.

[56] X. Ye, R. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In FSE, pages 689–699. ACM, 2014.

[57] S. Yoo, M. Harman, and D. Clark. Fault localization
prioritization: Comparing information-theoretic and
coverage-based approaches. TOSEM, 22(3), 2013.

[58] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT
Symposium on Foundations of Software Engineering,
pages 1–10, 2002.

[59] S. Zhang and M. D. Ernst. Automated diagnosis of
software configuration errors. In Proceedings of the
2013 International Conference on Software
Engineering, pages 312–321. IEEE Press, 2013.

[60] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? more accurate information retrieval-based
bug localization based on bug reports. In Proceedings
of the 34th International Conference on Software
Engineering, pages 14–24, 2012.

	Practitioners' expectations on automated fault localization
	Citation

	Introduction
	Research Methodology
	Practitioner Survey
	Respondent Recruitment
	Survey Design
	Data Analysis

	Literature Review

	Practitioners' Expectations
	Statistics of Responses Received
	Findings
	Respondents' Final Comments

	Current State-of-Research
	Discussion
	Implications
	Limitations

	Related Work
	Conclusion and Future Work
	References

