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IoT+Small Data: Transforming In-Store Shopping
Analytics & Services

Meera Radhakrishnan, Sougata Sen, Vigneshwaran S., Archan Misra, Rajesh Balan
School of Information Systems, Singapore Management University

Abstract—We espouse a vision of small data-based immersive
retail analytics, where a combination of sensor data, from
personal wearable-devices and store-deployed sensors & IoT
devices, is used to create real-time, individualized services for
in-store shoppers. Key challenges include (a) appropriate joint
mining of sensor & wearable data to capture a shopper’s product-
level interactions, and (b) judicious triggering of power-hungry
wearable sensors (e.g., camera) to capture only relevant portions
of a shopper’s in-store activities. To explore the feasibility of
our vision, we conducted experiments with 5 smartwatch-wearing
users who interacted with objects placed on cupboard racks in
our lab (to crudely mimic corresponding grocery store interac-
tions). Initial results show significant promise: 94% accuracy in
identifying an item-picking gesture, 85% accuracy in identifying
the shelf-location from where the item was picked and 61%
accuracy in identifying the exact item picked (via analysis of
the smartwatch camera data).

I. INTRODUCTION

The retail segment already uses IoT & “Big Data” to
optimize store-level operations, such as predictive inventory
management and merchandise layout planning. These inno-
vations are, however, store-centric: they do not focus on
using a shopper’s in-store behavior to optimize or personalize
shopping-related services in real-time, while the user is inside
the store. We believe that the joint real-time mining of sensor
data, from store-deployed IoT devices and the personal mobile
& wearable devices of an individual shopper, can transform the
in-store shopping experience. In particular, this type of “Small
Data Analytics” (detailed insights about an individual shopper)
can (a) infer a shopper’s in-store actions and product choices in
real-time (even before the checkout counter), and (b) is cheap
and easy to implement (requires no complex infrastructure
support).

Examples of such novel services that exploit real-time
knowledge of a shopper’s in-store activities and product-level
interactions include: (a) Smart Reminder: that reminds you,
for example, pick up milk only if you walk past the milk
section without picking up milk; (b) recipeGuru: that identifies
and provides alerts if you pick up the wrong item for your
stated recipe; and (c) Recommender: that uses knowledge of
the products you’ve been picking so far to build a dynamic,
episode-specific interest profile, and suggest complementary
items (e.g., a bottle of wine to go with your selected cheese).
Note that these are all significant improvements on the more
vanilla versions of these use cases: (a) Reminders based purely
on in-store location; (b) a shopping list that you must manually

track on your smartphone, and (c) recommendations based
purely on general, longer-term customer profiles.

Our vision engenders the following key question: “How can
applications use infrastructure sensors, and wearable/mobile
devices to unobtrusively obtain deeper insights on customer
interactions?” We propose an architecture where low-cost BLE
beacons+ embedded sensors are mounted on product shelves,
and their data is fused with sensor readings from a smartwatch
worn by a shopper. Using various micro-studies on how users
interact with objects placed on shelves in our lab (to crudely
mimic similar in-store interactions), we establish two promis-
ing principles: (a) to better identify item-level interactions, we
must utilize correlation between infrastructure and wearable
sensor data; and (b) the camera on a wrist-worn smartwatch
can identify a specific product selected by a shopper, but must
be intelligently triggered to conserve energy.

Our main empirical insights include:
• Using accelerometer and gyroscope features from the

smartwatch, we can identify with 94% accuracy if an
item was picked and with 85% accuracy, from where
the item was picked. In addition, we also show that
exploiting the correlation between the inertial sensors of
the smartwatch and a door-mounted sensor allows us to
reliably identify the specific display section with which
the shopper interacts.

• Using a smatwatch’s camera (pointing towards one’s
fingers), we can identify the exact item a person picked
in 61% cases using a very basic image recognition
algorithm; moreover, the best image is usually obtained
closer to the mid-point of such a ‘pick’ gesture.

II. RELATED WORK

Given the vast body of work on context and activity recogni-
tion via mobile & wearable sensing, we highlight recent work
that is most closely related to our vision of using a combination
of infrastructure & mobile sensing for understanding in-store
shopping behavior.
Monitoring shopper behavior using sensors: Unobtrusive mon-
itoring of shopper’s behavior has always been of interest to
researchers. ThirdEye [9] assumes that a shopper wears a
smartglass, and uses such camera and Wi-Fi based location
data to track the items that a shopper browses in a store. To re-
duce the overheads of continuous vision sensing, it uses inertial
sensors to trigger the image capture only when the user spends
some time gazing at a product. CROSDAC [10] explores a
person-independent activity recognition technique, based on
smartphone sensor and Wi-Fi based location data, to identify



Fig. 1: Architecture of the system

the high-level shopping intent of users. ShopMiner [11] pro-
poses an RFID-based system to infer the aggregated shopper
interaction patterns with specific items in a physical clothing
store. Zeng et. al [14] utilized the Channel State Information
of Wi-Fi signals to infer a shopper’s locomotive state (walking
vs. standing) & location within a store. Lee et. al [7] proposed
a framework for understanding a shopper’s overall in-mall
behavior, using Wi-Fi for store recognition and smartphone
sensors for movement tracking. In contrast to these effort, we
explore the possibility of combining IoT & wearable sensor
data to identify an individual shopper’s item-level interaction
behavior within a store.
Image based object identification: Object detection and recog-
nition, via smartphone-captured images, have been explored
recently in prototypes such as: (a) Glimpse [4], which sup-
ports continuous recognition and tracking of traffic signs
from a moving smartphone camera; (b) MobiMed [8], which
identifies medication packages from images captured by a
user’s smartphone, and (c) FoodCam [5], which recognizes
the food consumed by the user. Typically, deep learning using
computationally-expensive convolutional neural networks [6],
is employed for object recognition, but is performed offline
on backend servers. Our exploration of image-based item
recognition differs in that: (a) our images are captured op-
portunistically by a moving smartwatch camera, and are likely
to exhibit motion blur and occlusion, and (b) we would ideally
like to identify the items directly on the wearable device.

III. ARCHITECTURE AND STUDY DETAILS

In this section we discuss about our envisioned architecture
of a future retail store. We then describe our setup to mimic
this future retail store.

A. High-Level Architecture of a future retail store
A future retail store should be able to address the following

challenges: (i) Micro-activity recognition to identify shopper’s
interaction with individual items, (ii) BLE-beacon based fine-
grained identification of the exact location from which the
item was picked and (iii) adaptive image capturing and feature
matching to identify the products being interacted with.

For realization of such a system and to address the chal-
lenges, we assume that BLE beacons are mounted on doors
of racks in a shop. The BLE beacons have the capability not
only to transmit signal at fixed intervals, but also are equipped
with accelerometer and communication module. Using the
communication module, the beacon transmits its accelerometer
data to the back-end server. We also assume that shoppers
entering the shop are wearing a smartwatch on their dominant
hand. This smartwatch is equipped with a camera along with
an accelerometer and gyroscope and installed with a custom
application running to monitor shopping activity. For our
application, the shopping activities included, picking item from
a shelf, putting it in a trolley and interacting with shelves
(opening and closing) in a store. However for different shops,
different activities can be trained. Once the application on the
watch determines that a shopping activity is taking place, it
turns on the camera opportunistically to capture the image of
item that the shopper is interacting with.

In the back-end, there is a module for listening to ac-
celerometer data from BLE beacon. There is a separate module
for listening to data from the smartwatch. Once data from a
smartwatch reaches the server, a new sub-process is started for
the person. This sub-process handles further incoming data
from the smartwatch. As more data comes in, the RSSI of
BLE beacon heard on the smartwatch are used to filter out
beacons which are not in proximity of the user. Accelerometer
data from BLE beacons which are in proximity is correlated
with the accelerometer data from the smartwatch to determine
which door has the user interacted with. Identification of the
door that the user has interacted with helps in narrowing down
the identification of possible items the user has interacted
with (as a rack will have only a subset of objects present in
the store). Next, based on image recognition, the server can
identify the exact object the shopper interacted with. Figure 1
illustrates our architectural framework with the devices, server
components and flow of the analytics pipeline.

In a real shop, there will be multiple users, so multiple
sub-processes will be triggered at the same time to identify
objects the shoppers are interacting with. With the output of the
sub-process, various analytics can be performed. For example,
identifying hot objects (which items are shoppers interacting
more within a shop) or performing association rule mining
with interacted object as opposed to current state of the art
association rule mining on billed items.

B. Experimental Design
We first describe the devices used in the data collection

process. We classified the data collected for our experiments
into two categories - (i) data coming from infrastructure
devices and (ii) data coming from the wearable devices with
an accelerometer and gyroscope built in. For the infrastructure
devices, we used EstimoteTMBLE beacons [2], which was set
(unless otherwise specified) to a default transmission power
(-20 dBm) and a 101 msec advertising period. A lot of the
latest BLE beacons are equipped with an accelerometer. Since
we did not have access to the accelerometer of the beacon,
we mounted a smartphone (Samsung Galaxy S3), installed



Fig. 2: Testbed Layout

with an application that records accelerometer data, right next
to the beacon horizontally. The accelerometer data from the
smartphone was a proxy for the accelerometer data from the
beacon. In the rest of the paper, we refer to this smartphone’s
accelerometer data as the beacon’s accelerometer data. For
the wearable device, we used the Omate TrueSmart smart-
watch, which the participants wore around the wrist of their
dominant hand and which was pre-installed with our custom
data collection application which recorded video, collected
accelerometer and gyroscope data and performed scanning for
the BLE beacons. Both the smartwatch and the smartphone
mounted next to the beacon recorded sensor data at a sampling
frequency of 100Hz.

We next describe the location of our study. For our study,
we emulated an aisle in a grocery store in the pantry area of
our lab as shown in Figure 2. The pantry area in the lab has
multiple racks and each of these racks has shelves at multiple
levels. We used 3 shelves in 2 racks, which were 1.7, 0.85 and
0.5 meters from the ground level. The top and bottom shelves
had hinged doors. In terms of distance between the two racks,
the two racks are 1.1 meters away from each other. On each of
the 3 shelves in both the racks, 3 category of items were placed
- (i) boxes of Lipton tea (Item-I1)(ii) cold drink cans (Item-
I2)and (iii) biscuit packets (Item-I3). We attached one BLE
beacon each on the doors of the shelf. For our experiments,
we kept the transmitting power of the beacons at -20dBm so
that at this level the beacon couldn’t be heard beyond 3 meters.

Finally, we describe the participants and the set up of the
study. For our study, we recruited 5 participants from our lab
(2 males, 3 females - all aged between 20 and 30) and who
were almost in the similar height range (1.55 to 1.70 meters).
Participants were asked to perform different activity sequences
that are normally carried out while grocery shopping. The
participants were asked to perform the activity sequence of
(1) open the door of the shelf, (2) pick an item from the shelf,
(3) put the item aside and (4) close the door of the shelf, all in a
way similar to how they would have performed it in a grocery
store. We also asked them to repeat the whole sequence to pick
the items from the 3 different shelves at different heights of the
rack. Each participant repeated this process 10 times. In total,
we collected 30 sample sequences each from a participant. On

Fig. 3: Accelerometer reading for a sequence of hand activities

an average, a round of item picking took approximately 10
seconds. The ground truth of the activities was collected by
having a person shadowing the user and labeling the activities
as the user performs it. All the devices used in our study were
time-synchronized.

IV. SHOPPING ACTIVITY DETECTION

We next describe the experiments that we performed in our
controlled environment.

A. Identifying “Item Picking” Gesture
For a shopping study, we wanted to ensure that we could

identify the picking action robustly. Picking action should be
distinguishable from other similar actions or gestures such
as putting items back/putting items aside, pushing/pulling a
door etc. As mentioned previously, we collected 30 traces of
accelerometer and gyroscope data from the smartwatch for
a sequence of activities from 5 users. We first plotted the
accelerometer data for one such sequence. Figure 3 shows
how the accelerometer reading varies for the different activities
in the sequence. We next extracted the features mentioned in
[13] from the data. We used the decision tree implementation
in Weka for our classification. A 10-fold cross validation was
performed to see if we could distinguish picking item from
other gestures. We found that we could achieve an accuracy
of 88% when we ran a classifier for multi-class identification
(picking, putting back, open door, close door, put aside). Since
we wanted to identify picking gesture (so that we could capture
image during the gesture), we labelled all non-picking classes
as others. We performed a 10-fold cross validation for a binary
classifier and found that the accuracy of identifying picking
improved to 94%. To see if our model was user independent,
we performed a leave-one-user-out cross validation and found
a marginal 6% drop in accuracy. This indicated that picking
could be easily distinguishable from other similar activities.

B. Identifying “Shelf-level Location of Item Picked”
For the initial study, participants picked items only from the

top shelf. We next wanted to see if there was any difference in
the picking action, when a person picked an item from shelves



The BLE RSSI variation shows similar trend for ‘Door
Open’ and ‘Door Close’ activities. So these gestures are
not distinguishable just based on the beacon signals.

Fig. 4: Variation of BLE signal during shopping activity

which are at different heights. The 5 participants were asked to
pick up items from the top, middle and bottom shelf 10 times.
So for every individual, 10 x 3 picking activities were noted
and were labeled as top, middle or bottom. We performed a
10-fold cross validation using the J48 (Decision tree) classifier
in Weka. We found that using only the accelerometer and
gyroscope data, we could identify which shelf a person picked
the item from with 85% accuracy. So based on this we
can say that if only one item from one brand is kept in
a shelf, then with 85% confidence we can claim that the
person has picked the particular item. Again to ensure that
our technique was generalizable, we performed a leave-one-
user-out cross validation and the accuracy dropped by just
2% to 83%. This indicates that the approach is generalizable.
However identifying the shelf from which an item is picked is
a function of the height of the shopper. In our current study,
the participants were in the height range of 1.5 to 1.65 meters.
As a future work, we will perform the similar experiment with
subjects of wider height range.

An alternate technique to identify which rack an item is
being picked is by using the BLE beacons. Similar to what is
shown in [12], when the person is near one shelf, the BLE
beacon’s RSSI heard on the phone should increase. For our
study, we found that when a person was about 0.5m from a
beacon, the RSSI was -50 dBm to -60 dBm.

C. Improved Location Estimation via Infrastructure Sensors
As we showed in the previous sub section that the RSSI

drops when the hand came closer to the beacon (See Figure 4).
However just relying on RSSI to determine the rack of interest
can lead to high false positives. For example, when a shopper
walks past a rack, the received signal strength from beacon
will peak. RSSI can be a good localizing factor, but we need
to correlate the data from the inertial sensors on the watch with
that on the beacon. In our experiment, when the user opened
or closed the door of the top shelf, we observed a sudden
spike in the accelerometer of the beacon attached to that door,
whereas the reading from the accelerometer of the beacon
attached to the door of the bottom shelf showed no variation.

Fig. 5: Correlation between magnitude of accelerometer data
of beacon and watch

This suggested that using sensor-based features from both
the BLE beacon and smartwatch would improve the accuracy
of detecting which door the shopper has interacted with. On
correlating the accelerometer signals from the smartwatch and
the beacon, we found that there is a high correlation between
the two signals during the ‘Door Open’ and ‘Door Close’
gestures, as shown in Figure 5. We plotted the magnitude of the
watch accelerometer and beacon accelerometer for the different
gestures in the activity sequence and found that during the
door open and door close gestures, the correlation coefficient is
always above a threshold, which we empirically determined as
0.5. Based on this,we can claim that independent of the user’s
height, based on correlating data from a user’s device with an
infrastructure sensor, door activity can be easily determined.

D. Summary
To summarize our findings of determining shopping behav-

ior using inertial and infrastructure sensors, we showed that
we could identify if a person was picking an item with 94%
accuracy in case of person dependent models and 88% when
we had a person independent model. Thus with a minimal loss
in accuracy, we can build a scalable item picking model. We
also showed that we could identify using inertial sensors from a
user’s smartwatch, with 85% accuracy if a person was picking
an item from the top shelf or bottom shelf, thus helping in
determining the rack of interest. The rack of interest can be
identified even more accurately when we correlate the sensor
data from the inertial sensors on the user’s devices with the
inertial sensors mounted on the door.

V. CAPTURING IMAGE OF ITEM

An alternate approach to identifying objects that a person
interacted with is by capturing the image of the object using
the cameras in the wearable devices. This section discusses
our study of this approach using our experimental setup that
was described earlier. While performing our experiments of
picking items, we found that for a short period of time, the
camera on the watch usually points towards the item that is
being picked. We wanted to see if it is possible to capture a
legible image of the item being picked from the camera. In the



Fig. 6: Camera view and an image captured while an item is
being picked

smartwatch that we used in our study, the camera is located
on the side of the watch as shown in Figure 6. We found that
if the watch was worn normally, we could not capture images
of objects. However, if we rotated the watch to the position
shown in Figure 6, we could easily capture the image of the
item that was being picked. To study this further, we captured
a video when the person was performing the picking activity
and extracted all individual frames from the video. This was
done for the 5 users, each one picking items from the three
different racks. So in total, we obtained 150 such videos and
amongst these, we found that the item which was picked was
visible in all of the picking gestures indicating that if a watch
has the camera in this position, it is inevitable that the image
of the item will be captured.

However continuous video capture is not practicable
because it will drain out the battery of the watch in a very
short period of time. So instead of capturing video, we
wanted to see if we could trigger the camera at a correct
moment to capture the image of the item. To understand
the variation, we plotted the probability of a captured image
being ‘useful’ (i.e., provides a clear view of the item picked)
as a function of the time when the image was captured,
relative to the overall duration of the gesture. Figure 7
shows the plot of this probability as a function of the
time, with the time being expressed as a percentage of the
overall gesture duration. We can see that the probability of
getting a useful image is highest around the first 20-80%
of the time of the picking gesture. In terms of absolute
time, this window is approximately 1.2 seconds, which
is a fairly wide window and thus instead of capturing a
video, even if a single image is captured, the image of the
item will be procured and thus saving the battery of the watch.

A. Feasibility of Item Recognition
As discussed previously, we could obtain the image of object

at least once during a picking gesture. We next wanted to see
if the captured image (extracted from the video frame) could
be identified automatically by a image recognition software.
We used the as-is implementation of SURF [3] algorithm
in openCV and passed all the frames containing the item-

Fig. 7: Probability of capturing image of item being picked

being-picked during the gesture. Each image of the object
obtained during the gesture was compared (by matching fea-
tures) against the set of 3 objects (3 images of each object,
taken from 3 different angles) which were present on the
shelf. In total found that we could identify the correct item
in 61% cases (vanilla baseline - 33%). When we analyzed
the images that were identified wrongly, we realized that the
wrong classification occurred due to (i) occlusion of the object
— if the object is small, the fingers cover a major portion of
the image. In our case, we found that in many of the frames
containing the pack of biscuit, where part of the packet can
be seen, the image recognition software mistook it for the tea
box. (ii) blurriness — when the item is being picked, motion
blur creeks in the image frame obtained from the video. This
might result in mis-classification. (iii) Insufficient training of
the recognition model — for our small study, we just used
simple feature matching to recognise the objects. Even though
these images were taken from different angles, they did not
cover all possible angles that might be visible to the camera
when the object is being picked. The accuracy should improve
with a more sophisticated recognition model that can be trained
carefully for this application.

To understand if images captured by the watch were identifi-
able by a commercial image recognition software, we ran some
of the images on Clarifai [1], a commercial image recognition
software which uses convolutional neural networks. We found
that, even without supplying training data, the deep learning
software was able to broadly tag the images obtained from our
study. As a next step to our work, we plan to use a more robust
image recognition algorithm for better image identification.

VI. DISCUSSION

Our initial results are promising, but admittedly conducted
under a contrived setting: with the items being placed on the
shelves in our office lab. There are many aspects of shopper
behavior in real-world stores that we will have to consider to
make this vision an eventual reality.
Additional Shopper Interaction Gestures: In our micro-studies,
we have concentrated on “item picking” gestures, with the



assumption that a picked item is of interest to the shopper and
likely to be part of her shopping list. In reality, shoppers often
browse a range of items, but only select a much smaller subset
for actual purchase. To build an accurate profile (e.g., for the
recipeGuru or Reminder applications), we need to detect the
‘put back’ gesture to filter out items that the shopper looked at
but did not eventually select. Moreover, as such items could be
put back at any point during the shopping session (e.g., a while
after it was initially placed in the cart), the image-based item
recognition process is needed to identify such returned items
across a much wider range of shopper behavior. Additionally,
in our initial exploration, we did not try to differentiate the
‘pick up’ gesture–e.g., to see whether such gestures exhibit
microscopic differences between heavy vs. light, or compact
vs. bulky objects. Such finer-grained gesture differentiation
might provide additional priors on the type of item selected
by a shopper.
Possibilities for Enhanced Sensor Fusion: The combination
of wearable+ IoT sensor data offers many possibilities for
further differentiated understanding of shopper behavior. For
example, as show in Figure 4, the RSSI readings (on the
smarwatch) are fairly similar for ‘door opening’ vs. ‘door
closing’, making it hard to distinguish between these two
gestural activities. However, the additional inertial sensing data
from the smartwatch can be easily used to separate these two
activities, as the hand movements effectively have opposite
‘polarity’. Similarly, the temperature sensor readings on the
smartwatch may be used to detect interactions with items in
the freezer section (characterized by a sudden drop in ambient
temperature).
Additional Applications & Scenarios: Real-time determination
of the specific item being selected can be used for other types
of consumer-specific alerts. Consumers today can use their
mobile devices to obtain instant information (e.g., customer
reviews, product ratings or price comparisons) from online
sources. At present, such information retrieval typically re-
quires manual input—the shopper must either upload a picture
or a product specification to the online service. Real-time
wearable+IoT analytics offers the possibility of making such
retrieval unobtrusive. For example, if the item picked up by
the shopper turns out to have ingredients to which the shopper
is allergic, a product alert application can proactively alert the
shopper to such inadvertent selections. Similar, more accurate
tracking of the numbers selected, for a specific item, might
alert the shopper to possible promotions and deals that she
may be unaware of. For example, if a particular brand of
apples has a “3 for $2” offer (with a unit price of $2), a deal
detective application can automatically alert the shopper about
the promotional offer, if it detects that she has selected only 2
apples.

VII. CONCLUSION

Based on the studies conducted with users performing
activities as in a normal grocery shopping in a simulated
environment, this paper shows the practicality of using data
sensed from the shopper’s personal devices and multiple other
IoT devices deployed in the store to perform fine-grained

shopper in-store analytics. Results from a study (conducted
in a lab environment that crudely replicate the shelves of a
grocery store) show that, given a trace of the sensing data and
the images captured, we are able to (i) identify the shopper’s
interaction with the products (picking gesture with an accuracy
of 94%), (ii) the exact shelf from which the item was picked
with 85% accuracy and also (iii) the exact item being picked
with an accuracy of over 61%. We believe that novel analytics
techniques that jointly harness such infrastructure-based IoT
and shopper-specific wearable sensing data can lead to entirely
new real-time, in-store, individual-specific shopping services
and applications.
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