
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2016

Automated identification of high impact bug reports leveraging Automated identification of high impact bug reports leveraging

imbalanced learning strategies imbalanced learning strategies

Xinli YANG
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Qiao HUANG
Zhejiang University

Xin XIA
Zhejiang University

Jianling SUN
Zhejiang University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
YANG, Xinli; David LO; HUANG, Qiao; XIA, Xin; and SUN, Jianling. Automated identification of high impact
bug reports leveraging imbalanced learning strategies. (2016). COMPSAC 2016: Proceedings of the 40th
IEEE Annual International Computers, Software and Applications Conference, Atlanta, Georgia, 10-14 June
2016. 227-232.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3567

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Automated Identification of High Impact Bug
Reports Leveraging Imbalanced Learning Strategies

Xinli Yang∗, David Lo†, Qiao Huang∗, Xin Xia∗‡, and Jianling Sun∗
∗College of Computer Science and Technology, Zhejiang University, Hangzhou, China

†School of Information Systems, Singapore Management University, Singapore

zdyxl@zju.edu.cn, davidlo@smu.edu.sg, {tkdsheep, xxia}@zju.edu.cn

, sunjl@zju.edu.cn

Abstract—In practice, some bugs have more impact than
others and thus deserve more immediate attention. Due to tight
schedule and limited human resource, developers may not have
enough time to inspect all bugs. Thus, they often concentrate on
bugs that are highly impactful. In the literature, high impact bugs
are used to refer to the bugs which appear in unexpected time or
locations and bring more unexpected effects, or break pre-existing
functionalities and destroy the user experience. Unfortunately,
identifying high impact bugs from the thousands of bug reports
in a bug tracking system is not an easy feat. Thus, an automated
technique that can identify high-impact bug reports can help
developers to be aware of them early, rectify them quickly, and
minimize the damages they cause.

Considering that only a small proportion of bugs are high
impact bugs, the identification of high impact bug reports is
a difficult task. In this paper, we propose an approach to
identify high impact bug reports by leveraging imbalanced
learning strategies. We investigate the effectiveness of various
imbalanced learning strategies built upon a number of well-
known classification algorithms. In particular, we choose four
widely used strategies for dealing with imbalanced data and
use naive Bayes multinominal as the classification algorithm to
conduct experiments on four datasets from four different open
source projects. We perform an empirical study on a specific type
of high impact bugs, i.e., surprise bugs, which were first studied
by Shihab et al.. The results show that under-sampling is the best
imbalanced learning strategy with naive Bayes multinominal for
high impact bug identification.

Keywords—High Impact Bug, Imbalanced Data, Text Classifi-
cation

I. INTRODUCTION

Bug fixing is a time-consuming and costly task. In the
whole life cycle of software development and maintenance, a
large number of bugs will be reported which often overwhelm
developers [1]. Due to tight schedules and limited human
resources, developers often do not have enough time to take
care of all bugs. Thus, they will do their best to concentrate
on bugs which have high impact.

In recent years, more and more research studies pay close
attention to high impact bugs. Ohira et al. create four datasets
of high impact bugs by manually reviewing four thousand bug
reports in four open source projects (Ambari, Camel, Derby
and Wicket) [2]. They introduce six kinds of high impact bugs,
i.e., surprise bugs, dormant bugs, blocker bugs, security bugs,

‡Corresponding author.

performance bugs and breakage bugs. Shihab et al. develop a
model to predict if a file contains a high impact bug [3].

In this work, we consider a related but different problem
than the one considered by Shihab et al.. Rather than predicting
if a file contains a high impact bug, we identify high impact bug
reports from a collection of bug reports. Since Shihab et al.’s
approach has very low precision (i.e., 4-6%), their approach is
not a panacea for dealing with high impact bugs. Using their
proposed approach, it is hard for a developer to fix an unknown
high-impact bug given a large list of potentially buggy files
with a large number of false positives. This motivates us to
consider another direction to tackle the problem with high
impact bugs.

Identifying high impact bugs early on can help to largely
reduce or mitigate the damage caused by those bugs. Unfor-
tunately, considering the large number of bug reports that are
received daily by developers, it is often hard for developers
to identify those that have high impact. Bug reporters can
set the value of the severity field of a bug report to indicate
how serious the bug is. Unfortunately, only a minority of bug
reporters use this field, and most bug reports have their severity
field set to the default value [4]. Moreover, the initial severity
field of many bug reports are wrong and it get corrected later
on [5]. Thus, there is a need for an automated technique to
help developers identify high impact bug reports, which is the
goal of this work.

Identifying high impact bug reports is not an easy task.
Only a small percentage of bug reports are high impact ones. A
bug report dataset is often imbalanced due to the small amount
of high impact bugs in a project. Thus, to identify high impact
bug reports, we leverage a number of imbalanced learning
algorithms for high-impact bug prediction. In particular, we
investigate four widely used imbalanced learning strategies.

We focus on one specific type of high impact bugs, i.e.,
surprise bugs, which are first studied by Shihab et al. [3].
Surprise bugs are bugs which have high impact on developers.
These bugs appear in unexpected timing (e.g., in post-release)
or locations (e.g., in files that are rarely changed before) and
may bring more unexpected effects, catching developers off-
guard, disrupting their already-tight quality assurance schedule
and workflow.

To evaluate the performance of the different imbalanced
learning algorithms, we use four datasets provided by Ohi-
ra et al. [2], which contains a total of 2,845 bug reports.
We use precision, recall and F1-score as evaluation metrics.

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.67

227

Published in COMPSAC 2016: Proceedings of the 40th IEEE Annual International Computers, Software and Applications Conference,
Atlanta, Georgia, 10-14 June 2016, Pages 227-232.
http://doi.org/10.1109/COMPSAC.2016.67

Fig. 1. An example of a high impact bug report in Wicket.

These metrics are widely used in many software engineering
studies [6], [7], [8]. F1-score is a summary measure that
combines both precision and recall. A higher F1-score means
a better performance. The results show that under-sampling is
the best imbalanced learning strategies among the four with
naive Bayes multinominal for high impact bug identification.

The main contributions of this paper are:

1) We propose a new problem of identifying high impact
bugs. This creates a related but different line of work
than the prior work by Shihab et al. which predicts
files that contain high impact bugs [3].

2) We propose to use imbalanced learning strategies to
deal with the problem of identifying surprise bugs.

3) We conduct an empirical study to investigate the
performance of four well-known imbalanced learning
strategies built on top of naive Bayes multinominal
for high impact bug prediction.

4) We perform experiments on four software projects.
The experiment results show that under-sampling is
the best imbalanced learning strategies among the
four with naive Bayes multinominal for high impact
bug identification.

The rest of our paper is organized as follows. Section II
briefly presents high-impact bugs. Section III presents the
overall framework of our study and elaborates the techniques
that we use in our approach. Section IV describes our exper-
iments and the results. Section V discusses the related work.
Conclusion and future work are presented in the last section.

II. HIGH-IMPACT BUGS

As the name implies, high impact bugs are bugs that
have high impact to developers and users. Based on prior
studies, Ohira et al. summarize six types of high-impact bugs,
i.e., surprise bugs, dormant bugs, blocker bugs, security bugs,
performance bugs and breakage bugs [2]. In our study, we
specifically focus on one type of high impact bugs, i.e., surprise
bugs.

Surprise bugs are the bugs which appear in unexpected
timings (e.g., in post-release) and locations (e.g., in files that
are rarely changed). Shihab et al. show that surprise bugs exist
in only 2% of all files [3]. However, surprise bugs may disturb
developers’ task scheduling greatly.

Figures 1 present an example of a high impact bug report.
The bug report (WICKET-4865) describes a bug appearing in
the class CryptoMapper. Actually, CryptoMapper is rarely
changed and bugs rarely appear in CryptoMapper. Therefore,

Fig. 2. The Overall Framework of Our Study.

the bug is categorized as a surprise bug since the bug appears
in an unexpected location.

III. OVERALL FRAMEWORK

In this section, we first present our overall framework for
high impact bug identification, and then we describe in detail
the individual steps in the overall framework.

A. Overall Framework

Figure 2 presents the overall framework of our proposed
approach. The framework mainly contains two phases: the
model building phase and the prediction phase. In the model
building phase, we build a classifier (i.e., a statistical model)
from a training set of bug reports which have been labeled
as surprise bugs or not. In the prediction phase, this classifier
would be used to identify if an unlabeled bug report would be
a surprise or not.

Our framework first extracts a number of features from the
training bug reports (Step 1). Features are various quantifiable
characteristics of the bugs that could potentially distinguish the
surprise (or breakage) bug from the others. In this paper, we
use textual features, which are pre-processed words extracted
from the summary and description fields of a bug report1.
Next, we use some imbalanced learning strategies to handle
the class imbalance problem (Step 2). We investigate different
imbalanced learning strategies2 for this step. Finally, we build
a classifier based on the extracted features (Step 3). We use
naive Bayes multinominal as the classification algorithm3 for
this step.

In the prediction phase, we use the trained classifier to
identify whether a bug report with an unknown label is a
surprise (or breakage) bug or not. For each of such bug reports,
our framework first extract features from the words in the
summary and description fields of the report as we do in the
model building phase (Step 4). We then input the features to the
constructed classifier (Step 5). The classifier would output the
prediction result which is one of the following labels: surprise
bug or not (Step 6).

1Detail information of this process is presented in Section III-B.
2Detail information of these techniques is presented in Section III-C.
3Detail information of this technique is presented in Section III-D.

228

B. Feature Extraction

In a bug report, summary and description fields contain
most of the useful information for prediction. Therefore, we
extract features from these two fields. We first extract all the
terms (i.e., words) from the summary and description fields in
a bug report. Then, we remove the stop words, numbers and
punctuation marks since they provide little information. For
the remaining terms, we use Iterated Lovins Stemmer [9] to
transform them to their root forms (e.g., ‘reading’ and ‘reads’
are reduced to ‘read’). We do this stemming step in order
to reduce the feature dimensions and to unify similar words
into a common representation. Finally, we calculate the term
frequency for each stemmed term. After these steps, a bug
report b is represented as a term frequency vector, i.e., b =
(w1, w2...wn), where wi denotes the number of times the ith

term appears in the bug report b. Also, we remove terms which
only appear once in one bug report to reduce noise.

C. Imbalanced Learning Strategies

Class imbalance is always a big problem in machine
learning. It can lead to a classifier having poor performance.
Imbalanced learning strategies can be employed to balance the
initial imbalanced dataset and help the trained classifier to not
to be biased to the majority class. Thus, in most cases, it can
improve the performance of the classifier [10], [11].

There are many different imbalanced learning strategies.
In our study, we investigate four well-known strategies [12],
[13]. Three of them are sampling methods, namely random
under-sampling, random over-sampling and SMOTE. The last
one is cost-sensitive methods, which adjusts the cost matrix.
We refer to it as cost-matrix adjuster. We introduce each of
them briefly. For simplicity, the subsets of data belonging to
the minority class (in our case: high-impact bug reports of
a particular category) and the majority class (in our case: all
other bug reports) are denoted by Smin and Smaj , respectively.

1) Random Under-Sampling: Under-sampling is one of the
effective sampling methods to deal with the class imbalance
problem [12], [13]. It deletes data belonging to Smaj in order
to shrink its scale. Generally, under-sampling first sets a value
p, which is the target ratio of data instances belonging to the
majority class to the entire data used for training. Then, it
repeats the following two steps until the ratio of Smaj to the
entire data decreases to p:

Step 1: Instance Selection. Select an instance belonging to
Smaj using a strategy. There are many strategies such as
random selection and KNN-based selection.

Step 2: Instance Deletion. Delete the instance selected in step
1 from the training dataset.

In our study, we use random under-sampling and set p as
0.5. That is, we randomly delete data belonging to Smaj until
the amount of data in Smaj is equal to that of Smin.

2) Random Over-Sampling: Over-sampling is another ef-
fective approach to deal with the class imbalance problem [12],
[13]. It duplicates data belonging to Smin in order to expand
its scale. Generally, over-sampling first set a value p, which
is the target ratio of data instances belonging to the minority
class to the entire data used for training. Then it repeats the

following two steps until the ratio of Smin to the entire data
increases to p:

Step 1: Instance Selection. Select an instance belonging to
Smin using a strategy. There are many strategies such as
random selection and cluster-based selection.

Step 2: Instance Addition. Add the instance selected in step 1
into the training set.

In our study, we use random over-sampling and set p as
0.5. That is, we randomly duplicate the data belonging to Smin

until the scale of Smin is the same as that of Smaj .

3) SMOTE: SMOTE is a more sophisticated over-sampling
method, whose full name is Synthetic Minority Over-sampling
TEchnique [14], [13]. Traditional over-sampling methods du-
plicate data belonging to Smin, while SMOTE creates some
artificial data which can be assumed to belong to Smin based
on a specific strategy. Specifically, for each data point x in
Smin, SMOTE first finds its k-nearest neighbours (data points)
belonging to Smin and link x with each of these k points to
form k line segments (in a multidimensional feature space).
Then, SMOTE randomly picks a data point on each line
segment. The k new data points can be assumed as belonging
to the minority class and be added into Smin. Therefore, if
there are initially n data points in Smin, SMOTE will create
k× n artificial data points and add them to Smin. By default,
k is set as 5.

4) Cost-Matrix Adjuster: Cost-matrix adjuster is a popular
cost-sensitive method to deal with the data imbalance prob-
lem [12], [13]. Different from the previous three methods,
it does not delete or add any data point to Smaj or Smin.
Instead, it changes the cost of misclassifying different training
instances belonging to different classes. It makes the cost of
misclassifying instances in Smin larger than that of Smaj so
that the classifier will value Smin more than Smaj .

By default, the cost matrix of many classifiers is:

[
0 1
1 0

]
(1)

The above cost matrix means that the costs of misclassify-
ing training instances of both classes are the same (i.e., 1), and
the costs of correct classification are none (i.e., 0). Cost-matrix
adjuster adjusts the cost matrix to achieve better classification
performance.

In our study, given the ratio of the majority and the minority
class as x : y, we set the cost matrix as follows:

[
0 y
x 0

]
(2)

D. Naive Bayes Multinomial

To introduce Naive Bayes Multinominal (NBM), we first
show the base version of it, i.e., Naive Bayes (NB).

NB is a probabilistic model based on Bayes theorem for
conditional probabilities [12]. Naive Bayes assumes that fea-
tures are independent from one another. Also, all the features
are binominal. That is, each feature only has two values of 0

229

and 1 (in our case, representing whether a word exists in a
bug report or not).

Based on the above assumptions, given a bug report
BR=(t1, t2, ..., tn) (ti represents a term in the bug report) and
a label cj (in our case: surprise or not), the probability of the
BR given the label cj is:

p(BR|C = cj) =
n∏

i=1

p(ti|C = cj)

With Bayes theorem, we can have compute the probability
of a label cj given the BR as follows:

p(C = cj |BR) =
p(C = cj)×

∏n
i=1 p(ti|C = cj)

p(BR)

Assuming that the probabilities of different labels, and
probabilities of different bug reports are uniform, the above
equation can be simplified as:

p(C = cj |BR) =
n∏

i=1

p(ti|C = cj)

The probability of word ti given class cj (i.e., p(ti|C =
cj)) in the above equation can be estimated based on the
training data. Next, based on the above equation, we can
compute the probability for every label given a new bug report
BR, and assign the label with the highest probability to it.

NBM is very similar with NB [12]. However, in NBM
the value of each feature is not restricted to 0 or 1, rather it
can be any non-negative number (in our case, representing the
frequency of a word in a bug report). Since NBM can capture
more information, it often outperforms NB.

IV. EXPERIMENTS AND RESULTS

In our study, the experimental environment is an Intel(R)
Core(TM) T6570 2.10 GHz CPU, 4GB RAM desktop run-
ning Windows 7 (64-bit). The platform is Eclipse, and the
algorithms we use are built in Weka. We first present our
experimental setting and evaluation metrics in Sections IV-A
to IV-C. We then present the research question and our
experiment result that answer the question in Section IV-D.

A. Datasets

We perform experiments on four datasets from four well-
known open source projects, which are Ambari, Camel, Derby,
Wicket, containing a total of 2845 bug reports. All the bug
reports are collected and manually categorized by Ohira et
al. [2]. Table I summarizes the statistics of each dataset,
containing the total number of bug reports (BRs), the number
of surprise BRs and the ratio of surprise BRs to all the BRs.
We can see that all the datasets are imbalanced, especially in
Derby, the ratio of surprise BRs is only about 15%.

TABLE I. STATISTICS OF THE DATASETS USED IN OUR STUDY

Project # Total BRs # Surprise BRs Ratio (%)
Ambari 871 266 30.54%
Camel 579 228 39.38%
Derby 731 111 15.18%
Wicket 663 242 36.50%

B. Experimental Settings

In the experiments, we use the default values of these
imbalanced learning strategies. We use stratified ten-fold cross
validation [12] to evaluate the effectiveness of various im-
balanced learning strategies. Following stratified 10-fold cross
validation, each of the dataset is divided into 10 folds, where
each fold contains more or less equal proportion of instances
belonging to each class. Next, we perform 10 evaluation
rounds; in each round, 9 folds are used as a training dataset,
and the remaining one fold is used as a testing dataset. We
aggregate the results of the 10 evaluation rounds and report the
overall performance. Stratified cross validation is a standard e-
valuation setting, which is widely used in software engineering
studies [15], [16], [17]. Since stratified ten-fold cross validation
involves randomness, to increase the confidence of the results,
we repeat it 10 times and report the average results.

C. Evaluation Metrics

We use precision, recall and F1-score as evaluation met-
rics. These metrics are commonly-used measures to evaluate
classification performance [6], [7], [8]. They can be derived
from a confusion matrix, as shown in Table II. The confusion
matrix lists all four possible classification results. If a bug
report is correctly classified as “surprise”, it is a true positive
(TP); if a bug report is misclassified as “surprise”, it is a false
positive (FP). Similarly, there are false negatives (FN) and
true negatives (TN). Based on the four numbers, Precision,
recall and F1-score are calculated. Precision is the ratio of
correctly predicted “surprise” bug reports to all bug reports
predicted as “surprise”. Mathematically, precision is defined
as TP

TP+FP . Recall is the ratio of the number of correctly pre-
dicted “surprise” bug reports to the actual number of “surprise”
bug reports. Mathematically, recall is defined as TP

TP+FN).
Finally, F1-score is a harmonic mean of precision and recall.
Mathematically, F1-score is defined as 2∗Recall∗Precision

Recall+Precision). F1-
score is often used as a summary measure to evaluate if an
increase in precision outweighs a reduction in recall (and vice
versa).

TABLE II. CONFUSION MATRIX

Predicted (to be)
Important

Predicted (to be) U-
nimportant

Truly Important TP FN
Truly Unimportant FP TN

D. Research Questions

Our experiments are designed to answer the following
research question: Which of the four imbalanced learning
strategies perform the best?

Motivation. Since generally different imbalanced learning
strategies are suitable to different problem, we want to investi-

230

TABLE III. PRECISION OF FOUR IMBALANCED LEARNING

STRATEGIES FOR SURPRISE BUG IDENTIFICATION

Project RUS ROS SMOTE CMA
Ambari 0.3326 0.3427 0.3236 0.3450
Camel 0.4164 0.4253 0.4299 0.4220
Derby 0.1632 0.1844 0.2913 0.1931
Wicket 0.3720 0.3749 0.3761 0.3619

Average 0.3211 0.3318 0.3552 0.3305

TABLE IV. RECALL OF FOUR IMBALANCED LEARNING STRATEGIES

FOR SURPRISE BUG IDENTIFICATION

Project RUS ROS SMOTE CMA
Ambari 0.5966 0.4350 0.3872 0.4812
Camel 0.6654 0.5798 0.6680 0.6053
Derby 0.4937 0.2027 0.1577 0.2523
Wicket 0.4694 0.3421 0.3983 0.3843

Average 0.5563 0.3899 0.4028 0.4308

gate which of the imbalanced learning strategies performs the
best for identifying surprise bug reports.

Approach. To answer this question, we compare four imbal-
anced learning strategies, i.e., random under-sampling (RUS),
random over-sampling (ROS), SMOTE and cost-matrix ad-
juster (CMA). We use naive Bayes multinominal as the
classification algorithm and use the three evaluation metrics
mentioned above to compare the four different strategies.

Results. Tables III to V present the precision, recall, and F1-
score values of the four imbalanced learning strategies for
surprise bug identification. From these tables, we can conclude
several points.

First, from Table V, we can see that random under-
sampling achieves an average F1-score of 0.40 for surprise
bug identification, which is the best performance compared
with the other imbalanced learning strategies.

Second, from Tables III and IV, we can find that in terms of
precision, SMOTE performs the best, though the performance
gaps of the different strategies are relatively small. However, in
terms of recall, random under-sampling is the best performer
and it exceeds the other methods much. It achieves an average
recall of 56% for surprise bug identification, while all the oth-
ers only have an average recall of 35% to 45%. Considering the
setting of our problem, recall is more important than precision
because as many high impact bugs should be identified as
possible.

Random under-sampling is more effective than the other
imbalanced learning strategies. On average, it improves F1-
score by 7% on the surprise bug identification compared to
the next best performing imbalanced learning strategies (i.e.,
cost-matrix adjuster).

TABLE V. F1-SCORE OF FOUR IMBALANCED LEARNING STRATEGIES

FOR SURPRISE BUG IDENTIFICATION

Project RUS ROS SMOTE CMA
Ambari 0.4270 0.3833 0.3525 0.4019
Camel 0.5121 0.4907 0.5231 0.4973
Derby 0.2452 0.1931 0.2045 0.2188
Wicket 0.4150 0.3575 0.3868 0.3727

Average 0.3998 0.3562 0.3667 0.3727

E. Threats to Validity

Threats to construct validity relate to the suitability of
our evaluation metrics. We use precision, recall and F1-
score which are also used by many past software engineering
studies to evaluate the effectiveness of various classification
techniques [6], [7], [8]. Thus, we believe there is little threat
to construct validity.

Threats to internal validity relate to errors in our experi-
ments or bias due to randomization. We have double checked
our implementations and we repeat all the experiments 10
times to report the average performance. Hence, we believe
there are minimal threats to internal validity.

Threats to external validity relate to the generalizability
of our results. We have evaluated our approach on 2,845 bug
reports from four open source projects. In the future, we plan
to reduce this threat further by analyzing more datasets from
more open source software projects and commercial software
projects.

V. RELATED WORK

We classify related work into four parts. The first part is
about studies on high impact bugs. The second part is about
studies on bug report categorization. The second part is about
bug report management. The last part is about studies that
leverage imbalanced learning strategies.

A. High Impact Bugs

The most related works to ours are the recent studies by
Ohira et al. [2] and Shihab et al. [3]. Ohira et al. create
four datasets of high impact bugs by manually reviewing four
thousand bug reports in four open source projects (Ambari,
Camel, Derby and Wicket) [2]. They introduce six kinds of
high impact bugs, i.e., surprise bugs, dormant bugs, blocker
bugs, security bugs, performance bugs and breakage bugs.
In addition, they classify them into two types, i.e., process
and product. A bug management process in a project will be
impacted by the first three kinds of bugs, while user experience
and satisfaction with software products will be affected by
the last three kinds of bugs. Shihab et al. develop prediction
models to identify if a file contains a breakage or surprise
bug [3]. In this work, we investigate the usage of text mining
and imbalanced learning strategies to identify high impact bug
reports in a collection of bug reports. This is a related but
different problem than the one considered by Shihab et al..
Rather than predicting if a file contains a breakage or surprise
bug, we identify breakage and surprise bug reports from a
collection of bug reports.

Aside from the two works highlighted above, there are
also other studies that are about high impact bugs [18], [17].
Zaman et al. conduct a case study on the Firefox project to
demonstrate the difference between performance and security
bugs [18]. Garcia and Shihab study blocking bugs in six open
source projects and propose a model to identify them [17].

In this paper, we propose an approach that can identify
bug reports that correspond to surprise and breakage bugs. We
evaluate many variants of our approach using four datasets
created by Ohira et al. [2]. We have shown that the best variant
of our approach outperforms the state-of-the-art high-impact
bug report identification approach by Garcia and Shihab [17].

231

B. Bug Categorization

There are many studies on bug prediction in the liter-
ature [19], [20]. Huang et al. propose a novel Orthogonal
Defect Classification (ODC) system by integrating experts’
experience and domain knowledge [19]. Thung et al. propose
a text mining solution that can categorize bugs into various
types [20]. They compare six classic classification algorithms
and conclude that SVM achieves the best performance for
automatic bug categorization.

In this paper, we have compared our work against a state-
of-the-art work that automatically categorizes bugs, i.e., [20].
Our experiments demonstrate that the best performing variant
of our approach which leverages under sampling outperforms
that work.

C. Imbalanced Learning Strategies

There are a number of software engineering studies which
leverage imbalanced learning strategies [21], [11]. We high-
light some of them below. Due to the page limit, the survey
here is by no means complete.

Kamei et al. investigate the effectiveness of over and under
sampling strategies on fault-prone module detection [21]. They
evaluate the performance of four sampling methods applied
to four fault-prone detection models. They conclude that all
the four sampling methods can improve the prediction perfor-
mance. Wang et al. use class imbalance learning for software
defect prediction [11]. They investigate different types of
imbalanced learning strategies and propose a dynamic version
of AdaBoost.NC, which is an ensemble learning method that
automatically adjusts its parameters during training.

Similar to the above approaches, we also employ imbal-
anced learning algorithms. We consider a different problem
though namely the identification of high impact bug reports in
a collection of bug reports.

VI. CONCLUSION AND FUTURE WORK

In this paper, we leverage imbalanced learning strategies
to identify high impact bug reports. We investigate four wide-
ly used imbalanced learning strategies (i.e., random under-
sampling, random over-sampling, SMOTE and cost-matrix
adjuster) and use naive Bayes multinominal as the classifi-
cation algorithm to perform experiments on datasets from four
different open source projects. We focus on a specific type of
high impact bugs, i.e., surprise bugs, which are first studied
by Shihab et al. [3]. The results show that under-sampling
is the best imbalanced learning strategy with naive Bayes
multinominal for high impact bug identification.

In the future, we plan to continue improving the F1-score
of our proposed approach by introducing additional technical
contributions. We also plan to perform experiments on more
datasets to reduce the threats to external validity.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in Proceedings of the 2005 OOPSLA workshop on Eclipse
Technology eXchange, ETX 2005, San Diego, California, USA, October
16-17, 2005, 2005, pp. 35–39.

[2] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Lim-
settho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of
high impact bugs: Manually-classified issue reports,” in Mining Software
Repositories (MSR), 2010 7th IEEE Working Conference on. IEEE,
2015, pp. 518–521.

[3] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan,
“High-impact defects: a study of breakage and surprise defects,” in
Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 300–310.

[4] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on. IEEE, 2010, pp. 1–10.

[5] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical
study of bug report field reassignment,” in 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering, CSMR-WCRE 2014, Antwerp, Belgium, February
3-6, 2014, 2014, pp. 174–183.

[6] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings
of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 382–391.

[7] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, “Elblocker: Predicting
blocking bugs with ensemble imbalance learning,” Information and
Software Technology, vol. 61, pp. 93–106, 2015.

[8] X. Xia, D. Lo, E. Shihab, and X. Wang, “Automated bug report field
reassignment and refinement prediction.”

[9] J. B. Lovins, “Development of a stemming algorithm,” Mechanical
Translation and Computational Linguistics, vol. 11, pp. 22–31, 1968.

[10] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone module
detection,” in Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on. IEEE, 2007, pp. 196–
204.

[11] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” Reliability, IEEE Transactions on, vol. 62, no. 2, pp.
434–443, 2013.

[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan kaufmann, 2006.

[13] H. He and E. A. Garcia, “Learning from imbalanced data,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–
1284, 2009.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “S-
mote: synthetic minority over-sampling technique,” Journal of artificial
intelligence research, pp. 321–357, 2002.

[15] X. Xia, Y. Feng, D. Lo, Z. Chen, and X. Wang, “Towards more accu-
rate multi-label software behavior learning,” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software
Evolution Week-IEEE Conference on. IEEE, 2014, pp. 134–143.

[16] X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE Press, 2013, pp. 287–296.

[17] H. V. Garcia and E. Shihab, “Characterizing and predicting blocking
bugs in open source projects,” in Proceedings of the 11th Working
Conference on Mining Software Repositories. ACM, 2014, pp. 72–
81.

[18] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the 8th working
conference on mining software repositories. ACM, 2011, pp. 93–102.

[19] L. Huang, V. Ng, I. Persing, R. Geng, X. Bai, and J. Tian, “Autoodc:
Automated generation of orthogonal defect classifications,” in Automat-
ed Software Engineering (ASE), 2011 26th IEEE/ACM International
Conference on. IEEE, 2011, pp. 412–415.

[20] F. Thung, D. Lo, and L. Jiang, “Automatic defect categorization,”
in Reverse Engineering (WCRE), 2012 19th Working Conference on.
IEEE, 2012, pp. 205–214.

[21] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone module
detection,” in Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on. IEEE, 2007, pp. 196–
204.

232

	Automated identification of high impact bug reports leveraging imbalanced learning strategies
	Citation

	Automated Identification of High Impact Bug Reports Leveraging Imbalanced Learning Strategies

