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Abstract—Traditionally, to better understand the design of a
project, developers can reconstruct a class diagram from source
code using a reverse engineering technique. However, the raw
diagram is often perplexing because there are too many classes
in it. Condensing the reverse engineered class diagram into
a compact class diagram which contains only the important
classes would enhance the understandability of the corresponding
project.

A number of recent works have proposed several supervised
machine learning solutions that can be used for condensing
reverse engineered class diagrams given a set of classes that
are manually labeled as important or not. However, a challenge
impacts the practicality of the proposed solutions, which is the
expensive cost for manual labeling of training samples. More
training samples will lead to better performance, but means
higher manual labeling cost. Too much manual labeling will make
the problem pointless since the aim is to automatically identify
important classes.

In this paper, to bridge this research gap, we propose a novel
approach MCCondenser which only requires a small amount of
training data but can still achieve a reasonably good performance.
MCCondenser firstly selects a small proportion of all data, which
are the most representative, as training data in an unsupervised
way using k-means clustering. Next, it uses ensemble learning to
handle the class imbalance problem so that a suitable classifier
can be constructed based on the limited training data. To evaluate
the performance of MCCondenser, we use datasets from nine
open source projects, i.e., ArgoUML, JavaClient, JGAP, JPMC,
Mars, Maze, Neuroph, Wro4J and xUML, containing a total
of 2640 classes. We compare MCCondenser with two baseline
approaches proposed by Thung et al., both of which are state-
of-the-art approaches aimed to reduce the manual labeling cost.
The experimental results show that MCCondenser can achieve
an average AUC score of 0.73, which improves those of the two
baselines by nearly 20% and 10% respectively.

Keywords—Class Diagram, Unsupervised Learning, Ensemble
Learning, Manual Labeling, Cost Saving

I. INTRODUCTION

To better understand the design of a project, developers can
reconstruct a class diagram from source code using a reverse
engineering technique. However, the raw reverse engineered
diagram is often confusing because there are often too many
classes in it. Condensing the reverse engineered class diagrams
becomes a necessity then. To condense a reverse engineered
class diagram, one would need to find all the important classes.
A diagram which only contains the important classes would be

‡Corresponding author.

succinct, not cluttered with unnecessary details, and and help
developers to understand a project better [1].

In recent years, there are several research studies that
propose automated techniques to condense reverse engineered
class diagrams [2], [3]. Osman et al. analyse many machine
learning techniques and are the first to propose an automated
approach to condense reverse engineered class diagrams [2].
Thung et al. extend their work by adding a set of network
metrics as extra features for training and propose an optimistic
classification technique to achieve better performance [3].

Although the above proposed techniques have achieved
some good results, they are not practical enough because both
of them use half the data (i.e., half of the classes in a diagram)
as training samples, which means half the data are needed to
be manually labeled first. The expensive cost for manually
labeling training samples poses a challenge to the practicality
of the proposed techniques. Therefore, in this work, our goal
is to reduce manual labeling effort while still achieving a
reasonable performance at the same time.

In this paper, to bridge this research gap, we propose
an approach named MCCondenser (Minimal Cost Condenser)
which addresses the reverse engineered class diagrams con-
densing problem requiring only a small amount of training
data. MCCondenser mainly includes two phases: a sample
selection phase and a model building phase. In the sample
selection phase, we select a small proportion of all data, which
are the most representative, as training data in an unsupervised
way using k-means clustering. In the model building phase,
we use ensemble learning to handle class imbalance problem
and build an ensemble classifier based on the selected training
samples. Class imbalance problem exists since most of the
classes are unimportant and only a few are important ones.

To evaluate MCCondenser, we use AUC (Area Under the
Receiver Operating Characteristic Curve) as the evaluation
metric. AUC was also used to evaluate prior works by Osman
et al. [2] and Thung et al. [3] that propose approaches to con-
dense class diagrams. It is also widely used by many software
engineering studies that leverage classification algorithms [4],
[5], [6]. A higher AUC score means that a method achieves
a better performance, with a perfect method achieving an
AUC score of 1. An AUC score of more than 0.7 is often
considered reasonably good in the literature [7], [8], [9]. We
perform experiments on nine open source software projects
from different communities, i.e., ArgoUML, JavaClient, JGAP,
JPMC, Mars, Maze, Neuroph, Wro4J and xUML, containing
a total of 2640 classes. We compare our approach with two
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baseline approaches proposed by Thung et al. [3], [10], both
of which are state-of-the-art approaches aimed to reduce the
manual labeling cost. The experimental results show that
MCCondenser can achieve an average AUC score of 0.73 and
improves those of the two baselines by nearly 20% and 10%
respectively.

The main contributions of this paper are:

1) We propose a novel approach MCCondenser for
condensing the reverse engineered class diagrams,
which only requires a small amount of training data,
while still achieving a reasonable performance. The
approach combines unsupervised learning and ensem-
ble learning, and reduces the cost of manual labeling
by a large amount.

2) We compare MCCondenser with two state-of-the-
art baseline approaches developed for a similar pur-
pose proposed by Thung et al. [3], [10] on nine
software projects. The experiment results show that
MCCondenser achieves substantial improvement over
the two baselines.

The rest of our paper is organized as follows. Section II
introduces the background of our work and technical rationale
of our proposed approach. Section III presents the overall
framework of our approach and elaborates the techniques that
we use in our approach. Section IV describes our experiments
and the results. Section V discusses the related work. Conclu-
sion and future work are presented in the last section.

II. PRELIMINARIES

In this section, we first introduce the basic concepts of con-
densing reverse engineered class diagram in Section II-A. We
then present the challenge of condensing reverse engineered
class diagrams and state our problem definition in Section II-B.
Next, we briefly introduce the two main techniques we leverage
in our approach, namely unsupervised learning and ensemble
learning, in Section II-C and II-D respectively. Finally, we
present the technical rationales of our proposed approach in
Section II-E.

A. Class Diagram Condensing

Approaches that condense reverse engineered class dia-
grams aim to identify important classes from a project so that
the diagram is smaller and not cluttered with unnecessary de-
tails [2], [3], with an end goal of improving the understanding
of a project [1]. Typically, an approach that condenses a reverse
engineered class diagram follows these steps:

1) Reverse Engineering. Use a system modeling tool
such as MagicDraw1 to generate a class diagram that
describes a piece of code.

2) Feature Extraction. Extract a set of software metrics
that can characterize classes in the reverse engineered
class diagrams. We can use a software metric tool
such as SDMetrics2 to extract class diagram met-
rics. SDMetrics can calculate a total of 32 metrics
which can be divided into 5 categories namely size,

1www.nomagic.com
2www.SDMetrics.com

coupling, inheritance, complexity and diagram. Also,
we can construct a network in which the nodes
are classes and the edges are various relationships
between pairs of classes, and extract network metrics
as features (c.f., [3]).

3) Model Building. Build a discriminative model by
using a classification algorithm trained from a set of
labeled training data samples (i.e., classes that are
manually marked as important or not) characterized
by the features extracted. This trained discriminative
model is then able to predict the label of an unknown
instance (i.e., an unknown class) whether it is “im-
portant” or “unimportant”.

4) Model Application. For an unlabeled class, first
extract the values of various features that characterize
it, and then input these values to the learned model
which will predict whether the class is “important”
or “unimportant”.

B. Problem Definition

Given a number of unlabelled classes, we want to select
as few as possible training samples (i.e., classes in a diagram)
to manually label, and automatically build a statistical model
based on these training samples. This trained statistical model
is then used to label the remaining classes automatically. Our
approach should meet two requirements to be practical. First, it
should minimize the manual labeling effort. Second, it should
still achieve a reasonable performance .

C. Unsupervised Learning

Unsupervised learning is a category of machine learning
methods [11]. As its name implies, unsupervised learning
does not require any labels. Since it does not require labels,
which often needs to be manually assigned, it is valuable for
many research problems where manual labeling is an expensive
process. K-means clustering is one of the classic unsupervised
learning algorithms [12]. It groups a set of data into several
clusters by minimizing the mean squared distance from each
data point to its cluster centroid.

D. Ensemble Learning

Ensemble learning is a technique to improve classification
accuracy by combining many different models. Generally,
different classifiers have different characteristics, such as their
intrinsic working principles and their sensitivity to different
training data. For some data samples, different classifiers may
make different predictions. Ensemble learning can improve
the classification performance by combining the predictions
of multiple different models (aka. classifiers) into a single
robust prediction model [13], [14]. Different models can be
constructed by using different classification algorithms, or
different subsets of a training data, which are then combined
together. In this paper, we use stacking as a method to combine
the prediction models. Stacking is a very general ensemble
learning approach, in which two levels of classification are
used [15]. In the first level, several different classifiers are
trained based on the training dataset. In the second level, a
final classifier is trained based on the output of the first-level
classifiers.
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E. Technical Rationales

Our proposed approach MCCondenser combines unsuper-
vised learning and ensemble learning. The effectiveness of
MCCondenser relies on the following two rationales.

Rationale 1: K-means clustering can select better training
data than random selection.

Rationale 2: An ensemble of classifiers can achieve better
performance than a single classifier.

The first rationale seems intuitive. To demonstrate it, we
perform experiments on six datasets, i.e., ArgoUML, Java-
Client, JPMC, Maze, Neuroph, xUML. We use the same
features (cf. Section III-A), the same amount of training data
(i.e., one-tenth of all data), the same classifier (i.e., random
forest) and the evaluation metric AUC score (cf. Section IV-B).
The only difference is the method to select training data. Let
N be the amount of training data. In the first approach, we
randomly select N training data from the datasets, while in the
second approach, we first group all the data into N clusters and
then select training data by picking one instance from each
cluster. Table I shows the experiment results which validate
our rationale. In all of the datasets, the performance of the
approach using K-means clustering is better than that of the
approach using random selection.

TABLE I. AUC SCORES OF TWO APPROACHES WITH DIFFERENT

METHODS TO SELECT TRAINING DATA

Project Random K-means Clustering
ArgoUML 0.5976 0.6514
JavaClient 0.8315 0.8586

JPMC 0.5342 0.6407
Maze 0.4789 0.5815

Neuroph 0.8026 0.8296
xUML 0.8719 0.9239

The second rationale has been proven by many research-
es [13], [14]. There are two main components in the error
of a classifier, i.e., bias and variance. Bias is the difference
between the decision boundary of a classifier and the true
decision boundary. Variance means that different choices of
training data lead to different models. By building an ensemble
of classifiers, we can reduce both bias and variance [15].
Therefore, an ensemble of classifiers can often achieve better
performance than a single classifier.

III. OUR PROPOSED APPROACH

In this section, we present the details of our proposed ap-
proach MCCondenser. We first present the overall framework
of MCCondenser, and then we describe in detail the individual
steps in the overall framework.

A. Overall Framework

Figure 1 presents the overall framework of our proposed
approach MCCondenser. The framework contains three phas-
es: the sample selection phase, the model building phase
and the prediction phase. In the sample selection phase, we
select the most representative samples as training data in an
unsupervised way and manually label them as important or
unimportant classes. In the model building phase, we build a
classifier (i.e., a statistical model) from the limited training

Fig. 1. The Overall Framework of MCCondenser.

data selected in the sample selection phase by leveraging
an ensemble learning technique. In the prediction phase, this
classifier would be used to predict if an unknown class would
be important or not.

Our framework first extracts a number of features from the
classes of a project (Step 1). Features are various quantifiable
characteristics of the classes that could potentially distinguish
the important classes from the unimportant ones. In this paper,
we use the 18 features proposed by Thung et al. [3] as shown
in Table II. The features are from three kinds of metrics,
i.e., size, coupling and network metrics. The network metrics
are computed by first constructing a network given a class
diagram where the nodes in the network are classes and the
edges are various relationships between pairs of classes. In
addition, all the features are normalized using z-score method
(cf. Section III-B) so that the values of all features are in the
same order of magnitude. With these normalized features, we
form a feature vector for each class of the project, which is
also called a data sample.

Next, we select the most representative samples as training
data using k-means clustering (cf. Section III-C) and label
them manually (Step 2). Note that the more the amount of
training data is, the more the manual labeling cost is. Thus,
the goal of this step is to minimize the number of data samples
to label.

To deal with the class imbalance problem (i.e., there are
more unimportant than important classes), we use random
under-sampling (cf. Section III-D) to build different base clas-
sifiers, and use ensemble learning (cf. Section III-E) to com-
bine them (Steps 3-4). The base classifier can deal with the data
imbalance problem and the ensemble learning can overcome
the information deficiency problem of a single base classifier
due to random under-sampling. The ensemble of different base
classifiers considers all the information the training samples
provide so that the performance of the ensemble classifier can
be much better than that of a single base classifier.

In the prediction phase, we use the ensemble classifier to
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TABLE II. EIGHTEEN FEATURES USED IN OUR APPROACH

Name Category Description
NumAttr Size The number of attributes in a class [2]
NumOps Size The number of methods in a class [2]

NumPubOps Size The number of public methods in a class [2]
Setters Size The number of methods whose names start with ’set’ [2]
Getters Size The number of methods whose names start with ’get’, ’is’, or ’has’ [2]
DepOut Coupling The number of dependencies where a class uses other classes [2]
DepIn Coupling The number of dependencies where a class is used by other classes [2]
ECAttr Coupling The number of times a class is externally used as an attribute type [2]
ICAttr Coupling The number of attributes in a class having another class or interface as their types [2]
ECPar Coupling The number of times a class is externally used as a parameter type [2]
ICPar Coupling The number of parameters in a method of a class having another class or interface as their types [2]

Barycenter Network The barycenter centrality score of a class in the network [3]
Betweenness Network The betweenness centrality score of a class in the network [3]

Closeness Network The closeness centrality score of a class in the network [3]
Eigenvector Network The eigenvector centrality score of a class in the network [3]

Hub Network The hub score of a class in the network [3]
Authority Network The authority score of a class in the network [3]
PageRank Network The page rank score of a class in the network [3]

predict whether a class with an unknown label is important
or not. For each of such classes, our framework first extracts
its feature vector and inputs it into all of the trained base
classifiers. Each of these classifiers generates a prediction
result which may be different from one another. In the end,
we ensemble the different prediction results to produce a
final prediction result (cf. Section III-F), which is one of the
following labels: important or unimportant (Step 5).

B. Data Normalization: Z-Score Method

Considering that the values of the 18 features are not in the
same order of magnitude, we perform data normalization on
these feature values. In this paper, we use the z-score method
to do the normalization [12]. It transforms all values of a
feature to make them subject to the Gaussian distribution with
a zero mean and a variance of 1. Given a feature f , we denote
the mean and variance of its values as mean(f) and std(f)
respectively. For each value fi of the feature f , its normalized
value zi is computed as:

zi =
fi −mean(f)

std(f)

C. Sample Selection: K-means Clustering

K-means clustering is a classic unsupervised learning
technique [12]. The aim of k-means clustering is to group
a set of data points into several clusters so that the mean
squared distance from each data point to its cluster centroid
is minimized. Initially, k-means clustering randomly picks k
data points as k initial centroids, one for a cluster respectively.
Next, each data point is assigned to its nearest centroid. In
the process, k clusters are formed. Next, the k centroids are
updated based on data points in the same cluster. The centroids
are calculated by averaging all the data points in the same
cluster. Note that these centroids do not necessarily correspond
to any data points. The process is repeated for a number of
iterations until the k centroids do not change any further.

In MCCondenser, after we have k clusters, for each cluster,
we pick the data point (i.e., feature vector) that is the nearest

to its centroid as a training sample. Thus, at the end we have
k training samples. The selection strategy has two advantages.
First, the k training samples are the most representative be-
cause they are the closest to the center of their corresponding
cluster. At the same time, the k training samples have the
biggest diversity because they are the farthest to one another.
Therefore, the k training samples can be a suitable training set
for model building.

K-means clustering has two major tunable parameters. One
is the number of clusters k and the other is the metric to
compute the distance between two data points. We set k to be
equal to the labeling budget (i.e., number of classes to label).
We use Euclidean distance to measure the distance between
two data points. Euclidean distance between two data points
is the length of the line segment connecting them.

D. Model Building: Random Under-Sampling

Random under-sampling is one of the effective approaches
to deal with class imbalance problem [12], [16]. Class imbal-
ance problem is always a big problem in machine learning. It
can lead to a classifier that performs poorly. Random under-
sampling can help the trained classifier so that it is not
biased to the majority class (in our case: unimportant class),
thus in most cases it can improve the performance of the
classifier [17], [18]. Just as the name implies, random under-
sampling randomly deletes data belonging to the majority class
until the amount of data in the majority class is approximately
equal to that of the minority class.

In our problem, we use random under-sampling to make
the number of important (minority) and unimportant (majority)
classes in the training data equal.

E. Model Building: Ensemble Learning

Although random under-sampling can avoid the class im-
balance problem, it may lose some important information
because it deletes some training samples. To make up for this
deficiency, we introduce ensemble learning. Ensemble learning
can improve the classification performance by combining
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the predictions of multiple different classifiers into a single
robust prediction [13], [14]. Specifically, we first train different
base classifiers with different subsets of the training samples
acquired by multiple random under-sampling. For each base
classifier, we assign it a weight by evaluating its performance.
The weight is computed by two steps. First, we compute the
AUC score s of each classifier i on the whole training data set.
Second, we transform s to the weight w using the following
formula:

wi = Basesi

In the formula, Base can be any positive number. The
bigger the Base is, the bigger weight a classifier with a higher
AUC has. By default, we set Base as 2.

MCCondenser generates NLearner base classifiers. Next,
we select classifiers whose weights are different from one
another to ensemble. If there are many classifiers with the same
weight, we randomly select one. This strategy can reduce the
time and space cost (since we store and run less classifiers),
while still highly likely to retain all the information contained
in the training samples. By default, NLearner is set as 100
to guarantee the diversity of base classifiers.

F. Model Prediction

For an unlabeled class x, we first input its normalized
feature vector into all of the trained base classifiers to obtain
a set of prediction results. We denote the prediction result of
the ith classifier given an unlabeled class x as px,i. Next, we
ensemble the different prediction results p to achieve a final
ensemble score Final(x) using the following formula:

Final(x) =
∑

i

wi × px,i

Final(x) indicates the likelihood of the class x to be
important. If the score is above 0, we assign it to the important
class, otherwise we assign it to the unimportant class.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of MC-
Condenser. The experimental environment is an Intel(R)
Core(TM) T6570 2.10 GHz CPU, 4GB RAM desktop running
Windows 7 (64-bit). We first present our experiment setup and
evaluation metrics in Sections IV-A to IV-C. We then present
five research questions and our experiment results that answer
these questions in Section IV-D.

A. Datasets

We evaluate MCCondenser on nine datasets from nine
well-known open source projects, which are ArgoUML, Java-
Client, JGAP, JPMC, Mars, Maze, Neuroph, Wro4J and x-
UML3. These datasets were also used by Osman et al. [2] and
Thung et al. [3]. Table III summarizes the statistics of each
dataset. We can see that in seven out of nine projects, the
datasets are severely imbalanced (i.e., there are many more
unimportant classes than important ones).

3Datasets are publicly available at: http://sites.google.com/site/classdiag/
dataset.zip.

TABLE III. STATISTICS OF THE DATASETS USED IN OUR STUDY.
RATIO = RATIO OF IMPORTANT TO TOTAL CLASSES (IN PERCENTAGES).

Project # Total Classes # Important Classes Ratio
ArgoUML 903 44 4.87%
JavaClient 214 57 26.64%

JGAP 171 18 10.52%
JPMC 121 24 19.83%
Mars 840 29 3.45%
Maze 59 28 47.45%

Neuroph 161 24 14.90%
Wro4J 87 11 12.64%
xUML 84 37 44.05%

B. Evaluation Metric

We use Area Under the Receiver Operating Characteristic
Curve (AUC) to evaluate the effectiveness of our approach
MCCondenser. AUC, which was also used in the studies by
Osman et al. [2] and Thung et al. [3], is a commonly-used
measure to evaluate classification performance. Many other
software engineering studies also use AUC as an evaluation
metric [4], [5], [6]. The AUC score ranges from 0 to 1, with
1 representing perfect prediction performance. Generally, an
AUC score above 0.7 is considered reasonable [7], [8], [9].

To compute AUC, we first plot the Receiver Operating
Characteristic Curve (ROC). ROC is a plot of the true positive
rate (TPR) versus false positive rate (FPR). TPR and FPR can
be derived from a confusion matrix, as shown in Table IV.
The confusion matrix lists all four possible prediction results.
If a class is correctly classified as “important”, it is a true
positive (TP); if a class is misclassified as “important”, it
is a false positive (FP). Similarly, there are false negatives
(FN) and true negatives (TN). Based on the four numbers,
TPR and FPR are calculated. TPR is the ratio of the number
of correctly predicted as “important” classes to the actual
number of “important” classes (TPR = TP

TP+FN ). FPR is the
ratio of wrongly predicted as “important” classes to the actual
number of “unimportant” classes (FPR = FP

FP+TN ). With the
ROC, AUC can be calculated by measuring the area under the
curve. AUC measures the ability of a classification algorithm to
correctly rank classes as important or unimportant. The larger
the AUC is, the better is the performance of a classification
algorithm.

TABLE IV. CONFUSION MATRIX

Predicted (to be)
Important

Predicted (to be) U-
nimportant

Truly Important TP FN
Truly Unimportant FP TN

We use the AUC score as an evaluation metric because it
has been shown to be suitable for imbalanced data [19]. As
mentioned above, in seven out of the nine datasets, the datasets
are severely imbalanced.

C. Experimental Settings

MCCondenser uses few training samples so that the cost
of manual labeling can be reduced by much. Therefore, in our
experiments, we only select one-tenth of all data as training
samples. This means that we set the parameter k of the k-
means clustering algorithm as one-tenth of the number of
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samples in a dataset (i.e., one-tenth of the number of classes
in a reversed engineer class diagram).

For the ensemble learning process, the base classifier we
use is random forest. Random forest is an advanced machine
learning technique based on decision tree. Osman et al. have
shown that random forest outperforms many other algorithms
for condensing class diagrams [2]. In a random forest, there
are NTree decision trees. NTree is a tunable parameter and
we set it as 10 by default.

There are totally three tunable parameters in MC-
Condenser, i.e, Base, NLearner and NTree. In our exper-
iments, we use the default values of them except for the last
research question, in which we change the parameter settings
since we want to investigate the influence of different values
of these parameters on the performance of MCCondenser.

We test the performance of MCCondenser in the remaining
nine-tenth of the data. To reduce the bias due to training set
selection, we repeat all experiments 10 times and report the
average performance.

D. Research Questions

Our experiments are designed to answer the following
research questions:

RQ1 How effective is MCCondenser?

Motivation. In the first research question, we want to investi-
gate the effectiveness of our approach MCCondenser. We need
to compare it with some baselines. The baseline approaches are
selected based on the following two criteria. First, the approach
should be aimed to reduce manual labeling, that is, it should
work with small amount of training data. Second, the approach
should work for the problem of condensing class diagram.

Approach. We compare MCCondenser against two state-of-
the-art baseline approaches, both of which are proposed by
Thung et al. [3], [10]. The first baseline is an active semi-
supervised approach initially designed for defect categoriza-
tion [10]. It is aimed to reduce manual labeling of defect
samples and it has been proven to work well when only
one-tenth of all data samples are used as training samples.
It is referred to as Baseline-1 in the following text. The
second baseline is an optimistic classification technique for
condensing class diagram [3]. It also deals with label scarcity
problem by optimistically assigning labels to some of the
unlabeled data. It is referred to as Baseline-2 in the following
text.

For comparability sake, we use one-tenth of all data as
training samples for all the approaches. We use the evaluation
metric AUC mentioned above to make comparisons. To in-
crease the confidence of the results, we repeat all experiments
10 times and report the average results. In addition, we
also calculate p-value (using Wilcoxon signed-rank statistical
test with Bonferroni correction) and Cliff’s delta to better
investigate whether or not our approach improves the baselines
significantly and substantially.

Results. Tables V and VI present the AUC values of M-
CCondenser as compared with those of the two baselines,
respectively. From the tables, we can see that MCCondenser

TABLE V. AUC OF MCCONDENSER COMPARED WITH

BASELINE-1 [10]. IMPROVE. (%) = IMPROVEMENT OF MCCONDENSER

OVER BASELINE-1 (IN PERCENTAGES).

Project Baseline-1 MCCondenser Improve. (%)
ArgoUML 0.5057 0.6582 30.16%
JavaClient 0.7348 0.8355 13.70%

JGAP 0.5000 0.5533 10.66%
JPMC 0.5966 0.7743 29.79%
Mars 0.5252 0.7764 47.83%
Maze 0.5968 0.5841 -2.13%

Neuroph 0.7392 0.8940 20.94%
Wro4J 0.6163 0.6801 10.35%
xUML 0.7988 0.8149 2.02%

Average 0.6237 0.7301 18.15%

TABLE VI. AUC OF MCCONDENSER COMPARED WITH

BASELINE-2 [3]. IMPROVE. (%) = IMPROVEMENT OF MCCONDENSER

OVER BASELINE-2 (IN PERCENTAGES).

Project Baseline-2 MCCondenser Improve. (%)
ArgoUML 0.5966 0.6582 10.33%
JavaClient 0.7800 0.8355 7.12%

JGAP 0.6878 0.5533 -19.56%
JPMC 0.5725 0.7743 35.25%
Mars 0.6987 0.7764 11.12%
Maze 0.5218 0.5841 11.94%

Neuroph 0.7726 0.8940 15.71%
Wro4J 0.5322 0.6801 27.79%
xUML 0.8201 0.8149 -0.63%

Average 0.6647 0.7301 9.88%

achieves an average AUC score of 0.73, while Baseline-1 and
Baseline-2 achieve AUC scores of 0.62 and 0.66 respectively.
Compared to the two baselines, MCCondenser improves the
AUC scores by 18% and 10% respectively, which is a sub-
stantial improvement.

TABLE VII. MAPPINGS OF CLIFF’S DELTA VALUES TO THEIR

INTERPRETATIONS [20]

Cliff’s Delta (δ) Interpretation
-1 <= δ < 0.147 Negligible

0.146 <= δ < 0.33 Small
0.33 <= δ < 0.474 Medium
0.474 <= δ <= 1 Large

To better demonstrate the superiority of our approach, we
perform the Wilcoxon signed-rank statistical test with Bon-
ferroni correction to compute the p-value, and also compute
the Cliff’s delta. Wilcoxon signed-rank statistical test is often
used to check if the difference in two data groups is statistically
significant (which corresponds to a p-value of less than 0.05)
or not. We include the Bonferroni correction to counteract the
impact of multiple hypothesis tests. Cliff’s delta is often used
to check if the difference in two data groups are substantial.
The range of Cliff’s delta is in [-1, 1], where -1 or 1 means
all values in one group are smaller or larger than those of the
other group, and 0 means the data in the two groups is similar.
The mappings between Cliff’s delta scores and effectiveness
levels are shown in Table VII. By computing the p-value and
Cliff’s delta, the extent of which our approach improves over
the two baselines can be more rigorously assessed.

Results. Tables VIII and IX present the adjusted p-values
and Cliff’s deltas of MCCondenser compared with the two
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TABLE VIII. ADJUSTED P-VALUES (AFTER BONFERRONI

CORRECTION) AND CLIFF’S DELTA COMPARING THE AUC SCORES OF

MCCONDENSER WITH THOSE OF BASELINE-1

Project Adjusted P-Value Cliff’s Delta
ArgoUML 0.01758 1 (large)
JavaClient 0.1230 0.82 (large)

JGAP 0.5801 0.8 (large)
JPMC 0.01758 1 (large)
Mars 0.01758 1 (large)
Maze 1 -0.16 (small)

Neuroph 0.0879 0.7 (large)
Wro4J 1 0.24 (small)
xUML 1 0 (negligible)

TABLE IX. ADJUSTED P-VALUES (AFTER BONFERRONI

CORRECTION) AND CLIFF’S DELTA COMPARING THE AUC SCORES OF

MCCONDENSER WITH THOSE OF BASELINE-2

Project Adjusted P-Value Cliff’s Delta
ArgoUML 0.4395 0.62 (large)
JavaClient 0.5801 0.48 (large)

JGAP 0.3340 -0.52 (negligible)
JPMC 0.0527 0.94 (large)
Mars 0.1758 0.52 (large)
Maze 1 0.36 (medium)

Neuroph 0.2461 0.62 (large)
Wro4J 1 0.42 (medium)
xUML 1 -0.14 (negligible)

baselines in terms of their AUC scores respectively. From the
tables, we can see the effectiveness of our approach more
clearly. Compared with Baseline-1, MCCondenser statistically
significantly (i.e., adjusted p-value < 0.05) achieves a better
performance in three out of the nine datasets, and substan-
tially (i.e., Cliff’s delta is not negligible) achieves a better
performance in seven out of the nine datasets. Compared with
Baseline-2, MCCondenser statistically substantially achieves a
better performance in seven out of the nine datasets.

MCCondenser is more effective than the baselines. On av-
erage, it achieves an AUC of 0.73, which improves the AUC
of the two baselines by nearly 20% and 10% respectively.

RQ2 What is the difference in MCCondenser performance
when limited and much training data is available?

Motivation. Intuitively, with more training data the perfor-
mance of our approach would improve. In this research ques-
tion, we would like to investigate how big is the gap in
performance when we use little and much training data. The
gap in performance highlights how much performance do we
sacrifice for a big reduction in labelling cost.

Approach. We compare the performance of MCCondenser
trained using 10% (the default setting) and 90% of the data.
We also use AUC as the yardstick for comparison. For each
setting, we repeat the experiments 10 times and report the
average AUC.

Results. Table X presents the performance of MCCondenser
when it is trained with 10% of the data compared with its
performance when it is trained with 90% of the data. We notice
a performance drop of 0.13 when the size of the training data is
reduced. In spite of this, the first setting only needs one-tenth
of all labels, which can reduce the cost of manual labeling by

TABLE X. THE DIFFERENCE OF AUC SCORES BETWEEN

MCCONDENSER USING 10% AND 90% TRAINING DATA

Project MCCondenser (10%) MCCondenser (90%)
ArgoUML 0.6586 0.8172
JavaClient 0.8397 0.8926

JGAP 0.6342 0.8965
JPMC 0.7242 0.8028
Mars 0.7509 0.8766
Maze 0.5461 0.6972

Neuroph 0.9061 0.9449
Wro4J 0.6952 0.8821
xUML 0.8109 0.9244

Average 0.7295 0.8594

a large amount. A large reduction in labeling cost only causes
a relatively small reduction in AUC.

With 90% of the data used to train it, MCCondenser achieves
an AUC of 0.83, which is only 0.13 more than the AUC
of MCCondenser trained with 10% of the data. Thus, the
reduction in labeling effort is much less than the reduction
in AUC, demonstrating the effectiveness of MCCondenser.

RQ3 Do k-means clustering and ensemble learning both
contribute to the performance of our approach?

Motivation. We have validated the effectiveness of MC-
Condenser through the above two research questions. MC-
Condenser clearly outperforms the two state-of-the-art base-
lines. In this RQ, we want to go further by investigating the
individual contribution of the two key steps of MCCondenser,
i.e., k-means clustering and ensemble learning.

Approach. To measure the individual contribution of k-means
clustering and ensemble learning to the overall performance
of MCCondenser, we create two incomplete versions of MC-
Condenser – referred to as Cluster and Ensemble respectively.
For Cluster, we use k-means clustering to select training
samples in the same way as MCCondenser but only build a
single model without using ensemble learning. For Ensemble,
we do not use k-means clustering. Instead, we randomly select
one-tenth of all data as training samples but build an ensemble
model using ensemble learning. We can then observe the
individual contribution of k-means clustering by comparing
the AUC scores of Ensemble and MCCondenser, and the
individual contribution of ensemble learning by comparing the
AUC scores of Cluster and MCCondenser. Following RQ1, we
randomly pick 10% of the data for training, and the rest for
evaluation.

TABLE XI. INDIVIDUAL CONTRIBUTION OF K-MEANS CLUSTERING

AND ENSEMBLE LEARNING

Project Cluster Ensemble MCCondenser
ArgoUML 0.6391 0.6466 0.6582
JavaClient 0.8520 0.7919 0.8355

JGAP 0.5704 0.6354 0.5533
JPMC 0.6920 0.5990 0.7743
Mars 0.6194 0.7822 0.7764
Maze 0.5841 0.5143 0.5841

Neuroph 0.7756 0.7895 0.8940
Wro4J 0.7462 0.5854 0.6801
xUML 0.9190 0.8765 0.8149

Average 0.7109 0.6912 0.7301
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Results. Table XI shows the performance of Cluster and
Ensemble which sheds light to the individual contributions of
k-means clustering and ensemble learning. We can note that
MCCondenser outperforms Cluster and Ensemble by 3% and
6% respectively. Moreover, MCCondenser outperforms both
Cluster and Ensemble in four out of the nine datasets, i.e.,
ArgoUML, JPMC, Maze and Neuroph. These indicate that
both k-means clustering and ensemble learning contribute to
the overall performance of MCCondenser, and removing any
one of them degrades the overall performance.

Both K-means clustering and ensemble learning contribute
to the good performance of MCCondenser.

RQ4 How much time does it take for MCCondenser to
run?

Motivation. Now that we have examined the effectiveness
of our approach MCCondenser and the contributions of its
key steps, we shall test its efficiency. The efficiency of an
approach is also an important factor that contributes towards
the practicality of a proposed approach.

Approach. In order to answer the question, we measure the
training and testing time of MCCondenser. The training time
includes the time taken for the sample selection phase and
model building phase. The testing time is the time taken for
predicting all the test samples. Following RQ1, we randomly
pick 10% of the data for training, and the rest for testing.

TABLE XII. TRAINING TIME OF MCCONDENSER AND THE TWO

BASELINES (IN SECONDS)

Project Baseline-1 Baseline-2 MCCondenser
ArgoUML 5.0646 0.1190 2.1257
JavaClient 0.9093 0.0410 0.9574

JGAP 0.7688 0.0352 0.9442
JPMC 0.5031 0.0306 0.8881
Mars 4.6919 0.1083 1.4519
Maze 0.2614 0.0222 0.0330

Neuroph 0.6965 0.0336 0.9426
Wro4J 0.3859 0.0253 0.8730
xUML 0.3570 0.0234 0.8668

Average 1.5154 0.0487 1.0092

TABLE XIII. TESTING TIME OF MCCONDENSER AND THE TWO

BASELINES (IN SECONDS)

Project Baseline-1 Baseline-2 MCCondenser
ArgoUML 0.0054 0.0043 0.1635
JavaClient 0.0048 0.0038 0.0340

JGAP 0.0047 0.0034 0.0143
JPMC 0.0046 0.0036 0.0207
Mars 0.0049 0.0039 0.1179
Maze 0.0045 0.0034 0.0045

Neuroph 0.0047 0.0035 0.0298
Wro4J 0.0044 0.0042 0.0175
xUML 0.0045 0.0035 0.0177

Average 0.0047 0.0037 0.0467

Results. Tables XII and XIII present the training and testing
time of MCCondenser and the two baselines on the nine
datasets. For MCCondenser, it takes about 1 second to finish
training a statistical model and takes a negligible amount of
time to predict whether a class is important or unimportant.
We believe the efficiency of MCCondenser is acceptable.

On average, MCCondenser needs about 1 second to build
a statistical model and less than 0.1 seconds to predict if
a class is important or not, which we believe to be good
enough in practice.

RQ5 What is the effect of varying the three tunable
parameters of MCCondenser on its performance?

Motivation. As mentioned in Section IV-C, MCCondenser has
three tunable parameters, i.e. Base, NLearner and NTree.
In this RQ, we want to investigate the effect of varying their
default values on the performance of MCCondenser.

Approach. In order to answer this question, we perform three
sets of experiments. In each set, we only change one single
parameter, and keep the other parameters at their default
values, to clearly measure the influence of changing the value
of an individual parameter to MCCondenser’s performance.
For example, in the first set of experiments, we fix NTree
as 10 and NLearner as 100, and only change the value of
Base. Following RQ1, we randomly pick 10% of the data for
training, and the rest for evaluation. We also use AUC as a
yardstick to measure performance.

TABLE XIV. THE EFFECT OF VARYING THE VALUE OF PARAMETER

Base TO 2, 5, AND 10, WHEN NTree=10 AND NLearner=100

Project 2 5 10
ArgoUML 0.6582 0.6618 0.6648
JavaClient 0.8355 0.8582 0.8274

JGAP 0.5533 0.5702 0.5980
JPMC 0.7743 0.6889 0.6426
Mars 0.7764 0.7092 0.7456
Maze 0.5841 0.6066 0.5766

Neuroph 0.8940 0.8448 0.7962
Wro4J 0.6801 0.7700 0.7505
xUML 0.8149 0.8179 0.8319

Average 0.7301 0.7253 0.7148

TABLE XV. THE EFFECT OF VARYING THE VALUE OF PARAMETER

NLearner TO 10, 50, AND 100, WHEN Base=2 AND NTree=10

Project 10 50 100
ArgoUML 0.6275 0.6090 0.6582
JavaClient 0.8248 0.8358 0.8355

JGAP 0.5807 0.5609 0.5533
JPMC 0.6786 0.6969 0.7743
Mars 0.7445 0.7261 0.7764
Maze 0.5966 0.5590 0.5841

Neuroph 0.8007 0.8348 0.8940
Wro4J 0.7687 0.7761 0.6801
xUML 0.8107 0.8177 0.8149

Average 0.7148 0.7129 0.7301

Results. Tables XIV to XV present the effect of modifying
each of the three parameters. From these tables, we can
conclude several points:

First, for some of the datasets, we can find that setting a
different value for one of the three parameters indeed have
some influence on the performance. For example, for dataset
Neuroph, when Base is fixed as 2 and NLearner is fixed
as 100, setting NTree as 10 leads to an AUC of 0.89, while
setting it as 50 leads to an AUC of 0.80.

Second, different datasets often have their own sets of
optimal parameters. For instance, when NTree is fixed as 10
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TABLE XVI. THE EFFECT OF VARYING THE VALUE OF PARAMETER

NTree TO 10, 20, AND 50, WHEN Base=2 AND NLearner=100

Project 10 20 50
ArgoUML 0.6582 0.6436 0.6734
JavaClient 0.8355 0.8434 0.8292

JGAP 0.5533 0.6105 0.5609
JPMC 0.7743 0.5819 0.7077
Mars 0.7764 0.7390 0.7284
Maze 0.5841 0.6541 0.6234

Neuroph 0.8940 0.8993 0.7952
Wro4J 0.6801 0.8170 0.7294
xUML 0.8149 0.7857 0.8090

Average 0.7301 0.7305 0.7174

and NLearner is fixed as 100, among the three settings of
Base (i.e., 2, 5, and 10), setting it to 5 leads to the lowest AUC
score of 0.71 for dataset Mars, while it leads to the highest
AUC score of 0.86 for dataset JavaClient.

All the three parameters have some influence on the perfor-
mance of MCCondenser. In addition, different datasets have
their own sets of optimal parameters.

E. Threats to Validity

Threats to construct validity relate to the suitability of our
evaluation metrics. We use AUC which was used by prior
approaches that condense class diagrams [2], [3]. AUC is also
frequently used in many past software engineering studies as
an evaluation metric (e.g., [4], [5], [6]). Thus, we believe there
is little threat to construct validity.

Threats to internal validity relate to errors in our exper-
iments. We have double checked our implementations and
repeat all the experiments 10 times. Hence, we believe there
are minimal threats to internal validity.

Threats to external validity relate to the generalizability of
our results. We have evaluated our approach on 2640 classes
from nine open source projects. In the future, we plan to reduce
this threat further by analyzing more datasets from more open
source projects and also commercial software projects.

V. RELATED WORK

In this section, we first highlight some prior works which
identify the important classes in subsection V-A. Then, since
our work aims to reduce the manual labeling cost, we present
several prior works with the same purpose as ours in subec-
tion V-B. At last, we introduce some software engineering
studies that also use ensemble learning.

A. Studies Identifying Important Classes

The most related works to ours are the recent studies by
Osman et al. [2] and Thung et al. [3]. Osman et al. analyse nine
classification algorithms from the machine learning community
for identifying important classes in a reverse engineered class
diagram [2]. By including only the important classes, they
condense the original class diagram. They conclude that the
class diagram metrics from the coupling and size categories
are good predictors for identifying important classes. They
also show that k-nearest neighbour and random forest are the
two best performing classification algorithms for the problem.

Thung et al. extend Osman et al.’s work by adding a new set
of network metrics as extra features for training and propose
an approach called optimistic classification to achieve better
performance [3]. The optimistic classification technique can
deal with data scarcity problem by optimistically assigning
labels to some of the unlabeled data and use them for training
a better model.

Aside from the two recent works highlighted above, there
are also other older studies that also identify important class-
es [21], [22], [23]. Zaidman et al. propose an approach for
identifying key classes based on dynamic coupling and web
mining [21]. Steidl et al. use several network metrics, some of
them are obtained by running PageRank and HITS algorithms,
to identify important classes [22]. The network metrics are
calculated from a class dependency graph. Hammad et al.
present a method that can assign importance scores to classes
based on records in a version control system [23].

In this paper, we have compared our work against the state-
of-the-art work that identifies important classes, i.e., [3]. Our
experiments demonstrate that our approach outperforms that
work by a substantial margin.

B. Studies Reducing Manual Labeling Cost

There are many software engineering studies that aim
to minimize the manual labeling cost [10], [24], [25]. We
highlight some of them below. Due to the page limit, the survey
here is by no means complete.

One of the most recent work is by Thung et al. who propose
an active semi-supervised approach for defect prediction with
minimal labeled data [10]. The approach actively selects a
small subset of diverse and representative defect samples to
manually label and build a prediction model based on both
labeled and unlabeled defect samples in a semi-supervised
way. The biggest advantage of the approach is that it can
minimize the manual labeling cost and still achieve a reason-
able performance in the meantime. Zhong et al. advocate the
use of unsupervised learning techniques to estimate software
quality [24]. They first use clustering to group many software
modules. And then with the help of human expert, label each
cluster as either fault-prone or not based on its representative
point. Finally, the unlabeled module is assigned the same label
as that of its corresponding cluster.

In this paper, we have compared our work against the state-
of-the-art work that reduces manual labeling cost, i.e., [10].
Our experiments demonstrate that our approach outperforms
that work by a substantial margin.

C. Studies Leveraging Ensemble Learning

There are a large number of software engineering stud-
ies which leverage ensemble learning [26], [27], [28], [29].
Xia et al. propose an approach called ELBlocker to predict
blocking bugs (i.e., the bugs that block other bugs from being
fixed) by leveraging ensemble learning [26]. Zhang et al.
conduct an empirical study of classifier combination for cross-
project defect prediction [27]. They investigate seven ensemble
learning algorithms and find that several of them perform
better than the state-of-the-art approach for cross-project defect
prediction namely CODEP. Peng et al. compare experimentally
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the performance of several popular ensemble learning methods
based on an analytic hierarchy process for software defect
prediction [28]. The results show that ensemble methods can
in general improve the classification performance for software
defect prediction. Zheng proposes a software reliability pre-
diction system based on neural network ensembles [29]. The
performance of the system is significantly better than that of
a single neural network.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach MCCondenser
which aims to minimize the manual labeling cost for con-
densing reverse engineered class diagrams. The approach first
uses k-means clustering to select the most representative one-
tenth of all data as training samples in an unsupervised way,
and then uses ensemble learning to handle class imbalance
problem and build an ensemble classifier based on the selected
training samples. We evaluate our approach on datasets taken
from nine open source projects and use a commonly-used
evaluation metric AUC. We compare our approach with two
state-of-the-art approaches designed for a similar purpose
proposed by Thung et al. [3], [10]. The results show that
MCCondenser can achieve an average AUC score of 0.73,
which improves those of the two baselines by nearly 20% and
10% respectively. We have also demonstrated that the two key
steps of MCCondenser, i.e., k-means clustering and ensemble
learning, both contribute to its overall performance. Moreover,
our experiments highlight the efficiency of MCCondenser that
is able to learn a statistical model in around 1 second, and
predict if a class is important or not in a fraction of a second.

In the future, we plan to perform experiments on more
datasets to reduce the threats to external validity. We also plan
to further reduce the manual labeling cost by developing a
more advanced approach requiring even less training samples,
or even following a completely unsupervised way.
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