
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2017

Probabilistic public key encryption for controlled equijoin in Probabilistic public key encryption for controlled equijoin in

relational databases relational databases

Yujue WANG
Singapore Management University, yjwang@smu.edu.sg

Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
WANG, Yujue and Hwee Hwa PANG. Probabilistic public key encryption for controlled equijoin in relational
databases. (2017). Computer Journal. 60, (4), 600-612.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3534

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3534&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3534&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Probabilistic Public Key Encryption
for Controlled Equijoin
in Relational Databases

Yujue Wang and HweeHwa Pang

School of Information Systems, Singapore Management University,
80 Stamford Road, Singapore

Email: {yjwang,hhpang}@smu.edu.sg

We present a public key encryption scheme for relational databases (PKDE) that
allows the owner to control the execution of cross-relation joins on an outsourced
server. The scheme allows anyone to deposit encrypted records in a database on
the server. Thereafter, the database owner may authorize the server to join any
two relations to identify matching records across them, while preventing self-joins
that would reveal information on records that are unmatched in the join. The
security of our construction is formally proved in the random oracle model based
on the computational bilinear Diffie-Hellman assumption. Specifically, before a
relation is joined, its encrypted records enjoy IND-CCA2 security; after a join,
our scheme offers One-Way CCA2 security protection on the records. Our PKDE
construction is shown to outperform the only existing work, both in security

guarantee and in efficiency.

Keywords: Database security; Data encryption; Controlled join; Equality test; Private set
intersection; Data outsourcing

Received 22 April 2016; revised 20 June 2016

1. INTRODUCTION

Data outsourcing is gaining in adoption as it
relieves users of the burden of storage and database
management. The drawback is that users may lose
control of their data, which gives rise to concerns
whether confidentiality of the data will be safeguarded
according to security provisions. To mitigate these
concerns, one solution is to encrypt the data before
releasing them to the outsourced server.

However, standard encryption schemes are not
applicable in data outsourcing as queries cannot be
executed directly on the ciphertexts. Pang and Ding [1]
first studied ad hoc equijoins on encrypted relations in
an outsourced database in a private key setting. Their
scheme offers IND-CPA security on records that the
database owner encrypts before sending them to the
outsourced server. Subsequently, the owner may issue a
query token for the server to join the encrypted records
across two relations.

In this paper, we study the problem of supporting
ad hoc equijoins on encrypted relations, in a public
key setting. To exemplify the problem, consider the
following application: Suppose that pharmacies are
required to report the sale of certain controlled drugs
to the health authority. The pharmacies encrypt each
transaction with the public key of the health authority

(the data owner), before submitting the encrypted
records to a contractor (the server) that the owner
outsources to. To pick up suspicious incidents where
a patient repeatedly purchases a drug from different
pharmacies, the owner issues a token for the server
to perform equijoins, on the encrypted patient social
security number and drug identifier, across the data
collected from the pharmacies. The server should not
be able to deduce the patient identities in the join
results, nor the purchase patterns of the majority of
patients who visit only their respective local pharmacies
and hence are not in the join result. Technically,
the latter implies that the server must not be allowed
to perform self-joins, i.e., joining a pharmacy’s data
collection with itself on patients’ social security number;
in this sense, we say that the equijoins are controlled.
Similar applications abound, including one where banks
are required to report transfers of large cash amounts
to the monetary authority or law enforcement.

1.1. Contribution

We introduce the notion of public key encryption for
relational database with controlled equijoins (PKDE).
Suppose the database includes two relations R and
S. Relation R contains records {r1, r2, · · · , rm}; the
schema of R is 〈KR, A, · · · 〉 where KR is the primary

The Computer Journal, Vol. ??, No. ??, ????

2 Y. Wang and H. Pang

key and A is a confidential attribute. Relation S
contains records {s1, s2, · · · , sn}, according to schema
〈KS , B, · · · 〉 where KS is the primary key and B is
a confidential attribute. In a PKDE scheme, with
the public key of the database owner, anyone is able
to encrypt records on attribute A (resp. B) before
depositing them in relation R (resp. S). Moreover,
the database owner may generate a join token TAB to
enable the server to perform an equijoin only across
attribute A of relation R and attribute B of relation S,
denoted as R ./A=B S.

Logically, the encrypted records have different
confidentiality assurances before and after an equijoin,
which we termed initial confidentiality and post-join
confidentiality respectively. In initial confidentiality,
we require that any encrypted data should achieve
indistinguishability under adaptively chosen ciphertext
attacks (IND-CCA2). The equijoin groups the matched
records in relations R and S into equivalence classes
on join attributes A and B, meaning that the records
become comparable and are no longer indistinguishable.
Instead, in post-join confidentiality, we require the
encrypted data to possess one-way property under
chosen ciphertext attacks (OW-CCA2).

Indeed, the equivalence classes produced in an
equijoin may leak some statistical information on the
matched records in the join result. Referring to the
motivating example earlier, it implies that patients
who are not reported by different pharmacies would
have their privacy safeguarded, as their records would
not be in the result of any equijoin authorized by the
owner. Notwithstanding that, there is a need to protect
the privacy of records that are unmatched in the join,
just like in private set intersection protocols. In this
regard, we require that the equijoin must be controlled ;
technically, a join token TAB for R ./A=B S must not
be abused to carry out other join operations, including
self-joins R ./A=A R and S ./B=B S which would reveal
the equivalence classes on the unmatched records that
are not in the join result.

We present a probabilistic PKDE construction on
bilinear groups. The construction is formally proved to
be secure with respect to initial confidentiality as well
as post-join confidentiality, in the random oracle model
based on the computational bilinear Diffie-Hellman
(BDH) assumption. The construction is non-interactive
in that, given a join token, the server can carry out the
equijoin on the operand relations without any help from
the database owner. An efficiency analysis shows that
our scheme saves roughly 25% in storage cost compared
to Pang and Ding’s scheme [1], while strengthening the
initial confidentiality from IND-CPA to IND-CCA2.

1.2. Related Work

Carbunar and Sion [2] first studied private join on
outsourced database in a private key setting. Although
their scheme supports general binary join predicates

including range, equality, Hamming distance, and
semantics, there is no provision to deter self-joins.
Furukawa and Isshiki [3] provided a scheme where the
server requires an authorization from the owner to carry
out an equijoin. However, that authorization can also
be used beyond the equijoin, to perform self-joins on
the operand relations. Controlled equijoin for relational
databases was initially investigated by Pang and Ding
[1] in a private key setting. Their solution encrypts each
value to 8 elements in a bilinear group, compared to 6
elements in our construction.

Yang et al. [4] introduced the notion of public
key encryption with equality test (PKEET). Given
two ciphertexts (that may have been produced with
different public keys), anyone is able to compare and
detect whether they have the same underlying message.
When applied to our outsourced database problem,
their scheme provides no initial confidentiality for the
encrypted data. Moreover, the server could freely
perform equijoin on any pair of relations, which does not
suit our requirements. Lu, Zhang and Lin [5] showed
how to achieve a stronger security model in PKEET
when the message space is large and has high mininum
entropy (which is not true in databases in general, and
for non-unique attributes with skewed distribution in
particular).

Several follow-on studies, including [6, 7, 8, 9,
10], have extended PKEET with delegable/authorized
equality test such that only a suitably enabled server
can perform equality test on the ciphertexts. All
these studies do not provide a formal security model
and strict proof on the initial confidentiality of data.
Moreover, the schemes do not offer controlled equality
test, meaning that they cannot prevent self-joins. In
[6], even without any authorization, anyone is able
to compare two ciphertexts generated under the same
public key. The PKEET schemes proposed in [7, 8, 9,
10, 11] allow two users to authorize a tester to compare
their ciphertexts. With that authorization, however,
the tester is also able to compare among the ciphertexts
generated by the same user. Table 1 summarizes
the differentiation between the existing work and our
scheme.

Private set intersection (PSI) allows two parties to
compute the intersection between their respective data
sets, at the same time leaking no information on the
remaining data [12, 13]. Outsourced PSI [14, 15] in
particular addresses how two parties may delegate set
intersection operations to a server. Each input data set
to a PSI protocol must contain only distinct elements;
otherwise, the same element will be encoded to the
same string. This implies that PSI may leak statistical
information on the data when applied to databases in
which different records may share the same attribute
value. Furthermore, PSI does not need to provide
decryption functionality for the outsourced data, unlike
our PKDE scheme.

The Computer Journal, Vol. ??, No. ??, ????

Public Key Database Encryption 3

TABLE 1. Comparison with existing schemes on ciphertext equality test

Scheme Setting Equijoin(R, S)
Deter Self-Join (R or S)
Before Aut After Aut

Yang et al. [4] Public key X × ×
Tang [6] Public key X × ×
Tang [7] Public key X X ×
Ma et al. [8] Public key X X ×
Huang et al. [9] Public key X X ×
Ma et al. [10] Public key X X ×
Lin, Qu and Zhang [11] Public key X X ×
Carbunar and Sion [2] Private key X × ×
Furukawa and Isshiki [3] Private key X X ×
Pang and Ding [1] Private key X X X
This paper Public key X X X

“Aut” denotes the authorization that issued to the server for enabling equijoin on R and S.

1.3. Paper Organization

The remainder of this paper is organized as follows.
Section 2 defines the framework and security model
for PKDE scheme, and covers some background on our
work. Section 3 presents a construction of PKDE.
We prove the security of the PKDE construction and
analyze its efficiency in Section 4. Finally, Section 5
concludes the paper.

2. DEFINITIONS AND PRELIMINARIES

Our system model consists of a database owner, many
users and a curious server. The database includes
two relations R and S with respective confidential
attributes A and B. Suppose relation R contains
records {r1, r2, · · · , rm} and relation S contains records
{s1, s2, · · · , sn}. We assume that A,B are integers in
M⊂ [0, p) for some large prime number p; support for
bool, float, double and string attributes can be built on
top of integer operations as explained in [1].

The owner engages the server to host database. The
users send encrypted records to the server, and the
owner is able to request the server to execute queries
on the data. The equijoin query, also known as inner
join, of R and S is:

RSIJ = R ./A=B S = {〈r, s〉 | r ∈ R, s ∈ S, r.A = s.B}

The outer join of R and S is:

RSOJ = R ./ S = R ./A=B S ∪RNM ∪ SNM

where

RNM = {〈r, NULL〉 | r ∈ R s.t. @s ∈ S with r.A = s.B}

and

SNM = {〈NULL, s〉 | s ∈ S s.t. @r ∈ R with r.A = s.B}

The difference between RSOJ and RSIJ gives the set
of R and S records that found no matches (NM) in the
other operand relation:

RSNM = RSOJ\RSIJ = RNM ∪ SNM

2.1. Framework

In a public key encryption scheme for relational
database with controlled equijoin (PKDE), equality test
can only be carried out on cross-relation ciphertexts
after the server gets a join token from the owner
and, particularly, equality test cannot be performed on
unmatched ciphertexts within either relation. A PKDE
scheme consists of the following procedures.

• KeyGen(1`) → (PK,SK): Given security param-
eter `, the database owner executes the key gen-
eration procedure to produce a pair of public and
secret keys (PK,SK).

• Setup(PK,SK,D) → (PT ,ST): On input a
pair of public and private keys (PK,SK) and a
description D of some relation, such as R or S
with confidential attributes A and B, the database
owner executes the set-up procedure to produce a
pair of public and private tokens (PT ,ST) for the
corresponding relation.

• EncData(PK,PT A,R.A)→ {Ai}mi=1: With public
key PK and public token PT A, any user can run
the data encryption procedure on the confidential
attribute A in some record ri to produce ciphertext
Ai for relation R.

• DecData(SK,ST A, {Ai}mi=1) → R.A: The data
decryption procedure, which is run by the database
owner, takes as input secret key SK, private token
ST A, and ciphertexts {Ai}mi=1 for R.A. For each
record ri ∈ R, the procedure outputs plaintext ri.A
if Ai has not been tampered with, or ⊥ otherwise.

• QueryGen(ST A,ST B) → TAB : With private
tokens ST A and ST B for relations R and S,
respectively, the query generation procedure, which
is carried out by the owner of the relations, outputs
query token TAB for R ./A=B S.

• Join(PK, TAB , {Ai}mi=1, {Bj}nj=1) → (RSIJ ,
RSNM): The join procedure, which is carried out
by the server, takes as input public key PK, query
token TAB , ciphertexts {Ai}mi=1 for confidential
attribute A in relation R, and ciphertexts {Bj}nj=1

The Computer Journal, Vol. ??, No. ??, ????

yjwang
Highlight

yjwang
Highlight

yjwang
Highlight

4 Y. Wang and H. Pang

for confidential attribute B in relation S. The pro-
cedure outputs RSIJ = R ./A=B S, and RSNM
which contains the unmatched R and S records.

A PKDE scheme must be able to correctly decrypt the
ciphertext that it produces, as well as perform cross-
relation equality test on the ciphertexts.

Definition 2.1 (Correctness). A PKDE scheme
is correct if, for any security parameter ` ∈ N,
any pair of public key and secret key (PK,SK) ←
KeyGen(1`), any relation R with ri.A ∈ M for all
ri ∈ R that is encrypted by the scheme can be
decrypted, i.e., DecData(SK,ST A, {Ai}mi=1) = R.A
where (PT A,ST A)← Setup(PK,SK,DR) for relation
R and {Ai}mi=1 ← EncData(PK,PT A,R.A).

Definition 2.2 (Cross-relation equality test). A
PKDE scheme possesses the cross-relation equality test
property if, for any security parameter ` ∈ N, the
following conditions hold:

• Completeness: This property means that every
pair of matched records 〈ri, sj〉 will be matched by
the equijoin. Specifically, for every m ∈ M and
for every ri ∈ R, sj ∈ S such that m = ri.A and
m = sj .B,

Pr



〈ri, sj〉 ∈ RSIJ :
(PK,SK)← KeyGen(1`),
(PT A,ST A)← Setup(PK,SK,DR),
(PT B ,ST B)← Setup(PK,SK,DS),
{Ai}mi=1 ← EncData(PK,PT A,R.A),
{Bj}nj=1 ← EncData(PK,PT B ,S.B),
TAB ← QueryGen(ST A,ST B),
(RSIJ ,RSNM)← Join(PK, TAB ,

{Ai}mi=1, {Bj}nj=1)


= 1

• Soundness: This property means that every pair of
records (ri, sj) with distinct encrypted values will
not be matched by the equijoin. Specifically, for
every polynomial time algorithm P,

Pr



∃ri ∈ R, ∃sj ∈ S,
ri.A 6= sj .B ∧ 〈ri, sj〉 ∈ RSIJ :

(PK,SK,PT A,ST A, {Ai}mi=1,
PT B ,ST B , {Bj}nj=1)← P(1`),

R.A← DecData(SK,ST A, {Ai}mi=1),
S.B ← DecData(SK,ST B , {Bj}nj=1),
TAB ← QueryGen(ST A,ST B),
(RSIJ ,RSNM)← Join(PK, TAB ,

{Ai}mi=1, {Bj}nj=1)


= 0

• Controlled equijoin1: This property means that
the server cannot perform self join on RNM or
SNM after executing equijoin on (R,S) with TAB.

1This property also means that the server can perform an
equijoin only with the join token TAB . Without TAB , the server
is unable to compare the encrypted records, as ensured by Initial
Confidentiality (formalized in Definition 2.3).

Specifically, for any ` ∈ N, any pair of public and
secret keys (PK,SK)← KeyGen(1`), any relations
R and S, after running

(PT A,ST A)← Setup(PK,SK,DR),

(PT B ,ST B)← Setup(PK,SK,DS),

{Ai}mi=1 ← EncData(PK,PT A,R.A),

{Bj}nj=1 ← EncData(PK,PT B ,S.B),

TAB ← QueryGen(ST A,ST B),

(RSIJ ,RSNM)← Join(PK, TAB , {Ai}mi=1, {Bj}nj=1),

we have

(NULL,RNM)← Join(PK, TAB ,RNM ,RNM)

and

(NULL,SNM)← Join(PK, TAB ,SNM ,SNM)

2.2. Initial Confidentiality Requirement

Any encrypted relation that has not been involved
in a join operation must satisfy indistinguishability
under adaptive chosen ciphertext attack. The protection
is captured formally by the following security game
Gameind−cca2E,PKDEinit

which is jointly carried out by a
probabilistic polynomial-time (PPT) adversary E and
a challenger C.
Setup: With security parameter `, challenger C runs
algorithm KeyGen(1`) to generate a pair of public-
secret keys (PK,SK). It also runs Setup(PK,SK,DR)
to generate a pair of public and private tokens
(PT A,ST A) for relation R with confidential attribute
A. Then, C gives PK and PT A to adversary E .
Stage 1: Adversary E adaptively issues queries on
records of relation R, in which A is a confidential
attribute.

• Decryption query : E submits a ciphertext Ai to C.
The challenger invokes DecData(·) with SK and
ST A, and sends the result ri.A to E if it can be
decrypted successfully; otherwise C sends back ⊥.

Challenge: At the end of stage 1, the adversary
randomly chooses two distinct messages m0,m1

$← M
such that |m0| = |m1|, and sends them to C. The
challenger randomly picks d $← {0, 1}, and encrypts md

as Y by invoking EncData(·) with PK and PT A. C
then returns challenge ciphertext Y to E .
Stage 2: Adversary E poses queries in the same way
as in stage 1, with the restriction that Y cannot be
submitted in decryption queries.
Output: Finally, the adversary outputs a value d′. If
d′ = d, the adversary succeeds in the game, and the
output of the game is defined as 1; otherwise, the output
is 0.

Definition 2.3 (Initial Confidentiality). A PKDE
scheme is said to offer indistinguishability under adap-
tive chosen ciphertext attack (IND-CCA2) protection

The Computer Journal, Vol. ??, No. ??, ????

yjwang
Highlight

yjwang
Highlight

Public Key Database Encryption 5

for relations that have not been involved in join opera-
tions if, for all PPT adversary E, there exists a negligi-
ble function ε(·) such that:

Advind−cca2E,PKDEinit
(`)

def
=

∣∣∣∣Pr
[
Gameind−cca2E,PKDEinit

(`) = 1
]
− 1

2

∣∣∣∣≤ ε(`)
2.3. Post-Join Confidentiality Requirement

After an equijoin, the encrypted records of PKDE
scheme would not enjoy indistinguishability protection.
Suppose that before the join, R and S are orthogonal
relations that separately enjoy IND-CCA2 protection
for their confidential attributes A and B. After the join,
R and S are no longer orthogonal. Instead, logically we
have joined relations RSIJ and RSNM . Essentially,
the equijoin effectively groups the matched records in
R and S into equivalence classes, each containing all
the matched records with the same R.A or S.B value.
An adversary may be able to deduce the cleartext value
corresponding to some of the classes, through frequency
analysis on the class cardinalities. This is especially
so with a small attribute domain M, such as char,
byte and short integer types. On the other hand, if
domain M is large and frequency analysis is infeasible,
the encrypted records enjoy one-way privacy, which is
similar to that defined by Yang et al. [4] for PKEET
scheme.

Formally, post-join confidentiality for the encrypted
records in R (the same for S) is captured by the
following security game Gameow−cca2E,PKDEpost

which is jointly
carried out by a PPT adversary E and a challenger C.

Setup: With security parameter `, challenger
C runs algorithm KeyGen(1`) to generate a pair
of public-secret keys (PK,SK). It also runs
Setup(PK,SK) to generate two pairs of public and
private tokens (PT A,ST A), (PT B ,ST B) for relations
R and S respectively, and query token TAB ←
QueryGen(ST A,ST B). Then, C gives PK, PT A, PT B
and TAB to adversary E . This way, E sees relations
RSIJ and RSNM which may be empty initially.
Stage 1: Adversary E adaptively poses the following
queries on records of R and S. The challenger maintains
all the intermediate information.2

• R-decryption query. E asks for the decryption of
ciphertext Ai in record ri ∈ R. The challenger
invokes DecData(·) with SK and ST A, and sends
the result ri.A to E if Ai can be decrypted
successfully, or ⊥ otherwise.

• S-decryption query. E asks for the decryption of
ciphertext Bj in record sj ∈ S. The challenger
invokes DecData(·) with SK and ST B , and sends

2A decryption query for a record in RSIJ is equivalent to
a combination of R- and S-decryption queries. Similarly, a
decryption query for a record in RSNM is equivalent to an R-
or S-decryption query on the R or S fragment that is not NULL

in the record. Hence we do not treat them as separate types of
query.

the result sj .B to E if Bj can be decrypted
successfully, or ⊥ otherwise.

Challenge: The challenger randomly chooses a
message m $← M for relation R such that m has not
been involved in any of the aforementioned queries. The
challenger encrypts m as Y by invoking EncData(·) with
PK and PT A, and sends the challenge ciphertext Y to
adversary E .

Stage 2: Adversary E poses queries in the same way
as in stage 1, with the restriction that Y cannot be
submitted in any decryption query.

Output: Finally, adversary E outputs a value m′. If
m′ = m, the adversary succeeds and the output of the
game is defined as 1; otherwise, the output is 0.

Definition 2.4 (Post-Join Confidentiality). A P-
KDE scheme is said to offer one-way privacy under
adaptive chosen ciphertext attack (OW-CCA2) for all
encrypted records after an equijoin if, for all PPT ad-
versary E, there exists a negligible function ε(·) such
that:

Advow−cca2E,PKDEpost
(`)

def
= Pr

[
Gameow−cca2E,PKDEpost

(`) = 1
]
≤ ε(`).

2.4. Mathematical Assumptions

Our PKDE scheme is built on bilinear groups. Let
G = 〈g〉 and GT be cyclic groups of prime order p.
G is a bilinear group if there exists a bilinear map
ê : G×G→ GT with the following properties:

• Bilinearity: ∀u, v ∈ G and a, b ∈ Z∗p, ê(ua, vb) =

ê(u, v)ab.
• Non-degeneracy: ê(g, g) 6= 1.
• Computability: All group operations in G,GT and

bilinear mapping ê(·, ·) can be computed efficiently.

Our PKDE scheme will rely on the following
complexity assumptions.

Discrete logarithm assumption (DL): Let G = 〈g〉 be
a cyclic group of prime order p. Given a random element
h ∈R G, any PPT algorithm E would have negligible
probability in computing x ∈ Z∗p such that h = gx.

Computational bilinear Diffie-Hellman assumption
(BDH) [16]. Let G = 〈g〉 be a cyclic group with bilinear
mapping ê : G×G→ GT , where G and GT have prime
order p. Given a tuple (g, ga, gb, gc) for some random
values a, b, c ∈R Z∗p, any PPT algorithm E would have

negligible probability in computing ê(g, g)abc ∈ GT .

3. A CONCRETE PKDE CONSTRUCTION

The construction of our PKDE scheme is given below.
For ease of presenting the security results, we state the
Setup and EncData procedures for R and S separately.

• KeyGen(1`) → (PK,SK): Given security param-
eter `, construct a cyclic group G = 〈g〉 with bi-
linear mapping ê : G × G → GT where G and

The Computer Journal, Vol. ??, No. ??, ????

yjwang
Highlight

yjwang
Highlight

6 Y. Wang and H. Pang

GT have order p, a large prime number such that
[0, p) envelops domain M of R.A and S.B, that
is, M ⊂ [0, p). Choose collision-resistant one-
way hash functions H1 : GT → {0, 1}log p and
H2 : G3 → G∗. Randomly pick σ, σ1, σ2, σ3

$← Z∗p
such that −σ3/σ1 mod p 6∈ M (the need for this
condition will become clear shortly). Compute
S = gσ, h1 = gσ1 , h2 = gσ3 . The owner’s se-
cret key is SK = (σ, σ1, σ2, σ3). The parameter-
s PK = (G,GT , ê, p, g, S, h1, h2, H1, H2) are pub-
lished publicly.

• Setup(PK,SK,DR) → (PT A,ST A): For relation
R, choose τA, κA

$← Z∗p. Compute ΓA = gσ2/κA

and ΥA = gτA/σ2 . The public and private tokens
for relation R are PT A = (ΓA,ΥA) and ST A =
(τA, κA), respectively.

• Setup(PK,SK,DS) → (PT B ,ST B): Similar to
the set-up procedure for relation R.

• EncData(PK,PT A,R.A) → {Ai}mi=1: Using PK
and PT A, anyone may encrypt the confidential
attribute A in a record for R before depositing
it with the server. For each record ri ∈ R, let
λi, µi, xi

$← Z∗p and represent ri.A by encrypted
tuple Ai = 〈Ai,1,Ai,2,Ai,3,Ai,4,Ai,5,Ai,6〉 ∈ G5×
{0, 1}log p where:

Ai,1 = gxi , Ai,2 = hxi×ri.A
1 hxi

2 g
λi ,

Ai,3 = Γxi

A , Ai,4 = Υλi

A ,
Ai,5 = gµi ,

Ai,6 = H1(ê(S,H2(Ai,2,Ai,3,Ai,4)µi))⊕ ri.A.

Here, if |ri.A| < log p, then the binary
representation of ri.A will be padded with leading
“0”s. To explain the importance of the condition
−σ3/σ1 mod p 6∈ M in the Setup procedure,
suppose on the contrary that there are two records
r1, r2 ∈ R with r1.A = r2.A = −σ3/σ1 mod p. The
encryption of r1.A and r2.A will include A1,2 =

gλ1 , A1,4 = Υλ1

A and A2,2 = gλ2 , A2,4 = Υλ2

A ,
respectively. This allows an adversary to deduce
that ê(A1,2,A2,4) = ê(A1,4,A2,2) implies r1.A =
r2.A, without any query token.

• EncData(PK,PT B ,S.B) → {Bj}nj=1: Using PK
and PT B , anyone may encrypt the confidential
attribute B in a record for S before depositing
it with the server. For each record sj ∈ S, let
λj , µj , yj

$← Z∗p and represent sj .B by encrypted
tuple Bj = 〈Bj,1,Bj,2,Bj,3,Bj,4,Bj,5,Bj,6〉 ∈ G5 ×
{0, 1}log p where:

Bj,1 = gyj , Bj,2 = h
yj×sj .B
1 h

yj
2 g

λj ,

Bj,3 = Γ
yj
B , Bj,4 = Υ

λj

B ,
Bj,5 = gµj ,

Bj,6 = H1(ê(S,H2(Bj,2,Bj,3,Bj,4)µj))⊕ sj .B.

• DecData(SK,ST A, {Ai}mi=1) → R.A: For all ri ∈
R, the owner computes

ri.A = Ai,6 ⊕H1(ê(Ai,5, H2(Ai,2,Ai,3,Ai,4)σ)),

then verifies that ri.A ∈M and

ê(Ai,1,Ai,2)
?
= ê(Ai,1,Ai,1)σ1×ri.A+σ3

· ê
(
AκA/τA
i,3 ,Ai,4

)
(1)

If either of the checks fails, the user sets ri.A =⊥
to signify that Ai is corrupted.

• DecData(SK,ST B , {Bj}nj=1) → S.B: Similar to
the decryption procedure for relation R.

• QueryGen(ST A,ST B) → TAB : For equijoin query
R ./A=B S, the owner generates a token TAB =
〈κB/τA, κA/τB〉 and sends it to the server.

• Join(PK, TAB , {Ai}mi=1, {Bj}nj=1) → (RSIJ ,
RSNM): If any pair of records ri ∈ R with cipher-
text Ai = 〈Ai,1,Ai,2,Ai,3,Ai,4,Ai,5,Ai,6〉, and
sj ∈ S with ciphertext Bj = 〈Bj,1,Bj,2,Bj,3,Bj,4,
Bj,5,Bj,6〉, satisfy the following condition,

ê (Ai,2,Bj,1) · ê
(
Ai,3,BκA/τB

j,4

)
?
= ê (Bj,2,Ai,1) · ê

(
BκB/τA
j,3 ,Ai,4

)
(2)

then the server determines that ri.A = sj .B
and inserts 〈ri, sj〉 into RSIJ . R and S records
that have no matching counterpart in S and R,
respectively, are inserted into RSNM .

Theorem 3.1. The PKDE scheme proposed above is
correct.

Proof. Elaborating on Formula (2), due to the
properties of the bilinear group,

ê
(
BκB/τA
j,3 ,Ai,4

)
= ê

((
gσ2/κB

)yjκB/τA
,
(
gτA/σ2

)λi
)

= ê
(
gyj , gλi

)

ê
(
Ai,3,BκA/τB

j,4

)
= ê

((
gσ2/κA

)xi

,
(
gτB/σ2

)λjκA/τB
)

= ê
(
gxi , gλj

)
Moreover,

ê (Ai,2,Bj,1) = ê
(
gσ1xi×ri.A+xiσ3 , gyj

)
· ê
(
gλi , gyj

)
= ê (gxi , gyj)

σ1×ri.A+σ3 · ê
(
BκB/τA
j,3 ,Ai,4

)

⇒ ê (Ai,2,Bj,1) · ê
(
BκB/τA
j,3 ,Ai,4

)−1
= ê (gxi , gyj)

σ1×ri.A+σ3 (3)

Similarly,

ê (Bj,2,Ai,1) = ê
(
gσ1yj×sj .B+yjσ3 , gxi

)
· ê
(
gλj , gxi

)
= ê (gxi , gyj)

σ1×sj .B+σ3 · ê
(
Ai,3,BκA/τB

j,4

)
The Computer Journal, Vol. ??, No. ??, ????

yjwang
Highlight

yjwang
Highlight

Public Key Database Encryption 7

⇒ ê (Bj,2,Ai,1) · ê
(
Ai,3,BκA/τB

j,4

)−1
= ê (gxi , gyj)

σ1×sj .B+σ3 (4)

If ri.A = sj .B, the right-hand-side of Equations (3)
and (4) are the same, so the left-hand-side of the
equations must match. Consequently, the condition in
Formula (2) must hold.

WithAi,1,Ai,2,Ai,3,Ai,4 as defined in the EncData(·)
procedure,

ê(Ai,1,Ai,2) = ê (gxi , gxi)
σ1×ri.A+σ3 · ê

(
gxi , gλi

)
and

ê(Ai,1,Ai,1)σ1×ri.A+σ3 · ê
(
AκA/τA
i,3 ,Ai,4

)
= ê(gxi , gxi)σ1×ri.A+σ3 · ê

(
(gσ2/κA)xiκA/τA , (gτA/σ2)λi

)
= ê (gxi , gxi)

σ1×ri.A+σ3 · ê
(
gxi , gλi

)
Therefore, equality (1) holds and ri.A is decrypted
correctly.

4. ANALYSIS

4.1. Security Results

Theorem 4.1. The proposed PKDE scheme in
Section 3 is complete, sound and controlled for cross-
relation equijoin.

Proof. We first show the completeness property. For
any key pair (PK,SK) ← KeyGen(1`), relation
tokens (PT A,ST A) ← Setup(PK,SK,DR) and
(PT B ,ST B) ← Setup(PK,SK,DS), {Ai}mi=1 ←
EncData(PK,PT A,R.A), {Bj}nj=1 ← EncData(PK,
PT B ,S.B), TAB ← QueryGen(ST A,ST B), for every
m ∈ M and every ri ∈ R, sj ∈ S such that m =
ri.A and m = sj .B, let Ai = 〈Ai,1, · · · ,Ai,6〉 be
the ciphertext of ri.A and Bj = 〈Bj,1, · · · ,Bj,6〉 the
ciphertext of sj .B. Equality (2) holds because ri.A =
sj .B, so 〈ri, sj〉 ∈ RSIJ .

Next, consider the soundness property. Given
{Ai}mi=1 for R.A and {Bj}nj=1 for S.B, along with query
token TAB = (κB/τA, κA/τB). Equality (2) cannot
hold for any ri ∈ R, sj ∈ S if ri.A 6= sj .B. This
is because ri.A 6= sj .B implies ê(gxi , gyj)σ1×ri.A+σ3 6=
ê(gxi , gyj)σ1×sj .B+σ3 .

We continue to consider the property of controlled
equijoin. Without loss of generality, consider two
distinct ciphertexts Ai = 〈Ai,1, · · · ,Ai,6〉,Aj =
〈Aj,1, · · · ,Aj,6〉 ∈ RNM . To perform equality test on
them, Formula (2) can only hold in the following way:

ê(Ai,2,Aj,1) · ê(Ai,3, Aj,4)κA/τA =

ê(Aj,2,Ai,1) · ê(Aj,3,Ai,4)κA/τA

which requires the server knowing κA/τA. However, it
is impossible for the server to deduce κA/τA from the
query token TAB .

Theorem 4.2. Prior to an equijoin, the proposed
PKDE scheme in Section 3 is IND-CCA2 secure in the
random oracle model assuming that the computational
BDH assumption holds.

The following proof follows the standard framework
established in [16, 17].

Proof. Let E = (E1, E2) be a PPT adversary that has
advantage ε in attacking the IND-CCA2 security of the
PKDE scheme in the initial phase. Suppose E issues at
most qD decryption queries, at most qH1

hash queries
of H1, and at most qH2 hash queries of H2 (here, qD,
qH1 and qH2 are positive). Using E , we construct an
algorithm I to solve the computational BDH problem
with non-negligible probability.

At first, algorithm I is given BDH parameters
(G,GT , p, ê) and a BDH instance (g, ga, gb, gc). The
goal of I is to compute Λ = ê(g, g)abc. Algorithm I
simulates the challenger and interacts with adversary E
as follows:

Setup. Algorithm I randomly picks σ1, σ2, σ3, κA,
τA

$← Z∗p, sets S = ga, and computes the elements in
PK and PT A according to the proposed scheme.

Adversary E is able to issue hash queries to H1 and
H2 at any time as follows. OH1

and OH2
are random

oracles controlled by I. To respond to these two types of
hash queries, I maintains two lists L1 and L2 of tuples.
These lists are initially empty.

H1-queries. For input element Ti ∈ GT , if there
is a pair (Ti, δi) ∈ L1, then return δi; if not, return
a random value δi

$← {0, 1}log p, and append the tuple
(Ti, δi) to L1.

H2-queries. For input tuple (Ti,1, Ti,2, Ti,3) ∈ G3,
algorithm I responds as follows:

1. If there is a tuple (Ti,1, Ti,2, Ti,3, ωi,Ωi, cni) ∈ L2,
then return Ωi.

2. If not, randomly pick a coin cni ∈ {0, 1} such
that Pr[cni = 0] = ρ (ρ will be determined later).
Randomly pick a value ωi

$← Z∗p.

• If cni = 0, compute Ωi = gb · gωi ∈ G.
• If cni = 1, compute Ωi = gωi ∈ G.

Return Ωi, and append (Ti,1, Ti,2, Ti,3, ωi,Ωi, cni)
to L2.

Decryption queries. For input ciphertext 〈Ai,1,
· · · ,Ai,6〉, algorithm I queries OH2

to get H2(Ai,2,Ai,3,
Ai,4) = gωi ∈ G. Let (Ti,1, Ti,2, Ti,3, ωi,Ωi, cni) be the
corresponding tuple on the query list L2.

• If cni = 0, then algorithm I reports failure and
terminates.
• Otherwise, we know cni = 1 and Ωi = gωi ∈
G. Algorithm I queries OH1

and gets δi ←
OH1(ê(Ai,5, Sωi)). Following that, I returns m′i ←
δi⊕Ai,6 if equality (1) is satisfied, or ⊥ otherwise.

Challenge. With public key PK and public token
PT A, E outputs m0,m1. Algorithm I chooses random

The Computer Journal, Vol. ??, No. ??, ????

yjwang
Highlight

8 Y. Wang and H. Pang

values d $← {0, 1}, λ, x $← Z∗p, Θ $← {0, 1}log p, and
computes

Ad,1 = gx, Ad,2 = hx×md
1 hx2g

λ,
Ad,3 = ΓxA, Ad,4 = Υλ

A.

Next, I runs OH2 with (Ad,2,Ad,3,Ad,4). If cnd = 1,
then algorithm I reports failure and terminates. If
not, I sets the other two components in the challenge
ciphertext as follows:

Ad,5 = gc, Ad,6 = Θ.

Algorithm I gives the challenge ciphertext Y =
〈Ad,1, · · · ,Ad,6〉 to E .

Note that challenge ciphertext Y implicitly defines
H1(ê(Sc, H2(Ad,2,Ad,3,Ad,4))) = Θ⊕md. That is,

Θ⊕md = H1(ê(gac, gb+ωd)) = H1(ê(g, g)ac(b+ωd))

Thus, Y is a valid ciphertext for message md.
More decryption queries. Adversary E can issue

more decryption queries for ciphertexts 〈Ai,1, · · · ,Ai,6〉,
with the restriction that Y cannot be submitted in
decryption queries.

Guess. Eventually, E outputs a guess d′ ∈ {0, 1}
to indicate whether Y is an encryption of m0 or m1.
Algorithm I randomly picks a tuple (To, δo) from list
L1 and outputs To/ê(g

a, gc)ωd as the solution ê(g, g)abc

to the given BDH instance, where ωd is generated in
the challenge phase.

Note that the responses to H1 and H2 queries are
uniformly and independently distributed in Z∗p and G∗,
respectively, which means they perfectly simulate a real
attack. Thus, if algorithm I does not abort in the
simulation, then adversary E ’s view is identical to that
in the real attack. That means if I does not abort, then
|Pr[d = d′]− 1

2 | ≥ ε.
We continue to show the probability that algorithm

I aborts during the simulation. Suppose adversary
E issues qD decryption queries in total. Thus, the
probability that algorithm I does not abort in the
decryption queries in the two phases is:

PD = Pr[¬abort in OD] = ρqD

Also, the probability that I does not abort in the
challenge phase is:

PC = Pr[¬abort in challenge] = 1− ρ

Therefore, the probability that algorithm I does not
abort in the simulation is:

PN = PD · PC = ρqD (1− ρ)

PN is maximum when ρ = qD
qD+1 . Accordingly, the

probability that I does not abort in the simulation
is at least 1

e(qD+1) , which implies that algorithm I’s

advantage is at least ε
e(qD+1) . Here, e is the base of the

natural logarithm.

We then show that algorithm I outputs a correct an-
swer Λ = ê(g, g)abc with probability at least 2ε

eqH1
(qD+1) .

Let E be the event that ê(Sc, H2(Ad,2,Ad,3,Ad,4)) has
been submitted to OH1

at some point. We prove the
following lemma, in an identical way as [16, Claims 1
and 2].

Lemma 4.1. Pr[E] ≥ 2ε
e(qD+1) .

Proof. If event E happened, ê(Sc, H2(Ad,2,Ad,3,Ad,4))
would appear in some tuple of L1 at the end of the
security game. It is easy to show that Pr[E] in the
above security game is the same as in a real attack.
Let Ei be the event that ê(Sc, H2(Ad,2,Ad,3,Ad,4)) is
submitted to OH1

in the first i H1 queries by adversary
E . By induction, we have Pr[E0] = 0 in both cases of the
simulated security game and the real attack. Assume
that for i > 0, Pr[Ei−1] in the simulation equals to that
in the real attack. Thus, we have

Pr[Ei] = Pr[Ei|Ei−1] Pr[Ei−1] + Pr[Ei|¬Ei−1] Pr[¬Ei−1]

= Pr[Ei−1] + Pr[Ei|¬Ei−1] Pr[¬Ei−1]

Due to the perfectness of the simulation, Pr[Ei|¬Ei−1]
in the simulation is equal to that in the real attack,
which in turn means that Pr[E] in the two cases are
identical.

In the real attack, if event E does not happen,
then the decryption of the challenge ciphertext Y is
independent of adversary E ’s view, which means Pr[d′ =
d|¬E] = 1/2. Hence, the following facts hold.

Pr[d′ = d] = Pr[d′ = d|E] Pr[E] + Pr[d′ = d|¬E] Pr[¬E]

≤ Pr[E] +
1

2
Pr[¬E] =

1

2
+

1

2
Pr[E],

Pr[d′ = d] ≥ Pr[d′ = d|¬E] Pr[¬E] =
1

2
Pr[¬E]

=
1

2
− 1

2
Pr[E],

Together, they imply that∣∣∣∣Pr[d′ = d]− 1

2

∣∣∣∣ ≤ 1

2
Pr[E]. (5)

On the other hand, |Pr[d′ = d] − 1/2| ≥ ε
e(qD+1) .

Combine with Equality (5), we get the relationship

1

2
Pr[E] ≥ ε

e(qD + 1)
.

Therefore, Pr[E] ≥ 2ε
e(qD+1) holds in the real attack as

well as in the simulation.

Thus, the success probability of algorithm I picking
a correct answer is at least 2ε

eqH1
(qD+1) . That is,

AdvBDHI (`) = Pr[To = Λ · ê(ga, gc)ωd] ≥ 2ε

eqH1
(qD + 1)

If ε is not negligible, neither is AdvBDHI (`), which
contradicts the computational BDH assumption. This
concludes Theorem 4.2.

The Computer Journal, Vol. ??, No. ??, ????

Public Key Database Encryption 9

Theorem 4.3. After an equijoin, the proposed PKDE
scheme in Section 3 is OW-CCA2 secure in the random
oracle model assuming that the computational BDH
assumption holds.

The following proof follows the standard framework
established in [4].

Proof. Let E be a PPT adversary attacking the OW-
CCA2 security of the PKDE scheme after an equijoin.
Suppose E issues at most qD decryption queries
(including both R- and S-decryption queries), at most
qH1 hash queries of H1, and at most qH2 hash queries
of H2 (here, qD, qH1

and qH2
are positive). Let

Advow−cca2E,PKDEpost
(`) denote the advantage of E ’s attacks

in the security game. Using E , we then construct an
algorithm I to solve the computational BDH problem
with non-negligible probability. Algorithm I simulates
the challenger and answers the queries of adversary E .

More specifically, we prove the theorem using
hybrid games GamepostGi. The first one GamepostG0

models the original OW-CCA2 security game, the
second shows that the two-phase OW-CCA2 security
game GamepostG0 can be simplified with a negligible
security sacrifice, and the following games are perfectly
simulated in the random oracle model. Let Ψi denote
the event that m′ = m in GamepostGi. Accordingly, E ’s
success probability in GamepostGi is Pr[Ψi]. We first
consider the original security game.

GamepostG0

1 Pick σ, σ1, σ2, σ3, κA, τA, κB , τB
$← Z∗p. Compute

S = gσ, h1 = gσ1 , h2 = gσ3 , ΓA = gσ2/κA ,
ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB = gτB/σ2 , and
TAB = 〈κB/τA, κA/τB〉.

2 Generate state ← EOH1
,OH2

,OD1
,OD2

1 (PK,PT A,
PT B , TAB , ∗) with the following oracles.

• OH1
: For an input element T , OH1

responds
with a random value in a consistent way,
meaning that the same value will be returned
for the same input. When composing a
ciphertext, the adversary should invoke this
oracle; similarly, this oracle is invoked in
answering decryption queries.

• OH2 : Similar to OH1 , for an input tuple
(T1, T2, T3), OH2 responds with a random
value in a consistent way. When composing
a ciphertext, the adversary should invoke this
oracle; similarly, this oracle is invoked in
answering decryption queries.

• OD1 : For a decryption query on Ai =
〈Ai,1, · · · ,Ai,6〉, OD1

runs the decryption
procedure of the PKDE scheme using private
parameters σ, σ1, σ2, σ3, κA, τA.

• OD2
: For a decryption query on Bj =

〈Bj,1, · · · ,Bj,6〉, OD2 runs the decryption

procedure of the PKDE scheme using private
parameters σ, σ1, σ2, σ3, κB , τB .

3 m $←M, Y ← EncData(PK,PT A,m).

4 m′ ← EOH1
,OH2

,OD1
,OD2

2 (PK,PT A,PT B , TAB , state,
Y, ∗), where the oracles work in the same way as
in step 2 except that decryption queries on Y are
not allowed.

5 If m′ = m, E wins the game.

Next, we define a simplified security game and show
its relationship with GamepostG0.

GamepostG1

1 Pick σ, σ1, σ2, σ3, κA, τA, κB , τB
$← Z∗p. Compute

S = gσ, h1 = gσ1 , h2 = gσ3 , ΓA = gσ2/κA ,
ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB = gτB/σ2 , and
TAB = 〈κB/τA, κA/τB〉.

2 m $←M, Y ← EncData(PK,PT A,m).

3 m′ ← EOH1
,OH2

,OD1
,OD2 (PK,PT A,PT B , TAB , Y, ∗)

with the following oracles.

• OH1 : The same as in GamepostG0.
• OH2

: The same as in GamepostG0.
• OD1

: The same as in GamepostG0.
• OD2

: The same as in GamepostG0.

4 If m′ = m, E wins the game.

Lemma 4.2. Pr[Ψ0] ≤ Pr[Ψ1] + qD′
|M| , where qD′

denotes the total number of the two types of decryption
queries in step 2 of GamepostG0.

Proof. For ease of presentation, let E = (E1, E2) and F
denote the adversaries in GamepostG0 and GamepostG1,
respectively. Adversary F initiates GamepostG1 and
receives challenge ciphertext Y from the security game,
before running E . For E1’s hash queries to OH1

and
OH2

, F responds using its corresponding oracles. For
decryption queries, F uses its own OD1 and OD2 ; the
exception is that F aborts the security game if some Y ′

such that DecData(SK, ∗, Y ′) = m is submitted, which
happens with probability at most 1

|M| . Eventually, E1
terminates and outputs a state state. Next, F runs E2
with (state, Y), and uses its corresponding oracles to
answer E2’s queries. Eventually, E2 terminates and F
outputs whatever m′ that E2 outputs.

GamepostG2

1 Pick σ, σ1, σ2, σ3, κA, τA, κB , τB
$← Z∗p. Compute

S = gσ, h1 = gσ1 , h2 = gσ3 , ΓA = gσ2/κA ,
ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB = gτB/σ2 , and
TAB = 〈κB/τA, κA/τB〉. Set L1 = ∅ and L2 = ∅.

The Computer Journal, Vol. ??, No. ??, ????

10 Y. Wang and H. Pang

2 m $←M, λ $← Z∗p, x $← Z∗p, µ $← Z∗p, ω $← Z∗p, Ω = gω,

∆ $← {0, 1}log p, generate the challenge ciphertext
Y = 〈A′1, · · · ,A′6〉 as follows:

A′1 = gx, A′2 = hx×m1 hx2g
λ,

A′3 = ΓxA, A′4 = Υλ
A,

A′5 = gµ, A′6 = ∆⊕m.

Update L1 = L1 ∪ {(ê(S,Ωµ),∆)} and L2 = L2 ∪
{(A′1,A′2,A′3, ω,Ω)}.

3 m′ ← EOH1
,OH2

,OD1
,OD2 (PK,PT A,PT B , TAB , Y, ∗)

with the following oracles.

• OH1 : For input element Ti ∈ GT , if there is
a pair (Ti, δi) ∈ L1, then return δi; if not,
return a random value δi

$← {0, 1}log p, and
append the tuple (Ti, δi) to L1.

• OH2
: For input tuple (Ti,1, Ti,2, Ti,3) ∈ G3, if

there is an entry (Ti,1, Ti,2, Ti,3, ωi,Ωi) ∈ L2,
then return Ωi; if not, pick a random value
ωi

$← Z∗p, return Ωi = gωi ∈ G, and append
(Ti,1, Ti,2, Ti,3, ωi,Ωi) to L2.

• OD1
: For input ciphertext Ai = 〈Ai,1, · · · ,

Ai,6〉, invoke hash queries Ωi ← OH2(Ai,2,
Ai,3,Ai,4) and δi ← OH1(ê(Ai,5,Ωσi)),
compute ri.A = δi ⊕ Ai,6. If ri.A satisfies
Equality (1), then return ri.A; otherwise
return ⊥.

• OD2
: For input ciphertext Bj = 〈Bj,1, · · · ,

Bj,6〉, invoke hash queries Ωj ← OH2(Bj,2,
Bj,3,Bj,4) and δj ← OH1(ê(Bj,5,Ωσj)), and
compute sj .B = δj ⊕ Bj,6. If sj .B satisfies
Equality (1), then return sj .B; otherwise
return ⊥.

4 If m′ = m, E wins the game.

Due to the idealness of random oracles OH1 and OH2 ,
GamepostG2 is identical to GamepostG1. Thus, we have

Lemma 4.3. Pr[Ψ2] = Pr[Ψ1].

GamepostG3

1 Pick σ, σ1, σ2, σ3, κA, τA, κB , τB
$← Z∗p. Compute

S = gσ, h1 = gσ1 , h2 = gσ3 , ΓA = gσ2/κA ,
ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB = gτB/σ2 , and
TAB = 〈κB/τA, κA/τB〉. Set L1 = ∅ and L2 = ∅.

2 m $←M, λ $← Z∗p, x $← Z∗p, µ $← Z∗p, ω $← Z∗p, Ω = gω,

Θ $← {0, 1}log p, generate the challenge ciphertext
Y = 〈A′1, · · · ,A′6〉 as follows:

A′1 = gx, A′2 = hx×m1 hx2g
λ,

A′3 = ΓxA, A′4 = Υλ
A,

A′5 = gµ, A′6 = Θ.

Update L1 = L1 ∪ {(ê(S,Ωµ),Θ ⊕m)} and L2 =
L2 ∪ {(A′1,A′2,A′3, ω,Ω)}.

3 m′ ← EOH1
,OH2

,OD1
,OD2 (PK,PT A,PT B , TAB , Y, ∗)

with the following oracles.

• OH1
: The same as in GamepostG2 except that

if the adversary E submits ê(S,Ωµ), then the
security game aborts. Let this abort event be
E1.

• OH2 : The same as in GamepostG2.
• OD1

: The same as in GamepostG2 except that
if the adversary E submits 〈A′1, · · · ,A′5,A′′6〉
with A′′6 6= A′6, then return ⊥.

• OD2
: The same as in GamepostG2.

4 If m′ = m, E wins the game.

In both GamepostG2 and GamepostG3, the element A′6
in the challenge ciphertext is a random value. Thus,
the challenge ciphertext Y generated in GamepostG3 is
identically distributed to that in GamepostG2. Hence, if
the event E1 does not occur, then GamepostG3 would be
identical to GamepostG2, that is,

|Pr[Ψ2]− Pr[Ψ3]| ≤ Pr[E1]. (6)

In fact, event E1 implies the adversary is able to
correctly decrypt Y to get m. We show that event
E1 can only happen with negligible probability if the
computational BDH assumption holds.

Lemma 4.4. Pr[E1] ≤ qH1
AdvBDH +

qD1

p , where qH1

denotes the number of hash queries to H1, and qD1

denotes the number of decryption queries for the records
in R.

Proof. Suppose that event E1 happens with non-
negligible probability, we can construct a PPT
algorithm I that breaks the BDH assumption. At
first, I is given BDH parameters (G,GT , p, ê) and a
BDH instance (g, ga, gb, gc), with the goal of computing
Λ = ê(g, g)abc. I randomly picks σ1, σ2, σ3, κA, τA,
κB , τB

$← Z∗p, sets S = ga, and computes h1 = gσ1 , h2 =

gσ3 , ΓA = gσ2/κA , ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB =
gτB/σ2 , and TAB = 〈κB/τA, κA/τB〉. Further, algorithm
I randomly picks m $← M, λ $← Z∗p, x $← Z∗p, and

Θ $← {0, 1}log p, and generates the challenge ciphertext
Y = 〈A′1, · · · ,A′6〉 as follows:

A′1 = gx, A′2 = hx×m1 hx2g
λ,

A′3 = ΓxA, A′4 = Υλ
A,

A′5 = gc, A′6 = Θ.

Algorithm I initiates L1 as empty and adds the
tuple (A′1,A′2,A′3,>, gb) into L2, where > denotes an
‘unknown’ value. The challenge ciphertext Y has the
same distribution as that in GamepostG3. Algorithm
I simulates the challenger of GamepostG3 and invokes
adversary E with inputs PK, PT A, PT B , TAB , Y , and
the following oracles:

• OH1
: The same as in GamepostG3.

• OH2 : The same as in GamepostG3.

The Computer Journal, Vol. ??, No. ??, ????

Public Key Database Encryption 11

• OD1 : On input a ciphertext 〈Ai,1, · · · ,Ai,6〉, if
Ai,j = A′j holds for 1 ≤ j ≤ 5 yet Ai,6 6= A′6, I
returns ⊥. Otherwise, algorithm I performs the
following steps:

– Query OH2 with input (Ai,2,Ai,3,Ai,4) and
get (ωi,Ωi).

– Search for an entry (ê(Ai,5, Sωi), ∗) in L1.
If some entry (ê(Ai,5, Sωi),∆i) exists, then
compute ∆i⊕Ai,6. The decryption ∆i⊕Ai,6
is returned only when Equality (1) is satisfied,
otherwise return ⊥.

• OD2
: The same as in GamepostG3.

Let E2 denote the event that E queries OH1
with

ê(g, g)abc. If event E2 does not happen by the end
of the simulation, then I aborts with failure. To
show that the decryption queries to OD1

are simulated
indistinguishably from GamepostG3, we analyze the
decryption queries as follows:

• Case 1: ê(Ai,5, H2(Ai,2,Ai,3,Ai,4)a) has been
queried to OH1

before a decryption query for Ai =
(Ai,1, · · · ,Ai,6) is issued. In this case, Ai,6 is
uniquely determined. Thus, the decryption oracle
OD1

is perfectly simulated.
• Case 2: ê(Ai,5, H2(Ai,2,Ai,3,Ai,4)a) has not been
queried to OH1

before a decryption query for Ai =
(Ai,1, · · · ,Ai,6) is issued. In this case, OD1 will
output ⊥. Thus, the simulations would fail if Ai
is a valid ciphertext. Due to the idealness of OH1

,
this happens with probability 1/p.

Letting E3 denote the event that a valid ciphertext
is rejected in the simulation, we have

Pr[E3] ≤ qD1

p
.

Thus, if event E3 does not happen, the simulations are
identical to GamepostG3, which implies Pr[E2|¬E3] =
(1/qH1

) Pr[E1]. Therefore,

Pr[E2] = Pr[E2|E3] Pr[E3] + Pr[E2|¬E3] Pr[¬E3]

≥ Pr[E2|¬E3] Pr[¬E3]

=
1

qH1

Pr[E1](1− Pr[E3])

≥ 1

qH1

(Pr[E1]− Pr[E3])

≥ 1

qH1

(
Pr[E1]− qD1

p

)
.

Thus, we have

AdvBDHI ≥ 1

qH1

(
Pr[E1]− qD1

p

)
.

This completes the proof of Lemma 4.4.

We continue to show that event Ψ3 can only happen
with negligible probability if the discrete logarithm
problem is hard.

Lemma 4.5. Pr[Ψ3] ≤ AdvDL.

Proof. Suppose that event Ψ3 happens with non-
negligible probability, we can construct a PPT
algorithm I that breaks the DL assumption.

At first, I is given a DL instance (g, ga) ∈ G2,
with the goal of computing a ∈ Z∗p. Algorithm I
randomly picks σ, σ1, σ2, σ3, κA, τA, κB , τB

$← Z∗p, and

computes S = gσ, h1 = gσ1 , h2 = gσ3 , ΓA = gσ2/κA ,
ΥA = gτA/σ2 , ΓB = gσ2/κB , ΥB = gτB/σ2 , and TAB =
〈κB/τA, κA/τB〉. Further, algorithm I randomly picks
λ $← Z∗p, x $← Z∗p, µ $← Z∗p, Θ $← {0, 1}log p, and generates
the challenge ciphertext Y = 〈A′1, · · · ,A′6〉 as follows:

A′1 = gx, A′2 = (ga)
σ1x hx2g

λ = hax1 hx2g
λ,

A′3 = ΓxA, A′4 = Υλ
A,

A′5 = gµ, A′6 = Θ.

Algorithm I also randomly picks ω $← Z∗p and Ω = gω,
and updates two initially empty query lists, that is, I
inserts (ê(S,Ωµ),>) into L1 and (A′1,A′2,A′3, ω,Ω) into
L2, where > denotes an ‘unknown’ value. Algorithm
I simulates the challenger of GamepostG3 and invokes
adversary E with inputs PK, PT A, PT B , TAB , and Y .
At last, algorithm I outputs whatever E outputs. Thus,
we have Pr[Ψ3] ≤ AdvDL.

Combining Lemma 4.2 through Lemma 4.5, we have

Advow−cca2E,PKDEpost
(`) = Pr[Ψ0]

≤ Pr[Ψ1] +
qD′

|M|

= Pr[Ψ2] +
qD′

|M|

≤ Pr[Ψ3] + Pr[E1] +
qD′

|M|

≤ AdvDL + qH1
AdvBDH +

qD1

p
+
qD′

|M|

Since the DL assumption implies the BDH assumption,
this concludes Theorem 4.3.

4.2. Efficiency Analysis

We continue to analyze the computational complexity
of the procedures in the proposed PKDE scheme.
The analysis focuses on the most time-consuming
operations, that is, exponentiations in cyclic groups
G and GT , and bilinear pairing ê. Their evaluation
times are denoted by χG, χGT

, χê, respectively. Table
2 summarizes the computation costs of each procedure
and makes a comparison with the most relevant existing
work in [1]. In the table, the computation costs are
analyzed for one evaluation, that is, one encryption,
one decryption, and one join. In an encryption,
both schemes require roughly the same computations
– 8 exponentiations and 1 bilinear mapping. More
specifically, in our PKDE scheme, the exponentiation
for the last element (e.g., Ai,6 or Bj,6) of a ciphertext

The Computer Journal, Vol. ??, No. ??, ????

12 Y. Wang and H. Pang

TABLE 2. Computation cost for each procedure

Pang and Ding [1] This paper

EncData 7χG + 1χGT + 1χê 8χG + 1χê

DecData – 2χG + 1χGT + 4χê

Join 2χG + 5χê 2χG + 4χê

TABLE 3. Comparison of element size

Pang and Ding [1] This paper

Ciphertext Ai or Bj 8ξG 5ξG + log p
Join query token TAB 2ξZ 2ξZ

is taken on G. In fact, this exponentiation can also
be moved to be performed on GT . In this way, both
schemes enjoy the same encryption efficiency. For
decryption, our construction requires 3 exponentiations
and 4 bilinear mapping operations, whereas there is no
efficient decryption procedure in [1]. Also, our scheme
has a more efficient join mechanism that incurs one
less bilinear mapping than that in [1]. Moreover, query
token generation in both our PKDE scheme and [1] take
only two multiplications, involving no time-consuming
computation. As for storage cost, our PKDE scheme
also outperforms [1] in that the latter one has larger
ciphertext size as shown in Table 3, where ξG and ξZ
denote the element size of G and Zp, respectively.

5. CONCLUSION

In this paper, we study the problem of privacy-
preserving and controlled equijoin on databases that
are hosted by an untrusted server. With the database
owner’s authorization, the server is able to perform an
equijoin of two operand relations without decrypting
their data or interacting with the owner. Moreover, the
authorization cannot be abused to carry out any other
join, including self-joins on the operand relations that
would disclose statistical information even on records
that are not in the equijoin result; in this sense,
the equjoin is controlled. We introduce the notion
of public key encryption for relational database with
controlled equijoin (PKDE), and formalize its security
model to capture two phases of data confidentiality.
In the initial phase before any equijoin is performed,
encrypted data should enjoy IND-CCA2 security. After
an equijoin, the data would satisfy OW-CCA2 security.
We propose a construction for our PKDE scheme and
formally prove its security in our security model under
the computational Bilinear Diffie-Hellman assumption.
An efficiency analysis shows that our construction
outperforms the only existing scheme (that however is
formulated for a private key setting).

ACKNOWLEDGEMENTS

This article is based on research work supported by the
Singapore National Research Foundation under NCR
Award Number NRF2014NCR-NCR001-012.

REFERENCES

[1] Pang, H. and Ding, X. (2014) Privacy-preserving
ad-hoc equi-join on outsourced data. ACM Trans.
Database Syst., 39, 23:1–23:40.

[2] Carbunar, B. and Sion, R. (2012) Toward private joins
on outsourced data. IEEE Transactions on Knowledge
and Data Engineering, 24, 1699–1710.

[3] Furukawa, J. and Isshiki, T. (2013) Controlled joining
on encrypted relational database. Pairing, Cologne,
Germany, pp. 46–64. Springer.

[4] Yang, G., Tan, C. H., Huang, Q., and Wong, D. S.
(2010) Probabilistic public key encryption with equality
test. CT-RSA, San Francisco, CA, USA, March 1-5,
pp. 119–131. Springer.

[5] Lu, Y., Zhang, R., and Lin, D. (2012) Stronger security
model for public-key encryption with equality test.
Pairing, Cologne, Germany, pp. 65–82. Springer.

[6] Tang, Q. (2011) Towards public key encryption
scheme supporting equality test with fine-grained
authorization. ACISP, Melbourne, Australia, July 11-
13, pp. 389–406. Springer.

[7] Tang, Q. (2012) Public key encryption supporting
plaintext equality test and user-specified authorization.
Sec. and Commun. Netw., 5, 1351–1362.

[8] Ma, S., Zhang, M., Huang, Q., and Yang, B. (2015)
Public key encryption with delegated equality test in
a multi-user setting. The Computer Journal, 58, 986–
1002.

[9] Huang, K., Tso, R., Chen, Y.-C., Rahman, S. M. M.,
Almogren, A., and Alamri, A. (2015) PKE-AET: Public
key encryption with authorized equality test. The
Computer Journal, 58, 2686–2697.

[10] Ma, S., Huang, Q., Zhang, M., and Yang, B. (2015)
Efficient public key encryption with equality test
supporting flexible authorization. IEEE Transactions
on Information Forensics and Security, 10, 458–470.

[11] Lin, X.-J., Qu, H., and Zhang, X. (2016).
Public Key Encryption Supporting Equality Test
and Flexible Authorization without Bilinear Pair-
ings. Cryptology ePrint Archive, Report 2016/277.
http://eprint.iacr.org/2016/277.pdf.

[12] Cristofaro, E., Kim, J., and Tsudik, G. (2010) Linear-
complexity private set intersection protocols secure in
malicious model. ASIACRYPT, Singapore, December
5-9, pp. 213–231. Springer.

[13] Stefanov, E., Shi, E., and Song, D. (2012) Policy-
enhanced private set intersection: Sharing information
while enforcing privacy policies. PKC, Darmstadt,
Germany, May 21-23, pp. 413–430. Springer.

[14] Kerschbaum, F. (2012) Collusion-resistant outsourcing
of private set intersection. SAC, Trento, Italy, pp.
1451–1456. ACM.

[15] Kerschbaum, F. (2012) Outsourced private set intersec-
tion using homomorphic encryption. ASIACCS, Seoul,
Korea, pp. 85–86. ACM.

[16] Boneh, D. and Franklin, M. (2003) Identity-based
encryption from the weil pairing. SIAM Journal on
Computing, 32, 586–615.

[17] Boneh, D., Di Crescenzo, G., Ostrovsky, R., and
Persiano, G. (2004) Public key encryption with keyword
search. EUROCRYPT, Interlaken, Switzerland, May
2-6, pp. 506–522. Springer.

The Computer Journal, Vol. ??, No. ??, ????

	Probabilistic public key encryption for controlled equijoin in relational databases
	Citation

	tmp.1490586043.pdf.95vuD

