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N
othing is certain but death and
taxes, they say. On the death front,
we are making some inroads with
all our medical marvels, at least in
postponing it if not actually
avoiding it. But when it comes to

taxes, we have no defense other than a bit of cre-
ativity in our tax returns. 

Let’s say Uncle Sam thinks you owe him
$75,000. In your honest opinion, the fair figure is
about the $50,000 mark. So, you comb through
your tax-deductible receipts. After countless
hours of hard work, you bring the number down
to, say, $65,000. As a quant, you can estimate the
probability of an IRS audit. And you can put a
number (an expectation value in dollars) to the
pain and suffering that can result from it. 

Let’s suppose that you calculate the risk of a
tax audit to be about one per cent and decide
that it is worth the risk to get creative in your
deduction claims to the tune of $15,000. You
send in the tax return and sit tight, smug in the
knowledge that the odds of your getting audited
are fairly slim. You are in for a big surprise. You
will get well and truly fooled by randomness,
and the IRS will almost certainly want to take a
closer look at your tax return. 

The calculated creativity in tax returns
seldom pays off. Your calculations of expected
pain and suffering are never consistent with the
frequency with which the IRS audits you. The
probability of an audit is, in fact, much higher if
you try to inflate your tax deductions. You can
blame Benford for this skew in probability
stacked against your favor. 

Benford and Your Taxes
Statistical analysis is the

nemesis of creative 

bookkeeping

Skepticism
Benford (1938) presented something very
counter-intuitive. He asked the question: what is
the distribution of the first digits in any
numeric, real-life data? At first glance, the
answer seems obvious. All digits should have the
same probability. Why would there be a prefer-
ence to any one digit in random data? 

Benford showed that the first digit in a “nat-
urally occurring” number is much more likely
to be 1 rather than any other digit. In fact, each
digit has a specific probability of being in the
first position. The digit 1 has the highest proba-
bility; the digit 2 is about 40 per cent less likely
to be in the first position, and so on. The digit 9
has the lowest probability of all; it is about six
times less likely to be in the first position. 

When I first heard of this first-digit phenom-

enon from a well-informed colleague, I thought
it was weird. I would have naïvely expected to see
roughly same frequency of occurrence for all
digits from 1 to 9. So, I collected large amount of
financial data, about 65,000 numbers (as many
as Excel would permit), and looked at the first
digit. I found Benford to be absolutely right, as
shown in Figure 1.

The probability of the first digit is pretty far
from uniform, as Figure 1 shows. The distribu-
tion is, in fact, logarithmic. The probability of
any digit d is given by log(1 + 1 / d), which is the
purple curve in Figure 1.  

This skewed distribution is not an anomaly
in the data that I happened to look at. It is the
rule in any “naturally occurring” data. It is
Benford’s law. Benford collected a large number
of naturally occurring data (including popula-
tion, areas of rivers, physical constants, numbers
from newspaper reports, and so on) and showed
that this empirical law is respected.

Simulation
As a quantitative developer, I tend to simulate
things on a computer with the hope that I may
be able to see patterns that will help me under-
stand the problem. The first question to be set-
tled in the simulation is to figure out what the
probability distribution of a vague quantity like
“naturally occurring numbers” would be. Once I
have the distribution, I can generate numbers
and look at the first digits to see their frequency
of occurrence.

To a mathematician or a quant, there is
nothing more natural that natural logarithm.
So, the first candidate distribution for naturally
occurring numbers is something like RV exp(RV),
where RV is a uniformly distributed random vari-
able (between 0 and 10). The rationale behind this
choice is an assumption that the number of
digits in naturally occurring numbers is uni-
formly distributed between 0 and an upper limit. 
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Indeed, you can choose other, fancier distri-
butions for naturally occurring numbers. I tried
a couple of other candidate distributions using
two uniformly distributed (between 0 and 10)
random variables RV1 and RV2: RV1 exp(RV2)
and exp(RV1+RV2). All these distributions turn
out to be good guesses for naturally occurring
numbers, as illustrated in Figure 2. 

The first digits of the numbers that I gener-
ated follow Benford’s law to an uncanny degree 
of accuracy. Why does this happen? One good
thing about computer simulation is that you 
can dig deeper and look at intermediate results.
For instance, in our first simulation with the 
distribution: RV exp(RV), we can ask the 
question: what are the values of RV for which
we get a certain first digit? The answer is 
shown in Figure 3a. Note that the ranges in RV
that give the first digit 1 are much larger than
those that give 9. About six times larger, in 
fact, as expected. Notice how pattern repeats
itself as the simulated natural numbers “roll
over” from the first digit of 9 to 1 (as an
odometer tripping).

A similar trend can
be seen in our fancier
simulation with two
random variables. The

regions in their joint distributions that give rise
to various first digits in RV1 exp(RV2) are shown
in Figure 3b. Notice the large swathes of deep
blue (corresponding to the
first digit of 1) and compare
their area with the red
swathes (for the first digit 9).

This exercise gives me the
insight I was hoping to 
glean from the simulation.
The reason for the preponder-
ance of smaller digits in the
first position is that the 
distribution of naturally
occurring numbers is usually
a tapering one; there is usually
an upper limit to the num-
bers, and as you get closer to
the upper limit, the proba-
bility density becomes smaller
and smaller. As you pass the
first digit of 9 and then roll
over to 1, suddenly its range
becomes much bigger.

While this explanation is satisfying, the sur-
prising fact is that it doesn’t matter how the
probability of natural distributions tapers off. It
is almost like the central limit theorem. Of
course, this little simulation is no rigorous
proof. If you are looking for a rigorous proof, you
can find it in Hill’s (1996) work. 

Figure 1. The frequency of occurrence of the first digits in the
notional amounts of financial transactions. The purple curve is the
predicted distribution. Note that the slight excesses at 1 and 5 above
the purple curve are expected because people tend to choose
nationals like 1/5/10/50/100 million. The excess at 8 is also
expected because it is considered a lucky number in Asia.

Figure 2. The distribution of the first digits in the simulation of “natu-
rally occurring” numbers, compared with the prediction.

Figure 3a. The ranges in a uniformly distributed (between 0 and
10) random variable RV that result in different first digits in RV
exp(RV). Note that the first digit of 1 occurs much more frequently
than the rest, as expected.
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Fraud Detection
Although our tax evasion troubles can be
attributed to Benford, the first-digit 
phenomenon was originally described in an
article by Simon Newcomb (1881) in the
American Journal of Mathematics in 1881. It was
rediscovered by Frank Benford in 1938, to
whom all the glory (or the blame, depending
on which side of the fence you find yourself)
went. In fact, the real culprit behind our tax
woes may have been Theodore Hill. He
brought the obscure law to the limelight in a
series of articles in the 1990s. In his 1996
article, he even presented a statistical proof
for the phenomenon.

In addition to causing our personal tax trou-
bles, Benford’s law can play a crucial role in
many other fraud and irregularity checks
(Nigrini, 1999). For instance, the first-digit distri-
bution in the accounting entries of a company
may reveal bouts of creativity. Employee reim-
bursement claims, check amounts, salary fig-
ures, grocery prices – everything is subject to
Benford’s law. It can even be used to detect
market manipulations because the first digits of
stock prices, for instance, are supposed to follow
the Benford distribution. If they don’t, we have
to be wary.

data. A check based on the law is easy to imple-
ment and hard to circumvent. It is simple and
fairly universal. So, let’s not try to beat Benford;
let’s join him instead.
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Figure 4. The joint distribution of the first and second digits in a 
simulation, showing correlation effects.

Figure 3b. The regions in the joint distribution of two uniformly
distributed (between 0 and 10) random variables RV1 and RV2 that
result in different first digits in RV1 exp(RV2).

Moral 
The moral of the story is simple: don’t get creative
in your tax returns. You will get caught. You might
think that you can use this Benford distribution to
generate a more realistic tax deduction pattern.
But this job is harder than it sounds. Although I
didn’t mention it, there is a correlation between
the digits. The probability of the second digit
being 2, for instance, depends on what the first
digit is. Look at Figure 4, which shows the correla-
tion structure in one of my simulations.

Besides, the IRS system is likely to be far more
sophisticated. For instance, they could be using
an advanced data mining or pattern recognition
systems such as neural networks or support
vector machines. Remember that the IRS has
labeled data (tax returns of those who unsuccess-
fully tried to cheat, and those of good citizens)
and they can easily train classifier programs to
catch budding tax evaders. If they are not using
these sophisticated pattern recognition algo-
rithms yet, trust me, they will, after seeing this
article. When it comes to taxes, randomness will
always fool you because it is stacked against you.

But, seriously, Benford’s law is a tool that we
have to be aware of. It may come to our aid in
unexpected ways when we find ourselves
doubting the authenticity of all kinds of numeric
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