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An Efficient Privacy-Preserving Outsourced
Calculation Toolkit With Multiple Keys

Ximeng Liu, Member, IEEE, Robert H. Deng, Fellow, IEEE,
Kim-Kwang Raymond Choo, Senior Member, IEEE, and Jian Weng

Abstract—1In this paper, we propose a toolkit for efficient
and privacy-preserving outsourced calculation under multiple
encrypted keys (EPOM). Using EPOM, a large scale of users
can securely outsource their data to a cloud server for storage.
Moreover, encrypted data belonging to multiple users can be
processed without compromising on the security of the individual
user’s (original) data and the final computed results. To reduce
the associated key management cost and private key exposure
risk in EPOM, we present a distributed two-trapdoor public-key
cryptosystem, the core cryptographic primitive. We also present
the toolkit to ensure that the commonly used integer operations
can be securely handled across different encrypted domains.
We then prove that the proposed EPOM achieves the goal of
secure integer number processing without resulting in privacy
leakage of data to unauthorized parties. Last, we demonstrate
the utility and the efficiency of EPOM using simulations.

Index Terms— Privacy-preserving, homomorphic encryption,
outsourced computation, multiple keys.

I. INTRODUCTION

LOUD computing due to its capability to sup-
Cport real-time and massive storing and processing
of data, is increasingly used in domains such as Inter-
net of Things (IoT) [I], e-commerce [2], and scientific
research [3]-[5]. It is, therefore, unsurprising that cloud com-
puting is considered a viable solution to address the demands
due to a significant increase in storage media and the num-
ber of digital and Internet-connected devices (e.g. Internet
of Things and medical devices). For example, in 2011, the
U.S Federal Government adopted a ‘Cloud First” policy which
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requires government agency’s Chief Information Officers to
implement a cloud-based service whenever there was a secure,
reliable, and cost-effective option [6], [7]. Despite the benefits
afforded by the use of cloud computing, data security and
privacy remain areas of ongoing focus. For example, in the
final US Government Cloud Computing Technology Roadmap
published by the National Institute of Standards and Tech-
nology (NIST), security and privacy are considered one of
the high-priority requirements [8], and a number of dedicated
cloud computing research labs, such as [9] and [10], have been
established in recent years.

In attempts to conserve resources, reduce operational costs,
and maintain efficiency, cloud service providers often store
data belonging to multiple users on the same server (i.e. multi-
tenancy) [11]. Therefore, different users should be distrib-
uted with an individual key (i.e. multiple keys [12], a.k.a,
multi-key), to avoid multi-tenancy related attacks (e.g. a user’s
private data viewed by other unauthorized users). One applica-
tion of the multi-key setting is e-healthcare cloud [13], where
patients can transmit and store their health related information
(e.g. patient’s heart rate, blood pressure and glucose levels)
on the hospital’s cloud servers. This will facilitate diagnosis
of the patients’ physical condition based on the information.
It is, however, important to ensure the security and privacy
of patient’s health and other personally identifiable informa-
tion (PII), such as health status. The privacy of decision
making model used is also considered by the e-health service
provider as a trade secret. One way to achieve the security and
privacy of the data is to issue all users (e.g. patients and service
provider) different (unique) keys. In addition, an e-health
service provider uses patients’ health and PII (encrypted under
different keys) in their training decision model. For example,
historical medical data are used to train Naive Bayesian
classifier in Clinical Decision Support System (CDSS) [14].
However, achieving secure calculation over the data under
multiple keys without comprising the privacy of individual
data remains a hard problem.

In this paper, we propose an Efficient Privacy-
preserving Outsourced calculation framework with Multiple
keys (EPOM) to address the above-mentioned challenge.
We regard the contributions of this paper to be four-fold,
namely:

o Our proposed EPOM is designed to allow different data
providers to outsource their data (e.g. data belonging to
users from different data providers) to the cloud server
for secure storage and processing.



o We construct a new cryptographic primitive, Distrib-
uted Two Trapdoors Public-Key Cryptosystem (DT-PKC),
which is deployed in EPOM to split a strong private key
into different shares. This will allow us to reduce the risk
of private key leakage and private key management cost
in a multi-key setting.

o We build a privacy-preserving outsourced calculation
toolkit of integer numbers with multiple keys. The toolkit
consists of commonly used elementary operations, such
as multiplication, division, comparison, sorting, sign bit
acquisition, equivalence testing and greatest common
divisor. The extension of the toolkit can also securely
store and process real numbers.

o We then demonstrate the utility of EPOM using a pur-
posefully built simulator in Java, which demonstrates that
our proposal can effectively and securely outsources the
storage and process of data in a multiple keys setting.

The remainder of this paper is organized as follows.

In Section II, we describe the preliminaries required in the
understanding of our proposed EPOM. In Section III, we
formalize the system model, as well as outlining the prob-
lem statement and the attacker model. Then, we present
DT-PKC and secure multi-key calculation toolkit of integer
in Sections IV and V, respectively. The security analysis and
performance evaluation are presented in Sections VI and VII,
respectively. Related work is discussed in Section VIIIL.
Section IX concludes this paper.

II. PRELIMINARY

In this section, we outline the notations used in the
paper. We also define the Additive Homomorphic Cryptosys-
tem (AHC) and Secure Bit-Decomposition (SBD) Protocol,
which are the building blocks in the proposed EPOM.

Throughout the paper, we use pk; and sk; to denote the
public key and weak private key of party i, respectively.
pks denotes the joint public key (see Section IV for the
construction), SK denotes the system strong private key,
and SK and SK® denote the partial strong private keys.
Furthermore, we denote [x],, as the encrypted data x under
pki, Dsi(+) as the decryption algorithm using sk, £(x) as the
bit-length of x, and |x| to represent the absolute value of x.

A. Additive Homomorphic Cryptosystem

Suppose [m1]pr and [m2]pr are two additive homomor-
phic ciphertexts under the same public key pk in an
additive homomorphic cryptosystem. The additive homo-
morphic cryptosystem (e.g. Paillier cryptosystem [15] and
Benaloh cryptosystem [16]) has the additive homomorphism

property:

Dy ([m1]pk - [m2]p) = my + ma.

B. Secure Bit-Decomposition Protocol (SBD)

Suppose that there are two parties in the protocol, Alice
and Bob. Bob holds the AHC encrypted value [x],x, where
0 < x < 2* and pu is the domain size of x in bits.
We also remark that x is known to neither Alice nor Bob.

Data Providers (DPs)

L@

[ )
\
/

Computation

Request Users Service Provider

(RUs) Key Generation (CSP)
Center (KGC)
Fig. 1. System model under consideration.
Let (x,—1,---,x0) denotes the binary representation of x,

where xo and x, | are the least and most significant bits,
respectively. The goal of SBD is to convert the encryption
of x into the encryption of the individual bits of x, without
disclosing any information regarding x to both parties. More
formally, we define the SBD protocol as follows:

([x,u—l]pk, T, [XO]pk) <~ SBD([x]pk)~

We refer the interested reader to [17] for the detailed construc-
tion of the SBD protocol.

III. SYSTEM MODEL & PRIVACY REQUIREMENT

In this section, we formalize the EPOM system model,
outline the problem statement, and define the attack model.

A. System Model

In our system, we mainly focus on how the cloud server
responds to user request in a privacy-preserving manner. The
system comprises a Key Generation Center (KGC), a Cloud
Platform (CP), a Computation Service Provider (CSP), Data
Providers (DPs) and Request Users (RUs) — see Fig. 1.

1. KGC: The trusted KGC is tasked with the distribution and
management of both public and private keys in the system.

2. DP: Generally, a DP will use its public key to encrypt
some data, before storing the encrypted data with a CP.

3. CP: A CP has ‘unlimited’ data storage space, and stores
and manages data outsourced from all registered RUs. A CP
also stores all intermediate and final results in encrypted form.
Furthermore, a CP is able to perform certain calculations over
encrypted data.

4. CSP: A CSP provides online computation services to
users. The CSP is also able to partial decrypt ciphertexts
sent by the CP, perform certain calculations over the partial
decrypted data, and then re-encrypt the calculated results.

5. RUs: The goal of a RU is to request a CP to perform
some calculations over the encrypted data under multiple keys.



After the calculation has been performed, the result can be
decrypted by RU upon successful authentication.

B. Problem Statement

Consider a database 7 that contains o records with
B dimensions x;; (1 < i < a;1 < j < p), where x; ;
is a integer number and belongs to DP k. Such data need
to be encrypted prior to being outsourced to a CP for storage
and maintenance. A RU can issue a query to the CP in order
to obtain some statistic information about 7. For example,
the RU can query for the mean and variance over some
dimension j (i.e. calculates the mean X; = > 7 x; j/a and
the variance d; = > ° (x;; — )Ej)z/a). The RU can also
perform some self-defined calculations (e.g. calculates the sum
X = Zjﬂ.zl x;,j, or multiplication X" = Hjﬁ.zl
is required to be outsourced to the cloud for storage, we have
the following challenges:

1) Secure Outsourced Storage: As the cloud storage service
is often provided by third-party servers who may be untrusted
or semi-trusted, it is important for DP to outsource the data
to the cloud without compromising its own privacy.

2) Secure Processing Toolkit for Integer: In order to achieve
data processing on-the-fly, the encrypted integer calculation
toolkit needs to be built to support commonly used integer
number operations over the plaintext. For example, additions,
multiplications and divisions should be achievable by operat-
ing on two encrypted numbers.

3) Secure Processing under Multiple Keys: In order to
support outsourced data processing across different parties,
a multi-key data calculation mechanism (e.g. comparison of
encrypted numbers under different public keys) needs to be
constructed. Moreover, as the final result contains informa-
tion belonging to different parties, fine-grained authentication
mechanisms should be designed to guarantee the privacy of
individual DP.

xijj). Since Xi, j

C. Attack Model

In our attack model, we consider the KGC to be a trusted
entity, which generates the public and private keys for the
system. On the other hand, RUs, DPs, CP and CSP are
curious-but-honest parties, which strictly follow the proto-
col. However, RUs, DPs, CP and CSP are also interested to
learn data belonging to other parties. Therefore, we introduce
an active adversary A* in our model. The goal of A* is
to decrypt the challenge DP’s original ciphertext and the
challenge RU’s encrypted final results with the following
capabilities:

1) A* may eavesdrop all communications to obtain the
encrypted data.

2) A* may compromise the CP to guess the plaintext value
of all ciphertexts outsourced from the DPs (including the
challenge DPs), and all ciphertext sent from the CSP by
executing an interactive protocol.

3) A* may compromise the CSP to guess the plaintext value
of all ciphertexts sent from the CP by executing an interactive
protocol.

4) A* may compromise one or more RUs and DPs, with
the exception of the challenge RU or challenge DP, to obtain
access to their decryption capabilities, and guess all ciphertexts
belonging to the challenge RU or challenge DP.

The adversary A* is, however, restricted from compro-
mising (1) both the CSP and the CP concurrently, (2) the
challenge DP, and (3) the challenge RU. We remark that
such restrictions are typical in adversary models used in
cryptographic protocols (see the review of adversary models
in [18] and [19]).

IV. BAsSIC CRYPTO-DISTRIBUTED TwWO TRAPDOORS
PUBLIC-KEY CRYPTOSYSTEM (DT-PKC)

In order to realize EPOM, the public-key cryptosystem
with a double trapdoor decryption cryptosystem introduced
by Bresson et al. [20] could be a suitable solution for key
management in the multi-key setting at first glance. However,
the strong trapdoor leakage is a risk to the system, since
encrypted data in Bresson et al.’s cryptosystem can be
decrypted by the strong trapdoor. Therefore, we design a
new cryptosystem — Distributed Two Trapdoors Public-Key
Cryptosystem (DT-PKC) — to split a strong private key into
different shares. In addition, the weak decryption algorithm
should support distributed decryption to solve the authorization
problem in the multi-key environment (see Section V-I). Our
DT-PKC is based on Bresson et al.’s cryptosystem [20],
follows the idea in [21], and works as follows:

KeyGen: Given a security parameter k and two large prime
numbers p, g, where L(p) = L(q) = k, we have two strong
primes p’,q’, st, p’ = &= and ¢/ = qT_l (due to the
property of the strong primes). We then compute N = pg and
A = lem(p — 1,q — 1)/2, define a function L(x) = 3,
and choose a generator g of order (p — 1)(¢ — 1)/2 (this
can be achieved by selecting a random number a € Z*Nz and
computing g as g = —a>"N [22]). We also randomly select
0; € [1, N/4] and compute h; = gef mod N? for party i. The
public key for i is pk; = (N, g, h;), and the corresponding
weak private key is sk; = 6;. The system’s strong private key
is SK = 1.

Encryption (Enc): Given a message m € Zy, we choose a
random number r € [1, N/4]. The ciphertext under pk; can be
generated as [m]pr; = {731, Ti 2}, where T; | = g’ef(l +mN)
mod NZ: T;» =g" mod NZ.

Decryption With Weak Private Key (WDec): [m]pr; can
be decrypted using decryption algorithm Dy, () with weak
private key sk; = 6;:

Ti1

0;
Tis

m = L( mod N?).

Decryption With Strong Private Key (SDec): Any ciphertext
[m]pr; can be decrypted using decryption algorithm Dgk (-)
with strong private key SK = A by first calculating:

T/, mod N> = g% (1+mNi) mod N> = (1+mN2).
Then, due to gcd(A, N) = 1, m can be recovered as follows:

m= L(Ti?l mod N*)2~! mod N.



Strong Private Key Splitting (SkeyS): The strong private key
SK = 1 can be randomly split into two parts. The partial
strong private keys are denoted as SK@ = ) i U =12),
st, A1 +42=0 mod /2 and A; + A» = 1 mod N2 hold at
the same time (the existence of the strong private key splitting
can be found in Section VI-Al).

Partial Decryption With Partial Strong Private Key Step
One (PSDecl): Once [m]y;, = {Ti1,7Ti2} is received, the
PSDecl algorithm PDOgg)(-) can be run as follows:

Using partial strong private key SK) = 11, the partial
decrypted ciphertext C Ti(l) can be calculated as:

cTV = (1) = g1 (1 +mN2y) mod N,

Fartial Decryption With Partial Strong Private Key Step
Two (PSDec2): Once C Ti(l) and [m]pi, are received, the
PSDec2 algorithm PDTgg @ (-,-) can be run to obtain the
original message m, i.e., the PSDec2 first executes

CTi(Z) = (T,-,l)/12 =g (1 +mN2i;) mod N.

Then, the algorithm computes 7”7 = CTi(l) e Ti(z), and
calculates

m = L(T").
Partial Decryption With Partial Weak Private Key Step
One (PWDecl): Once [mlprs, = {Ts, 1, Ts, 2} is received,
the PWDecl algorithm can be run with partial private key

sk; = 6;. The partial weak decrypted ciphertext WT @) can be
calculated as:

WT® = (Tx,2)% = g% mod N2
Fartial Decryption With Partial Weak Private Key Step
Two (PWDec2): Once [mlpks,, wrD, ... WT®  are
received, the PWDec2 algorithm can be run as follows:

Using partial private key sk, = 0,, the partial weak
decrypted ciphertext WT () can be calculated as:

WT(‘D) = (sz,z)‘g/’ = grel’ mod N2
We then calculate WT = [[i_, WT'® . WT ) and
Ts, 1

wT
Ciphertext Refresh (CR): Once [m]pi, is received, the
CR algorithm can refresh the ciphertext without changing
the original message m, by randomly choosing r’ € Zy and
refreshing the ciphertext as [m];k[ = {Tl/ 15 Tl’ »}, where

m = L( mod N?).

/ !
T/, =Tii-h] mod N’ T/,=T,-g" modN?

Note that for given m, my € Zy under the same pk, we
have
1] pk - [malpke = {(1+ (my +m2) - N)-h""  mod N2,
gt mod N} = [m) + ma]pk.
(mlp)N " = (1 + (N = Dm - Ny - k=D mod N2,
gV mod N2} = [—m] .

IThe joint public key is constructed as pkzp = (N,g,th =
¢t 2j=1,-x%) which associates with DP j(j = 1, --- ,x) and RU p.

In the system, we have 5 RU and x DP. The KGC
first generates pk; = (N,g,hi = gef) and sk; = 6;
(i =1,---,n+ ) under the same N and g, and sends
the individual public-private key pair to each RU and DP.
Moreover, the SK should be randomly split into SK ) and
SK® using SkeyS algorithm, prior sending to CP and CSP
for storage respectively. In addition, DP i can encrypt data
with their own public key pk;, and outsource the cipher-
texts to the CP for storage. Moreover, the DP’s public key
pki(j =1,---,x) and joint public key pks,(k =1,---,7)
should be sent to CP and CSP. For simplicity, if all the
ciphertexts with joint key are associated with the RU p, we
will simply omit the subscript p from the symbols (e.g., use
pks instead of pky,) for simplicity / readability.

V. PRIVACY PRESERVING INTEGER CALCULATION
TOOLKIT FOR MULTIPLE KEYS

After introducing the underlying algorithms in DT-PKC,
we will now present the secure sub-protocols as the toolkit
for processing integers, namely: Secure Addition Protocol
across Domains (SAD), Secure Multiplication Protocol across
Domains (SMD), Secure Sign Bit Acquisition Protocol (SSBA)
Secure Less Than Protocol (SLT), Secure Maximum and
Minimum Sorting Protocol (SMMS), Secure Equivalent Testing
Protocol (SEQ), Secure Division Protocol (SDIV) and Secure
Greatest Common Divisor Protocol (SGCD). We assume that
both CP and CSP will be involved in the sub-protocol, as
the CP holds a partial strong private key SK ), and the CSP
has the remaining partial strong private key SK® and public
key pks. Note that both x,y involved in the above sub-
protocols are integer (i.e. x,y can be positive, negative or
zero); therefore, we restrict |x| and |y| to be in the range
of [0, R{], where L(R;) < L(N)/8. If a larger plaintext range
is needed, we can simply use a larger N. A larger N implies
a broader plaintext range, and therefore, a higher level of
security. However, this will affect the efficiency of DT-PKC
(See Fig. 2(a)).

A. Secure Addition Protocol Across Domains (SAD)

Our DT-PKC cryptosystem can support additive homomor-
phism; however, it can only be achieved under the same public
key (i.e. [m1+ma]px = [m1]pk-[m2]pk). Our SAD is designed
for plaintext addition over encrypted data with different keys.
In other words, given two encrypted data [x],r, and [y]pk,
under different keys, the goal of SAD protocol is to calculate
[x + ¥]1pks - The description of the SAD protocol is as follows:

Step-1 (@CP): Chooses a random number r,,r, € Zy,
calculates

X = [X]pka '[ra]pka =[x +ra]pka,
Y = [lpk, - rplpr, = [y + 16lpiy »

calculates X’ = PDOgxo(X) and Y = PDOggy(Y), and
sends X, Y, X’ and Y’ to CSP.

Step-2 (@CSP): Calculates X" = PDTgxo(X'; X) and
Y" = PDT¢xe(Y'; Y), calculates S = X" + Y”, encrypts S
as [S]pks, and sends the encrypted data to CP.
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Step-3 (@CP): CP calculates R = r, + rp, uses pky to
encrypt R as [R] ks, and calculates

[STpts - [R1pks)N 1 =[S — Rlpky = [x + ¥l pis

B. Secure Multiplication Protocol Across Domains (SMD)

Given two encrypted data [x]px, and [y]pk, under two
different public keys pk, and pkp, respectively, the goal
of SMD is to calculate [x - y]yky under pkys. The description
of SMD is as follows:

Step-1 (@CP): CP selects
Tx,ry, Ry, Ry € Zy, calculates

four random numbers

X = [x]pk(, : [rx]pkaa Y = [)’]pkb : [ry]pkba
S = [Relpt, - (x)pk )V ™" = [Re =1y - X1 pi,»
T = [Ry]pkb : ([y]pkb)N_rX = [Ry — Ix 'y]pkb,

calculates X PDOgrny(X), Y PDOgrny(Y),
S1 = PDOgg(S), and Tt = PDOggy(T), and sends X1,
Yi,8, T, X,Y,S, T to CSP.

Step-2 (@CSP): Using the other partial strong private key
SK®, CSP calculates

h = PDTgge)(X1; X) - PDTggo) (Y1; X),
SZ — PDTsK(Z)(Slv S), T2 = PDTSK(Z)(Tla T)

CSP encrypts h, S», T» using pky, denoted as H = [h]piy,
S3 = [S2lpks» I3 = [T2]lpky» and sends H, S3 and T3 to CP.
It is trivial to verify that 2 = (x + ry)(y +ry).

Step-3 (@CP): Once H, S3 and Tz are received,
CP computes Sg = ([rx -yl pks )V 1, S5 = ([Relpis )V ! and
Se = ([Ry] ka)N —1 and calculates the following to recover
the encrypted x - y:

H-T3-83-84-85-S¢ =[(h+(Ry —ry-x)+(Ry —ry-y)

— I'x Ty — R, — Ry)]pkz
= [)C 'y]pkz~

C. Secure Sign Bit Acquisition Protocol (SSBA)

Given an encrypted integer number [x] x,, the goal of SSBA
protocol is to obtain the encrypted sign bit [s*],ry and the
transformed number [x*] ks, s.t., x* = x and s* = 1 when
x > 0, while x* = N —x and s* = 0 when x < 0. The
description of the SSBA protocol is as follows:

Step-1 (@CP): CP flips a coin s, and chooses a random
number r, s.t. L(r) < L(N)/4. If s = 1, CP calculates

Uk, = (X1 pr)? - (k)" = [rQCx + Dlpi, .2

2We transform x into 2x + 1 in order to prevent CSP to know the value x
when x = 0.



If s =0, CP calculates
2 M)V =

PDOgg([!]pk,) and sends

[l]pka = (([x]pk(,)

Then, CP calculates L =
L and [!]pk, to CSP.

Step-2 (@CSP): CSP calculates PDTgxo)(L; [l1pk,) to
obtain . If £(I) < 3/8 - L(N), denotes u = 1; otherwise,
u=0~0.

Then, u is encrypted using pky, and [u]pi, is sent to CSP.

Step-3 (@CP): (1) If s = 1, CP calculates

[s*1pks = CR([u]piy):

[_r(2x + 1)]pkao

otherwise, calculates [s*],xy = CR([1]pky - [u]pkz ).
(2) CP then calculates

[x*Tpks < SMD(Ix] iy s [T 54y + ([11pe)™ ™).

D. Secure Less Than Protocol (SLT)

Given two encrypted numbers [x],k, and [y]px,, the goal of
SLT protocol is to obtain the encrypted data [u*],y to show
the relationship between the plaintext of the two encrypted
data (i.e. x > y or x < y). The description of the SL'T protocol
is as follows:

Step-1: (1) CP calculates
[2)( + 1] pka

Letlpr, = (K1) - [k, =

i1k, = (p)* = 211, >

(2) CP flips a coin s randomly. If s = 1, CP calculates

[[pks < SAD([x11pk,; ([V1]p)Y ).

If s = 0, CP calculates

[[pks < SAD([y11pk,; (x11pk,)Y ).

(3) CP chooses a random number r, s.t., s.t. L(r) <L(N)/4,
and calculates [/{],ky = ([lpky)". Then, CP uses SKM
to calculate K = PDOgga ([/1]pky), and sends the result
to CSP.

Step-2 (@CSP): Uses SK® to decrypt K, and obtains /.

If L) > L(N)/2, CSP denotes ¥’ = 1 and ' = 0
otherwise. Then, CSP uses pky to encrypt u’, and sends
('] pks to CP.

Step-3 (@CP): Once [u'] pks 18 received, CP computes as
follows: if s = 1, CP denotes [u*],xy = CR([u'lprs);
otherwise, CP computes

)N—l

[u*]pkz = [Hpk): : ([u/]pkz =[1- u/]pkz-

If u* =0, it shows x > y; and if u™ = 1, it shows x < y.

E. Secure Maximum and Minimum Sorting Protocol (SMMS)

Given two encrypted numbers [x],k, and [y]pk,. the
goal of SMMS protocol is to obtain the encrypted sorting
results [A]pry and [/]pkg, s.t., A = 1. The description of
the SMMS protocol is as follows:

(1) CP and CSP jointly calculate

[xIpky < SAD([x]pk,; [0],k,);
Ypks < SAD([0] k5 [¥]pk, )
[t ] py < SLT([x 1k, [¥]p,);
[X1pry < SMD([t"] iy s [X]pi, )
[Y1pky < SMD([t™]piy s [V] 1)

(2) Once [u*]piy is received, CP computes

[A]pkz
[I]pkz

Ypky = [ = u™)x + u*y]prss
X pry = [ = ™)y + u*x] piy -

[xTpis - [XINE

= [y]pkz : [Y]pkE

F. Secure Equivalent Testing Protocol (SEQ)

Given two encrypted data [x] px, and [y] k., the goal of SEQ
protocol is to obtain the encrypted result [ f],s to determine
whether the plaintext of the two encrypted data are equal
(i.e. x = y). The description of the SEQ protocol is as follows:

(1) CP and CSP jointly calculate

< SLT([x]pk,» [¥],k,);

< SLT([y],» [X]pr,)3

< SMD([ 1y - ([t prs )V ™15 T2] iy )
[

< SMD([u1] pky s [ prs - (U2l i)V 1.

[u1] pis
[u2]piy
LA ks
L5 ks

(2) CP calculates and outputs [ f],ks as follows:

[f]pkz = ul EBMZ]pkE = [f]*]pkz . [fz*]pkz~

If f =0, then x = y; otherwise, x # y.

G. Secure Division Protocol (SDIV)

Given an encrypted numerator [y],r, and an encrypted
denominator [x]p,, the SDIV will provide the encrypted
quotient [¢*],k; and encrypted remainder [r*],i,, without
compromising the privacy of data, s.t., y = ¢g* - x + r*
(ly] = |x|). The SDIV is explained in Algorithm 1, and a
brief description is given below.

In the event that the value of the denominator is 0, we
will mark x = 1 and y = 0 as we cannot simply abort
SDIV. Otherwise, CP will know that x = 0 once SDIV is
aborted (lines 1-5). We will then use SSBA to obtain [x*] ks
and [y*]pky (x* and y* are the absolute value of x and y,
line 6), and SBD to expand [y*],y into encrypted bits,
denoted as ([qu—1lpks, -+ »[qolpky) (line 7). Also, we use
([O]pkz P [O]pkz) to initialize ([a,u—l]pkz P [a()]pkz)
(line 8). Next, the following procedures will be executed
u-times: move [a,—11pky > -+ (@0 pky» [qu—11pks > - -+ 5 [q0] pis
by one position to the left (i.e. mark [a;lpky = [@i—1]pks
for i = pu — 1 to 1, and mark both [aolpry = [gu—1]pks
and [gilpks = [qi—1lpky fori = p —1 to 1). Then, the CP
calculates [a,—1]pks,--- ,laolpks and converts from binary
to integer [A]prs before comparing A with x* using SLT.
If A < x*, sDIV will mark go = 0; otherwise, SDIV will
mark go = 1 and compute A = A — x™ (lines 9-15).

After calculating u times, the remainder r is the integer
value of (a,—1,---,ap) while the value quotient g is the



Algorithm 1 Secure Division Protocol (SDIV)
Input: Encrypted numerator [y],, and encrypted denominator
[X]pka-
Output: Encrypted quotient [¢*], and encrypted remainder
[r*]pkz
1 Both CP and CSP jointly calculate
2 [flpks < SEQUx1pk, s [0] pis )- |
3 CP calculates [1]py - ([f1pks)Y 71 =11 = f1pks-
4 Then, both CP and CSP jointly calculate
Lf- x]pkz <~ SMD([f]pkz 5 [x]pka) and
[y/]pkz =[f- y]pkz <~ SMD([f]pkz 5 [y]pkz)'
5 CP calculates
[X/]pkz =[f-x+d-1)- l]pkz =[f 'x]pkg 1= f]pkz-
6 CP and CSP jointly execute
([X*]pkz s [sx]pkz) <~ SSBA([X/]pk(,),

([y*]pkz > [sy]pkz) <~ SSBA([y/]pk;,)~
7 Both CP and CSP jointly execute SBD, s.t.,

([y,ufl]pkz DI [y()]pkz) <~ SBD([y*]pkz) and mark
([q,u—l]pk): L) [q()]pkz) <~ ([y,ll—l]pk): L) [yO]pkz)
8 CP also initializes
(ag—11pks - laolpry) < (Olpkys -+ [0l pky)-

p—elements

9 for executing u times do
10 denote [a;1pry = [ai—1]pky (for i = u to 1); then denote
laolpks = [qu—11pky; finally, denote
[9ilpks = [gi—1]1pky (for i = p to 1); 1
—
1 | caleulate [Alpry = laolpky - [al]?)kZ ~--[a,u_1]?)k2 ;
12 | calculate [Q] ks < SLT([Alpky s [X*]pis )
13| caleulate [qo]pky = [pky - [QT3" =11 = Qlpky s
14 | execute [B]yry < SMD([X*]Q/;:E > [90]pis )
15 calculate [A]pk): = [A]pk2 . [B]pk): and then execute SBD
protocol as:

([alu—l]pk): I [aO]pkz) <~ SBD([A]pkz);

16 Finally, calculates
[F1pks = [a0]pks - (a1]pks )* -~ (au—11pks
[91pks = a0l pis + (911pis)* - (g1 Tpiy >
17 Computes [K]pry < SMD([sxlpiy s [Sylpis )
[r*]pkg <~ SMD([r]pkz; [Sy]pkg);
[q*]pkz <~ SMD([‘I]pkg§ [Kl]pkz)~

pn—1
JaE

integer value of (g, 1, -+ - , go) (line 16). Moreover, we should
decide the sign of r* and ¢g™*: the sign of remainder r* is the
same to that of the numerator y, while the sign of quotient ¢*
is denoted as the multiplication of the sign of numerator and
denominator (line 17). A short example can be demonstrated
the correctness of line 17:if x = 3 and y = 5, we have ¢* = 1
and r* =2,st,5=1x34+2. If x =3 and y = -5, we
have ¢* = —1 and r* = =2, s.t,, =5 = (—1) x 3 4+ (=2).
If x = -3 and y = 5, we have ¢* = —1 and r* = 2, s.t,,
5 = (—=1) x (=3) + 2. Finally, if x = =3 and y = =5, we
have ¢* = —1 and r* = =2, s.t., =5 =1 x (=3) + (-2).
Here, we give a short example to show how the SDIV
works. Given a numerator y = —5 and a denominator x = 3
as input, the algorithm first gets the absolute value y* = 5
and x* = 3. The bit formation of y* is denoted as g. Next,
the SDIV initializes ¢ = 0000, executes line 9-15, and gets

Algorithm 2 Secure Greatest Common Divisor

Protocol (SGCD)
Input: Two encrypted numbers, [x],, and [y]x, -
Output: Encrypted greatest common divisor [C] .y -
1 Both CP and CSP jointly execute SMMS, s.t.,
([y/]pkz > [x/]pkz) <~ Sms([x]pka 5 [y]pkb);
2for i =1to u do
3 | caleulate ([gi1pky > [Filpky) <= SDIV([Y 1pky > ¥ 1pks )
a4 | denote [y1pky = [X'1pky and [x'1piy = [rilpiy s
5 denote [rolpry = [q1]pkys
6 for i =0 to u do
7 | calculate [u;]pks < SEQ(rilpks » [0]pky )
g for i =1to u do
9 | execute [fitl,i]likz < SMD([1] iy .[ui_l]gk_zl; (ilpks)s
10 | execute [f:i—l]lﬂkz <~ SMD([u; —11pky s [ pky - [Mi]gk::l)i
11 calculate
[fi*l,i]pkg =[uji—1 ® Mi]pkg = [ffi_l] : [fi*_l,i]pkz;

12

[Cilpks < SMD([ri—1lpky s [fi—1,ilpks )s

13 calculate and return [C]pk2 = ]_[;'»1:1 [Ci]pkz-

TABLE I
EXAMPLE OF SDIV

Round a q z* Operations
1 0000 0101 3
0000 1010 3 Shift Left a & g together.
A<z*,Q + 1,90 < 0,
0000 1010 3 B+ 0,A+ A+ B.
2 0001 0100 3 Shift Left a & ¢ together.
A<z*,Q + 1,90 «+ 0,
0001 0100 3 B+ 0,A«+ A+ B.
3 0010 1000 3 Shift Left a & g together.
A<z*,Q <+ 1,90 < O,
0010 1000 3 B+ 0,A+ A+ B.
4 0101 0000 3 Shift Left a & g together.
A>z*,Q + 0,90 < 1,
0010 0001 3 B+ —a*, A< A+ B.

— In the table, A is integer format of a.

q = 1 and r = 2 as shown in the Table I. Finally, the algorithm
should decide the sign of quotient and remainder, and output
qg*=—1and r* = -2.

H. Secure Greatest Common Divisor Protocol (SGCD)

Given two encrypted numbers [x]pr, and [y]pr, (x > O,
y > 0)* secb will provide the encrypted GCD [Clps,
without compromising the privacy of data. SGCD is explained
in Algorithm 2, and a brief description is given below.

Prior to calculating the GCD, CP needs to determine which
of the two plaintext values (i.e. x and y) is larger, as the larger
value will be chosen as the numerator and the smaller value as
the denominator to run SDIV. Next, in order to calculate GCD
privately, we revisit the Euclidean algorithm: the GCD of two
numbers does not change if the larger number is substituted
with the difference between the two numbers. Since this
substitution reduces the larger of the two numbers, repeating

4Mathematically, we only consider the greatest common divisor (GCD)
between both positive integers.



this process gives successively smaller pairs of numbers until
one of the two numbers reaches zero. However, we are not
able to use the Euclidean algorithm as it is, without leaking
information since the adversary will know how many protocol
rounds have been executed (e.g. the adversary knows the
two integers are coprime, as only two rounds of calculation
have been performed). Therefore, we will run the Euclidean
algorithm for fixed x4 rounds (related to the domain size of
the integer, line 2-4). Unfortunately, the denominator will be
equal to zero if the number of calculation rounds is fixed.
This issue is resolved by SDIV (as explained in Section V-G).
After running the fixed calculation rounds, CP obtains u + 1
encrypted remainders. The GCD between x and y is the last
non-zero remainder. We only need to determine the first zero
value remainder, and use the zero remainder to find the GCD.
The idea is easy to follow: we denote the non-zero remainder
as 1 and the zero remainder as O (line 6-7). We use XOR
operations to find the position of the last non-zero remainder
(line 8-12) — see Algorithm 2.

I. Decryption With Fine-Grained Authentication

Once a RU wishes to retrieve some data from DP a, the
RU must get the authorization from DP a (as the owner of the
data is DP a). If a RU wants to perform some calculations
over different DPs (i.e. different encrypted domains), the
calculated results will contain information about the original
data. Without deploying any specific authorization mechanism,
the final result may leak some information about the data
from the individual DP. Such attacks are simple and efficient.
For example, a RU constructs a query and CP will compute
accordingly to the protocol. After the calculation is completed,
DP will request both CP and CSP to transform the results into
RU’s domain. Then, RU can easily obtain the results after the
decryption. In other words, if a RU p is interested in DP i’s
encrypted data [x],; stored in the cloud, p sends [1] pk, tO
the cloud and CP will compute [X]pkp < SMD([x] pi; 5 [l]pkp),
and [x]pr, will be sent to DP p for decryption to
obtain x.

In order to solve this problem, we present a simple yet
elegant solution. The final results will be encrypted using
the joint public key associated with different DPs and
the RU. If the RU wishes to obtain the final plaintext, the
RU needs to obtain partial decrypted results (authorization)
from the involved DPs. For example, a RU p’s public key is
Pk, = (N, g, hy = ¢%), DP a and DP b public keys are
pka = (N,g,ha = g') and pky = (N,g, hy = g"),
respectively. The final result x is encrypted with
pks = (N,g,hy = ght0atth) (ie. [x]pry). For the
RU to decrypt the result, [x]prs should be first sent to
both DP a and DP b for decryption authorization. If DP a
(and DP b) allows the RU to access the finally results,
DP a (DP b) executes PWDecl to generate partial decrypted
ciphertext WT, (WTp) to the RU p. Once both partial
decrypted ciphertext and original ciphertext are received, the
RU should execute PWDec2 using sk, = 6, to obtain x.
We regard our solution to be fine-grained as it is related
to each encrypted result, at the cost of a communication

round between CP and all DPs. If the system does not
need this fine-grained authorization, the system can simply
use traditional authentication method to authorize DPs and
RUs [23], [24]. In this situation, DPs can be offline after
outsourcing the data.

J. The Extension to Handle Encrypted Rational Number

If DP i wishes to outsource the rational numbers to CP for
storage, a key challenge is ensuring secure encryption of the
rational numbers prior to outsourcing.

As any rational number can be presented as a fraction
(i.e. x can be stored as x'/x}), the storage challenge can
be easily solved by encrypting the numerator x1 and denom-
inator xV, and storing ([xT]pk,., [xi]pki), where pk; is DP
i’s public key. For example, —0.2 can be represented as
—1/5 = x"/x%. Using the DT-PKC scheme, we encrypt
x" and xv oas XM = ()N = [—1l,k and
[x¢]pk,. = [5]pk;. After the encryption, ([xT]pk,., [x¢]pki) are
outsourced to the CP.

Another challenge is performing encrypted rational num-
ber calculations in a multi-key setting. This challenge can
be easily solved using combination of operations with
secure integer calculation toolkit for multi-key. For instance,
given two encrypted rational numbers (IxM Pkas [x¥] pk,) and
([yT] Pk s [yi] pky)> the rational number multiplication result is
([ZT]pkz > [Zi]pkz)v where

Mok < SMD(Ix M Tpis [y 1k, )3
[ 1 pks < SMD(Ix T pkys [V 1pky)-

The constructions of other rational calculation are trivial, and
due to space constraints, we will not discuss the constructions
in this paper, and refer reader to read [25].

1) The Necessity of CSP: To ensure efficiency, we use AHC
for data encryption before outsourcing to CP for storage. Since
we use AHC (or other partial homomorphic cryptosystem),
we will need CSP to perform plaintext multiplication, as the
CP is not able to perform both addition and multiplication
homomorphic calculations over encrypted data at the same
time (unlike, a fully homomorphic cryptosystem). Unfortu-
nately, both single key and multiple keys fully homomorphic
cryptosystem in the existing scheme are rather inefficient,
in terms of computation and storage [26], [27], [43], [44].
In the near future, if an efficient multi-key fully homomorphic
cryptosystem exists, we can remove the CSP from the system
which will also result in a more elegant system.

2) The Extension to Handle Real Number: In our system,
we use the nearest rational number to simulate the real number,
at the cost of some accuracy. For example, we represent v/2
with 1.414 (i.e. %). If we want a higher level of accuracy, we
can use 1.41421 (i.e. %) to represent /2. In other words, a
higher level of accuracy will require a longer plaintext length.

SA RU can obtain the data from some specific DPs for calculation. Such
information can be protected from the adversary by involving all DPs in the
execution of PWdecl. If the information does not need to be protected, only
the necessary DPs are involved in the partial decryption.



VI. SECURITY ANALYSIS

In this section, we will analyze the security of the basic
encryption primitive and the sub-protocols, before demonstrat-
ing the security of our EPOM framework.

A. Analysis of DT-PKC

1) The Existence of Strong Private Key Splitting: We ran-
domly split the strong private key SK = 1 into two parts,
denoted as A; and Aj, s.t., both 4; + 1 = 0 mod A and
1+ 22 =1 mod N? hold. Since ged(4, N*) = 1, thus 3s,
s.t.boths =0 mod A ands =1 mod N? hold (according to
the Chinese remainder theorem [28]; s = 4 - (A~ mod N2)
mod AN?). Therefore, we only need to randomly choose
A1 and Ap, s.t., A1 + Ay = .

2) Security of DT-PKC: The security of our DT-PKC is
given by the following theorem.

Theorem 1: The DT-PRC scheme described in Section IV
is semantically secure, based on the assumed intractability of
the DDH assumption over Zj‘vz [20].

Proof: The security of DT-PRC follows directly from
that of the public-key cryptosystem with a double trapdoor
decryption, which has been proven to be semantically secure
in the standard model assuming the intractability of the DDH
assumption over Z;‘Vz [20] (the hardness of DDH assumption
over Zj‘vz can be found in [20]).

The privacy of divided private key is guaranteed by Shamir
secret sharing scheme [29] which is information-theoretic
secure. The strong private key SK is randomly split into
two shares in a way that any less than two shares cannot
recover the original SK (i.e., (2,2)-Shamir secret sharing
technique is used). It further implies that the adversary cannot
cover the original plaintext with less than two shares of partial
decrypted ciphertexts (as the adversary can select a share all
by himself). (]

B. Security Model Definition

Here, we recall the security model for securely realizing
an ideal functionality in the presence of non-colluding semi-
honest adversaries [30]. For simplicity, we use the scenario
involving two parties, DP a (i.e. “D,”) and DP b (i.e. “Dp”),
and two servers CP (i.e. “S;”) and CSP (i.e. “S>”). We refer
the reader to [31] for the general case definition.

Let P = (Dg, Dp, S1, S2) be the set of all protocol parties.
We consider four kinds of adversaries (Ap,, Ap,, As,, As,)
that corrupt D,, Dy, S1 and Sy, respectively. In the real world,
D, and Dj, run with inputs x and y (with additional auxiliary
inputs z, and zy), respectively, while S; and S receive
auxiliary inputs z; and z>. Let H C P be the set of honest
parties. Then, for every P € H, let outp be the output of
party P. If P is corrupted (i.e. P € P\ H), then outp denotes
the view of P during the protocol II.

For every P* € P, the partial view of P* in a real-
world execution of protocol IT in the presence of adversaries
A= (Ap,. Ap,, As,, As,) is defined as

REAL{_’[T.A,H,Z(X’ y) = {outp : P € H}U outp=.

In the ideal world, there is an ideal functionality f for a
function f and the parties interact only with f. Here, the
challenge DP a and DP b send x and y to f, respectively.
If either x or y is L, then f returns L. Finally, f returns
f(x,y) to the challenge RU. As before, let H C P be the
set of honest parties. Then, for every P € H, let outp be the
output returned by f to party P. If P is corrupted, then outp
is the same value returned by P.

For every P* € P, the partial view of P* in an ideal-
world execution in the presence of independent simulators
Sim= (Simp,, Simp,, Simg,, Simg,) is defined as

IDEAL{ g y,(x,y) = {outp : P € H}Uoutps.

Informally, a protocol IT is considered secure against non-
colluding semi-honest adversaries if it partial emulates, in the
real world, an execution of f in the ideal world. More formally,

Definition 1: Let £ be a deterministic functionality among
parties in P. Let H C P be the subset of honest parties
in P. We say that 11 securely realizes f if there exists a set
Sim= (Simp,, Simp,, Simg,, Simg, ) of PPT transformations
(Where Simp, = Simp,(Ap,) and so on) such that for all
semi-honest PPT adversaries A = (Ap,, Ap,, As,, As,), for
all inputs x, y and auxiliary inputs z, and for all parties P € P
it holds

{REAL{ 4 11,( %, M)}ieN
c *
~ {IDEAL{ g 11.,(%: X, ¥)}seN

c
where &~ denotes computational indistinguishability.

C. The Security of Sub-Protocols

Here, we prove the security of the sub-protocols based on
the security model defined in Section VI-B.%

Theorem 2: The SAD protocol described in Section V-A
securely computes addition over ciphertext across domains
in the presence of semi-honest (non-colluding) adversaries
A= (Ap,. Ap,, As,, As,).

Proof: Here, we show how to construct four independent
simulators, namely Simp,, Simp,, Simg,, Simg, .

Simp, receives x as input and simulates Ap, as follows:
It generates encryption [x],k, < Ene(pky,x) of x, returns
[x]pk, to Ap,, and outputs Ap,’s entire view. The view of
Ap, consists of the encrypted data. The views of Ap, in
both real and ideal executions are indistinguishable due to the
semantic security of DT-PKC.

Simp, works analogously to Simp,.

Simg, simulates As, as follows: It generates (fictitious)
encryptions of the inputs [X],x, and [y],k, by running
Enc(-,-) on randomly chosen x,y, randomly generates
ra,p € Zn, and calculates X and Y. Then, it calculates X’ and
Y’ using PWDecl(-, -). After that, Simg, sends the encryption
X, Y, X' and ¥’ to As,. If Ag, replies with L, then Simg,

6Although the model described in Section VI-B can be employed to protect
the content of the data (including the input data and its final output), this
model does not capture information leakage due to data access pattern. The
latter can be solved using oblivious RAM for secure two-party computation,
which is beyond the scope of this paper. We refer interested reader to [32]
for the construction.



returns L. The view of Ag, consists of the encrypted data it
creates. In both real and the ideal executions, it receives the
output of the encryptions X, ¥, X', and Y’ In the real world,
it is guaranteed by the fact that the DPs are honest and the
semantic security of DT-PKC. The views of Ag, in the real
and the ideal executions are indistinguishable.

Simg, simulates Ag, as follows: It randomly chooses S,
uses the Enc(, -) to obtain [S’] pks » and then sends the encryp-
tion to Ag,. If Ag, replies with L, then Simg, returns L. The
view of Ag, consists of the encrypted data it creates. In both
real and the ideal executions, it receives the output of the
encryptions [S]pks. In the real world, it is guaranteed by the
semantic security of DT-PKC. The views of Ag, in the real
and the ideal executions are indistinguishable. (]

The security proof of SMD is similar to that of SAD
protocol under the semi-honest (non-colluding) adversaries
A = (Ap,, Ap,, As,, As,). In the following section, we
prove the security of SLT.

Theorem 3: The SLT protocol described in Section V-D
is to securely evaluate the comparison result of plaintext
over ciphertext in the presence of semi-honest (non-colluding)
adversaries A = (Ap,, Ap,, As,, As,).

Proof: We now demonstrate how to construct four inde-
pendent simulators, namely: Simp,, Simp,, Simg,, Simg,.

Simp, receives x as input and then simulates Ap, as
follows: It generates encryption [x]px, <= Enc(pkq, x) of x,
prior to returning [x]pk, to Ap, and producing Ap,’s entire
view. The view of Ap, consists of the encrypted data. The
views of Ap, in both real and the ideal executions are
indistinguishable due to the semantic security of DT-PKC.

Simp, works analogously to Simp,.

Simg, simulates Ag, as follows: it generates (fictitious)
encryptions of the inputs [X],k, and [§]k, by running
Enc(-, -) on randomly chosen X, . Then, it calculates [X1]x,
and [ﬁl]pk,, which are used as inputs to Sim(SAD)() and

generate [l phs, accordlng to the randomly tossed coin §.
It calculates [ll]pk2 and K using [l]pkz, randomly tosses a
coin u*, and generates [u*] pks by running Enc(., -). Finally,
the encryption [11] pks s K and the middle encrypted data

executed by Slm(SAD)( ,-) are sent to Ag,. If Ag, replies
with L, then Slmsl returns L. In the real world, this is
guaranteed by the fact that the DPs are honest and the semantic
security of DT-PKC. The views of Ag, in both real and ideal
executions are indistinguishable.

Simg, is analogous to Simg;. O

The security proofs of SEQ, SSBA, SDIV, SMMS, and
SGCD are similar to that of SLT under the semi-honest (non-
colluding) adversaries A = (Ap,, Ap,, As,, As,). Next, we
will demonstrate that our EPOM is secure under an active
adversary A* defined in III-C.

D. Security of EPOM

If A* eavesdrops on the transmission between the challenge
RU and the CP, the original encrypted data and the final results
will be obtained by .4*. Moreover, ciphertext results (obtained
by executing SAD, SMD, SLT, SSBA, SMMS, SEQ, SDIV,

and SGCD) transmitted between CP and CSP may also be
made available to A* due to the eavesdropping. As these data
are encrypted during transmission, .4* will not be able to
decrypt the ciphertext without knowing the challenge DP’s
private key due to the semantic security of the DT-PKC cryp-
tosystem. Next, suppose A* has compromised CP or CSP to
obtain the partial strong private key. However, A* is unable to
recover the strong private key to decrypt the ciphertext, as the
private key is randomly split by executing SKeyS algorithm of
DT-PKC. Even when 4* obtains all plaintext value from the
sub-protocols by compromising CSP, it is still unable for A*
to obtain useful information as our protocols use the known
technique of “blinding” the plaintext [33]: given an encryption
of a message, we use the additive homomorphic property of
the DT-PKC cryptosystem to add a random message to it.
Therefore, original plaintext is “blinded”. In the event that
A* gets hold of private keys belonging to other DPs/RUs
(i.e. not the challenge DPs/RUs), A* is still unable to decrypt
the challenge DP’s ciphertext or the challenge RU’s final result
due to the unrelated property of different DP and RU’s weak
private keys in our system (recall private keys in the system
are selected randomly and independently).

VII. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of EPOM.

A. Experiment Analysis

The computation cost and communication overhead of the
proposed EPOM were evaluated using a custom simulator
built in Java, and the evaluations were performed on a per-
sonal computer (PC) with 3.6 GHz eight-cores processor and
12 GB RAM memory.

1) Basic Crypto Primitive & Protocols’ Performance: We
first evaluate the performance of our basic cryptographic
primitive and toolkit for integer on our PC testbed —
see Tables II and III, respectively. We denote N as 1024 bits to
achieve 80-bit security levels [34]. We then use a smartphone
with eight-core processor (4xCortex-Al7 + 4xCortex-A7)
and 2 GB RAM memory to evaluate the performance of the
basic crypto primitive — see Table II. The evaluations demon-
strated that the algorithms in DT-PKC are suitable for both PC
and smartphone deployments. Note that the toolkit for integer
number calculations is designed for outsourced computation;
therefore, they are only evaluated in the PC testbed.

2) Factors Affecting Protocols’ Performance: For our pro-
posed DT-PKC, the length of N will affect the running time
of the proposed cryptosystem. From Fig. 2(a) and Fig. 2(b),
we observe that both run time and communication overhead of
the basic algorithms increase with N. This is because run time
of the basic operations (modular multiplication and exponent)
increases as N increases, resulting in the transmission of
more bits. For the toolkit of integer protocols, two factors
will affect the performance, namely: (i) length of N (for all
protocols), and (ii) domain size of the plaintext (for SBD,
SDIV, and SGCD). From Fig. 2(c) - Fig. 2(h), we observe that
both computational and communication costs of all protocols
increase with N, as the protocols rely on the basic DT-PKC



TABLE 1I
THE PERFORMANCE OF DT-PKC (1000-TIME ON AVERAGE, 80-BIT SECURITY LEVEL)

Algorithm Enc CR PDec WDec PSDecl PSDec2 PWDecl PWDec2
PC Run Time 16.408 ms  16.275 ms 8.361 ms 8.432 ms 23.135 ms 23.248 ms 8.257 ms 8.799 ms
Smartphone Run Time  89.671 ms  90.643 ms 47.043 ms  50.651 ms 135130 ms  130.712 ms  45.675ms  57.240 ms
TABLE IIT needs 4.5|N| multiplications to process, and PDecS2 needs
PERFORMANCE OF SUB-PROTOCOL (1000-TIMES 4.5|N]| multiplications.
FOR AVERAGE, 80-BITS SECURITY LEVEL) For the basic sub-protocols, it costs 21|N| multiplications
Protocol CP compute.  CSP compute.  Commu. for CP and 12|N| for CSP by executing the SAD protocol.
SAD 124913 ms 61.420 ms 1.998 KB : PR TR
SMD 340.479 ms 141,996 ms 4491 KB For the SMD pro.to?ol,.lt costs 45| N| multiplications for CP
SBD (10-bits) 0.969 s 0.396 s 14.997 KB and 27|N| multiplications for CSP to run. For the SMMS
SSBA 459.936 ms 185.559 ms 5.741 KB protocol, it costs 172.5|N| multiplications for CP and 97.5|N|
SLT 192.226 ms 96.237 ms 3.244 KB SR TR .
SEO L006 s 0.439 s 15485 KB multiplications for CSP Fo run. For the SBD protocol, it costs
SMMS 1.054 s 0.459 s 16.219 KB between 13.5u4|N| multiplications (best case) and 16.5u|N|
SDIV (10-bits) 9.263 s 3742 s 132.039 KB multiplications (worst case) for CP, and takes 7.5u|N| mul-
SGCD (10-bits) 102.675 s 42.899 s 1.446 MB

and basic operations. From Fig. 2(i) - Fig. 2(k), we observe
that SBD, and the computational cost and the communication
overhead in both SDIV and SGCD increase with the plaintext
bit length. This is due to the increase in encrypted data which
consumes more computation and communication resources.
Next, we present the theoretical analysis for EPOM.

a) Optimization: From Fig. 2 and Table III, we note
that both computational overhead and communication cost at
the server’s side are relatively high. Thus, it is important
to find solutions to speed up server-side computation and
reduce communication rounds. First, some protocol steps can
be processed in parallel. For example, in the SEQ protocol,
two SLT protocols can execute simultaneously, following by
simultaneous execution of two SMD protocols; thus, reducing
four communication rounds into two. In addition, privacy-
preserving calculation for each tuple can be processed inde-
pendently. Therefore, we can use parallel computing [35], [36]
to solve the problem (i.e. all tuples can be processed in parallel
and simultaneously). We can also use GPU [37], [38] to
accelerate the computation. Specifically, using GPU allows
us to execute individual protocols simultaneously, whilst in
our experiment, we use CPU-based calculation and serial
computing to execute the protocol one at a time. For individual
protocol acceleration, we can also choose to use a server with
higher performance specification or a cloud.

B. Theoretical Analysis

1) Computational Overhead: Let us assume that one reg-
ular exponentiation operation with an exponent of length
|N| requires 1.5|N| multiplications [39] (i.e. length of r is
N| and that computing g" requires 1.5|N| multiplications).
As an exponentiation operation is more costly than an addi-
tion operation or a multiplication operation, we ignore the
fixed numbers of addition and multiplication operations in
our analysis. For the DT-PKC scheme, Enc and CR algo-
rithm require 3|N| multiplications to encrypt the message,
WDec algorithm costs 1.5|N| multiplications to decrypt the
message, PDecW1 needs 1.5|N| multiplications to process,
and PDecW2 needs 1.5|N| + x multiplications. SDec needs
1.5|N| multiplications to decrypt the ciphertexti%4(E PDecS1

tiplications for CSP to run. For the SSBA protocol, it costs
58.5|N| multiplications for CP and 34.5|N| multiplications
for CSP to run. For the SLT protocol, it costs 34.5|N|
multiplications for CP and 19.5|N| multiplications for CSP
to run. For the SEQ protocol, it costs 165|N| multiplications
for CP and 93| N| multiplications for CSP to run. For the SDIV
protocol, it costs O(u?|N| + x*) multiplications for CP and
costs O(u?|N|) multiplications for CSP to run. For the SGCD
protocol, it costs O(u3|N| + u*) multiplications for CP and
O(x3|N|) multiplications for CSP.

2) Communication Overhead: In the DT-PKC scheme, each
Ti, T», CT and WT require 2| N| bits to represent. Thus, the
ciphertext [x],; needs 4|N| bits to transmit. For the basic sub-
protocols, it takes 16| N| bits between CP and CSP to run the
SAD protocol. Also, it takes 36|N| bits between CP and CSP
to run the SMD protocol, 46| N| bits to run the SSBA protocol,
174|N| bits to run the SLT protocol, 278|N| bits to run the
SMMS protocol, 420|N| bits for the SEQ protocol, 10u|N|
bits to run the SBD protocol, O(x?|N|) bits to run the SDIV
protocol, and O(x3|N|) bits to run the SGCD protocol.

C. Comparative Summary

Our EPOM is closely related to the work in [33], where
two servers (C and S) are used to process the encrypted data
under multiple keys. The multi-key ciphertexts are stored in
server C, while server S directly holds the strong private key.
However, as we pointed out in Section IV, the decryption
ability of strong trapdoor is too powerful (i.e. capability
to decrypt all ciphertexts in the system). Consequently, any
leakage or (insider) abuse would result in a major compromise
of the system (i.e. single point of attack). For example, a
compromised server S can be used to decrypt all ciphertexts
in the transmission link. Our approach differs from [33] in
the sense that EPOM randomly separates the strong trapdoor
into two shares,” and distributes the shares to two differ-
ent servers. Only when both servers work together can the
ciphertext be successfully decrypted. This decreases the risk.

TFor enhanced security (protection of key leaking), the strong trapdoor can
be further separated into n shares, s.t., > ;4; =0 mod A and > ; 1; = 1
mod N2 hold at the same time. The shares are then distributed to n — 1
CSP and CP for storage respectively. This will require an additional n — 2
servers in the system.



TABLE IV
COMPARATIVE SUMMARY

Addition Multiplication  Additive Homomophic Support Reduce Key Complex Process non-
Algorithm  Round Trips Round Trips Cryptosystem Multi-key ~ Leaking Risk ~ Operations  integer number
[33] One Two v v X X X
Ours One One v v v v v

Moreover, in order to achieve multiplication of the plaintexts
in [40], the KeyProd protocol should be first used to transfer
the ciphertexts with different public keys into the ciphertexts
with a same joint public key, without changing the correspond-
ing plaintext value. Then, the Mult protocol needs to be used
to achieve the plaintext multiplication using the transferred
ciphertexts. In all, two rounds of communication are necessary
to achieve multiplication of the plaintexts in [33]. In EPOM,
only one round of communication is required (i.e. SMD).
In addition, two protocols are constructed to achieve secure
addition and multiplication under multi-key in [33], whilst
EPOM realizes commonly used secure operations under multi-
key, such as comparison, division, etc. We also remark that
our EPOM can be extended to store and process data beyond
integer numbers. A comparative summary between the two
schemes is shown in Table IV.

VIII. RELATED WORK

With the constant evolution of cloud and related technolo-
gies, more users choose to encrypt before outsource their
own data to cloud servers for storage. However, it is impor-
tant to ensure the security and privacy of outsourced data.
While homomorphic encryption technique allows searching
of encrypted data, it is not yet practical to do so. More
specifically, Gentry [40] constructed the first fully homomor-
phic encryption scheme based on lattice-based cryptography
to support an arbitrary number of addition and multiplication
operations. Since the seminal work of Gentry in 2009, a num-
ber of single-key fully homomorphic encryption schemes
(see [41], [42]) and multi-key fully homomorphic encryption
schemes (see [12], [43], [44]) had been proposed. However,
one of the biggest drawbacks of fully homomorphic cryptosys-
tems is complexity in both computation (including encryption
and decryption) and storage (including both public/private key
size and ciphertext size). It is not yet practical to implement
fully homomorphic cryptosystem in the real-world [26], [27].

Partial homomorphic encryptions (including additive and
multiplicative homomorphic encryption) are often considered
the next best solution. However, partial homomorphic encryp-
tions can only handle one kind of homomorphic operation with
arbitrary times. Additive homomorphic encryption scheme,
such as Paillier cryptosystem [15] and Benaloh cryptosys-
tem [16], allows other parties to securely perform some
additive homomorphic calculations over the ciphertext. Multi-
plicative homomorphic encryption scheme, such as unpadded
RSA cryptosystem [45] and El-Gamal cryptosystem [46],
allows some multiplication over the plaintext. In recent years,
some cryptosystems attempt to provide for both additive and
multiplicative operations. However, these systems generally
achieve only limited numbers of homomorphic operations.

For example, the BGN cryptosystem [47] can only support
limited numbers of additive homomorphic operations and only
one multiplicative homomorphic operation.

A number of privacy-preserving protocols have also been
constructed using partial homomorphic encryption, and exam-
ples include secure sum protocol [48], [49], secure comparison
protocol [50], [51], secure set intersection protocol [52], [53],
secure scalar product protocol [54], [55], secure division
protocol [25], and secure top-k protocol [14]. Moreover, many
real-world applications use these privacy-preserving protocols
for system design. For instance, Li et al. [56] used the secure
set intersection protocol to construct the profile matching
framework. Although these privacy-preserving protocols are
promising, these protocols are designed for a single-key setting
which is not scalable for a real-world outsourced environment.
Peter et al. [33] designed an efficient outsourcing multiparty
computation framework for a multi-key setting. However, the
scheme does not support complex operations, such as securely
perform integer division operation. This is the gap that this
paper contributed to.

IX. CONCLUSION

In this paper, we proposed a new efficient and privacy-
preserving outsourced calculation framework with multiple
keys. The framework is designed to allow different data
providers to securely outsource their data with their own
public key, and for a cloud server to process the multi-key
encryption data on-the-fly. To ensure that the scheme can
be deployed in a real-world application, we proposed a new
cryptographic primitive, Distributed Two Trapdoors Public-
Key Cryptosystem (DT-PKC), to reduce both key management
cost and private key exposure risk. We also built toolkit to per-
form privacy preserving calculations to handle commonly used
integer operations in a privacy preserving way. Our evaluations
demonstrated that our framework (and the underlying building
blocks) are sufficiently efficient for a real-world deployment.
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