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Abstract 
 

We propose a simple methodology to evaluate a large number of potential explanations 
for the negative relation between idiosyncratic volatility and subsequent stock returns 
(the idiosyncratic volatility puzzle). Surprisingly, we find that many existing explanations 
explain less than 10% of the puzzle. On the other hand, explanations based on investors’ 
lottery preferences and market frictions show some promise in explaining the puzzle. 
Together, all existing explanations account for 29–54% of the puzzle in individual stocks 
and 78–84% of the puzzle in idiosyncratic volatility-sorted portfolios. Our methodology 
can be applied to evaluate competing explanations for other asset pricing anomalies. 
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Have we solved the idiosyncratic volatility puzzle? 

1. Introduction  

Ang, Hodrick, Xing, and Zhang (2006), in a highly influential paper, document a 

negative relation between idiosyncratic volatility and subsequent stock returns. To the extent that 

realized idiosyncratic volatility proxies for expected idiosyncratic volatility, this result is very 

puzzling because traditional asset pricing theories either predict no relation between expected 

idiosyncratic volatility and expected returns under the assumptions that markets are complete and 

frictionless and investors are well-diversified, or predict a positive relation under the 

assumptions that markets are incomplete and investors face sizable frictions and hold poorly 

diversified portfolios (see, e.g., Merton, 1987; Hirshleifer, 1988). Consequently, many papers 

have been written trying to explain the puzzle, with each paper proposing a different economic 

mechanism linking idiosyncratic volatility to subsequent stock returns.1 However, to date there 

has been no comprehensive examination about which explanations best explain the puzzle. 

Further complicating this matter is the fact that existing studies typically differ in terms of 

empirical methodology and sample construction, thus making direct comparisons of their results 

difficult.  

                                                 
1 The long list of candidate explanations includes those based on expected idiosyncratic skewness (Boyer, 

Mitton, and Vorkink, 2010), coskewness (Chabi-Yo and Yang, 2009), maximum daily return (Bali, Cakici, and 
Whitelaw, 2011), retail trading proportion (Han and Kumar, 2013), one-month return reversal (Fu, 2009; Huang, 
Liu, Rhee, and Zhang, 2009), illiquidity (Bali and Cakici, 2008; Han and Lesmond, 2011), uncertainty (Johnson, 
2004), average variance beta (Chen and Petkova, 2012), and earnings surprises (Jiang, Xu, and Yao, 2009; Wong, 
2011). In addition, several papers show that the idiosyncratic volatility puzzle is stronger among stocks with prices 
of at least five dollars (George and Hwang, 2011), low analyst coverage (Ang, Hodrick, Xing, and Zhang, 2009; 
George and Hwang, 2011), low credit ratings (Avramov, Chordia, Jostova, and Philipov, 2013), high short-sale 
constraints (Boehme, Danielsen, Kumar, and Sorescu, 2009; George and Hwang, 2011; Stambaugh, Yu, and Yuan, 
2015), high leverage (Johnson, 2004), low institutional ownership (Nagel, 2005), low book-to-market equity 
(Barinov, 2013), non-NYSE listings (Bali and Cakici, 2008), or for non-January months (George and Hwang, 2011; 
Doran, Jiang, and Peterson, 2012). 
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Motivated by these concerns, this paper provides a simple unified framework to evaluate 

a large number of candidate explanations of the puzzle. Most studies in this literature typically 

promote a new explanation of the puzzle while controlling for a limited number of existing 

explanations. We believe that our paper provides the most comprehensive examination of 

existing explanations to date. More importantly, our methodology allows us to quantify the 

fraction of the puzzle that is explained by each candidate explanation, either by itself or after 

controlling for other competing explanations. 

To summarize our methodology, we start from Fama and MacBeth (1973) cross-sectional 

regressions of month t individual stock returns on month t–1 idiosyncratic volatility. We find, as 

many papers do, that the estimated regression coefficient, which we denote as 𝛾𝑡, is on average 

negative and highly statistically significant. Next, we decompose the 𝛾𝑡 coefficient into one or 

more components, each related to a candidate explanation of the puzzle (e.g., skewness), and a 

residual component. The ratio of the component related to a particular candidate explanation to 

the original 𝛾𝑡 coefficient then measures the fraction of the idiosyncratic volatility puzzle that is 

captured by that explanation, and the ratio of the residual component to 𝛾𝑡 measures the fraction 

of the puzzle left unexplained by all candidate explanations considered. Our decomposition 

methodology ensures that the components related to the candidate explanations and the residual 

component add up to 𝛾𝑡. This makes for intuitive interpretation and easy comparisons when we 

pit existing explanations against one another.  

To guide our analysis, we break up existing explanations into three groups. The first 

group of explanations attributes the idiosyncratic volatility puzzle to lottery preferences of 

investors (they propose different proxies for the lottery feature of a stock, namely, skewness, 

coskewness, expected idiosyncratic skewness, maximum daily return, and retail trading 
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proportion). The second group of explanations appeals to various forms of market frictions (one-

month return reversal, the Amihud illiquidity measure, zero-return proportion, and bid-ask 

spread) to try to explain the puzzle. Explanations that do not fall naturally into the first two 

groups (uncertainty, average variance beta, and earnings surprises) are then included in the third 

group.  

Using the sample of Center for Research in Security Prices (CRSP) common stocks from 

1963–2012, we find that surprisingly many existing explanations, when evaluated alone, explain 

less than 10% of the idiosyncratic volatility puzzle. This is true for the explanations based on 

coskewness, illiquidity, zero-return proportion, uncertainty, and average variance beta. For 

example, coskewness and analyst dispersion (a proxy for uncertainty) can only explain 1.9% and 

5.3%, respectively, of the puzzle. Or consider the Amihud illiquidity measure. Despite being 

highly correlated with idiosyncratic volatility, it also fails to capture more than 10% of the 

puzzle.   

On the other hand, explanations based on skewness, expected idiosyncratic skewness, 

maximum daily return, retail trading proportion, one-month return reversal, bid-ask spread, and 

past earnings surprises show promise in explaining the puzzle. In particular, one-month return 

reversal alone can explain 33.7% of the puzzle, followed by bid-ask spread at 30.4%, retail 

trading proportion at 22.3%, expected idiosyncratic skewness at 14.7%, past earnings surprises at 

10.9%, and skewness at 10.3%. For the maximum daily return variable proposed by Bali et al. 

(2011), it turns out that it can explain the entire puzzle. The problem, however, is that this 

variable is essentially a range-based measure of volatility and is close to being perfectly collinear 

with idiosyncratic volatility (correlation of about 0.90). It is therefore not surprising that an 

alternative proxy for volatility can capture the idiosyncratic volatility puzzle. 
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Finally, we include all explanations of the puzzle (excluding maximum daily return for 

reasons mentioned above) in a multivariate framework so that we can evaluate the marginal 

contribution of each explanation. We are also interested in the total fraction of the puzzle they 

can collectively explain. We find that after controlling for competing explanations, retail trading 

proportion explains only 0.2% of the puzzle. Among the other lottery preference-based 

explanations, expected idiosyncratic skewness explains 4–15%, coskewness explains 3–4%, and 

skewness explains 2–7% of the puzzle, depending on the specification. Together, the four lottery 

preference proxies capture a good 10–25% of the puzzle. Among the market friction-based 

explanations, one-month return reversal explains 1–22%, bid-ask spread explains 8%, the 

Amihud illiquidity measure explains up to 4%, and zero-return proportion explains less than 2% 

of the puzzle. Together, the market friction proxies account for 3–24% of the puzzle. Finally, 

analyst dispersion explains 3–6%, average variance beta explains less than 1%, and past earnings 

surprises explain 2–5% of the puzzle. Together, this group of explanations accounts for 5–10% 

of the puzzle in the multivariate analysis. Collectively, all the examined explanations account for 

29–54% of the puzzle, with explanations based on lottery preferences and market frictions 

making the biggest contributions. However, a significant fraction (46–71%) of the puzzle 

remains unexplained. 

In robustness tests, we repeat the multivariate analysis using subsamples of stocks with 

prices of at least five dollars, low analyst coverage, poor credit ratings, high short-sale 

constraints, high leverage, low institutional ownership, low book-to-market equity, non-NYSE 

listings, or for non-January months (which have been shown by previous studies to be associated 

with a stronger idiosyncratic volatility puzzle). We find that existing explanations account for 

39–50% of the puzzle on average in these subsamples. In addition, we extend our analysis to 
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idiosyncratic volatility-sorted portfolios to control for measurement errors at the individual stock 

level, and find that existing explanations capture 78–84% of the puzzle in the portfolio-level 

analysis.2 We also examine nonlinear relations in the idiosyncratic volatility puzzle and find that 

existing explanations account for a similar fraction of the puzzle as in the baseline linear 

specification. Overall, these robustness results confirm that while lottery preferences and market 

frictions explain a sizable part of the idiosyncratic volatility puzzle, a significant portion of the 

puzzle remains unexplained. In the final test, we apply our decomposition methodology to other 

anomalies to illustrate that our methodology can be used to evaluate candidate explanations for 

other puzzles in empirical asset pricing.    

The rest of the paper is organized as follows. Section 2 describes the data and 

methodology and gives an overview of the various explanations that have been proposed for the 

idiosyncratic volatility puzzle. Section 3 evaluates the explanations one at a time, and Section 4 

investigates multiple explanations at the same time. Section 5 considers a number of robustness 

tests, and Section 6 concludes.  

2. Data and methodology 

2.1. Stock return and idiosyncratic volatility data 

We start our sample from the standard CRSP common stock (share codes of 10 or 11) 

universe from July 1963 to December 2012. Monthly returns are adjusted for delisting following 

Shumway (1997). To be included in the analysis, we require a firm to have non-missing size and 

non-negative book-to-market equity (B/M), where size is the most recent June-end market cap 

                                                 
2 Although the total explained fraction at the portfolio level is significantly higher than that at the individual 

stock level, our simulation results suggest that it might overstate the true fraction of the puzzle explained by the 
candidate variables if the candidate variables are already measured precisely at the individual stock level. See 
Section 5.1 for details. 
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and B/M is computed according to Fama and French (2006). We apply a price screen of one 

dollar to remove penny stocks but also adjust this screen in subsample robustness tests.  

We compute idiosyncratic volatility (IVOL) following Ang et al. (2006) as the standard 

deviation of the residuals from a regression of daily stock returns in month t–1 on the Fama and 

French (1993) factors. We require at least ten daily returns to compute IVOL, although our 

results are unaffected if we require at least 15 daily returns or do not impose any minimum 

observation restriction. The estimates for IVOL start in July 1963, and month t–1 estimates of 

IVOL are matched to month t returns from August 1963 to December 2012. 

2.2. Candidate variables related to lottery preferences of investors 

A battery of candidate variables is constructed as potential explanations of the 

idiosyncratic volatility puzzle. The first group of explanations concerns the lottery preferences of 

investors. Barberis and Huang (2008) argue that under cumulative prospect theory, investors 

overweigh small chances of large gains (hence the lottery preferences). As a result, they prefer 

positively skewed stocks, causing them to be overpriced, which would then earn low subsequent 

returns. Several papers attribute the idiosyncratic volatility puzzle to idiosyncratic volatility 

being correlated with skewness. We measure skewness (denoted Skew) using the daily returns in 

month t–1. In addition to the raw skewness measure, we also compute alternative measures of 

skewness. Chabi-Yo and Yang (2009) develop a model showing that the effect of idiosyncratic 

volatility on stock returns is related to a stock’s coskewness with the market portfolio. We 



 

 7 

measure coskewness (Coskew) as the regression coefficient of squared daily individual stock 

returns on market returns.3  

Boyer et al. (2010) use the forecasts from a regression model to proxy for expected 

idiosyncratic skewness [E(Idioskew)] and show that it helps to explain the idiosyncratic volatility 

puzzle.4 We obtain the E(Idioskew) estimates from the authors for 1988–2005. We then extend 

their sample period by constructing the measure for 1968–1987 (turnover is dropped from the 

forecast model for this early period due to lack of turnover data for Nasdaq stocks) and 2006–

2012. 

We also consider the maximum daily return (Maxret) and the retail trading proportion 

(RTP) of a stock, which are proposed by Bali et al. (2011) and Han and Kumar (2013), 

respectively, as indicators for stocks that are preferred by lottery-seeking retail investors. Maxret 

is measured using daily returns in month t–1. RTP is measured as the fraction of the dollar 

trading volume in month t–1 that comes from trades less than or equal to $5,000, using the 

Institute for the Study of Security Markets (ISSM) database for 1983–1992 and the Trades and 

Quotes (TAQ) database for 1993–2000. Following Han and Kumar (2013), we exclude the post-

decimalization period due to greater incidence of order-splitting by institutions. 

                                                 
3 We have also calculated Harvey and Siddique’s (2000) measure of coskewness by regressing daily individual 

stock returns on squared market returns. The results are similar to those based on Chabi-Yo and Yang’s (2009) 
coskewness measure. 

4 Expected idiosyncratic skewness is estimated by regressing idiosyncratic skewness (measured using the 
residuals from a regression of past five years of daily returns on the Fama-French factors) on lagged idiosyncratic 
skewness, idiosyncratic volatility, momentum, turnover, dummy variables for small firms and medium-sized firms, 
two-digit Standard Industrial Classification (SIC) dummies, and a Nasdaq dummy. Boyer et al. (2010) show that the 
coefficient on IVOL becomes insignificant after controlling for E(Idioskew) in Fama-MacBeth regressions using 100 
E(Idioskew)-sorted portfolios. However, in their individual stock-level Fama-MacBeth regressions, the IVOL 
coefficient remains significant after controlling for E(Idioskew). 
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2.3. Candidate variables related to market frictions 

The second group of explanations attributes the idiosyncratic volatility puzzle to market 

frictions. Fu (2009) and Huang et al. (2009) argue that once we control for the one-month return 

reversal effect, which is likely driven by microstructure biases, the negative idiosyncratic 

volatility-return relation is no longer significant. We measure the one-month reversal effect using 

the month t–1 return (Lagret).  

Illiquidity can also affect the idiosyncratic volatility-return relation. We examine three 

measures of illiquidity. The Amihud (2002) measure (Amihud) is computed as the month t–1 

average of daily absolute return divided by daily dollar trading volume. We also follow Han and 

Lesmond (2011) and use the fraction of trading days in month t–1 with a zero return (Zeroret) as 

another proxy for illiquidity. The third proxy is the bid-ask spread (Spread), which is the average 

daily percentage bid-ask spread (ask minus bid divided by the average of bid and ask) in month 

t–1. The daily percentage spreads are computed based on the National Best Bid and Offer 

(NBBO) quotes at every point in time during a trading day (weighted by the average depth of the 

quotes), using data from ISSM and TAQ for 1984–2012. Han and Lesmond (2011) argue that the 

bid-ask bounce drives much of the idiosyncratic volatility puzzle.  

2.4. Candidate variables related to other explanations 

The third group of explanations consists of those that do not fall naturally into the lottery 

preference or market friction categories. First, idiosyncratic volatility could proxy for the 

fundamental uncertainty surrounding a stock. Johnson (2004) argues that uncertainty is 

negatively related to future stock returns because stock is a call option on a levered firm’s 

underlying assets. We measure uncertainty using analyst dispersion (Dispersion), which is the 
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standard deviation of analysts’ FY1 forecasts scaled by the absolute value of the mean consensus 

forecast for month t–1. Analysts’ forecasts are obtained from the Institutional Brokers’ Estimate 

System (I/B/E/S) Summary Estimates unadjusted file.  

Chen and Petkova (2012) argue that a stock’s exposure to the average variance 

component of the market variance explains the idiosyncratic volatility puzzle. We replicate their 

measure of average variance beta (AvgVarβ) for the sample period of 1968–2012 and include it 

in the analysis.5  

We also examine SUE (the most recently announced standardized unexpected earnings as 

of the end of month t–1). Jiang et al. (2009) and Wong (2011) show that high idiosyncratic 

volatility stocks suffer negative earnings surprises, which could explain the subsequent poor 

return performance of those stocks. SUE is measured as the Compustat quarterly earnings before 

extraordinary items (item IBQ) minus the earnings four quarters ago, divided by the standard 

deviation of the difference over the last eight quarters. The announcement date of earnings is 

from item RDQ.  

2.5. Decomposition methodology 

Our decomposition methodology is based on individual stock-level Fama-MacBeth cross-

sectional regressions, which are commonly used in the literature to study the relation between 

idiosyncratic volatility and returns. For each month t, we regress the cross-section of individual 

stock characteristic-adjusted returns on their month t–1 IVOL as follows:  

 𝑅𝑖𝑡 = 𝛼𝑡 + 𝛾𝑡𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝜀𝑖𝑡. (1) 

                                                 
5 For each month, average variance beta is estimated by regressing a stock’s returns over the past 60 months (24-

month minimum) on changes in the average variance (AV) of the market portfolio, controlling for changes in the 
average correlation (AC) of the market portfolio and the Fama-French (1993) factors. AV is the average of the 
individual stock daily return variances. AC is the average of the pairwise correlations between stocks.  
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𝑅𝑖𝑡 is stock i’s characteristic-adjusted return, computed following Daniel, Grinblatt, Titman, and 

Wermers (1997) (hereafter DGTW).6 Our results are robust to using raw returns instead of 

DGTW-adjusted returns. For our baseline sample, the average 𝛾𝑡 coefficient (×100 and reported 

in percent) equals –16.955% with a t-statistic of –8.19 (hence the idiosyncratic volatility puzzle).  

Next, we regress 𝐼𝑉𝑂𝐿𝑖𝑡−1 on a candidate explanatory variable (𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1):  

 𝐼𝑉𝑂𝐿𝑖𝑡−1 = 𝑎𝑡−1 + 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜇𝑖𝑡−1. (2) 

This regression allows us to assess the relation between idiosyncratic volatility and the candidate 

variable as any candidate variable that can potentially explain the puzzle must be correlated with 

idiosyncratic volatility.7 We then use the regression coefficient estimates to decompose 𝐼𝑉𝑂𝐿𝑖𝑡−1 

into two orthogonal components: 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 is the component of 𝐼𝑉𝑂𝐿𝑖𝑡−1 that is 

related to the candidate variable and (𝑎𝑡−1 + 𝜇𝑖𝑡−1) is the residual component that is unrelated to 

the candidate variable. 

The final step is to use the linearity of covariances to decompose the estimated 𝛾𝑡 

coefficient from Eq. (1): 

𝛾𝑡 =
 Cov[𝑅𝑖𝑡 , 𝐼𝑉𝑂𝐿𝑖𝑡−1]

Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]
 

     =
 Cov[𝑅𝑖𝑡, (𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝑎𝑡−1 + 𝜇𝑖𝑡−1)]

Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]
 

     =
 Cov[𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]

Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]
+

 Cov[𝑅𝑖𝑡, (𝑎𝑡−1 + 𝜇𝑖𝑡−1)]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

 

     =  𝛾𝑡𝐶  + 𝛾𝑡𝑅 . (3) 
                                                 

6 DGTW-adjusted return is the raw return minus the return on a size-B/M-momentum-matched benchmark 
portfolio. At the end of June of each year, stocks are first sorted into quintiles based on their market cap using NYSE 
breakpoints. Then, within each size quintile, stocks are sorted into quintiles according to their B/M ratios from the 
previous year. In the last step, stocks within each double-sorted size-B/M portfolio are further sorted into quintiles 
every month based on their returns over the prior 12 months skipping the most recent month. Equal-weighted 
monthly returns are computed for each characteristic-matched benchmark portfolio. 

7 However, as we will demonstrate later, a high correlation in and of itself does not guarantee that the candidate 
variable will explain a large fraction of the puzzle. 
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𝛾𝑡𝐶/𝛾𝑡 then measures the fraction of the idiosyncratic volatility-return relation (the 

idiosyncratic volatility puzzle) explained by the candidate variable, and 𝛾𝑡𝑅/𝛾𝑡 measures the 

fraction of the puzzle left unexplained by the candidate variable. While the means and variances 

of the two fractions are unattainable in closed-form, we can use the standard multivariate delta 

method based on Taylor series expansions to find approximations using the means, variances, 

and covariances of 𝛾𝑡𝐶, 𝛾𝑡𝑅, and 𝛾𝑡 (see, e.g., Casella and Berger, 2001): 

E�
𝛾𝑡𝐶

𝛾𝑡
� ≈  

E(𝛾𝑡𝐶)
E(𝛾𝑡)

, E�
𝛾𝑡𝑅

𝛾𝑡
� ≈  

E(𝛾𝑡𝑅)
E(𝛾𝑡)

,  (4) 

Var�
𝛾𝑡𝐶

𝛾𝑡
� ≈ �

E(𝛾𝑡𝐶)
E(𝛾𝑡)

�
2

�
Var(𝛾𝑡𝐶)
(E(𝛾𝑡𝐶))2

+  
Var(𝛾𝑡)
(E(𝛾𝑡))2

−  2
Cov(𝛾𝑡𝐶 ,𝛾𝑡)
E(𝛾𝑡𝐶)E(𝛾𝑡)

�,  (5) 

and 

Var�
𝛾𝑡𝑅

𝛾𝑡
� ≈ �

E(𝛾𝑡𝑅)
E(𝛾𝑡)

�
2

�
Var(𝛾𝑡𝑅)
(E(𝛾𝑡𝑅))2

+  
Var(𝛾𝑡)
(E(𝛾𝑡))2

−  2
Cov(𝛾𝑡𝑅 , 𝛾𝑡)
E(𝛾𝑡𝑅)E(𝛾𝑡)

�. (6) 

The corresponding estimated means and variances of the fractions are based on the respective 

time series of 𝛾𝑡𝐶, 𝛾𝑡𝑅, and 𝛾𝑡 estimates (over T months): 

E� �
𝛾𝑡𝐶
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�.   (9) 

Our decomposition methodology is different from the conventional approach to evaluate 

a candidate variable, which usually involves including the candidate variable as a control in the 

regression of returns on idiosyncratic volatility: 

 𝑅𝑖𝑡 = 𝛼�𝑡 + 𝛾�𝑡𝑅𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝛾�𝑡𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜀�̃�𝑡. (10) 
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In this regression, if 𝛾�𝑡𝑅 is zero, researchers typically conclude that the candidate variable 

explains the idiosyncratic volatility puzzle. If 𝛾�𝑡𝑅 is not zero, one might consider using the 

difference between 𝛾�𝑡𝑅 and the original IVOL coefficient 𝛾𝑡 from Eq. (1) to measure the fraction 

of the puzzle that is explained by the candidate variable. This is problematic because the two 

coefficients are not directly comparable due to the fact that 𝛾�𝑡𝑅 is determined by the variation in 

IVOL that is independent of the candidate variable whereas 𝛾𝑡 is determined by the variation in 

IVOL itself. The important advantage of our decomposition methodology is that by requiring 

both 𝛾𝑡𝐶  and 𝛾𝑡𝑅 in Eq. (3) to be determined by the variation in IVOL, we ensure that they add up 

exactly to the original 𝛾𝑡 coefficient. This allows us to make a direct statement about the fraction 

of the idiosyncratic volatility puzzle that is explained by the candidate variable. In addition, 

unlike the conventional approach, our methodology can easily accommodate multiple candidate 

variables at the same time so we can objectively quantify the marginal contribution of each 

candidate variable in a horse race. 

It is important to point out that a candidate variable that is highly correlated with 

idiosyncratic volatility may not necessarily explain a large fraction of the puzzle in our 

decomposition methodology. This is because the part of idiosyncratic volatility that is related to 

the candidate variable may not be the part that is responsible for the negative relation between 

idiosyncratic volatility and returns. In Appendix A, we show that 𝛾𝑡𝐶  from our decomposition 

methodology in Eq. (3) is related to the coefficients from the conventional approach in Eq. (10) 

in the following way: 𝛾𝑡𝐶  = � 𝛾�𝑡
𝐶

 𝛿𝑡−1
+ 𝛾�𝑡

𝑅� × Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1] .8 This suggests that 𝛾𝑡𝐶  not only 

depends on the fraction of the variation of idiosyncratic volatility explained by the candidate 

variable �Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

�, but also on the component of the candidate variable that is 
                                                 

8 We also consider the general case of multiple candidate variables in Appendix A. 
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uncorrelated with idiosyncratic volatility but correlated with future returns as captured by 𝛾�𝑡𝐶 in 

Eq. (10). Consequently, a candidate variable that is highly positively correlated with 

idiosyncratic volatility could actually have a small or even negative contribution to the puzzle if 

the component of the candidate variable that is uncorrelated with idiosyncratic volatility predicts 

returns positively. Empirically, we show in Section 3 that this is indeed the case for a number of 

candidate variables we investigate. The bottom line is that our decomposition methodology is not 

simply picking up candidate variables based solely on their correlations with idiosyncratic 

volatility. Rather, we attribute a high explanatory power to a variable for capturing a significant 

fraction of the negative relation between idiosyncratic volatility and returns. 

3. Evaluating candidate explanations one at a time 

3.1. Sample descriptive statistics 

Panel A of Table 1 reports the descriptive statistics of our sample. There are more than 

two million firm-month observations in our baseline sample. The average raw return is 1.1% per 

month with a standard deviation of 15.7%. The average DGTW-adjusted return is –0.1% per 

month with a standard deviation of 14.2%. The average IVOL estimated using daily returns is 

2.6%. The average market beta (estimated with three years of past monthly returns), size, B/M 

ratio, and momentum (buy-and-hold return from month t–12 to t–2) are 1.136, $1.441 billion, 

0.944, and 16.7%, respectively. 

[Insert Table 1 here] 

The rest of Panel A reports the descriptive statistics for the three groups (lottery 

preferences, market frictions, and others) of candidate variables. Among the lottery preference 

variables, the average Skew is 0.258, suggesting that stock returns are on average positively 
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skewed. The average Maxret is 7.1%. The average RTP is 15.8%, indicating that retail investors 

typically do not account for a large fraction of the trading volume of a stock. Among the market 

friction variables, Lagret has an average value of 1.6% (higher than the month t average return of 

1.1% due to the one-dollar price screen we impose at the end of month t−1). The average value 

of Zeroret, an illiquidity proxy, is 20.8%, which indicates that on average about one-fifth of the 

trading days in a month have a zero return. The average Spread is 3.2%. Among the other 

candidate variables, Dispersion, AvgVarβ, and SUE have average values of 19.9%, 0.228, and 

16.9%, respectively.  

Panel B of Table 1 reports the time-series averages of cross-sectional correlations. The 

average correlation between month t–1 IVOL and month t DGTW-adjusted returns is –0.027, 

which is consistent with the negative idiosyncratic volatility-return relation documented in the 

literature. The second column of Panel B shows that IVOL is positively correlated with Skew, 

Coskew, E(Idioskew), Maxret, RTP, Lagret, Amihud, Zeroret, Spread, Dispersion, and AvgVarβ, 

and negatively correlated with SUE. These correlations are generally consistent with the various 

explanations that have been proposed for the idiosyncratic volatility puzzle. For example, the 

average correlation between IVOL and Skew is 0.193, which is consistent with the lottery 

preference explanation that IVOL predicts returns because of its correlation with skewness. Or 

consider SUE. The average correlation between IVOL and SUE is –0.099. This correlation is in 

line with the conclusion in Jiang et al. (2009) and Wong (2011) that the poor earnings 

performance of high idiosyncratic volatility stocks is responsible for their low returns. Among all 

the candidate variables, the one that has the highest correlation with IVOL is Maxret (average 

correlation of 0.882), suggesting that collinearity is a concern for this variable.9  

                                                 
9 The high correlation between the two variables is not surprising given that price range has been used as a 

volatility estimator in the literature. See, for example, Alizadeh, Brandt, and Diebold (2002) and Brandt and Diebold 
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3.2. The idiosyncratic volatility puzzle 

To set the stage, Table 2 reports the results of monthly Fama-MacBeth cross-sectional 

regressions of month t individual stock DGTW-adjusted returns on month t–1 IVOL and different 

candidate variables.10 We require at least 50 observations per month so that we have a reasonable 

sample size for each cross-sectional regression. 

[Insert Table 2 here] 

Model 1 regresses DGTW-adjusted returns on IVOL alone. The sample period is August 

1963 to December 2012 with an average of 3,581 stocks per month. The average coefficient on 

IVOL is –16.955 (multiplied by 100 and reported in percent, t=–8.19) and its magnitude and 

statistical significance are in line with past findings in the literature. Models 2–6 add the lottery 

preference-based candidate variables one at a time to Model 1. For each model, the number of 

observations and sample period may differ from those of Model 1 due to data availability of the 

candidate variable examined. The results from Models 2–6 show that in all but one case, the 

coefficient on IVOL remains negative and statistically significant. Only when Maxret is included 

in the regression does the coefficient on IVOL become positive, consistent with the results in Bali 

et al. (2011).   

Models 7–10 and 11–13 in Table 2 investigate the candidate variables related to market 

frictions and other explanations, respectively. The results show that the coefficient on IVOL is 

always negative and statistically significant, irrespective of the candidate variable included in the 

regressions.  

                                                                                                                                                             
(2006). This makes Maxret a less satisfactory economic explanation for the puzzle since using Maxret as a candidate 
variable is akin to explaining the idiosyncratic volatility puzzle with another volatility proxy.  

10 Asparouhova, Bessembinder, and Kalcheva (2013) show that microstructure noise introduces an upward bias 
to stock returns, which could potentially bias the inferences from Fama-MacBeth regressions. In unreported tests, 
we follow their paper by using (one plus) month t–1 return as the weight in the Fama-MacBeth regressions and find 
that our results are robust to this noise-adjustment procedure.  
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The main takeaway from Table 2 is that the negative idiosyncratic volatility-return 

relation remains significant after controlling for almost all of the candidate explanatory variables 

(except for Maxret). But the question remains: Even if these candidate variables cannot 

completely explain away the idiosyncratic volatility puzzle, can they at least explain part of it? If 

so, what fraction of the puzzle can these candidate variables capture? We investigate this next 

using the decomposition methodology described in Section 2.5. 

3.3. Candidate variables related to lottery preferences of investors 

We first examine the candidate variables related to lottery preferences of investors. We 

start off with a detailed account of the decomposition analysis using Skew in Panel A of Table 3. 

Stage 1 regresses month t DGTW-adjusted returns on month t–1 IVOL and the average 

coefficient on IVOL is –17.401% with a t-statistic of –8.47. Note that this regression excludes 

firm-month observations with missing Skew to ensure that the sample is kept constant when we 

later add Skew to the analysis.  

In Stage 2, we add Skew to the cross-sectional regressions following the conventional 

approach in Eq. (10) (this is identical to Model 2 in Table 2). The average coefficient on Skew is 

–0.099% with a t-statistic of –5.53, which is consistent with Barberis and Huang’s (2008) 

prediction that investors overprice positively skewed stocks and as a result the future returns of 

those stocks are low. Controlling for Skew, however, we see that the average coefficient on IVOL 

is still negative and significant (–16.145%, t=–7.67), which suggests that Skew cannot fully 

explain the idiosyncratic volatility puzzle.  

We now use our decomposition methodology to assess specifically what fraction of the 

puzzle is captured by Skew. In Stage 3, we regress IVOL on Skew each month. The average 

coefficient on Skew is 0.367% with a t-statistic of 34.31, suggesting that part of IVOL is indeed 
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related to the skewness of a stock (a unit change in Skew is associated with a 0.367% change in 

IVOL). However, the adjusted R-squared shows that only 4.3% of the variation in IVOL can be 

explained by Skew. The Stage 3 estimated coefficients allow us to separate IVOL each month 

into two components: the first one (𝛿𝑡−1𝑆𝑘𝑒𝑤𝑖𝑡−1) is the component of IVOL that is related to 

Skew and the second (𝑎𝑡−1 + 𝜇𝑖𝑡−1) is the residual component that is unrelated to Skew. 

In Stage 4, we follow Eq. (3) and use the above two components of IVOL to decompose 

the Stage 1 IVOL coefficient (𝛾𝑡) into a component that is related to Skew (𝛾𝑡𝑆𝑘𝑒𝑤) and a residual 

component (𝛾𝑡𝑅). The time-series averages of 𝛾𝑡𝑆𝑘𝑒𝑤 and 𝛾𝑡𝑅 are –1.785% and –15.615%, 

respectively. Since by construction the two coefficients sum up to the Stage 1 coefficient of –

17.401%, we can readily calculate the fraction of the Stage 1 coefficient attributable to Skew as 

−1.785 
−17.401

=10.3% (t=6.73), and the fraction attributable to the residual component is 

−15.615 
−17.401

=89.7% (t=58.88). We therefore conclude that Skew can explain 10.3% of the 

idiosyncratic volatility puzzle. 

[Insert Table 3 here] 

We also examine the other skewness variables in Panel A of Table 3. The results show 

that Coskew explains only 1.9% (t=1.08) of the puzzle, and E(Idioskew) explains 14.7% (t=5.80) 

of the puzzle. 

Next, we see that the portion of the puzzle that is explained by Maxret is 112.0% 

(t=18.72).11 It thus appears that Maxret explains the idiosyncratic volatility puzzle entirely. 

However, considering the near perfect collinearity between Maxret and IVOL and that Maxret is 

essentially a range-based measure of volatility, this finding might be mechanical. 

                                                 
11 The reason this fraction is above 100% is because the adding-up constraint in Stage 4 requires the Maxret 

component and the residual component to add up to the Stage 1 coefficient on IVOL. 
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The last column of Panel A shows that RTP explains 22.3% (t=5.92) of the idiosyncratic 

volatility puzzle. However, we note that this result is obtained over a relatively short sample 

period (1983–2001) compared to the rest of the candidate variables. 

While our methodology directly quantifies the fraction of the idiosyncratic volatility 

puzzle explained by a lottery preference-based candidate variable, one can also evaluate the 

validity of the candidate variable as a proxy for lottery preferences by studying its return 

predictability after controlling for IVOL. For example, although E(Idioskew) explains more than 

10% (14.7%) of the puzzle, it has no independent return predictive power after controlling for 

IVOL according to Stage 2 regressions. If E(Idioskew) is a good proxy for the lottery feature of a 

stock, it seems reasonable to expect both the part of E(Idioskew) that is related to IVOL and the 

part that is unrelated to IVOL to predict returns negatively. The fact that the latter has no return 

predictive power (average coefficient=0.022% and t=0.45 from Stage 2 regressions) implies that 

only the part of E(Idioskew) that is related to IVOL is consistent with the lottery preference-based 

explanation. One reason for this might be that one of the components of E(Idioskew) is IVOL 

itself, thus introducing a potential mechanical relation between the two variables.  

Of the other lottery preference-based candidate variables, RTP also fails to predict returns 

after controlling for IVOL (average coefficient=−0.021% and t=−0.08). Hence, its ability to 

measure the lottery feature of a stock must also be caveated since only the part of RTP that is 

correlated with IVOL has a negative and significant relation with stock returns. For Skew, 

Coskew, and Maxret, their return predictability remains negative and significant after controlling 

for IVOL in Stage 2 regressions, which suggests that these three variables are viable lottery 

preference proxies (although Coskew can only explain a negligible fraction of the IVOL puzzle 
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according to our decomposition methodology and Maxret is likely to be mechanically related to 

IVOL). 

Overall, the results from Table 3 Panel A suggest that most of the lottery preference-

based candidate variables show some promise in explaining the idiosyncratic volatility puzzle, 

with Maxret, RTP, E(Idioskew), and Skew each explaining more than 10% of the puzzle. The 

concern about Maxret, however, is its mechanical relation with IVOL. And while RTP and 

E(Idioskew) capture sizable fractions of the puzzle, their ability to measure the lottery feature of 

a stock is hindered by the fact that neither of them can predict returns after controlling for IVOL.   

3.4. Candidate variables related to market frictions 

Panel B of Table 3 examines the candidate variables related to market frictions. We see 

that both Lagret and Spread explain about one-third of the idiosyncratic volatility puzzle (33.7% 

for Lagret and 30.4% for Spread with t-statistics of 6.47 and 5.44, respectively), thus leaving 

two-thirds of the puzzle explained by the residual component. These results suggest that bid-ask 

bounce and other microstructure effects (that likely drive the short-term return reversal) 

contribute significantly to the puzzle.  

On the other hand, other illiquidity proxies such as Amihud and Zeroret fail to explain 

significant fractions of the puzzle. The explained fraction is 0.9% (t=0.72) for Zeroret and 

actually negative at –2.4% (t=−0.69) for Amihud. Intuitively, the reason that Amihud has a 

negative contribution to the idiosyncratic volatility puzzle is because it is positively correlated 

with IVOL but its return predictability after controlling for IVOL is also positive, which is in the 

opposite direction of the idiosyncratic volatility puzzle. The low explanatory power of Amihud 

despite its high correlation with IVOL shows that our decomposition methodology does not 
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necessarily attribute a large explained fraction to a candidate variable just because it has a high 

correlation with idiosyncratic volatility.  

In sum, some market friction-based candidate variables such as Lagret and Spread 

capture sizable portions of the idiosyncratic volatility puzzle, while others including Amihud and 

Zeroret have very little success in explaining the puzzle. We also note that Lagret continues to 

predict returns negatively (and significantly) after controlling for IVOL, which is consistent with 

the evidence in the literature regarding the impact of market frictions on stock returns. For 

Spread, although it is significantly negatively related to returns on its own, the relation becomes 

positive and insignificant after controlling for IVOL. 

3.5. Candidate variables related to other explanations 

Panel B of Table 3 also examines candidate variables that cannot be grouped into the 

lottery preference or market friction categories. We first look at Dispersion and find that it can 

only explain a small fraction (5.3%, t=1.92) of the idiosyncratic volatility puzzle.12 

The next candidate variable we investigate is AvgVarβ. This variable contributes very 

little in explaining the puzzle, with the explained fraction equal to 1.0% (t=1.80). We also 

examine whether SUE can explain the idiosyncratic volatility puzzle. We find that it captures 

10.9% (t=7.35) of the puzzle, suggesting that the poor earnings performance of high 

idiosyncratic volatility stocks helps to explain the idiosyncratic volatility puzzle. Finally, we note 

that while Dispersion and AvgVarβ have no return predictive power after controlling for IVOL, 

                                                 
12 Ang et al. (2006) show that the Fama-French alpha of an IVOL quintile spread portfolio decreases by about 

two-thirds after controlling for Dispersion (using two-way sorts). In unreported results, we find that the reduction in 
alpha is largely due to requiring stocks to have non-missing Dispersion rather than the pure effect of controlling for 
Dispersion while keeping the sample constant. 
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SUE has a positive and significant relation with returns after controlling for IVOL, which is 

consistent with prior studies that show a post-announcement drift following earnings surprises. 

3.6. Interaction effects 

As mentioned in the introduction, several papers show that there exists variation in the 

idiosyncratic volatility puzzle across stocks with different price levels, analyst coverage, credit 

ratings, short interest, leverage, institutional ownership, B/M ratios, and exchange listings. We 

examine what fractions of the idiosyncratic volatility puzzle come from the interaction effects 

between idiosyncratic volatility and these conditioning characteristics.13 To do so, we define 

CharRank as the decile rank of a conditioning characteristic (scaled to be between zero and one 

and in ascending order of the characteristic except for analyst coverage, credit rating, 

institutional ownership, and B/M ratio) and then include CharRank and CharRank×IVOL in our 

decomposition analysis.  

 [Insert Table 4 here] 

Table 4 reports the results for the eight conditioning characteristics. We see from Stage 2 

regressions that the coefficients on the interaction term CharRank×IVOL are mostly negative and 

statistically significant, which suggests that the idiosyncratic volatility puzzle is stronger among 

stocks with high prices, low analyst coverage, poor credit ratings, high short interest, high 

leverage, low institutional ownership, and low B/M ratios. However, we find no evidence that 

the idiosyncratic volatility puzzle is stronger among stocks with non-NYSE listings. The Stage 4 

                                                 
13 Price is the stock price at the end of previous month (t−1). Analyst coverage is the number of analysts issuing 

FY1 earnings forecasts in month t–1 (firms with no I/B/E/S coverage are excluded). Credit rating is the Standard & 
Poors (S&P) long-term issuer rating reported in Compustat (SPLTICRM) and numerically coded following 
Avramov et al. (2013). Short interest is measured in month t–1 using the data in Cohen, Diether, and Malloy (2007). 
Leverage is the Compustat long-term debt (LTDEBT) over total assets (AT) from the previous fiscal year end. 
Institutional ownership is measured using data reported in the most recent quarterly Thomson 13F filings. Non-
NYSE listing is identified using the EXCHCD flag on CRSP. 
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decomposition results show that the average fraction explained by CharRank and 

CharRank×IVOL is 83.9% across the eight conditioning characteristics. This large explained 

fraction is not surprising, however, since IVOL itself enters into the interaction term. In 

unreported results, we break the mechanical relation between IVOL and CharRank×IVOL by 

replacing IVOL in the interaction term with IVOLRank (the decile rank of IVOL) and obtain a 

more modest average explained fraction of 46.3% across the conditioning characteristics. 

4. Evaluating multiple candidate explanations at the same time 

4.1. Multivariate analysis  

After investigating each of the candidate variables in isolation, we now turn to 

multivariate analysis. We want to know the marginal contribution of each variable after 

controlling for competing candidate variables. In addition, we are interested in the total fraction 

of the puzzle these candidate variables can collectively explain. The linear adding-up constraint 

of our decomposition methodology ensures that their combined contributions plus that of the 

residual component add up to 100% of the puzzle. 

[Insert Table 5 here] 

Table 5 reports the results of the multivariate analysis. We exclude Maxret from the 

analysis due to its mechanical relation with IVOL. The remaining candidate variables are 

included in Model 1. We see that the 11 candidate variables together explain 29.0% of the 

idiosyncratic volatility puzzle and the residual component accounts for the remaining 71.0% 

(t=5.86) of the puzzle. The largest contributor is Spread which captures 7.6% of the puzzle, 

followed by Lagret at 5.7%, although neither of these fractions is statistically different from zero 

(t-statistics of 0.52 and 1.03, respectively). None of the other candidate variables explains more 
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than 5% of the puzzle though some of the explained fractions are statistically significant, namely, 

E(Idioskew) at 4.2% (t=2.13), Dispersion at 3.4% (t=2.66), and SUE at 2.4% (t=2.76). For most 

of the 11 candidate variables, the explained fractions are significantly lower than their univariate 

contributions. This is likely the result of controlling for other candidate variables as well as the 

limited sample for Model 1 due to the availability of some of the candidate variables.  

In Model 2, we drop both RTP and Spread to extend the sample period to 1982–2012 

(from 1984–2001 in Model 1) and increase the average cross-sectional sample size to 1,806 

stocks per month (from 1,524 stocks per month in Model 1). The total fraction of the puzzle 

explained by the remaining nine candidate variables increases only slightly to 29.9%, with 

E(Idioskew) and Dispersion contributing 10.7% (t=1.98) and 5.6% (t=3.22), respectively, and the 

other seven candidate variables making up the rest (13.6%). In this model, the residual 

unexplained fraction is still large and significant at 70.1% (t=6.56).   

In Model 3, we further drop Dispersion to extend the sample period to 1971–2012 and 

increase the cross-sectional sample size to 2,752 stocks per month. The total explained fraction 

now increases substantially to 54.5% with the residual component capturing the remaining 

45.5% (t=10.06).14 Interestingly, Lagret, which explained a small and statistically insignificant 

fraction of the puzzle in Model 2, is the biggest contributor in Model 3 at 21.5% (t=5.74), 

followed by E(Idioskew) at 15.1% (t=6.24), Skew at 6.5% (t=6.35), and SUE at 5.1% (t=7.58). 

The rest of the candidate variables (Coskew, Amihud, Zeroret, and AvgVarβ) together only 

explain 6.2% of the puzzle. 

                                                 
14 Unreported results show that if we further drop SUE from Model 3, we can extend the sample period back to 

1968 and in this case the total fraction of the puzzle explained by the remaining seven candidate variables is 45.8%. 
In addition, if we add Maxret (which is mechanically related to IVOL) to Model 1, unsurprisingly, the total 
explained fraction increases considerably to 85.8%. 
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The results from Table 5 are summarized in Panel A of Fig. 1 where we plot the marginal 

contributions of the three groups of candidate variables (lottery preferences, market frictions, and 

others) and the residual unexplained fractions using bar charts. We see that variables related to 

lottery preferences of investors contribute the most in explaining the idiosyncratic volatility 

puzzle, accounting for 10–25% of the puzzle. Market friction-based candidate variables explain 

3–24% of the puzzle and variables related to other explanations account for 5–10% of the puzzle. 

On the other hand, the unexplained fraction is still very large at 46–71%. Therefore, while the 

lottery preferences of investors and market frictions prove to be important economic drivers of 

the idiosyncratic volatility puzzle, a significant portion of the puzzle cannot be accounted for by 

the explanations we examine.  

[Insert Fig. 1  here]    

4.2. Subsample analysis 

In this subsection, we repeat the multivariate decomposition analysis in Table 5 for 

subsamples of stocks that have been shown to exhibit a stronger idiosyncratic volatility puzzle. 

This allows us to investigate whether a candidate variable works as well in those subsamples as it 

does in the full sample. The subsamples we examine include stocks that have prices of at least 

five dollars, low analyst coverage (three or fewer analysts), poor credit ratings (the lowest three 

credit rating deciles), high short interest (the highest three short-interest deciles), high leverage 

(the highest three leverage deciles), low institutional ownership (the lowest three institutional 

ownership deciles), low B/M ratios (the lowest three B/M deciles), or non-NYSE listings. In 

addition, we also examine the idiosyncratic volatility puzzle in non-January months (Doran et al., 

2012).  

[Insert Table 6 here] 
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Table 6 reports the results of the multivariate decomposition analysis for the nine 

subsamples. To conserve space, we only report the Stage 4 results. The table shows that a bigger 

fraction of the idiosyncratic volatility puzzle is typically explained by the candidate variables in 

these subsamples than in the full sample. Specifically, the total explained fraction is 26–54% 

(across the three models) for stocks with prices of at least five dollars, 37–50% for low analyst 

coverage stocks, 47–63% for poor credit rating stocks, 34–52% for high short interest stocks, 

41–49% for high leverage stocks, 54–66% for low institutional ownership stocks, 2–43% for low 

B/M stocks, 39–58% for non-NYSE stocks, and 28–53% for non-January months, compared 

with 29–54% for the full sample reported in Table 5. 

We plot in Panel B of Fig. 1 the average fraction explained by each group of candidate 

variables and the average unexplained fraction across the nine subsamples. The first bar chart 

shows that the candidate variables in Model 1 collectively explain an average of 42.4% of the 

idiosyncratic volatility puzzle while the residual component captures the remaining 57.6%. 

Comparing across the three groups of candidate variables, we see that market friction-based 

variables combine to explain an average of 18.9% of the puzzle across the nine subsamples, 

followed by lottery preference-based variables which explain 15.2%, and variables related to 

other explanations which explain 8.3% of the puzzle.  

The second and third bar charts in Panel B show that the total explained fractions are 

39.1% and 50.3% for Models 2 and 3, respectively, thus leaving 60.9% and 49.7% of the puzzle 

unexplained. Lottery preference-based candidate variables now dominate the other candidate 

variables as they combine to explain 19.2% and 24.2% of the puzzle in Models 2 and 3, 

respectively. The contribution of market friction-based candidate variables is 8.3% in Model 2 
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and 20.0% in Model 3. Finally, candidate variables related to other explanations together explain 

11.7% and 6.1% of the puzzle in Models 2 and 3, respectively.  

Overall, the results in Table 6 show that the lottery preference-based and market friction-

based candidate variables also perform relatively well among the subsample of stocks where the 

idiosyncratic volatility puzzle is stronger. However, at least half of the puzzle still remains 

unexplained in these subsamples.  

5. Additional robustness tests 

 In this section, we show that our decomposition methodology is robust to using portfolios 

to control for measurement errors at the individual stock level and to allowing for nonlinear 

relations in the idiosyncratic volatility puzzle. We also show that the methodology can be used to 

evaluate explanations for other asset pricing anomalies.        

5.1. Portfolio-level analysis 

Thus far, our decomposition analysis has been based on cross-sectional regressions 

estimated at the individual stock level. The advantage of using individual stocks, as opposed to 

portfolios, is that it is robust to data mining and loss of information concerns. However, this does 

raise the question about measurement errors at the individual stock level as both idiosyncratic 

volatility and many of the candidate variables we investigate are generated regressors.15  

To see the effect of measurement errors, let us assume that both idiosyncratic volatility 

and the candidate variable are measured with error, e.g., 𝐼𝑉𝑂𝐿� = 𝐼𝑉𝑂𝐿 + 𝑢, and 𝐶𝑎𝑛𝑑𝚤𝑑𝑎𝑡𝑒� =

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 + 𝑣, where the true variables (𝐼𝑉𝑂𝐿 and 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) are unobservable and 𝑢 and 𝑣 

                                                 
15 We note that measurement errors will also affect the conventional approach of including the candidate 

variables as controls in the regression of returns on idiosyncratic volatility. Therefore, this issue is not unique to our 
decomposition methodology.   
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are mean-zero measurement errors. We show in Appendix B that the measurement error in 

idiosyncratic volatility has no effect on the mean or standard error of the fraction of the 

idiosyncratic volatility puzzle explained by the candidate variable (i.e., 𝛾𝑡𝐶/𝛾𝑡). However, the 

measurement error in the candidate variable does lead to a downward bias in the mean as well as 

the standard error of the fraction by a factor of Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)+Var(𝑣), although the t-statistic for 

the fraction is still unbiased.  

To address this concern about measurement errors, we follow the literature and perform 

robustness checks by using idiosyncratic volatility-sorted portfolios instead of individual stocks 

in the decomposition analysis. The motivation for using portfolios is that if the errors in an 

estimated variable are not perfectly correlated across stocks, we can improve the precision of the 

estimates by grouping stocks into portfolios because the errors will tend to offset each other. The 

disadvantage of aggregating stocks into portfolios, as pointed out by Ang, Liu, and Schwarz 

(2010), is that it loses information by reducing the cross-sectional variation in the estimated 

variable. This can lead to a mechanical increase in the correlation between a candidate variable 

and idiosyncratic volatility, which causes the fraction of the idiosyncratic volatility puzzle 

explained by the candidate variable to be overstated. 

At the beginning of each month t, we sort individual stocks into 200 portfolios based on 

their month t−1 IVOL.16 We compute the portfolio-level variables by taking the value-weighted 

averages of the individual stock-level variables. Month t−1 portfolio-level IVOL and candidate 

variables are then matched with value-weighted month t DGTW-adjusted returns of each 

portfolio for the decomposition analysis.    

                                                 
16 We have also used three-digit SIC industry portfolios and found that on average the candidate variables 

explain a smaller fraction of the puzzle in these industry portfolios than in the idiosyncratic volatility-sorted 
portfolios. The relation between idiosyncratic volatility and returns is insignificant for broader industry portfolios 
such as two-digit SIC or Fama-French 49-industry portfolios. 
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[Insert Table 7 here] 

Panel A of Table 7 reports the univariate decomposition results and Panel B reports the 

multivariate results. We first see that the idiosyncratic volatility puzzle remains highly 

significant among the idiosyncratic volatility-sorted portfolios. The average Fama-MacBeth 

regression coefficient of portfolio returns on IVOL ranges from −21.080% (t=−7.88) to 

−28.318% (t=−9.07), depending on the candidate variable examined. The results in Panel A also 

show that the candidate variables that are promising in the individual stock-level analysis tend to 

perform well in the portfolio-level analysis. Specifically, among the seven candidate variables 

that capture at least 10% of the puzzle in the individual stock-level univariate analysis (Skew, 

E(Idioskew), Maxret, RTP, Lagret, Spread, and SUE), all but SUE continue to explain more than 

10% (in some cases substantially so) of the puzzle in the portfolio-level univariate analysis 

whereas the explained fraction for SUE is only slightly below 10%. On the other hand, Coskew, 

Amihud, Zeroret, and Dispersion, which fail to capture more than 10% of the puzzle in the 

individual stock-level analysis, now each account for more than 10% of the puzzle in the 

portfolio-level analysis.17  

In Panel B, we put all the candidate variables (except Maxret) through our multivariate 

decomposition framework. The results in Panel B show that RTP and E(Idioskew) are the biggest 

contributors among the lottery preference-based candidate variables, whereas Spread, Amihud, 

and Lagret dominate in the market friction category. Variables related to other explanations 

account for very little of the puzzle in the portfolio-level multivariate analysis. Collectively, all 

                                                 
17 This is especially true for Amihud, which sees its contribution increase considerably from −2.4% in the 

individual stock-level analysis to 51.8% in the portfolio-level analysis. This large increase is partly due to a 
mechanical increase in the correlation between Amihud and IVOL as a result of portfolio averaging (the correlation 
almost doubles from 0.308 at the individual stock level to 0.610 at the portfolio level). In unreported results, when 
we re-compute portfolio-level Amihud and IVOL using value-weighted daily portfolio returns instead of taking 
averages of the individual stock-level Amihud and IVOL (to avoid the mechanical increase in the correlation), we 
obtain a more modest increase in the explained fraction to 26.9%.   
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the candidate variables explain 78–84% of puzzle (depending on the model) and the residual 

component accounts for the remaining 16–22% of the puzzle. Thus, although the total explained 

fraction in the portfolio-level multivariate analysis is larger than that from the individual stock-

level analysis, there is still a nontrivial portion of the idiosyncratic volatility puzzle left 

unexplained.  

As argued above, the overall increase in the explanatory power by the candidate variables 

in the portfolio-level analysis can come from two sources—a reduction of measurement errors in 

the candidate variables and/or a mechanical increase in the correlation with idiosyncratic 

volatility due to portfolio averaging. In the analysis described below, we use simulations to try to 

disentangle these two effects.  

Specifically, we simulate a negative idiosyncratic volatility-return relation at the 

individual stock level and introduce a noisy candidate variable, which contains a true component 

(explaining r percent of the simulated idiosyncratic volatility puzzle) and an independent noise 

component. We vary the true explained fraction (r) from 1% to 100% at 1% intervals and the 

amount of signal in the candidate variable measured by the candidate informativeness ratio 

𝑘 = Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)+Var(𝑁𝑜𝑖𝑠𝑒) from 10% to 100% also at 1% intervals (we require the candidate 

variable to contain a minimum of 10% of signal). We then apply our decomposition 

methodology to the simulated individual stock sample to estimate the fraction of the 

idiosyncratic volatility puzzle that is explained by the noisy candidate variable for each of the 

100 × 91 = 9100 (r, k) combinations. The estimation results show that the asymptotic relation 

between the measurement error and estimated fraction in Appendix B also holds in finite sample 

simulations. For example, for a candidate variable with a true fraction (r) of 50% and a candidate 
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informativeness ratio (k) of 50%, the average estimated fraction from 20 rounds of simulations is 

24.9999%, almost identical to 25% as predicted by the asymptotic analysis in Appendix B.18 

Next, to study the effect of portfolio averaging on measurement errors, we group 

individual stocks into 200 portfolios based on their simulated idiosyncratic volatility. Portfolio-

level variables are computed as value-weighted averages of simulated individual stock-level 

variables using simulated market cap as weights. We then use the decomposition methodology to 

estimate what fraction of the portfolio-level idiosyncratic volatility puzzle can be explained by 

the portfolio-level candidate variable. This allows us to study the tradeoff between the reduction 

of measurement errors through portfolio averaging (which will reduce the downward bias in the 

estimated fraction) and loss of information and a mechanical increase in the correlation between 

the candidate variable and idiosyncratic volatility (which will overstate the fraction explained by 

the candidate variable). 

Fig. 2 plots the portfolio-level simulation results for (r, k) values at 10% intervals (even 

though the actual simulations are done at 1% intervals). The figure shows that for a given (r, k) 

combination, grouping stocks into 200 portfolios increases the estimated fraction significantly. 

For example, for a candidate variable with a true fraction of 50% and a candidate 

informativeness ratio of 50% at the individual stock level, the portfolio-level estimated fraction 

is 50.8%, which is very close to the true fraction of 50% and doubles the individual stock-level 

estimated fraction of 25%. This example suggests that grouping stocks into 200 portfolios can 

significantly reduce (or even eliminate) the error-induced downward bias in the estimated 

fractions at the individual stock level. On the other hand, for a candidate variable that is already 

measured precisely at the individual stock level, Fig. 2 shows that portfolio grouping can actually 

                                                 
18 The reason we obtain such accurate results is that we perform 20 rounds of simulations for the entire sample of 

firm-month observations. When we reduce the sample size of the simulations, the results become noisier.  
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overstate the true fraction explained by the candidate variable. As a case in point, consider a 

candidate variable with a true fraction of 50% and a candidate informativeness ratio of 70% at 

the individual stock level, the portfolio-level estimated fraction is 62.4%, more than 10% higher 

than the true fraction of 50%. 

[Insert Fig. 2  here] 

To gain further insights on the measurement error issue, we relate the above portfolio-

level simulation results to the actual fractions explained by the candidate variables examined in 

our paper. Take Skew as an example. Skew explains an actual fraction of 13.3% of the 

idiosyncratic volatility puzzle in the portfolio-level analysis in Table 7. Looking at Fig. 2, there 

are many possible (r, k) combinations that produce simulated fractions close to 13.3% at the 

portfolio level. For example, the true fraction explained by Skew could be 10% and the candidate 

informativeness ratio could be 50% at the individual stock level which would give a portfolio-

level simulated fraction of 14.5%. This is fairly close to the actual fraction of 13.3%. Another 

possibility is that the true fraction is 50% and the candidate informativeness ratio is 10%—this 

would give a portfolio-level simulated fraction of 14.4%. These two possibilities are not the only 

close matches. The heat map colors in Fig. 2 describe the absolute difference between the 

simulated fractions and Skew’s actual fraction of 13.3%, where redder colors denote smaller 

absolute differences. 

For a given candidate informativeness ratio between 10–100%, we compute a precision-

weighted true fraction explained by Skew, where precision is defined as the reciprocal of the 

squared difference between the actual fraction and the simulated fraction. Table 8 reports that the 

average precision-weighted true fraction across all candidate informativeness ratios between 10–

100%, assuming that we have a diffuse prior about the amount of noise in Skew at the individual 

stock level, is 12.1%. This is very close to the actual explained fraction of 13.3%. On the other 
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hand, if we assume that Skew is measured precisely (imprecisely) with a candidate 

informativeness ratio between 50–100% (10–49%), the average precision-weighted true fraction 

is considerably lower (higher) at 6.7% (18.9%), which suggests that the actual fraction of 13.3% 

is overstating (understating) the true fraction explained. 

The results for the other candidate variables, also reported in Table 8, paint a similar 

picture. The average precision-weighted true fraction for a diffuse-prior candidate variable (10–

100% candidate informativeness ratio) is typically very close to the actual explained fraction 

(31.5% versus 33.1%, averaged across all 12 candidate variables). On the other hand, the average 

precision-weighted true fraction for a clean candidate variable (50–100% candidate 

informativeness ratio) is significantly lower than the actual fraction (24.3% versus 33.1%, 

averaged across all 12 candidate variables), and that for a noisy candidate variable (10–49% 

candidate informativeness ratio) is significantly higher than the actual fraction (40.6% vs. 33.1%, 

averaged across all 12 candidate variables).19 Overall, these results suggest that when one is 

agnostic about the amount of noise in a candidate variable, grouping stocks into 200 portfolios 

comes very close to uncovering the true fraction explained by the candidate variable. On the 

other hand, if one is confident that the candidate variable is measured precisely (imprecisely) at 

the individual stock level, then grouping stocks into 200 portfolios is likely to overstate 

(understate) the true fraction explained by the candidate variable. 

[Insert Table 8 here] 

We also perform the simulation analysis by grouping stocks into smaller numbers of 

portfolios (100, 50, and 25 portfolios) and report their results as well as those from the individual 

stock-level analysis in Table 8. We see that while the actual fraction explained by a candidate 

                                                 
19 The precision-weighted fractions for the clean and noisy scenarios can, in essence, be viewed as providing a 

confidence interval for the true fraction explained by a candidate variable.   
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variable goes up when we group stocks into fewer portfolios (from an average of 33.1% across 

all 12 candidate variables for 200 portfolios to 54.5% for 25 portfolios), the precision-weighted 

true fraction remains very stable when we reduce the number of portfolios. It varies within a 

tight range from 24–29% for the clean scenario, 32–36% for the diffuse-prior scenario, and 41–

45% for the noisy scenario. These results suggest that grouping stocks into a smaller number of 

portfolios may not necessarily lead to a further reduction in the measurement errors. Instead, it 

increases the likelihood that the estimated fraction will overstate the true fraction explained by a 

candidate variable. We therefore conclude that grouping individual stocks into 200 portfolios 

achieves the appropriate balance between concerns of measurement errors in the candidate 

variables versus loss of information and overstating the explained fractions by the candidate 

variables (especially when one is agnostic about the amount of noise in the candidate variables).   

In sum, the analysis in this subsection confirms that our main findings are robust to using 

idiosyncratic volatility-sorted portfolios to mitigate the measurement errors at the individual 

stock level. It also shows that our decomposition methodology can be applied to characteristic-

sorted portfolios in addition to individual stocks.  

5.2. Nonlinear relations  

To be consistent with existing literature, we adopt simple linear specifications in Eq. (1) 

and Eq. (2) to study to what extent different candidate variables can explain the idiosyncratic 

volatility puzzle. However, our decomposition methodology can easily accommodate nonlinear 

relations in the idiosyncratic volatility puzzle.  

One possible source of nonlinearity is in the relation between idiosyncratic volatility and 

returns. Previous studies such as Ang et al. (2006) argue that much of the idiosyncratic volatility 

puzzle is driven by high idiosyncratic volatility stocks earning low returns. To investigate this 
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possibility, we define a dummy variable, HIGHIVOL, which equals one when IVOL belongs to 

the top decile in month t−1 and zero otherwise. Panel A of Table 9 confirms that there is indeed a 

negative and significant relation between HIGHIVOL and subsequent stock returns with the 

average Fama-MacBeth regression coefficient on HIGHIVOL ranging from −0.713% (t=−3.71) 

to −1.155% (t=−5.40). We then use our decomposition methodology to study the HIGHIVOL-

return relation. We find that most of the candidate variables that prove useful in explaining the 

linear IVOL-return relation also capture sizable fractions of the relation between HIGHIVOL and 

returns in the univariate analysis. The multivariate analysis in Panel B of Table 9 shows that all 

the candidate variables (excluding Maxret) combine to explain 25–48% of the negative relation 

between HIGHIVOL and returns, thus leaving more than 50% of the relation unexplained. This 

finding is again in line with the results from our multivariate decomposition of the linear IVOL-

return relation.     

[Insert Table 9 here]  

Another source of nonlinearity comes from potential nonlinear relations between 

idiosyncratic volatility and the candidate variables. For example, perhaps only the extreme 

values of the candidate variables are useful in explaining the HIGHIVOL-return relation. To 

investigate this, we replace a candidate variable with a dummy that equals one when the 

candidate variable belongs to the extreme decile and zero otherwise. Panel C of Table 9 shows 

that this treatment leaves the univariate contribution largely unaffected for most of the candidate 

variables, except for Coskew whose explained fraction improves to 23.3% from 2.5% in Panel A. 

Panel D of Table 9 shows that together, these binary candidate variables (again excluding 

Maxret) explain 42–56% of the HIGHIVOL-return relation, compared with 25–48% of the 
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relation explained in Panel B. Still, a sizable 44–58% of the HIGHIVOL-return relation remains 

unexplained.   

Overall, the analysis above shows that our results are robust to modifying the 

decomposition methodology to accommodate nonlinearity in the idiosyncratic volatility puzzle.20  

5.3. Decomposing other anomalies  

In this paper, we treat the negative idiosyncratic volatility-return relation as a puzzle and 

use the candidate variables proposed in the literature (e.g., maximum daily return) to try to 

explain the puzzle. In this subsection, to show the flexibility of our methodology, we turn the 

tables and use idiosyncratic volatility as a candidate variable to explain the relations between 

returns and variables such as maximum daily return and past earnings surprise because the return 

predictability of these variables has also been cited in the literature as being anomalous relative 

to traditional asset pricing theories.  

For brevity, we focus our analysis on three anomaly variables—Maxret, Lagret, and 

SUE—and use IVOL as the only candidate variable, although the analysis can be easily extended 

to other anomaly variables or to include other candidate explanatory variables.  

 [Insert Table 10 here] 

Table 10 shows that IVOL, when considered alone, explains 67.5% of the negative 

relation between Maxret and subsequent returns. This number, though smaller than the fraction 

of the IVOL puzzle explained by Maxret (112.0%), is still impressive and identifies idiosyncratic 

volatility as a major contributor to the maximum daily return puzzle. In contrast, IVOL can only 

explain 5.9% of the one-month return reversal effect based on Lagret and 7.3% of the post-

                                                 
20 We have also experimented with other nonlinear specifications, which include using log IVOL, winsorized 

IVOL, decile ranks of IVOL, and adding squared terms of the candidate variables, and found very similar results. To 
conserve space, they are not reported. 



 

 36 

earnings announcement drift based on SUE, compared to 33.7% and 10.9% of the IVOL puzzle 

explained by Lagret and SUE, respectively. In short, the above results show that our 

decomposition methodology can be used to evaluate explanations for other asset pricing 

anomalies. 

6. Conclusion 

In this paper, we propose a simple methodology to examine a large number of 

explanations that have been proposed in the literature for the negative relation between 

idiosyncratic volatility and subsequent stock returns (the idiosyncratic volatility puzzle). The 

main advantage of our approach is that it allows us to quantify the contribution of each 

explanation either by itself or when evaluated against competing explanations.   

We find that, surprisingly, many existing explanations explain less than 10% of the 

idiosyncratic volatility puzzle. On the other hand, explanations based on investors’ lottery 

preferences and market frictions show some promise in explaining the puzzle. Taken together, 

however, all existing explanations still leave a sizable portion of the puzzle unexplained. Our 

main findings are robust to subsample analysis, using portfolios instead of individual stocks, and 

potential nonlinearity in the idiosyncratic volatility puzzle. Finally, our decomposition 

methodology can also be applied to evaluate competing explanations for other asset pricing 

anomalies.   
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Appendix A. The relation to the conventional approach 

In this appendix, we demonstrate the relation between our decomposition methodology in 

Eq. (3) and the conventional approach of regressing returns on idiosyncratic volatility and a 

candidate variable in Eq. (10). Specifically, for each month t, we can substitute Eq. (2) into Eq. 

(10) and obtain: 

𝑅𝑖𝑡 = 𝛼�𝑡 + 𝛾�𝑡𝑅(𝑎𝑡−1 + 𝜇𝑖𝑡−1 +  𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1) + 𝛾�𝑡𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜀�̃�𝑡 

       = 𝛼�𝑡 + 𝛾�𝑡𝑅(𝑎𝑡−1 + 𝜇𝑖𝑡−1) + (𝛾�𝑡𝐶 + 𝛿𝑡−1𝛾�𝑡𝑅)𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜀�̃�𝑡 

       = 𝛼�𝑡 + 𝛾�𝑡𝑅(𝑎𝑡−1 + 𝜇𝑖𝑡−1) + �̄�𝑡𝐶𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜀�̃�𝑡, (11) 

where  �̄�𝑡𝐶, which equals 𝛾�𝑡𝐶 + 𝛿𝑡−1𝛾�𝑡𝑅, is identical to the coefficient of regressing returns on the 

candidate variable alone because (𝑎𝑡−1 + 𝜇𝑖𝑡−1) and 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 are uncorrelated by 

construction. We can then rewrite 𝛾𝑡𝐶 from Eq. (3) as follows:  

𝛾𝑡𝐶 =
Cov[𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]

Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]  

      =
Cov[𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]

Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1] ×
Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]

Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]  

      =
�̄�𝑡𝐶

𝛿𝑡−1
×

Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]  

      = �
𝛾�𝑡𝐶

𝛿𝑡−1
+ 𝛾�𝑡𝑅� ×

Var[𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

.  (12) 

 

To show the relation more generally for k candidate variables, we simplify the notation 

by denoting  𝐼𝑉𝑂𝐿𝑖𝑡−1 as 𝐕 and Rit as R, both are n×1 vectors where n is the number of firms in 

the month t cross-sectional regression. We also denote an n×1 vector of ones by 𝛊 and we can 

now rewrite Eq. (1) as:  

 𝐑 = 𝛊𝛼 + 𝐕𝛾 + 𝛆. (13) 
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Next, we regress 𝐕 on 𝛊 and the n×k matrix of k candidate variables (measured 

contemporaneously with 𝐕 in month t–1) denoted by 𝐂 = (𝐂𝟏 ⋯ 𝐂𝐤), where 𝐂𝐣 is an n×1 

vector:  

 𝐕 = 𝛊𝑎 +  𝐂𝛅𝐂 + 𝛍, (14) 

where 𝛅𝐂 is a k×1 vector of coefficients. In the last step, we decompose the idiosyncratic 

volatility-return relation 𝛾 into k components each related to a candidate variable and a residual 

component: 

𝛾 = (𝐯′𝐯)−1𝐕′𝐫 

    = (𝐯′𝐯)−1(𝐂𝛅𝐂 + 𝛊𝑎 + 𝛍)′𝐫 

    = (𝐯′𝐯)−1(𝐂𝛅𝐂)′𝐫 + (𝐯′𝐯)−1(𝛊𝑎 + 𝛍)′𝐫,  (15) 

where 𝐯 and 𝐫 (both n×1 vectors) are demeaned versions of 𝐕 and 𝐑, respectively. The first term 

in the last line of Eq. (15) represents the combined contribution of all k candidate variables and 

the second term represents the unexplained component of the idiosyncratic volatility puzzle. The 

contribution of the jth candidate variable is then 𝛾𝑗𝐶 = (𝐯′𝐯)−1�𝐂𝐣𝛿𝑗𝐶�′𝐫.  

Now, take the conventional approach of regressing 𝐑 on 𝐕 and 𝐂:  

 𝐑 = 𝛊𝛼� + 𝐕𝛾�𝑅 + 𝐂𝛄�𝐂 + 𝛆�. (16) 

We can rewrite Eq. (16) by substituting in Eq. (14) as follows:     

  𝐑 = 𝛊𝛼� + (𝛊𝑎 +  𝐂𝛅𝐂 + 𝛍)𝛾�𝑅 + 𝐂𝛄�𝐂 + 𝛆� 

            = 𝛊𝛼� + (𝛊𝑎 +  𝛍)𝛾�𝑅 + 𝐂(𝛄�𝐂 + 𝛅𝐂𝛾�𝑅) + 𝛆�.  (17) 

Because 𝐂 and (𝛊𝑎 +  𝛍) are uncorrelated by construction, the coefficient on the jth candidate 

variable �𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅� should be identical to the slope coefficient when 𝐑 is regressed on the 

regression residual of 𝐂𝐣 on the other k−1 candidate variables. Specifically, we define an n×(k+1) 

matrix ℂ = (𝛊 𝐂𝟏   ⋯ 𝐂𝐤), an (k+1)×(k+1) matrix 𝐉 which is an identity matrix except that the 
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(j+1)th diagonal term is set to zero, and 𝛉 which is the (k+1)×1 vector of coefficients from 

regressing 𝐂𝐣 on ℂ𝐉. Then we have:  

�𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅� = ��𝐂𝐣 − ℂ𝐉𝛉�′�𝐂𝐣 − ℂ𝐉𝛉��
−𝟏
�𝐂𝐣 − ℂ𝐉𝛉�

′
𝐫 

�𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅� = ��𝐂𝐣 − ℂ𝐉𝛉�′�𝐂𝐣 − ℂ𝐉𝛉��
−𝟏
�𝐂𝐣′𝐫 − (ℂ𝐉𝛉)′𝐫�   

                  𝐂𝐣′𝐫 = ��𝐂𝐣 − ℂ𝐉𝛉�′�𝐂𝐣 − ℂ𝐉𝛉���𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅� + (ℂ𝐉𝛉)′𝐫.  (18) 

We can then rewrite Eq. (15) to give us the relation between 𝛾𝑗𝐶 (the contribution of the 

jth candidate variable to the idiosyncratic volatility puzzle) and 𝛾�𝑗𝐶 [the coefficient on the jth 

candidate variable in Eq. (16)]: 

𝛾𝑗𝐶 = (𝐯′𝐯)−1�𝐂𝐣𝛿𝑗𝐶�′𝐫  

      = (𝐯′𝐯)−1𝛿𝑗𝐶𝐂𝐣
′𝐫  

      = (𝐯′𝐯)−1𝛿𝑗𝐶���𝐂𝐣 − ℂ𝐉𝛉�′�𝐂𝐣 − ℂ𝐉𝛉���𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅� + (ℂ𝐉𝛉)′𝐫�. (19) 

When k = 1, the above relation collapses to (𝐯′𝐯)−1𝛿𝑗𝐶�𝐂𝐣′𝐂𝐣��𝛾�𝑗𝐶 + 𝛿𝑗𝐶𝛾�𝑅�, which is the matrix 

form of Eq. (12).  
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Appendix B. The effect of measurement errors 

In this appendix, we analyze the effect of measurement errors on our decomposition 

methodology. Our decomposition methodology is based on the following two equations: 

 𝑅𝑖𝑡 = 𝛼𝑡 + 𝛾𝑡𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝜀𝑖𝑡, (20) 

 𝐼𝑉𝑂𝐿𝑖𝑡−1 = 𝑎𝑡−1 + 𝛿𝑡−1𝐶𝑖𝑡−1 + 𝜇𝑖𝑡−1. (21) 

For brevity, we denote 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 here as 𝐶𝑖𝑡−1. Let us assume that 𝐼𝑉𝑂𝐿𝑖𝑡−1 and 

𝐶𝑖𝑡−1 are not directly observable and can only be measured with error:  

 𝐼𝑉𝑂𝐿�𝑖𝑡−1  = 𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝑢𝑖𝑡−1, (22) 

 �̃�𝑖𝑡−1 = 𝐶𝑖𝑡−1 + 𝑣𝑖𝑡−1. (23) 

The following standard assumptions apply to the error terms: 

(i) E(𝑣𝑖𝑡−1) = E(𝐶𝑖𝑡−1𝑣𝑖𝑡−1) = E(𝐼𝑉𝑂𝐿𝑖𝑡−1𝑣𝑖𝑡−1) = E(𝜇𝑖𝑡−1𝑣𝑖𝑡−1) = 0 
(ii) E(𝑢𝑖𝑡−1) = E(𝐶𝑖𝑡−1𝑢𝑖𝑡−1) = E(𝐼𝑉𝑂𝐿𝑖𝑡−1𝑢𝑖𝑡−1) = E(𝜀𝑖𝑡𝑢𝑖𝑡−1) = 0 
(iii) E(𝑅𝑖𝑡𝑢𝑖𝑡−1) = E(𝑅𝑖𝑡𝑣𝑖𝑡−1) = 0 
(iv) E(𝑢𝑖𝑡−1𝑣𝑖𝑡−1) = 0 
(v) E(𝐼𝑉𝑂𝐿𝑖𝑡−1𝜀𝑖𝑡) = E(𝐶𝑖𝑡−1𝜇𝑖𝑡−1) = 0. 

From Eq. (21), Eq. (22), and Eq. (23), the relation between 𝐼𝑉𝑂𝐿�𝑖𝑡−1 and �̃�𝑖𝑡−1 is: 

 𝐼𝑉𝑂𝐿�𝑖𝑡−1 = 𝑎𝑡−1 + 𝛿𝑡−1�̃�𝑖𝑡−1 + 𝜔𝑖𝑡−1,  (24) 

where 𝜔𝑖𝑡−1 = 𝜇𝑖𝑡−1 − 𝛿𝑡−1𝑣𝑖𝑡−1 + 𝑢𝑖𝑡−1. 

We can then write down the estimator, 𝛿𝑡−1, as a function of its true counterpart 𝛿𝑡−1: 

𝛿𝑡−1 =
Cov�𝐼𝑉𝑂𝐿�𝑖𝑡−1, �̃�𝑖𝑡−1�

Var��̃�𝑖𝑡−1�
 

=
Cov(𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝑢𝑖𝑡−1,𝐶𝑖𝑡−1 + 𝑣𝑖𝑡−1)

Var(𝐶𝑖𝑡−1 + 𝑣𝑖𝑡−1)  

=
Cov(𝑎𝑡−1 + 𝛿𝑡−1𝐶𝑖𝑡−1 + 𝜇𝑖𝑡−1 + 𝑢𝑖𝑡−1,𝐶𝑖𝑡−1 + 𝑣𝑖𝑡−1)

Var(𝐶𝑖𝑡−1) + Var(𝑣𝑖𝑡−1)  
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=
𝜎𝐶,𝑡−1
2

𝜎𝐶,𝑡−1
2 + 𝜎𝑣,𝑡−1

2 × 𝛿𝑡−1. (25) 

Next, we decompose  𝛾�𝑡, the estimator of 𝛾𝑡, using the estimators from Eq. (24): 

𝛾�𝑡 =
Cov�𝑅𝑖𝑡, 𝐼𝑉𝑂𝐿�𝑖𝑡−1�

Var�𝐼𝑉𝑂𝐿�𝑖𝑡−1�
 

=
Cov�𝑅𝑖𝑡, 𝛿𝑡−1�̃�𝑖𝑡−1�

Var�𝐼𝑉𝑂𝐿�𝑖𝑡−1�
+

Cov(𝑅𝑖𝑡,𝑎�𝑡−1 + 𝜔�𝑖𝑡−1)
Var�𝐼𝑉𝑂𝐿�𝑖𝑡−1�

 

 = 𝛾�𝑡𝐶 + 𝛾�𝑡𝑅 .  (26) 

With the above, we can express 𝛾�𝑡 and 𝛾�𝑡𝐶 as functions of their true counterparts 𝛾𝑡 and 𝛾𝑡𝐶: 

𝛾�𝑡 =
Cov�𝑅𝑖𝑡, 𝐼𝑉𝑂𝐿�𝑖𝑡−1�

Var�𝐼𝑉𝑂𝐿�𝑖𝑡−1�
 

=  
Cov(𝑅𝑖𝑡, 𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝑢𝑖𝑡−1)

Var(𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝑢𝑖𝑡−1)  

=
Cov(𝑅𝑖𝑡, 𝐼𝑉𝑂𝐿𝑖𝑡−1)
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2  

=
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2

𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2 × 𝛾𝑡,  (27) 

and 

𝛾�𝑡𝐶 =
Cov�𝑅𝑖𝑡, 𝛿𝑡−1�̃�𝑖𝑡−1�

Var�𝐼𝑉𝑂𝐿�𝑖𝑡−1�
=

Cov�𝑅𝑖𝑡, 𝛿𝑡−1(𝐶𝑖𝑡−1 + 𝑣𝑖𝑡−1)�
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2 =
Cov�𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑖𝑡−1�
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2  

=
𝜎𝐶,𝑡−1
2

𝜎𝐶,𝑡−1
2 + 𝜎𝑣,𝑡−1

2 ×
Cov(𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑖𝑡−1)
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2  

=
𝜎𝐶,𝑡−1
2

𝜎𝐶,𝑡−1
2 + 𝜎𝑣,𝑡−1

2 ×
𝜎𝐼𝑉𝑂𝐿,𝑡−1
2

𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 + 𝜎𝑢,𝑡−1

2 × 𝛾𝑡𝐶 . (28) 

 

We can further simplify Eq. (28) by denoting 𝑘𝑡−1 = 𝜎𝐶,𝑡−1
2

𝜎𝐶,𝑡−1
2 +𝜎𝑣,𝑡−1

2 , and 𝜆𝑡−1 = 𝜎𝐼𝑉𝑂𝐿,𝑡−1
2

𝜎𝐼𝑉𝑂𝐿,𝑡−1
2 +𝜎𝑢,𝑡−1

2 , 

where 0 < 𝑘𝑡−1 < 1 and 0 < 𝜆𝑡−1 < 1. 

We see from Eq. (27) and Eq. (28) that both 𝛾�𝑡 and 𝛾�𝑡𝐶 are biased downwards. The bias in 
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𝛾�𝑡 is due to the measurement error in IVOL while the bias in 𝛾�𝑡𝐶 is due to the measurement errors 

in both IVOL and the candidate variable. It is then straightforward to use Eq. (4) to show that the 

mean of the fraction, 𝛾�𝑡𝐶/𝛾�𝑡, is biased downwards with the magnitude of the bias determined by 

𝑘𝑡−1:  

E�
𝛾�𝑡𝐶

𝛾�𝑡
� ≈

E(𝛾�𝑡𝐶)
E(𝛾�𝑡)

=
𝑘𝑡−1𝜆𝑡−1E(𝛾𝑡𝐶)
𝜆𝑡−1E(𝛾𝑡)

= 𝑘𝑡−1
E(𝛾𝑡𝐶)
E(𝛾𝑡)

. (29) 

 

The variance of the fraction is obtained by rewriting Eq. (5): 

Var�
𝛾�𝑡𝐶

𝛾�𝑡
� ≈ �

E(𝛾�𝑡𝐶)
E(𝛾�𝑡)

�
2

�
Var(𝛾�𝑡𝐶)
(E(𝛾�𝑡𝐶))2

+  
Var(𝛾�𝑡)
(E(𝛾�𝑡))2

−  2
Cov(𝛾�𝑡𝐶 ,𝛾�𝑡)
E(𝛾�𝑡𝐶)E(𝛾�𝑡)

�. (30) 

 

We can verify the effect of measurement error on each of the following terms in (30):  

Var(𝛾�𝑡𝐶)
(E(𝛾�𝑡𝐶))2

=
𝑘𝑡−12 𝜆𝑡−12 Var(𝛾𝑡𝐶)
𝑘𝑡−12 𝜆𝑡−12 (E(𝛾𝑡𝐶))2

=
Var(𝛾𝑡𝐶)
(E(𝛾𝑡𝐶))2

, (31) 

 

Var(𝛾�𝑡)
(E(𝛾�𝑡))2

=
𝜆𝑡−12 Var(𝛾𝑡)
𝜆𝑡−12 (E(𝛾𝑡))2

=
Var(𝛾𝑡)
(E(𝛾𝑡))2

, (32) 

 

2Cov(𝛾�𝑡𝐶 ,𝛾�𝑡)
E(𝛾�𝑡𝐶)E(𝛾�𝑡)

=
2𝑘𝑡−1𝜆𝑡−12 Cov(𝛾𝑡𝐶 ,𝛾𝑡)
𝑘𝑡−1𝜆𝑡−12 E(𝛾𝑡𝐶)E(𝛾𝑡)

=
2Cov(𝛾𝑡𝐶 , 𝛾𝑡)
E(𝛾𝑡𝐶)E(𝛾𝑡)

. (33) 

As a result, the only source of bias in Eq. (30) is from the first term, �E(𝛾�𝑡
𝐶)

E(𝛾�𝑡)
�
2

= 𝑘𝑡−12 �E(𝛾𝑡
𝐶)

E(𝛾𝑡)
�
2
. 

Hence, the standard error of the fraction is biased downwards with the magnitude of the bias 

determined by 𝑘𝑡−1, which is identical to the magnitude of the bias in the mean of the fraction as 

shown in Eq. (29).   
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Table 1 
Sample descriptive statistics. 
 Sample statistics from 1963–2012 are reported. Panel A shows the distribution of firm characteristics and Panel B shows the 
time-series averages of cross-sectional correlations. The sample consists of all CRSP common stocks with share prices of at least 
$1 at the end of the previous month. N is the total number of firm-month observations. Return is the raw CRSP monthly return 
adjusted for delisting according to Shumway (1997). DGTW-adjusted return is the raw return minus the return on a size-B/M-
momentum-matched benchmark portfolio. Idiosyncratic volatility (IVOL) is the standard deviation of residuals from a regression 
of daily stock returns in month t–1 on the Fama-French (1993) factors. Beta is the regression coefficient of the past three years of 
monthly returns on market returns. Size and B/M are measured and aligned as in Fama and French (2006), and Momentum is the 
buy-and-hold month t–12 to t–2 return. Skew is the month t–1 skewness of raw daily returns. Coskew is the coskewness measure 
in Chabi-Yo and Yang (2009). E(Idioskew) is the expected idiosyncratic skewness measure in Boyer et al. (2010). Maxret is the 
maximum daily return in month t–1. RTP is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t–1 
return. Amihud is the illiquidity measure in Amihud (2002). Zeroret is the fraction of trading days in month t–1 with a zero 
return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ 
FY1 forecasts. AvgVarβ is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova 
(2012). SUE is the most recent standardized unexpected earnings. 
Panel A: Distribution of firm characteristics 
Variable Mean Stdev N 1st Pctl 10th Pctl 25th Pctl 50th Pctl 75th Pctl 90th Pctl 99th Pctl 
Return 0.011 0.157 2123249 -0.360 -0.143 -0.063 0.000 0.071 0.167 0.500 
DGTW-adj ret -0.001 0.142 2123249 -0.335 -0.137 -0.067 -0.008 0.053 0.134 0.441 
IVOL 0.026 0.022 2124838 0.003 0.009 0.013 0.021 0.033 0.050 0.106 
Size ($m) 1441.3 9373.4 2124838 2.0 9.0 26.1 102.1 483.0 1927.2 24306.8 
B/M 0.944 1.521 2124838 0.047 0.202 0.381 0.686 1.153 1.827 4.729 
Momentum 0.167 0.709 2124838 -0.747 -0.408 -0.176 0.068 0.347 0.742 2.546 
Beta 1.136 0.921 2096757 -0.761 0.202 0.583 1.041 1.566 2.186 4.014 

Lottery preference variables 
Skew 0.258 1.042 2114792 -2.848 -0.801 -0.255 0.216 0.753 1.420 3.335 
Coskew 0.006 0.879 2124838 -0.430 -0.061 -0.016 0.001 0.021 0.075 0.504 
E(Idioskew) 0.830 0.682 1527963 -0.402 0.119 0.401 0.756 1.169 1.595 2.748 
Maxret 0.071 0.077 2124838 0.000 0.020 0.031 0.052 0.086 0.139 0.333 
RTP 0.158 0.206 816019 0.000 0.009 0.023 0.070 0.209 0.453 1.000 

Market friction variables 
Lagret 0.016 0.166 2124782 -0.342 -0.139 -0.061 0.000 0.074 0.170 0.537 
Amihud 6.352 73.593 1974351 0.000 0.001 0.012 0.155 1.534 8.917 106.32 
Zeroret 0.208 0.213 2124838 0.000 0.000 0.048 0.143 0.300 0.500 0.913 
Spread 0.032 0.049 1245367 0.000 0.002 0.006 0.015 0.039 0.077 0.226 

Other variables 
Dispersion 0.199 1.237 826678 0.000 0.009 0.019 0.043 0.111 0.306 2.667 
AvgVarβ 0.228 7.352 1769692 -19.618 -5.912 -2.282 0.033 2.457 6.575 22.345 
SUE 0.169 17.177 1719754 -7.598 -1.595 -0.461 0.186 1.051 2.347 6.344 
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Table 1 (continued) 
 
Panel B: Time-series averages of cross-sectional correlations between firm characteristics 

Variable DGTW-adj ret IVOL Beta Size BM Mom Skew Coskw Eiskw Maxret RTP Lagret Amihud Zeroret Spread Disp AVβ 
IVOL -0.027 1 

               Beta -0.005 0.179 1 
              Size 0.001 -0.138 -0.044 1 

             B/M 0.000 0.043 -0.089 -0.065 1 
            Momentum 0.006 -0.086 -0.011 0.004 0.027 1 

           Skew -0.012 0.193 0.035 -0.022 0.016 -0.020 1 
          Coskew -0.005 0.052 0.016 -0.003 0.001 -0.012 0.101 1 

         E(Idioskew) -0.010 0.408 0.064 -0.174 0.184 -0.165 0.064 0.013 1 
        Maxret -0.033 0.882 0.154 -0.101 0.031 -0.067 0.476 0.105 0.316 1 

       RTP -0.017 0.472 -0.062 -0.172 0.166 -0.201 0.033 0.010 0.580 0.354 1 
      Lagret -0.045 0.191 -0.007 -0.003 0.025 0.001 0.352 0.080 -0.017 0.389 -0.058 1 

     Amihud 0.002 0.308 -0.029 -0.049 0.127 -0.091 0.009 0.003 0.254 0.222 0.402 -0.013 1 
    Zeroret 0.004 0.020 -0.146 -0.153 0.164 -0.133 -0.003 -0.007 0.402 0.011 0.461 -0.047 0.213 1 

   Spread -0.011 0.494 -0.101 -0.157 0.182 -0.165 0.034 0.009 0.524 0.358 0.700 -0.014 0.500 0.463 1 
  Dispersion -0.010 0.123 0.064 -0.035 0.061 -0.081 0.015 0.008 0.113 0.097 0.133 -0.021 0.049 0.062 0.104 1 

 AvgVarβ -0.003 0.033 0.087 -0.003 -0.004 0.003 0.006 0.008 0.006 0.028 0.036 0.001 0.008 -0.011 0.016 0.003 1 
SUE 0.023 -0.099 -0.015 0.045 -0.062 0.203 0.008 -0.004 -0.107 -0.062 -0.084 0.058 -0.045 -0.083 -0.064 -0.070 0.000 
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Table 2 
The negative relation between idiosyncratic volatility and returns. 
 Firm-level Fama-MacBeth cross-sectional regressions are estimated each month from August 1963 to December 2012. The dependent variable is DGTW-adjusted returns. Stocks with 
prices less than $1 at the end of the previous month are excluded. Time-series averages of the coefficients (×100) and the associated time-series t-statistics (in parentheses) are reported. 
Idiosyncratic volatility (IVOL) is the standard deviation of residuals from a regression of daily stock returns in month t–1 on the Fama-French (1993) factors. Skew is the month t–1 
skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009). E(Idioskew) is the expected idiosyncratic skewness measure in Boyer et al. (2010). 
Maxret is the maximum daily return in month t–1. RTP is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t–1 return. Amihud is the illiquidity measure in 
Amihud (2002). Zeroret is the fraction of trading days in month t–1 with a zero return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the 
dispersion in analysts’ FY1 forecasts. AvgVarβ is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova (2012). SUE is the most recent 
standardized unexpected earnings. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.  
Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 
Intercept 0.337*** 0.355*** 0.339*** 0.456*** 0.270*** 0.433*** 0.244*** 0.396*** 0.345*** 0.379*** 0.249*** 0.349*** 0.285*** 
  (6.11) (6.47) (6.06) (7.79) (4.74) (3.88) (4.27) (7.20) (6.66) (4.98) (2.95) (6.07) (4.75) 
IVOL -16.955*** -16.145*** -17.349*** -20.882*** 10.740*** -23.129*** -10.831*** -21.220*** -17.024*** -21.679*** -13.803*** -17.063*** -15.669*** 
  (-8.19) (-7.67) (-8.28) (-9.56) (2.85) (-6.67) (-4.88) (-9.38) (-8.30) (-7.23) (-3.70) (-8.29) (-7.01) 
Skew   -0.099***                       
    (-5.53)                       
Coskew     -0.380**                     
      (-2.49)                     
E(Idioskew)       0.022                   
        (0.45)                   
Maxret         -9.352***                 
          (-10.20)                 
RTP           -0.021               
            (-0.08)               
Lagret             -4.467***             
              (-13.72)             
Amihud               0.035***           
                (4.63)           
Zeroret                 0.168         
                  (0.62)         
Spread                   2.064       
                    (1.26)       
Dispersion                     -0.055     
                      (-1.08)     
AvgVarβ                       -0.006   
                        (-1.08)   
SUE                         0.108*** 
                          (17.21) 
Avg adj R2 0.004 0.005 0.006 0.005 0.006 0.006 0.011 0.007 0.007 0.007 0.007 0.005 0.005 
Avg #firms/mth 3580.5 3563.7 3580.5 2870.8 3580.5 3776.8 3580.4 3327.3 3580.5 3716.6 2258.1 3232.1 3472.3 
Startdate 196308 196308 196308 196808 196308 198302 196308 196308 196308 198402 198207 196808 197110 
Enddate 201212 201212 201212 201212 201212 200101 201212 201212 201212 201212 201212 201212 201212 
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Table 3  
Decomposing the idiosyncratic volatility puzzle: Univariate analysis. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between idiosyncratic volatility (IVOL) and DGTW-adjusted returns is decomposed into a component that is 
related to a candidate variable and a residual component. Stage 1 regresses month t returns on month t–1 IVOL (𝑅𝑖𝑡 = 𝛼𝑡 + 𝛾𝑡𝐼𝑉𝑂𝐿𝑖𝑡−1 + 𝜀𝑖𝑡). Stage 2 adds a candidate variable 
(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1) to the regression. Stage 3 regresses IVOL on the candidate variable (𝐼𝑉𝑂𝐿𝑖𝑡−1 = 𝑎𝑡−1 + 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 + 𝜇𝑖𝑡−1) to decompose 𝐼𝑉𝑂𝐿𝑖𝑡−1 into two orthogonal 

components: 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1 and (𝑎𝑡−1 + 𝜇𝑖𝑡−1). In Stage 4, the 𝛾𝑡 coefficient from Stage 1 is decomposed as: 𝛾𝑡 =  Cov[𝑅𝑖𝑡,𝐼𝑉𝑂𝐿𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

=  Cov[𝑅𝑖𝑡, 𝛿𝑡−1𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑖𝑡−1]
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

+  Cov�𝑅𝑖𝑡,(𝑎𝑡−1+𝜇𝑖𝑡−1)�
Var[𝐼𝑉𝑂𝐿𝑖𝑡−1]

=
𝛾𝑡𝐶 + 𝛾𝑡𝑅. The time-series average of 𝛾𝑡𝐶  divided by the time-series average of 𝛾𝑡 then measures the fraction of the negative idiosyncratic volatility-return relation explained by the candidate 
variable, and the average 𝛾𝑡𝑅 divided by the average 𝛾𝑡 measures the fraction of the relation left unexplained by the candidate variable, with the standard errors of the fractions being determined 
using the multivariate delta method. Stocks with prices less than $1 at the end of the previous month are excluded from the analysis. IVOL is the standard deviation of residuals from a regression 
of daily stock returns in month t–1 on the Fama-French (1993) factors. Panel A examines lottery preference-based candidate variables, where Skew is the month t–1 skewness of raw daily 
returns, Coskew is the coskewness measure in Chabi-Yo and Yang (2009), E(Idioskew) is the expected idiosyncratic skewness measure in Boyer et al. (2010), Maxret is the maximum daily 
return in month t–1, and RTP is the retail trading proportion computed from ISSM and TAQ. Panel B examines market friction-based candidate variables, where Lagret is the month t–1 return, 
Amihud is the illiquidity measure in Amihud (2002), Zeroret is the fraction of trading days in month t–1 with a zero return, and Spread is the average daily bid-ask spread in month t–1 from 
ISSM and TAQ. Panel B also examines all the other candidate variables, where Dispersion is the dispersion in analysts’ FY1 earnings forecasts, AvgVarβ is a stock’s exposure to the average 
variance component of the market variance as in Chen and Petkova (2012), and SUE is the most recent standardized unexpected earnings. Time-series averages of estimated coefficients (×100) 
are reported with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.  
Panel A: Lottery preference variables 

              Stage Description Variable Lottery preference variables 
Skew   Coskew   E(Idioskew)   Maxret    RTP 

1 DGTW-adj ret on 
IVOL 

Intercept 0.353*** (6.47)   0.337*** (6.11)   0.411*** (7.34)   0.337*** (6.11)   0.436*** (3.98) 
  IVOL -17.401*** (-8.47)   -16.955*** (-8.19)   -20.138*** (-9.74)   -16.955*** (-8.19)   -23.229*** (-6.58) 
2 Add candidate 

variable 
Intercept 0.355*** (6.47)   0.339*** (6.06)   0.456*** (7.79)   0.270*** (4.74)   0.433*** (3.88) 

  IVOL -16.145*** (-7.67)   -17.349*** (-8.28)   -20.882*** (-9.56)   10.740*** (2.85)   -23.129*** (-6.67) 
    Candidate -0.099*** (-5.53)   -0.380** (-2.49)   0.022 (0.45)   -9.352*** (-10.20)   -0.021 (-0.08) 
3 IVOL on candidate 

variable 
Intercept 2.398*** (90.46)   2.474*** (87.71)   1.260*** (61.02)   0.767*** (81.51)   2.096*** (67.02) 

  Candidate 0.367*** (34.31)   0.643*** (9.90)   1.523*** (41.60)   25.850*** (238.67)   5.044*** (45.26) 
  Avg adj R2 4.3%     4.0%     18.4%     77.9%     22.6%   
4 Decompose Stage 

1 IVOL coefficient 
Candidate  -1.785     -0.321     -2.969     -18.923     -5.189   

    10.3%*** (6.73)   1.9% (1.08)   14.7%*** (5.80)   112.0%*** (18.72)   22.3%*** (5.92) 
  Residual -15.615     -16.633     -17.168     1.968     -18.040   
      89.7%*** (58.88)   98.1%*** (56.09)   85.3%*** (33.52)   -11.6%* (-1.95)   77.7%*** (20.58) 
    Total -17.401*** (-8.47)   -16.955*** (-8.19)   -20.138*** (-9.74)   -16.955*** (-8.19)   -23.229*** (-6.58) 
      100%     100%     100%     100%     100%   
Sample period    1963 to 2012   1963 to 2012   1968 to 2012   1963 to 2012   1983 to 2001 
Avg # firms/mth   3563.7     3580.5     2870.8     3580.5     3776.8   
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Table 3 (continued) 

Panel B: Market friction and other variables 

Stage Description Variable Market friction variables   Other variables 
Lagret   Amihud   Zeroret   Spread   Dispersion   AvgVarβ   SUE 

1 DGTW-adj ret 
on IVOL 

Intercept 0.337*** (6.12)   0.373*** (6.90)   0.337*** (6.11)   0.389*** (4.89)   0.250*** (2.97)   0.355*** (6.13)   0.367*** (6.14) 
  IVOL -16.964*** (-8.20)   -18.401*** (-8.67)   -16.955*** (-8.19)   -20.032*** (-7.73)   -14.326*** (-3.76)   -17.158*** (-8.29)   -17.431*** (-7.84) 
2 Add candidate 

variable 
Intercept 0.244*** (4.27)   0.396*** (7.20)   0.345*** (6.66)   0.379*** (4.98)   0.249*** (2.95)   0.349*** (6.07)   0.285*** (4.75) 

  IVOL -10.831*** (-4.88)   -21.220*** (-9.38)   -17.024*** (-8.30)   -21.679*** (-7.23)   -13.803*** (-3.70)   -17.063*** (-8.29)   -15.669*** (-7.01) 
    Candidate -4.467*** (-13.72)   0.035*** (4.63)   0.168 (0.62)   2.064 (1.26)   -0.055 (-1.08)   -0.006 (-1.08)   0.108*** (17.21) 
3 IVOL on 

candidate 
variable 

Intercept 2.350*** (85.09)   2.376*** (86.39)   2.439*** (89.47)   1.824*** (51.29)   2.185*** (70.67)   2.483*** (91.65) 2.600*** (88.45) 
  Candidate 2.324*** (21.51)   0.040*** (19.31)   0.778*** (10.32)   28.474*** (34.63)   0.211*** (16.27)   0.009*** (6.05)   -0.065*** (-34.43) 
  Avg adj R2 8.2%     11.3%     1.0%     28.9%     1.7%     0.5%     1.2%   
4 Decompose 

Stage 1 IVOL 
coefficient 

Candidate  -5.714     0.441     -0.144     -6.087     -0.764     -0.167     -1.898   
    33.7%*** (6.47)   -2.4% (-0.69)   0.9% (0.72)   30.4%*** (5.44)   5.3%* (1.92)   1.0%* (1.80)   10.9%*** (7.35) 
  Residual -11.250     -18.842     -16.810     -13.944     -13.562     -16.992     -15.533   
      66.3%*** (12.73)   102%*** (29.64)   99.1%*** (83.49)   69.6%*** (12.46)   94.7%*** (34.12)   99.0%*** (183.00) 89.1%*** (60.18) 
    Total -16.964*** (-8.20)   -18.401*** (-8.67)   -16.955*** (-8.19)   -20.032*** (-7.73)   -14.326*** (-3.76)   -17.158*** (-8.29)   -17.431*** (-7.84) 
      100%     100%     100%     100%     100%     100%     100%   
Sample period    1963 to 2012   1963 to 2012   1963 to 2012   1984 to 2012   1982 to 2012   1968 to 2012   1971 to 2012 
Avg # firms/mth   3580.4     3327.3     3580.5     3716.6     2258.1     3232.1     3472.3   
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Table 4 
Decomposing the idiosyncratic volatility puzzle: Interaction analysis. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between idiosyncratic volatility (IVOL) and 
DGTW-adjusted returns is decomposed into components that are related to a conditioning characteristic, its interaction with 
IVOL, and a residual component. Stocks with prices less than $1 at the end of the previous month are excluded. IVOL is the 
standard deviation of residuals from a regression of daily stock returns in month t–1 on the Fama-French (1993) factors. The 
conditioning characteristics are price, analyst coverage, credit rating, short interest, leverage, institutional ownership, B/M ratio, 
and a non-NYSE dummy. CharRank is the decile rank (scaled between zero and one and in ascending order of the characteristic 
except for analyst coverage, credit rating, institutional ownership, and B/M ratio) of a conditioning characteristic. For non-NYSE 
listing, CharRank is equal to one for non-NYSE stocks and zero otherwise. The standard errors of the fractions of the puzzle 
explained are determined using the multivariate delta method. Time-series averages of estimated coefficients (×100) are reported 
with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.  

Stage Description Variable Decile rank of a conditioning characteristic 
Price   Analyst coverage   Credit rating   Short interest 

1 DGTW-adj ret 
on IVOL 

Intercept 0.337*** (6.11)   0.293*** (3.54)   0.350*** (3.91)   0.374*** (2.72) 
  IVOL -16.955*** (-8.19)   -15.815*** (-4.51)   -23.596*** (-4.95)   -13.404*** (-3.99) 
2 Add candidate 

variables 
Intercept 0.783*** (9.66)   0.156 (1.45)   -0.116 (-0.77)   0.191 (0.85) 

  IVOL -20.782*** (-7.93)   -12.949** (-2.10)   5.367 (0.61)   -2.526 (-0.67) 
    CharRank -0.439*** (-4.04)   0.286** (2.09)   0.687*** (2.95)   0.528** (2.00) 
    CharRank×IVOL -13.835** (-2.57)   -6.765 (-0.97)   -39.717*** (-3.70)   -27.280*** (-5.31) 
3 IVOL on 

candidate 
variables 

Intercept 3.493*** (79.31)   1.891*** (64.48)   1.328*** (56.25)   3.860*** (73.25) 
  CharRank -4.867*** (-80.55) -2.335*** (-56.94) -1.440*** (-48.41)   -5.765*** (-68.93) 
  CharRank×IVOL 150.153*** (257.86) 122.170*** (331.44) 110.809*** (432.41) 150.476*** (286.30) 
    Avg adj R2 52.5%     83.7%     90.8%     64.4%   
4 Decompose 

Stage 1 IVOL 
coefficient 

CharRank 0.912     1.120     3.642     4.469   
    -5.4% (-0.62)   -7.1% (-1.28)   -15.4%*** (-3.18)   -33.3%** (-2.27) 
  CharRank×IVOL -8.303     -15.256     -27.807     -17.108   
      49.0%*** (5.66)   96.5%*** (10.24)   118%*** (19.81)   128%*** (7.32) 
    Residual -9.564     -1.680     0.569     -0.765   
      56.4%*** (16.59)   10.6%* (1.95)   -2.4% (-0.61)   5.7% (0.69) 
    Total -16.955*** (-8.19)   -15.815*** (-4.51)   -23.596*** (-4.95)   -13.404*** (-3.99) 
      100%     100%     100%     100%   
Sample period    1963 to 2012   1982 to 2012   1986 to 2012   1988 to 2005 
Avg # firms/mth   3580.5     2685.1     960.0     2917.7   
      Leverage   Inst. own.   B/M   Non-NYSE 
1 DGTW-adj ret 

on IVOL 
Intercept 0.337*** (6.12)   0.393*** (5.62)   0.337*** (6.11)   0.337*** (6.11) 

  IVOL -16.978*** (-8.21)   -19.215*** (-7.65)   -16.955*** (-8.19)   -16.955*** (-8.19) 
2 Add candidate 

variables 
Intercept 0.328*** (4.78)   0.232*** (2.84)   0.173** (2.52)   0.330*** (5.68) 

  IVOL -12.287*** (-4.78)   -13.232*** (-2.94)   -11.571*** (-4.31)   -19.962*** (-5.98) 
    CharRank 0.041 (0.52)   0.258** (2.19)   0.357*** (4.90)   0.071 (1.10) 
    CharRank×IVOL -10.284*** (-3.14)   -9.513* (-1.73)   -11.815*** (-3.96)   2.196 (0.65) 
3 IVOL on 

candidate 
variables 

Intercept 2.635*** (78.77)   2.090*** (75.50)   2.631*** (83.25)   1.785*** (103.28) 
  CharRank -3.740*** (-77.11) -2.597*** (-70.58) -3.747*** (-78.81)   -1.785*** (-103.28) 
  CharRank×IVOL 142.964*** (387.60) 122.161*** (320.12) 138.984*** (438.62) 100.000*** (100000) 
    Avg adj R2 68.3%     85.4%     66.7%     83.2%   
4 Decompose 

Stage 1 IVOL 
coefficient 

CharRank 2.376     3.382     0.392     1.305   
    -14.0%*** (-2.84)   -17.6%*** (-3.58)   -2.3% (-1.58)   -7.7%** (-2.16) 
  CharRank×IVOL -15.493     -20.707     -13.688     -14.854   
      91.3%*** (13.44)   108%*** (15.33)   80.7%*** (20.64)   87.6%*** (14.98) 
    Residual -3.862     -1.890     -3.658     -3.406   
      22.7%*** (7.28)   9.8%*** (3.01)   21.6%*** (6.60)   20.1%*** (5.99) 
    Total -16.978*** (-8.21)   -19.215*** (-7.65)   -16.955*** (-8.19)   -16.955*** (-8.19) 
      100%     100%     100%     100%   
Sample period    1963 to 2012   1979 to 2012   1963 to 2012   1963 to 2012 
Avg # firms/mth   3572.4     3964.5     3580.5     3580.5   
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Table 5 
Decomposing the idiosyncratic volatility puzzle: Multivariate analysis. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between month t–1 idiosyncratic volatility 
(IVOL) and month t DGTW-adjusted returns is decomposed into a number of components each related to a candidate variable 
and a residual component. Stocks with prices less than $1 at the end of the previous month are excluded. IVOL is the standard 
deviation of residuals from a regression of daily stock returns in month t–1 on the Fama-French (1993) factors. Skew is the month 
t–1 skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009). E(Idioskew) is the expected 
idiosyncratic skewness measure in Boyer et al. (2010). RTP is the retail trading proportion computed from ISSM and TAQ. 
Lagret is the month t–1 return. Amihud is the illiquidity measure in Amihud (2002). Zeroret is the fraction of trading days in 
month t–1 with a zero return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the 
dispersion in analysts’ FY1 earnings forecasts. AvgVarβ is a stock’s exposure to the average variance component of the market 
variance as in Chen and Petkova (2012). SUE is the most recent standardized unexpected earnings. The standard errors of the 
fractions of the puzzle explained are determined using the multivariate delta method. Time-series averages of estimated 
coefficients (×100) are reported with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 
1% levels, respectively.  

Stg. Description Variable Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

1 DGTW-adj 
ret on IVOL 

Intercept 0.263**   (2.04)   0.254***   (2.90)   0.412***   (7.17) 
  IVOL -18.560***   (-3.17)   -14.231***   (-3.49)   -19.028***   (-8.89) 
2 Add 

candidate 
variables 
  
  
  
  

Intercept 0.373***   (2.63)   0.287***   (3.01)   0.364***   (5.53) 
  IVOL -25.582***   (-4.27)   -13.203***   (-3.63)   -12.629***   (-5.14) 
  Skew 0.158***   (5.07)   0.120***   (4.12)   0.092***   (4.73) 
  Coskew 0.348   (0.63)   0.225   (0.45)   0.058   (0.30) 
  E(IdioSkew) -0.151   (-1.07)   -0.065   (-0.75)   -0.087   (-1.47) 
    RTP -2.338***   (-3.01)                 
    Lagret -4.391***   (-7.13)   -3.829***   (-8.46)   -5.253***   (-13.78) 
    Amihud -0.073   (-0.49)   0.014   (0.27)   0.008***   (3.25) 
    Zeroret -0.298   (-0.98)   0.157   (0.40)   -0.135   (-0.49) 
    Spread 24.488***   (3.14)                 
    Dispersion -0.132***   (-2.86)   -0.104*   (-1.95)         
    AvgVarβ 0.003   (0.21)   0.006   (0.53)   -0.004   (-0.67) 
    SUE 0.061***   (6.22)   0.051***   (7.07)   0.117***   (15.88) 
3 IVOL on 

candidate 
variables 
  
  
  

Intercept 1.361***   (46.27)   1.446***   (65.63)   1.342***   (70.82) 
  Skew 0.093***   (13.71)   0.088***   (11.53)   0.199***   (29.93) 
  Coskew 0.267*   (1.90)   0.665***   (5.24)   0.284***   (4.53) 
  E(IdioSkew) 0.198***   (7.47)   0.798***   (31.57)   1.381***   (49.82) 
    RTP 1.543***   (10.45)                 
    Lagret 0.326***   (2.72)   0.196*   (1.71)   1.565***   (16.02) 
    Amihud -0.127***   (-9.87)   0.116***   (11.32)   0.024***   (28.15) 
    Zeroret -3.039***   (-28.27)   -0.562***   (-5.96)   -1.395***   (-22.30) 
    Spread 56.846***   (43.70)                 
    Dispersion 0.078***   (14.72)   0.129***   (22.01)         
    AvgVarβ 0.010***   (7.61)   0.007***   (4.59)   0.009***   (8.36) 
    SUE -0.010***   (-11.94)   -0.019***   (-19.05) -0.031***   (-27.09) 
    Avg adj R2 47.5%   (66.25)   26.2%   (51.67)   37.1%   (76.29) 
4 Decompose 

Stage 1 
IVOL 
coefficient 

Skew -0.450 2.4% (1.51)   -0.432 3.0% (1.56)   -1.246 6.5%*** (6.35) 
  Coskew -0.520 2.8% (0.99)   -0.505 3.5% (0.73)   -0.593 3.1%*** (2.95) 
  E(IdioSkew) -0.772 4.2%** (2.13)   -1.516 10.7%** (1.98)   -2.874 15.1%*** (6.24) 
  RTP -0.043 0.2% (0.08)                 
  Lagret -1.050 5.7% (1.03)   -0.072 0.5% (0.07)   -4.085 21.5%*** (5.74) 
  Amihud 0.351 -1.9% (-0.69)   -0.531 3.7% (0.69)   -0.726 3.8% (1.60) 
  Zeroret -0.248 1.3% (0.28)   0.136 -1.0% (-0.47)   0.186 -1.0% (-1.02) 
  Spread -1.412 7.6% (0.52)                 
  Dispersion -0.640 3.4%*** (2.66)   -0.793 5.6%*** (3.22)         
  AvgVarβ -0.150 0.8% (0.81)   0.032 -0.2% (-0.12)   -0.060 0.3% (0.67) 
  SUE -0.448 2.4%*** (2.76)   -0.579 4.1%*** (3.12)   -0.973 5.1%*** (7.58) 
  Residual -13.178 71.0%*** (5.86)   -9.972 70.1%*** (6.56)   -8.657 45.5%*** (10.06) 
  Total -18.560*** 100% (-3.17)   -14.231*** 100% (-3.49)   -19.028*** 100% (-8.89) 
  Sample 1984 to 2001     1982 to 2012     1971 to 2012   
    Avg # firms/mth 1524.4       1806.0       2752.4     
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Table 6 
Decomposing the idiosyncratic volatility puzzle: Subsample analysis. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between month t–1 idiosyncratic volatility 
(IVOL) and month t DGTW-adjusted returns is decomposed into a number of components each related to a candidate variable 
and a residual component for subsamples of stocks with prices of at least $5 (Panel A), low analyst coverage (1–3 analysts, Panel 
B), poor credit ratings (lowest three deciles, Panel C), high short interest (highest three deciles, Panel D), high leverage (highest 
three deciles, Panel E), low institutional ownership (lowest three deciles, Panel F), low B/M ratios (lowest three deciles, Panel 
G), non-NYSE listings (Panel H), and non-January months (Panel I). IVOL is the standard deviation of residuals from a 
regression of daily stock returns in month t–1 on the Fama-French (1993) factors. Skew is the month t–1 skewness of raw daily 
returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009). E(Idioskew) is the expected idiosyncratic skewness 
measure in Boyer et al. (2010). RTP is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t–1 
return. Amihud is the illiquidity measure in Amihud (2002). Zeroret is the fraction of trading days in month t–1 with a zero 
return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ 
FY1 earnings forecasts. AvgVarβ is a stock’s exposure to the average variance component of the market variance as in Chen and 
Petkova (2012). SUE is the most recent standardized unexpected earnings. The standard errors of the fractions of the puzzle 
explained are determined using the multivariate delta method. Time-series averages of estimated coefficients (×100) are reported 
with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 

Candidate Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Panel A: Prices ≥$5 
Skew -0.345 1.6% (1.08)   -0.390 2.3% (1.45)   -1.227 5.4%*** (5.76) 
Coskew -0.581 2.7% (0.93)   -1.028 6.1% (1.47)   -0.737 3.2%** (2.40) 
E(IdioSkew) -0.655 3.1% (1.46)   -2.190 13.0%*** (3.25)   -2.008 8.8%*** (4.16) 
RTP -0.734 3.5%* (1.85)                 
Lagret -1.495 7.1% (1.40)   -1.269 7.5% (1.33)   -5.352 23.4%*** (6.75) 
Amihud 0.981 -4.6%* (-1.67)   -1.255 7.4%*** (2.64)   -1.783 7.8%*** (4.71) 
Zeroret 1.096 -5.2% (-0.91)   0.216 -1.3% (-0.57)   0.192 -0.8% (-0.49) 
Spread -2.508 11.9% (1.29)                 
Dispersion -0.502 2.4%* (1.84)   -0.657 3.9%** (2.25)         
AvgVarβ -0.170 0.8% (0.69)   -0.177 1.0% (0.44)   -0.195 0.9%* (1.88) 
SUE -0.495 2.3%*** (2.69)   -0.609 3.6%*** (3.38)   -1.333 5.8%*** (6.49) 
Residual -15.740 74.4%*** (7.40)   -9.549 56.5%*** (6.87)   -10.451 45.6%*** (9.56) 
Total -21.147*** 100% (-3.46)   -16.907*** 100% (-4.22)   -22.896*** 100% (-8.91) 
Sample 1984 to 2001     1982 to 2012     1971 to 2012   
Avg # firms/mth 1448.1       1687.8       2267.9     
Panel B: Low analyst coverage 
Skew -1.704 7.0%*** (2.66)   -0.637 3.6%* (1.77)   -0.992 4.9%** (2.35) 
Coskew -1.380 5.7% (1.06)   0.081 -0.5% (-0.10)   -1.369 6.7%* (1.82) 
E(IdioSkew) -1.158 4.8%** (2.33)   -1.946 11.0%** (2.16)   -2.594 12.7%*** (3.35) 
RTP -0.297 1.2% (0.29)                 
Lagret -3.036 12.5%** (2.32)   -0.029 0.2% (0.03)   -1.023 5.0% (1.03) 
Amihud 2.075 -8.5% (-1.52)   -1.439 8.1% (1.49)   -0.936 4.6% (0.93) 
Zeroret 0.601 -2.5% (-0.32)   1.151 -6.5%* (-1.74)   0.600 -2.9% (-1.22) 
Spread -5.497 22.6% (1.18)                 
Dispersion -0.348 1.4% (0.58)   -2.358 13.3%*** (3.34)         
AvgVarβ -0.269 1.1% (0.79)   -0.228 1.3% (1.02)   -0.167 0.8% (0.89) 
SUE -1.038 4.3%*** (2.75)   -1.153 6.5%*** (3.27)   -1.442 7.1%*** (4.45) 
Residual -12.303 50.5%*** (4.21)   -11.174 63.0%*** (6.72)   -12.439 61.1%*** (8.30) 
Total -24.352*** 100% (-3.73)   -17.732*** 100% (-4.01)   -20.363*** 100% (-4.70) 
Sample 1984 to 2001     1983 to 2012     1982 to 2012   
Avg # firms/mth 367.7       440.7       763.3     
Panel C: Poor credit ratings 
Skew -0.397 1.8% (0.30)   -0.789 5.0% (0.86)   -0.427 1.8% (0.74) 
Coskew -1.007 4.6% (0.42)   -2.168 13.7% (1.29)   -0.656 2.7% (0.48) 
E(IdioSkew) -1.029 4.7% (0.78)   -0.628 4.0% (0.55)   -2.730 11.3%*** (2.66) 
RTP -1.023 4.7% (0.49)                 
Lagret -0.859 3.9% (0.58)   -1.836 11.6% (1.29)   -2.054 8.5%* (1.70) 
Amihud 1.307 -5.9% (-0.57)   -1.082 6.9% (0.87)   -4.346 18.0%*** (3.36) 
Zeroret -4.386 20.0% (1.13)   -0.835 5.3% (1.25)   0.063 -0.3% (-0.15) 
Spread -6.524 29.7% (0.89)                 
Dispersion 0.538 -2.4% (-0.77)   0.389 -2.5% (-0.57)         
AvgVarβ 0.148 -0.7% (-0.22)   0.326 -2.1% (-0.60)   -0.017 0.1% (0.05) 
SUE -0.498 2.3% (0.80)   -0.813 5.2% (1.36)   -1.253 5.2%*** (2.81) 
Residual -8.246 37.5%* (1.82)   -8.337 52.9%*** (2.98)   -12.791 52.8%*** (5.80) 
Total -21.975** 100% (-2.08)   -15.774** 100% (-2.33)   -24.210*** 100% (-4.42) 
Sample 1987 to 2001     1986 to 2012     1986 to 2012   
Avg # firms/mth 142.4       176.7       234.9     
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Table 6 (continued) 

Candidate Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Panel D: High short interest 
Skew -0.322 1.8% (0.62)   -0.030 0.1% (0.06)   -0.357 1.1% (0.94) 
Coskew 0.690 -3.8% (-0.43)   -0.880 3.6% (0.68)   -1.170 3.5%* (1.92) 
E(IdioSkew) -1.637 9.1% (0.94)   -5.761 23.3%*** (3.30)   -12.122 36.1%*** (7.22) 
RTP -1.862 10.3% (1.09)                 
Lagret 2.473 -13.7% (-0.99)   1.361 -5.5% (-0.92)   -0.586 1.7% (0.57) 
Amihud 0.361 -2.0% (-0.60)   -1.127 4.6% (0.96)   -3.228 9.6%*** (3.38) 
Zeroret 1.606 -8.9% (-0.72)   0.244 -1.0% (-0.33)   0.646 -1.9% (-1.17) 
Spread -8.038 44.5%* (1.78)                 
Dispersion -0.591 3.3% (1.46)   -1.139 4.6%** (2.32)         
AvgVarβ -0.265 1.5% (0.48)   -0.364 1.5% (0.90)   -0.017 0.1% (0.08) 
SUE -0.112 0.6% (0.32)   -0.750 3.0%* (1.66)   -0.761 2.3%*** (3.07) 
Residual -10.349 57.4%*** (2.90)   -16.306 65.9%*** (6.51)   -15.992 47.6%*** (8.31) 
Total -18.045* 100% (-1.95)   -24.752*** 100% (-3.68)   -33.587*** 100% (-6.93) 
Sample 1990 to 2001     1988 to 2005     1988 to 2005   
Avg # firms/mth 428.0       440.1       601.6     
Panel E: High leverage 
Skew -0.214 0.9% (0.52)   -0.168 1.0% (0.54)   -0.757 3.4%*** (3.76) 
Coskew -0.773 3.2% (0.69)   -0.886 5.3% (0.91)   -1.670 7.4%*** (3.12) 
E(IdioSkew) -0.198 0.8% (0.18)   -0.506 3.0% (0.35)   -1.618 7.2%** (2.02) 
RTP -1.142 4.8% (1.27)                 
Lagret -0.847 3.5% (0.78)   0.291 -1.7% (-0.24)   -3.335 14.8%*** (4.63) 
Amihud 1.475 -6.1% (-1.41)   -3.326 19.8%*** (2.99)   -2.000 8.9%*** (3.24) 
Zeroret 0.333 -1.4% (-0.28)   0.243 -1.4% (-0.72)   0.206 -0.9% (-0.93) 
Spread -8.818 36.7%*** (2.73)                 
Dispersion -0.722 3.0%* (1.83)   -1.409 8.4%*** (2.89)         
AvgVarβ -0.444 1.8% (1.29)   -0.354 2.1% (1.37)   -0.115 0.5% (0.86) 
SUE -0.422 1.8%** (1.98)   -0.753 4.5%** (2.56)   -1.343 6.0%*** (6.78) 
Residual -12.252 51.0%*** (4.08)   -9.957 59.2%*** (5.78)   -11.938 52.9%*** (10.80) 
Total -24.024*** 100% (-2.94)   -16.826*** 100% (-3.26)   -22.570*** 100% (-8.27) 
Sample 1984 to 2001     1983 to 2012     1971 to 2012   
Avg # firms/mth 562.6       638.7       877.8     
Panel F: Low institutional ownership 
Skew -1.880 11.2% (1.46)   -1.813 8.1%** (2.13)   -1.883 8.1%*** (4.99) 
Coskew -2.973 17.8% (1.19)   -1.606 7.1% (1.08)   -1.539 6.6%** (2.25) 
E(IdioSkew) -0.248 1.5% (0.21)   -3.253 14.5%** (2.04)   -3.502 15.0%*** (4.79) 
RTP 1.321 -7.9% (-0.45)                 
Lagret -3.092 18.5% (1.30)   -0.996 4.4% (0.56)   -4.277 18.4%*** (4.63) 
Amihud -4.045 24.2% (0.71)   -2.933 13.1%** (1.98)   -0.921 4.0% (1.53) 
Zeroret -0.832 5.0% (0.41)   0.082 -0.4% (-0.11)   0.355 -1.5% (-0.84) 
Spread 4.285 -25.6% (-0.41)                 
Dispersion -0.901 5.4% (0.99)   0.543 -2.4% (-0.53)         
AvgVarβ -0.182 1.1% (0.35)   0.051 -0.2% (-0.10)   -0.247 1.1% (1.51) 
SUE -2.421 14.5% (1.46)   -2.243 10.0%*** (2.74)   -1.627 7.0%*** (5.79) 
Residual -5.771 34.5% (1.62)   -10.299 45.8%*** (3.91)   -9.660 41.5%*** (5.68) 
Total -16.740 100% (-1.48)   -22.466*** 100% (-3.18)   -23.300*** 100% (-6.61) 
Sample 1990 to 2001     1983 to 2012     1979 to 2012   
Avg # firms/mth 131.5       145.1       743.3     
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Table 6 (continued) 

Candidate Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Panel G: Low B/M ratios 
Skew -0.391 2.0% (0.63)   -0.574 4.3% (1.29)   -1.005 4.3%*** (3.48) 
Coskew -1.700 8.7% (1.13)   -0.035 0.3% (0.04)   -0.472 2.0% (0.88) 
E(IdioSkew) -1.498 7.7%* (1.75)   -1.571 11.9%* (1.76)   -3.424 14.6%*** (4.58) 
RTP 0.311 -1.6% (-0.32)                 
Lagret -0.756 3.9% (0.53)   0.371 -2.8% (-0.30)   -3.242 13.8%*** (3.51) 
Amihud -0.349 1.8% (0.41)   0.257 -1.9% (-0.34)   -0.238 1.0% (0.28) 
Zeroret -3.171 16.2% (1.59)   -0.025 0.2% (0.06)   -0.166 0.7% (0.79) 
Spread 8.651 -44.2% (-1.25)                 
Dispersion -0.482 2.5% (0.40)   -0.897 6.8% (1.34)         
AvgVarβ -0.276 1.4% (0.53)   -0.499 3.8% (1.22)   -0.278 1.2%* (1.66) 
SUE -0.769 3.9%** (2.18)   -0.683 5.2%** (2.00)   -1.175 5.0%*** (5.21) 
Residual -19.154 97.8%*** (3.64)   -9.556 72.3%*** (5.49)   -13.490 57.4%*** (10.50) 
Total -19.583** 100% (-2.59)   -13.212*** 100% (-2.89)   -23.490*** 100% (-7.59) 
Sample 1984 to 2001     1982 to 2012     1971 to 2012   
Avg # firms/mth 452.3       594.0       728.3     
Panel H: Non-NYSE listings  
Skew -2.146 6.4%** (2.47)   -0.636 3.1%** (2.12)   -2.117 10.2%*** (5.98) 
Coskew -1.696 5.0% (0.71)   -0.750 3.6% (1.08)   -0.440 2.1% (1.42) 
E(IdioSkew) -1.292 3.8%* (1.66)   -2.468 11.9%*** (3.14)   -3.010 14.5%*** (5.73) 
RTP -0.131 0.4% (0.11)                 
Lagret 0.787 -2.3% (-0.58)   0.310 -1.5% (-0.31)   -5.279 25.5%*** (5.78) 
Amihud 1.331 -4.0% (-0.56)   -2.036 9.8%** (2.40)   -0.341 1.6% (0.47) 
Zeroret 2.324 -6.9% (-1.13)   0.741 -3.6% (-1.10)   0.536 -2.6% (-1.48) 
Spread -13.107 39.0%** (2.47)                 
Dispersion -3.457 10.3%*** (3.01)   -2.089 10.1%*** (4.44)         
AvgVarβ 0.155 -0.5% (-0.19)   -0.310 1.5% (1.38)   -0.145 0.7% (1.25) 
SUE -2.033 6.1%** (2.43)   -0.834 4.0%*** (3.78)   -1.299 6.3%*** (6.79) 
Residual -14.340 42.7%*** (4.34)   -12.697 61.1%*** (8.76)   -8.619 41.6%*** (7.68) 
Total -33.606*** 100% (-4.04)   -20.768*** 100% (-4.99)   -20.714*** 100% (-8.49) 
Sample 1984 to 2001     1983 to 2012     1971 to 2012   
Avg # firms/mth 596.5       874.7       1571.4     
Panel I: Non-January months 
Skew -0.347 2.0% (1.13)   -0.196 1.6% (0.81)   -1.105 5.2%*** (6.19) 
Coskew -0.569 3.2% (1.04)   -0.364 2.9% (0.49)   -0.544 2.5%*** (2.63) 
E(IdioSkew) -0.594 3.3% (1.54)   -1.143 9.1% (1.46)   -3.534 16.5%*** (7.44) 
RTP -0.167 0.9% (0.28)                 
Lagret -1.074 6.0% (0.99)   -0.037 0.3% (0.04)   -3.773 17.6%*** (5.47) 
Amihud -0.004 0.0% (0.01)   -0.530 4.2% (0.65)   -1.458 6.8%*** (3.34) 
Zeroret -0.505 2.8% (0.53)   0.128 -1.0% (-0.41)   0.216 -1.0% (-1.13) 
Spread -0.445 2.5% (0.15)                 
Dispersion -0.628 3.5%** (2.47)   -0.791 6.3%*** (2.85)         
AvgVarβ -0.208 1.2% (1.05)   -0.192 1.5% (0.84)   -0.106 0.5% (1.16) 
SUE -0.388 2.2%** (2.57)   -0.502 4.0%** (2.58)   -1.015 4.7%*** (7.97) 
Residual -12.858 72.3%*** (5.39)   -8.879 71.0%*** (5.47)   -10.091 47.1%*** (11.49) 
Total -17.788*** 100% (-2.91)   -12.506*** 100% (-2.89)   -21.408*** 100% (-9.88) 
Sample 1984 to 2000     1982 to 2012     1971 to 2012   
Avg # firms/mth 1523.2       1805.7       2754.7     
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Table 7 
Decomposing the idiosyncratic volatility puzzle: Portfolio-level analysis. 
 Using portfolio-level Fama-MacBeth cross-sectional regressions, the negative relation between month t–1 idiosyncratic 
volatility (IVOL) and month t DGTW-adjusted returns is decomposed into a number of components each related to a candidate 
variable and a residual component. Panels A and B report the results of univariate and multivariate analyses, respectively, using 
idiosyncratic volatility-sorted portfolios. At the beginning of each month t, we sort individual stocks into 200 portfolios based on 
their month t−1 IVOL. IVOL is the standard deviation of residuals from a regression of daily stock returns in month t–1 on the 
Fama-French (1993) factors. The portfolio-level IVOL, candidate variables, and returns are computed as value-weighted averages 
of the firm-level variables. Firm-level Skew is the month t–1 skewness of raw daily returns. Coskew is the coskewness measure in 
Chabi-Yo and Yang (2009). E(Idioskew) is the expected idiosyncratic skewness measure in Boyer et al. (2010). Maxret is the 
maximum daily return in month t–1. RTP is the retail trading proportion computed from ISSM and TAQ. Lagret is the month t–1 
return. Amihud is the illiquidity measure in Amihud (2002). Zeroret is the fraction of trading days in month t–1 with a zero 
return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ 
FY1 forecasts. AvgVarβ is a stock’s exposure to the average variance component of the market variance as in Chen and Petkova 
(2012). SUE is the most recent standardized unexpected earnings. Stocks with prices less than $1 at the end of the previous 
month are excluded from the analysis. The standard errors of the fractions of the puzzle explained are determined using the 
multivariate delta method. Time-series averages of estimated coefficients (×100) are reported with t-statistics in parentheses. *, 
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. 
Panel A: Univariate analysis                 
Candidate  IVOL coeff.    Candidate component   Residual component 
  Coeff. t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 
Skew -25.884*** (-11.95)   -3.448 13.3%*** (6.56)   -22.436 86.7%*** (42.71) 
Coskew -25.884*** (-11.95)   -3.087 11.9%*** (5.09)   -22.797 88.1%*** (37.56) 
E(Idioskew) -27.984*** (-13.22)   -11.971 42.8%*** (15.22)   -16.012 57.2%*** (20.36) 
Maxret -25.884*** (-11.95)   -22.753 87.9%*** (50.08)   -3.131 12.1%*** (6.89) 
RTP -28.318*** (-9.07)   -18.820 66.5%*** (19.54)   -9.497 33.5%*** (9.86) 
Lagret -25.884*** (-11.95)   -6.621 25.6%*** (6.73)   -19.263 74.4%*** (19.59) 
Amihud -25.988*** (-11.99)   -13.474 51.8%*** (15.76)   -12.514 48.2%*** (14.64) 
Zeroret -25.884*** (-11.95)   -3.739 14.4%*** (9.04)   -22.145 85.6%*** (53.51) 
Spread -21.080*** (-7.88)   -12.441 59.0%*** (13.93)   -8.638 41.0%*** (9.67) 
Dispersion -22.618*** (-8.53)   -2.609 11.5%*** (5.50)   -20.010 88.5%*** (42.19) 
AvgVarβ -27.633*** (-13.05)   -0.755 2.7%*** (3.01)   -26.879 97.3%*** (107.14) 
SUE -26.873*** (-12.44)   -2.635 9.8%*** (9.62)   -24.239 90.2%*** (88.50) 
Average          33.1%       66.9%   
 
Panel B: Multivariate analysis 

         Candidate Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Skew -0.426 1.6%* (1.81)   -0.682 2.9%*** (2.63)   -1.155 4.2%*** (5.29) 
Coskew -1.174 4.4%*** (3.00)   -0.625 2.7% (1.49)   -0.768 2.8%** (2.27) 
E(IdioSkew) -1.883 7.1%*** (4.79)   -4.729 20.3%*** (7.59)   -5.375 19.7%*** (10.67) 
RTP -5.763 21.8%*** (7.34)                 
Lagret -1.697 6.4%* (1.86)   -2.681 11.5%*** (3.49)   -3.585 13.1%*** (5.70) 
Amihud -2.998 11.3%*** (6.03)   -7.361 31.6%*** (11.00)   -8.689 31.8%*** (15.13) 
Zeroret 0.340 -1.3% (-1.39)   -1.035 4.4%*** (5.09)   -0.572 2.1%*** (3.27) 
Spread -7.553 28.5%*** (8.28)                 
Dispersion -0.758 2.9%*** (4.08)   -0.892 3.8%*** (4.41)         
AvgVarβ -0.081 0.3% (0.59)   -0.226 1.0% (1.33)   -0.165 0.6% (1.43) 
SUE -0.363 1.4%*** (3.60)   -0.498 2.1%*** (4.27)   -0.866 3.2%*** (7.98) 
Residual -4.100 15.5%*** (5.27)   -4.554 19.6%*** (5.55)   -6.114 22.4%*** (8.63) 
Total -26.457*** 100% (-7.62)   -23.282*** 100% (-8.78)   -27.288*** 100% (-12.64) 
Sample 1984 to 2001   1982 to 2012   1971 to 2012 
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Table 8  
Precision-weighted true fractions from simulation analysis. 
 A precision-weighted true explained fraction is computed for each candidate variable based on the simulation analysis. Specifically, we simulate a negative idiosyncratic 
volatility-return relation at the individual stock level and introduce a noisy candidate variable, which contains a true component (explaining r percent of the simulated idiosyncratic 
volatility puzzle) and an independent noise component. We vary the true explained fraction (r) from 1% to 100% at 1% intervals and the amount of signal in the candidate variable 
measured by the candidate informativeness ratio 𝑘 = Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)+Var(𝑁𝑜𝑖𝑠𝑒) from 10% to 100% also at 1% intervals. For each of the 100 × 91 = 9100 (r, k) combinations, we 
then apply our decomposition methodology to estimate the fraction of the simulated idiosyncratic volatility puzzle that is explained by the noisy candidate variables for the 
simulated individual stock sample as well as for 200, 100, 50, and 25 portfolios sorted on simulated idiosyncratic volatility. The actual true fraction explained by a candidate 
variable at each level of portfolio aggregation is then matched to the corresponding simulated explained fraction to compute the precision-weighted true fraction explained by the 
candidate variables, where precision is defined as the reciprocal of the squared difference between the actual fraction and the simulated fraction. Three versions of the precision-
weighted true fraction are reported: a clean version (50–100% candidate informativeness ratio), a diffuse-prior version (10–100% candidate informativeness ratio), and a noisy 
version (10–49% candidate informativeness ratio). Firm-level Skew is the month t–1 skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang 
(2009). E(Idioskew) is the expected idiosyncratic skewness measure in Boyer et al. (2010). Maxret is the maximum daily return in month t–1. RTP is the retail trading proportion 
computed from ISSM and TAQ. Lagret is the month t–1 return. Amihud is the illiquidity measure in Amihud (2002). Zeroret is the fraction of trading days in month t–1 with a 
zero return. Spread is the average daily bid-ask spread in month t–1 from ISSM and TAQ. Dispersion is the dispersion in analysts’ FY1 forecasts. AvgVarβ is a stock’s exposure to 
the average variance component of the market variance as in Chen and Petkova (2012). SUE is the most recent standardized unexpected earnings. Portfolio-level variables are 
computed as value-weighted averages of the firm-level variables.   

Candidate Actual fraction explained (%) 
  Precision-weighted true fraction (%) 

  
If informativeness ratio is 50–100% 

(clean candidate) 
  If informativeness ratio is 10–100% 

(diffuse-prior candidate) 
  If informativeness ratio is 10–49% 

(noisy candidate) 
Firm 200port 100port 50port 25port   Firm 200port 100port 50port 25port   Firm 200port 100port 50port 25port   Firm 200port 100port 50port 25port 

Skew 10.3 13.3 19.7 26.7 39.0   14.4 6.7 7.9 8.5 10.4   26.6 12.1 14.2 15.3 18.6   42.2 18.9 22.3 23.9 29.0 
Coskew 1.9 11.9 20.4 30.3 38.3   2.8 5.9 8.2 10.0 10.1   5.0 10.6 14.8 18.1 18.0   7.9 16.7 23.3 28.4 28.2 
E(Idioskew) 14.7 42.8 48.6 52.0 59.1   20.5 27.1 26.0 22.5 21.4   35.6 43.6 42.3 38.2 36.8   54.8 64.5 63.2 58.3 56.5 
Maxret 112.0 87.9 91.7 94.9 97.8   69.4 84.3 85.4 86.7 87.6   63.4 76.4 77.7 79.0 80.0   55.7 66.4 67.8 69.2 70.3 
RTP 22.3 66.5 69.4 80.2 89.3   31.0 54.6 49.5 58.5 71.4   47.1 64.6 62.1 67.5 73.5   67.7 77.3 78.1 78.9 76.3 
Lagret 33.7 25.6 27.2 35.3 49.0   46.8 13.9 11.6 12.3 15.0   59.0 25.7 21.2 22.5 27.2   74.6 40.7 33.4 35.4 42.8 
Amihud -2.4 51.8 59.8 73.6 84.5   9.9 36.0 37.0 46.3 56.9   12.9 52.0 53.1 60.4 67.1   16.8 72.5 73.6 78.3 80.2 
Zeroret 0.9 14.4 19.5 25.3 34.2   1.4 7.2 7.8 8.1 8.6   2.5 13.2 14.0 14.3 15.2   3.8 20.7 22.0 22.2 23.6 
Spread 30.4 59.0 65.8 75.4 82.0   42.2 44.3 44.4 49.3 50.9   56.1 58.4 58.7 62.3 63.7   73.8 76.4 77.1 78.9 80.1 
Dispersion 5.3 11.5 15.8 29.6 39.3   7.5 5.7 6.1 9.7 10.5   13.8 10.2 11.0 17.5 18.8   21.9 16.1 17.1 27.5 29.4 
AvgVarβ 1.0 2.7 5.0 9.0 14.4   1.6 1.4 1.9 3.0 3.5   2.7 2.2 3.0 4.3 4.9   4.2 3.3 4.4 5.9 6.7 
SUE 10.9 9.8 13.8 18.7 27.1   15.2 4.9 5.4 5.6 6.3   28.0 8.6 9.4 9.7 10.8   44.3 13.4 14.6 15.0 16.6 
Average 20.1 33.1 38.1 45.9 54.5   21.9 24.3 24.3 26.7 29.4   29.4 31.5 31.8 34.1 36.2   39.0 40.6 41.4 43.5 45.0 
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Table 9  
Decomposing the idiosyncratic volatility puzzle: Nonlinear relations. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the negative relation between a dummy variable for having high 
idiosyncratic volatility in month t–1 (HIGHIVOL) and month t DGTW-adjusted returns is decomposed into a number of 
components each related to a candidate variable and a residual component. HIGHIVOL equals one when IVOL belongs to the 
highest decile in month t-1 and zero otherwise. Panels A and B report the results of univariate and multivariate analyses, 
respectively, using HIGHIVOL and the original candidate variables. Panels C and D report the results of univariate and 
multivariate analyses, respectively, replacing each candidate variable with a dummy variable which equals one when the 
candidate variable belongs to the highest decile (lowest decile for SUE) and zero otherwise. IVOL is the standard deviation of 
residuals from a regression of daily stock returns in month t–1 on the Fama-French (1993) factors. Skew is the month t–1 
skewness of raw daily returns. Coskew is the coskewness measure in Chabi-Yo and Yang (2009). E(Idioskew) is the expected 
idiosyncratic skewness measure in Boyer et al. (2010). Maxret is the maximum daily return in month t–1. RTP is the retail trading 
proportion computed from ISSM and TAQ. Lagret is the month t–1 return. Amihud is the illiquidity measure in Amihud (2002). 
Zeroret is the fraction of trading days in month t–1 with a zero return. Spread is the average daily bid-ask spread in month t–1 
from ISSM and TAQ. Dispersion is the dispersion in analysts’ FY1 forecasts. AvgVarβ is a stock’s exposure to the average 
variance component of the market variance as in Chen and Petkova (2012). SUE is the most recent standardized unexpected 
earnings. Stocks with prices less than $1 at the end of the previous month are excluded from the analysis. The standard errors of 
the fractions of the puzzle explained are determined using the multivariate delta method. Time-series averages of estimated 
coefficients (×100) are reported with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 
1% levels, respectively. 
Panel A: Univariate analysis using HIGHIVOL  

Candidate  HIGHIVOL coeff.               Candidate component   Residual component 
Coeff. t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Skew -0.909*** (-9.51)   -0.069 7.6%*** (6.26)   -0.840 92.4%*** (76.19) 
Coskew -0.904*** (-9.44)   -0.023 2.5%*** (3.00)   -0.881 97.5%*** (117.03) 
E(Idioskew) -1.092*** (-10.71)   -0.178 16.3%*** (7.44)   -0.914 83.7%*** (38.11) 
Maxret -0.904*** (-9.44)   -0.785 86.9%*** (17.98)   -0.119 13.1%*** (2.72) 
RTP -1.155*** (-5.40)   -0.259 22.4%*** (4.82)   -0.896 77.6%*** (16.68) 
Lagret -0.904*** (-9.44)   -0.242 26.8%*** (6.79)   -0.662 73.2%*** (18.54) 
Amihud -0.929*** (-9.42)   0.005 -0.5% (-0.18)   -0.933 100%*** (36.47) 
Zeroret -0.904*** (-9.44)   0.001 -0.2% (-0.20)   -0.905 100%*** (126.29) 
Spread -1.057*** (-6.37)   -0.327 30.9%*** (5.00)   -0.730 69.1%*** (11.17) 
Dispersion -0.713*** (-3.71)   -0.038 5.3%** (2.05)   -0.675 94.7%*** (36.39) 
AvgVarβ -0.909*** (-8.73)   -0.010 1.1%** (2.08)   -0.899 98.9%*** (191.37) 
SUE -0.912*** (-7.98)   -0.076 8.3%*** (7.79)   -0.836 91.7%*** (85.77) 
Average fraction         17.3%       82.7%   
 
Panel B: Multivariate analysis using HIGHIVOL  

        Candidate Model 1   Model 2   Model 3 
Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

Skew -0.035 2.2%* (1.69)   -0.006 0.6% (0.53)   -0.051 4.9%*** (6.75) 
Coskew -0.149 9.4%* (1.86)   -0.069 7.3%* (1.94)   -0.026 2.5%*** (3.35) 
E(IdioSkew) 0.012 -0.8% (-0.36)   -0.066 7.0%* (1.87)   -0.158 15.0%*** (7.55) 
RTP 0.031 -2.0% (-0.52)                 
Lagret -0.032 2.0% (0.39)   0.009 -1.0% (-0.14)   -0.210 20.0%*** (5.87) 
Amihud -0.057 3.6% (0.84)   -0.034 3.5% (0.51)   -0.049 4.7%* (1.94) 
Zeroret 0.002 -0.1% (-0.05)   0.006 -0.7% (-0.82)   0.025 -2.3%*** (-3.16) 
Spread -0.118 7.5% (0.80)                 
Dispersion -0.020 1.3% (1.01)   -0.025 2.6% (1.50)         
AvgVarβ -0.017 1.1% (0.95)   -0.030 3.1%* (1.68)   -0.007 0.7% (1.63) 
SUE -0.008 0.5% (0.79)   -0.021 2.2%*** (3.24)   -0.032 3.1%*** (8.06) 
Residual -1.188 75.3%*** (7.52)   -0.713 75.3%*** (6.83)   -0.541 51.6%*** (13.07) 
Total -1.578 100% (-3.71)   -0.947 100% (-4.07)   -1.050 100% (-9.61) 
Sample 1984 to 2001     1982 to 2012     1971 to 2012   
Avg # firms/mth 1524.4       1806.0       2752.4     
 
  



 

58 
 

Table 9 (continued) 
 

Panel C: Univariate analysis using HIGHIVOL and dummy candidate variables 

Candidate  HIGHIVOL coeff.               Candidate component   Residual component 
Coeff. t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 

High Skew -0.909*** (-9.51)   -0.071 7.8%*** (6.61)   -0.838 92.2%*** (78.57) 
High Coskew -0.904*** (-9.44)   -0.210 23.3%*** (11.49)   -0.693 76.7%*** (37.87) 
High E(Idioskew) -1.092*** (-10.71)   -0.188 17.2%*** (8.32)   -0.904 82.8%*** (39.99) 
High Maxret -0.904*** (-9.44)   -0.799 88.4%*** (19.09)   -0.105 11.6%** (2.51) 
High RTP -1.155*** (-5.40)   -0.128 11.1%*** (2.91)   -1.027 88.9%*** (23.32) 
High Lagret -0.904*** (-9.44)   -0.278 30.8%*** (8.88)   -0.626 69.2%*** (19.97) 
High Amihud -0.929*** (-9.42)   -0.045 4.8% (1.58)   -0.884 95.2%*** (31.29) 
High Zeroret -0.904*** (-9.44)   0.011 -1.2%* (-1.73)   -0.915 101%*** (142.66) 
High Spread -1.057*** (-6.37)   -0.252 23.8%*** (4.99)   -0.805 76.2%*** (15.96) 
High Dispersion -0.745*** (-3.93)   -0.082 11.0%*** (3.10)   -0.663 89.0%*** (24.98) 
High AvgVarβ -0.909*** (-8.73)   -0.014 1.6%* (1.71)   -0.894 98.4%*** (107.11) 
Low SUE -0.912*** (-7.98)   -0.045 4.9%*** (7.51)   -0.867 95.1%*** (145.55) 
Average fraction         18.6%       81.4%   
 

Panel D: Multivariate analysis using HIGHIVOL and dummy candidate variables 
     Candidate Model 1   Model 2   Model 3 

Coeff. Fraction t-stat   Coeff. Fraction t-stat   Coeff. Fraction t-stat 
High Skew -0.032 2.0%* (1.89)   -0.007 0.7% (0.69)   -0.040 3.8%*** (6.61) 
High Coskew -0.198 12.2%*** (2.72)   -0.119 12.2%*** (3.18)   -0.146 13.9%*** (9.24) 
High E(Idioskew) -0.091 5.6%** (2.50)   -0.139 14.3%*** (2.94)   -0.113 10.8%*** (7.95) 
High RTP -0.031 1.9% (0.68)                 
High Lagret -0.106 6.5%* (1.65)   -0.099 10.1%** (2.47)   -0.187 17.8%*** (7.71) 
High Amihud -0.048 2.9% (0.91)   0.011 -1.1% (-0.18)   -0.091 8.7%*** (3.47) 
High Zeroret -0.084 5.2% (0.98)   -0.002 0.2% (0.34)   0.012 -1.1%** (-2.45) 
High Spread -0.023 1.4% (0.16)                 
High Dispersion -0.068 4.2%** (2.45)   -0.069 7.1%*** (3.07)         
High AvgVarβ 0.001 -0.1% (-0.06)   -0.013 1.3% (1.00)   -0.005 0.4% (1.08) 
Low SUE -0.012 0.8% (0.95)   -0.020 2.0%*** (2.68)   -0.020 1.9%*** (7.50) 
Residual -0.935 57.5%*** (5.35)   -0.519 53.1%*** (6.00)   -0.459 43.8%*** (12.08) 
Total -1.627 100% (-3.94)   -0.977 100% (-4.26)   -1.050 100% (-9.60) 
Sample 1984 to 2001     1982 to 2012     1971 to 2012   
Avg # firms/mth 1530.6       1813.0       2752.4     
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Table 10 
Decomposing other anomalies. 
 Using firm-level Fama-MacBeth cross-sectional regressions, the relations between three anomaly variables (Maxret, Lagret, 
and SUE) and DGTW-adjusted returns are decomposed into a component that is related to IVOL and a residual component. Stage 
1 regresses month t returns on an anomaly variable. Stage 2 adds IVOL as the candidate variable to the regression. Stage 3 
regresses the anomaly variable on IVOL to decompose the anomaly variable into two orthogonal components. In Stage 4, the 
coefficient on the anomaly variable from Stage 1 is decomposed into a component that is related to IVOL and a residual 
component. The time-series average of the IVOL component divided by the time-series average of the Stage 1 coefficient on the 
anomaly variable then measures the fraction of the anomaly explained by IVOL, and the average residual component divided by 
the average Stage 1 coefficient measures the fraction of the anomaly left unexplained by IVOL. IVOL is the standard deviation of 
residuals from a regression of daily stock returns in month t–1 on the Fama-French (1993) factors. Maxret is the maximum daily 
return in month t–1, Lagret is the month t–1 return, and SUE is the most recent standardized unexpected earnings. Stocks with 
prices less than $1 at the end of the previous month are excluded from the analysis. The standard errors of the fractions of the 
anomaly explained are determined using the multivariate delta method. Time-series averages of estimated coefficients (×100) are 
reported with t-statistics in parentheses. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.  

Stage Description Variable Anomaly variable 
Maxret   Lagret   SUE 

1 DGTW-adj ret on 
anomaly  

Intercept 0.347*** (8.87)   -0.033 (-1.15)   -0.100*** (-4.79) 
  Anomaly -6.421*** (-12.02)   -4.324*** (-13.64)   0.115*** (18.06) 
2 Add IVOL Intercept 0.270*** (4.74)   0.244*** (4.27)   0.285*** (4.75) 
  Anomaly -9.352*** (-10.20)   -4.467*** (-13.72)   0.108*** (17.21) 
    IVOL 10.740*** (2.85)   -10.831*** (-4.88)   -15.669*** (-7.01) 
3 Anomaly variable on 

IVOL 
Intercept -0.910*** (-25.80)   -2.460*** (-15.11)   61.341*** (22.99) 

  IVOL 304.335*** (202.66)   162.213*** (20.49)   -1559.1*** (-34.87) 
  Avg adj R2 77.9%     8.2%     1.2%   
4 Decompose Stage 1 

anomaly coefficient 
IVOL -4.337     -0.253     0.008   

    67.5%*** (18.05)   5.9%*** (3.26)   7.3%*** (4.94) 
  Residual -2.084     -4.071     0.106   
      32.5%*** (8.67)   94.1%*** (52.31)   92.7%*** (62.34) 
    Total -6.421*** (-12.02)   -4.324*** (-13.64)   0.115*** (18.06) 
      100%     100%     100%   
Sample period    1963 to 2012   1963 to 2012     1971 to 2012 
Avg # firms/mth   3580.5     3580.4     3472.3   
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Panel A: Full sample from Table 5 

 

Panel B: Average of nine subsamples from Table 6 

  

Fig. 1. Average fractions of the idiosyncratic volatility puzzle explained by various groups of candidate variables. The fractions 
of the idiosyncratic volatility puzzle explained by various groups of candidate variables from Table 5 are plotted in Panel A. 
Panel B plots the average fractions across the nine subsamples from Table 6. Lottery preference-based candidate variables consist 
of Skew, Coskew, E(Idioskew), and RTP. Market friction-based candidate variables consist of Lagret, Amihud, Zeroret, and 
Spread. Candidate variables related to other explanations consist of Dispersion, AvgVarβ, and SUE. Model 1 includes all the 
candidate variables in the multivariate decomposition analysis. Model 2 excludes RTP and Spread, and Model 3 further excludes 
Dispersion. Residual represents the fraction of the puzzle that cannot be explained.  
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Fig. 2. Simulated fraction for 200 portfolios. The fraction of the portfolio-level simulated idiosyncratic volatility puzzle 
explained by a simulated noisy candidate variable is plotted. Specifically, we simulate a negative idiosyncratic volatility-return 
relation at the individual stock level and introduce a noisy candidate variable, which contains a true component (explaining r 
percent of the simulated idiosyncratic volatility puzzle) and an independent noise component. We vary the true explained fraction 
(r) from 1% to 100% at 1% intervals and the amount of signal in the candidate variable measured by the candidate 
informativeness ratio 𝑘 = Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)

Var(𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)+Var(𝑁𝑜𝑖𝑠𝑒) from 10% to 100% also at 1% intervals. Individual stocks are then grouped 
into 200 portfolios based on their simulated idiosyncratic volatility, and portfolio-level variables are computed as value-weighted 
averages of simulated firm-level variables using simulated market cap as weights. For each of the 100 × 91 = 9100 (r, k) 
combinations, we apply our decomposition methodology to estimate the fraction of the portfolio-level idiosyncratic volatility 
puzzle that is explained by the portfolio-level candidate variable. The figure plots the simulated fractions for (r, k) values at 10% 
intervals due to space constraints. The heat map colors in the figure describe the absolute differences between the simulated 
fractions and the actual fraction of the idiosyncratic volatility puzzle explained by Skew (13.3%) reported in Panel A of Table 7, 
where redder colors indicate smaller absolute differences. 
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