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ABSTRACT 
 
P300 speller is a communication tool with which one can 
input texts or commands to a computer by thought. The 
amplitude of the P300 evoked potential is inversely 
proportional to the probability of infrequent or 
task-related stimulus. In existing P300 spellers, rows 
and columns of a matrix are intensified successively and 
randomly, resulting in a stimulus frequency of 1/N (N is 
the number of rows or columns of the matrix). We 
propose a new paradigm to display each single 
character randomly and individually (therefore 
reducing the stimulus frequency to 1/(N*N)). On-line 
experiments showed that this new speller significantly 
improved the performance. Specifically, the new speller 
can reduce character classification error rate by up to 
80% or double the information transfer rate compared 
to the existing P300 spellers.  
 

1.  INTRODUCTION 
 
Brain-Computer Interface (BCI) allows people to 
interact directly with a computer using their brain 
signals. A comprehensive review on BCI can be 
found in [1]. The implication of BCI is it is probably 
the only resort for those people, who do not have 
control of their peripheral nerve and muscles, to 
access computer and communicate with outside 
world. Among various BCI systems, 
electroencephalography (EEG) is still the most 
common signal because of its non-invasive nature. 
Various signals can be extracted from EEG to 
develop BCI systems, for example, slow cortical 
potential [2], µ  and β  rhythms [3], 
synchronization and desynchronization evoked by 
motor imagery [4], P300 evoked potential [5], 
static-state visual evoked potentials [6], etc.  

P300 potential is one of the well studied and 
most stable potentials. It is elicited by an oddball 
paradigm. That is, an anticipatory event creates a 
measurable potential difference at the central or 
parietal sites of EEG measurements. This positive 
potential typically occurs around 300 milliseconds 
after the event occurs.  

Farwell and Donchin first proposed a P300 
speller (FD-Speller) [5], in which a matrix of 6x6 
cells is displayed to represent 26 letters and a few 
commands. The rows and columns of the matrix were 
successively and randomly intensified such that when 
the corresponding row or column with target cell was 

highlighted, a P300 signal was elicited.  Donchin etc 
[7] further improved the information transfer rate by 
using a bootstrapping approach.  Meinicke etc [8] 
first reported data-driven method for P300 speller. 
They achieved the highest information transfer rate 
up to the time of publication. Xu etc [10] reported 
good results on using ICA-based subspace projections 
for P300 speller. Brendan etc [11] studied the 
relationship between accuracy and various size of 
speller matrix. More recently, Mellinger etc [12] 
reported P300 speller can be used for amyotrophic 
lateral sclerosis (ALS) patients. 

However, all these studies were based on 
FD-Speller. As we know, the amplitude of the P300 
evoked potential is inversely proportional to the 
stimulus probability. In FD-Speller, the stimulus 
frequency for target cell is only 1/N (N is the number 
of rows or columns of the matrix).  In this paper, we 
propose a new P300 speller paradigm. In this speller, 
each individual characters are displayed randomly, 
therefore reducing the stimulus frequency to 1/(N*N). 
This should elicit a higher P300. Our on-line 
experiments showed that a P300 speller based on this 
single display paradigm (called SD-Speller) 
significantly improved the character classification 
accuracy. Specifically, in our comparison 
experiments, six subjects participated in tests for both 
FD-Speller and SD-Speller. SD-Speller reduced 
character classification error rate by up to 80% 
compared to FD-Speller. Furthermore, SD-speller is 
more flexible in allowing us to design any type of cell 
layout, instead of square matrix in FD-Speller. 
Subjects also found SD-Speller caused less fatigue 
than FD-Speller during experiments. 

In this paper, we evaluated various processing 
methods to optimize the speller performance. 
Machine learning method was adopted to construct 
classifier. On top of this, we evaluated two methods 
for on-line artifact removal as well as noise reduction 
based on principal component analysis (PCA). A new 
dynamic component was proposed to enhance the 
performance. The combinations of all these 
processing methods were evaluated and the best 
processing methods were selected. The character 
classification error rate was reduced by 23% after the 
algorithm optimization.  
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2. PROBLEM DEFINITION 
 

Given an EEG time sequence starting at time t , 
[ (1) , , ( ) ]T T T

t t tx x x L= L , where time t  is 
synchronized with a visual stimulus, L is the number 
of channels, T denotes the matrix transpose, P300 
detection can be formulated as the problem of 
statistical hypothesis testing. tx can be classified into 
two classes: 

H0: 0tx y∈ , if tx  contains P300 signal 
H1: 1tx y∈ , if tx  does not contain P300 signal. 

where null hypothesis 0y  is represented by EEG 
containing P300 signal, and the alternative hypothesis 

1y  is represented by EEG not containing P300 
signal. 

An optimal hypothesis test is performed by the 
following likelihood ratio: 

0 1( ) ( / ) / ( / )t t tx P x y P x yγ =    (1) 
where 0( / )tP x y  is the likelihood of tx  containing 
P300 signal and 1( / )tP x y  the likelihood not 
containing P300 signal. The hypothesis test is 
performed by comparing the likelihood ration ( )txγ  
to a predefined threshold.  

In the context of P300 speller, the EEG sequence 
is synchronized with the intensification of target 
characters on which the user focuses. After each 
round of intensifications, one can determine the most 
probable character by which the highest P300 signals 
are evoked. In single trial case, the classification 
result is the character index i which satisfies: 

{ }( )ˆ arg max ( ) , 1, ,i
ti

i f x i N= = L    (2) 

where N  is the number of characters, ( )tf x  is a 
probability representation of tx . Usually, several 
trials of data are used to obtain an ensemble average 
so as to enhance the classification accuracy. When 
K  trials are available, we have 

{ }1 2

( ) ( ) ( )ˆ arg max ( , , , ) , 1, ,
K

i i i
t t ti

i f x x x i N= =L L  

 (3) 
Assume all trials are independent, we obtain 

1 2

( ) ( ) ( ) ( )

1

( , , , ) ( )
K k

K
i i i i

t t t t
k

f x x x f x
=

= ∏L    (4) 

Here we use support vector machine (SVM) for 
classification, so we can obtain the following score 

( ) ( )

1

( , ) ( , )
k k

M
i i

t i i t m
m

K x x y k x x bα
=

= +∑    (5) 

where ( )k i  is the kernel function.  We use 
Gaussian kernel in this study. We can then convert 
the margin score into a probability representation as 
follows, 

( )
( )

[ ( , ) ]

1
( )

1
ik

tk

i
t K x x

f x
e

µ β− +
=

+
    (6) 

In the case of Farwell-Donchin speller, rows and 
columns are intensified simultaneously. So the 

formulas in (2) and (3) are used to find the indices of 
rows and columns respectively. The character indices 
are then determined by the row and column indices. 
 

3. P300 SPELLER 
 
3.1 Farwell-Donchin Paradigm (FD-Speller) 
 
In this speller, a subject was presented with a six by 
six matrix of characters (see Figure 1). The subject’s 
task was to focus his attention on alphanumeric 
symbols in the matrix, one at a time. Rows and 
columns of this matrix were successively and 
randomly intensified for 100 milliseconds (ms), 
followed by 80 ms of non-intensification. Two out of 
twelve intensifications of rows and columns 
contained the desired character (i.e., one particular 
row and one particular column).  EEG signal was 
sampled at 250Hz. 25 channels around central and 
parietal scalp were selected from all 64 channels we 
used to acquire EEG data. 

 
Figure 1.  FD-Speller 

 
3.2 Single Display Paradigm (SD-Speller) 
Motivated by the fact that P300 is inversely 
proportional to the rare stimulus probability, we 
propose the following speller. Figure 2 shows the 
layout of such a speller, called SD-Speller in this 
paper. In this speller, all letters and digits are first 
displayed (left picture in Figure 2). When the speller 
starts, each single character is randomly flipped for 
60ms (right picture in Figure 2).  

   
Figure 2. SD-Speller 

As we want to compare this speller with 
FD-Speller, they both should work at the same speed. 
In other words, they should have the same time 
duration for one complete round of display of all 
characters. In FD-Speller, one round of display takes 
180x12msec. Here in SD-Speller, it is 60x36msec. 
Under this timing configuration, we can compare 
their accuracy.  
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4. COMPARISON OF FD-SPELLER AND 

SD-SPELLER 
 
We have conducted comparative experiments to show 
how SD-Speller outperformed FD-Speller.  

In this section, we shall first briefly explain the 
platform and signal processing methods we were 
using in the study, and then present experiments 
settings and experimental results. 
 
4.1 Signal Processing 
Two on-line artefact removal methods were evaluated 
[9]. The first was a simple linear superposition model 
of the measured reference signals u(n) and the real 
EEG ( )x n% .   

1

( ) ( ) ( )
S

i i
i

x n b u n x n
=

= +∑ %     (7) 

where S denotes the number of sites at which 
reference signals (EOG in our experiment) were 
measured.  A further improved method is a 
difference model, which relaxes the constraint that 
EEG signal is uncorrelated with reference signals. 
The difference model is expressed as follows, 

1

( ) ( 1) ( ( ) ( 1)) ( ) ( 1)
N

i i
i

x n y n b u n u n x n x n
=

= − + − − + − −∑ % %   (8)    

PCA is a common method used to remove 
“noises”. Here we applied PCA on the 25 selected 
channels and transformed them into 18 channels. 

It is known that for different subjects, their P300 
signals have different amplitude and latency. To 
enhance the differentiation between P300 signal and 
non-P300 signal, we propose to expand the data 
vector to include a “dynamic” component as follows: 

[ (1) , , ( ) , (1) , , ( ) ]T T T T Tx x x L x x L= ∆ ∆L L   (9) 

where [ (1) , , ( ) ]T T T
sx x x L= L  is the original EEG 

data vector, [ (1) , , ( ) ]T T Tx x x L∆ = ∆ ∆L  is the 
dynamic component. This dynamic component is 
defined as: 

( ) ( )
W

m W

x n A mx n m
=−

∆ ≈ +∑   (10) 

where A  is a normalization constant, and the 
computation is performed over a window of 2 1W + . 

x∆  is a least square estimate of the time derivative 
of EEG data. It supplies extra information to the 
classification. We will show that this new component 
is very useful to improve accuracy.  

Classification is performed according to (3) to 
(6). 

 
4.2 Experiment Settings 
Six healthy subjects participated in experiments for 
both FD-Speller and SD-Speller. Each participant 
first underwent a training session which lasted around 
20 min. During the training, the subject was requested 
to follow prompts on the screen to spell 42 characters. 
10 rounds of intensifications were presented for each 

character. An SVM model was trained for each 
subject with these training data. Then, the subject 
started to do on-line test. The test task was also to 
spell 42 characters comprising all letters and digits. 
All data collected on-line were used in the accuracy 
evaluation without any manual data selection. 

 
4.3 Optimization of Processing Methods 
Before we compare the performance of the two 
paradigms, we first optimize our processing methods 
to get best classification accuracy. This study was 
carried out on FD-Speller. 

Character classification error rates for various 
signal processing approaches and their combinations 
are listed in Table 1. These results are the average of 
all subjects with 10 ensemble average. The 
abbreviations used in Table 1 are ARm1: artefact 
removal,linear superposition model; ARm2: artefact 
removal, difference model; Dyn:  dynamic data 
vector; PCA: principal component analysis. 
 

Table 1. Character classification error rates for 
FD-Speller. 

 
 
Methods 

Error 
Rate 
% 

Relative error 
rate change to 
Baseline % 

Baseline 6.34 - 
ARm1 6.83    7.73 
ARm2 7.07  11.51 
Dyn 5.37 -15.30 
Dyn+ARm1 6.1   -3.79 
Dyn+ARm2 4.88 -23.03 
PCA 5.85   -7.73 
PCA+ARm1 6.59    3.94 
PCA+ARm2 7.32  15.46 
PCA+Dyn 6.1   -3.79 
PCA+Dyn+ARm1 6.83    7.73 
PCA+Dyn+ARm2 5.61 -11.51 

From the test results, we can see that the dynamic 
data vector helps reduce the error rate most 
significantly. This shows that the information of 
tracking the EEG waveform change is really helpful 
in the classification. It is interesting to notice that, 
artifact removal methods alone actually degrade the 
performance, but after using with dynamic data 
vector, we obtain the biggest accuracy gain 
(Dyn+ARm2). A relative error reduction of 23% was 
achieved. In the rest of the paper, this best set of 
algorithms will be used for evaluation. 
 
4.4 Result Comparison 
The average error rates of six subjects under various 
durations are listed in Table 2 for comparison. The 
durations range from 2.2 seconds to 21.6 seconds. 
This duration range corresponds to 1 to 10 trials for 
ensemble average. The error rate reduction from 
FD-Speller to SD-Speller is as high as up to 81% (for 
22 sec case). In other words, when the classification 
accuracy is at 90% and 95% respectively, SD-Speller 
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almost doubles the information transfer rate, as is 
shown in Table 3. 

One of the reasons why SD-Speller outperforms 
FD-Speller can be explained by the comparison of 
dynamic range of P300 signals in the two spellers. 
The dynamic ranges shown in Table 4 were obtained 
by measuring the differences between P300 peaks 
and valleys preceding the peak (between 200msec 
and the peak points). All six subjects have clearly 
higher P300 signal in SD-Speller than in FD-Speller. 

 
Table 2. Character classification error rates for 
FD-Speller and SD-Speller. The error reduction and 
t-test results are also listed. (EER – error rate 
reduction) 
 Character Classification Error Rate % 
Time (s) 2.2 4.3 6.5 8.6 10.8 
FD 67.97 49.37 36.38 26.13 19.44 
SD 46.63 27.33 15.90 9.41 6.50 
ERR % 31.40 44.65 56.28 64.00 66.55 
t-test, ρ  <.001 <.001 <.001 <.001 <.001 

Time (s) 13.0 15.1 17.3 19.4 21.6 
FD 15.20 11.69 9.08 7.52 4.47 
SD 4.63 2.95 2.71 1.83 0.81 
ERR % 69.52 74.78 70.15 75.68 81.82 
t-test, ρ  <.001 <.001 <.001 <0.002 <0.02 

 
Table 3. Durations needed to achieve particular 

accuracy 
Accuracy % FD-Speller (s) SD-Speller (s) 
90 15  8  
95 21  13  

 
Table 4. Dynamic ranges for FD-Speller and 

SD-Speller. 
Subject FD-Speller(µv) SD-Speller (µv) 
1 2.736 3.459 
2 3.976 6.042 
3 4.872 6.605 
4 3.589 5.321 
5 5.744 7.012 
6 3.310 3.924 

 
5. CONCLUSIONS 

We proposed a new speller paradigm, SD-Speller. It 
outperformed FD-Speller significantly in terms of 
classification accuracy under the same information 
transfer intervals. Furthermore, SD-Speller allows 
more flexible user interface design, for instance the 
letters and digits are not necessarily in a square 
matrix. This feature enables us to design better 
user-friendly applications. In our experiments, all 
subjects preferred SD-Speller to FD-Speller because 
the former caused less fatigue. We tested SD-Speller 
in norm lighting and even very bright conditions, and 
the performance did not change obviously. Our test 
also showed that SD-Speller is very robust to ambient 
noises. We tested in an exhibition hall with very loud 
sounds nearby (>70db), SD-Speller performed 
equally well as it did under quiet conditions. 
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