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ABSTRACT
This paper describes initial empirical studies, performed on
a 6-node 3G indoor femtocellular testbed, that investigate
the impact of pedestrian mobility on network parameters,
such as handoff behavior and data throughput. The studies
establish that, owing to the small radii of cells, even mod-
est changes in movement speed can have disproportionately
large impact on handoff patterns and network throughput.
By also revealing a strong temporal dependency effect, the
studies motivate the need for algorithms to accurately pre-
dict RF signal strength distributions in dynamic indoor en-
vironments. We present such an RF prediction algorithm,
based on crowd-sourced signal strength readings, and show
that the algorithm can predict RF signal strengths with an
average estimation error of ±3 dBm.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks; Wireless communication

Keywords
Femtocellular, Crowd-sourcing, RF signal

1. INTRODUCTION
Small-cell (loosely referred to as femtocells) overlay ar-

chitectures hold the promise of significantly increasing the
available wireless broadband capacity, especially in highly-
trafficed public indoor spaces (such as shopping malls, sub-
way stations and college/office buildings). The smaller cell
sizes enable much higher spatial reuse of available spectrum
and allow mobile devices to achieve higher data through-
puts at lower transmission power. Besides introducing well-
known issues of macro-femto interference [5], the smaller cell
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sizes (typical cell radii of commercial femtocell access points
(FAPs) vary between 8-20 meters) also imply a higher sen-
sitivity to user mobility.

The LiveLabs project [1] is building an advanced wire-
less network testbed at multiple public places in Singapore,
including the SMU campus, to enable testing of a variety
of advanced lifestyle-based mobile applications and services
on a 30,000 strong set of participating consumers. To enable
experimentation with next generation high bandwidth, rich-
media applications (such as HD-quality video conferencing
and multimedia mobile gaming), we are exploring the de-
ployment of an extensive (200-250 FAPs across 5 campus
buildings) 3G/4G femtocellular network on the SMU cam-
pus.

Our eventual goal is to support 2 Mbps bi-directional
throughput per user, simultaneously for 200 users collocated
in a public venue, such as the university auditorium. Sup-
porting such high capacity is specially difficult due to the
highly uneven demand distribution, arising from spatiotem-
poral assymetry in user densities at different campus lo-
cations. As provisioning for such spatiotemporally-skewed
peak demand is simply economically infeasible, we are ex-
ploring techniques to optimally utilize the combined avail-
able bandwidth across multiple access networks (macrocells,
femtocells and Wi-Fi). Accordingly, an important research
objective is to develop better user management algorithms
that dynamically assign subscribers to the femto underlay
or the macrocellular (3G/LTE) overlay, taking into account
individualized context, such as a person’s movement charac-
teristic & the QoS demands of the active application on her
mobile device.

To gain a deeper, emprical understanding of the perfor-
mance characteristics expected of this advanced network, we
have deployed (in partnership with a major telecom opera-
tor) a 6-node 3G femtocellular network across 2 floors of the
School of Information Systems (SIS) building on the SMU
campus. In this paper, we use this network to first inves-
tigate the role that differences in individual context (more
specifically, the variation in pedestrian movement speeds)
have on the network performance observed by mobile de-
vices. Specifically, we use an extensive set of longitudinal
experiments and observations to establish the sensitivity of
two parameters: a) the handoff behavior across FAPs, and b)
the throughput of mobile data traffic, on changes in the in-
door pedestrian movement speeds. Our longitudinal studies
not only demonstrate the significant impact that such move-
ment speed variations have on the handoff behavior and the
data throughput, but also reveal that the behavior has sig-



nificant temporal (time-of-day and across-days) variation as
well. In particular, our measurements show that changes in
indoor RF propagation can result in ≈ 10 − 15dBm varia-
tion in AP signal strength measurements at different indoor
locations.

To predict and manage the handoff behavior of mobile
devices in such an indoor environment, it is thus necessary
to predict in near-real time the RF environment (and the
resulting FAP signal strengths) at different locations inside
the building. Accordingly, we next propose and develop an
innovative ‘crowd-sourcing’ based RF estimation algorithm,
which uses the (signal strength vector, location coordinate)
tuples reported by mobile devices to then determine the pre-
dicted signal strengths at other locations. Using unsuper-
vised clustering and estimation techniques, our algorithm is
able to predict the RF signal strengths at uncalibrated lo-
cations with an average error of only 3.3 dBm. We believe
that such a ‘crowd-sourced’ estimation approach is especially
promising, as its accuracy increases with an increase in the
number of observation points (i.e., the number of mobile
devices located in the indoor space), and is thus especially
effective at predicting femtocellular network behavior when
user density (and demand) exhibits peaks.

Key Contributions: We believe that this paper makes
the following two key contributions:

• It uses real-life measurement studies to demonstrate
that both handoff behavior and data traffic through-
put characteristics of femtocellular networks are heav-
ily influenced by the variation in indoor pedestrian
movements. While this claim may be generally true
for all cellular networks, we show that our variations
are much more acute for femtocellular environments
due to the smaller cell sizes (which greatly increases
the frequency of mobility-induced cell transitions).

• It proposes an unsupervised approach to real-time RF
prediction in indoor environments. The approach as-
sumes that indoor propagation effects are captured by
a log-distance path loss model and first tries to cluster
those (not necessarily contiguous) areas that have simi-
lar model parameters, and then uses genetic algorithm-
based optimization to best estimate the parameters for
each of these clusters. Real-life measurements demon-
strate that this approach is quite accurate in predicting
indoor RF signal strengths.

The rest of this paper is organized as follows. Section 2
describes related work that influences and motivates our re-
search. Next, Section 3 describes the key features of our
6-FAP testbed. Section 4 then presents the results on the
impact of movement speed variation on (handoff, through-
put) parameters. Section 5 then presents our real-time RF
prediction and describes the performance results. Finally,
Section 6 concludes the paper and describes ongoing work
and open challenges.

2. RELATED & BACKGROUND WORK
Much of the literature related to the operational optimiza-

tion of femtocells has focused on the problem of interfer-
ence management, which assumes that the FAPs and the
macrocellular base stations (BTS) operate on a common
frequency band. For example, the CTRL framework [12]

employs a slower-control loop to protect a macrocell’s up-
link traffic from interference caused by multiple FAPs lo-
cated in the vicinity and faster-timescale power control to
protect a femtocell user from bursty macrocellular trans-
missions, whereas the power control scheme in [6] proposes
a utility-based SINR adaptation approach (where each FAP
adjusts its power so as to maximize an objective function
that has a penalty proportional to the interference at the
macrocell BTS). Femto-macro interference management is a
non-issue in our femtocellular testbed, where the FAPs and
the macrocells are allocated separate frequency bands by the
telecom operator.

The problem of handoff management between femtocells
and an overlay of macrocells was studied in [11], which pro-
posed (as expected) that slow moving users should handoff
within femtocells whereas fast moving users should prefer-
entially utilize the macrocellular network. To reduce the
number of handoffs encountered while transiting smaller-
sized cells, [4] proposes an adaptive hysteresis threshold
approach, where the handoff threshold is lowered as the user
location approaches the edge of a cell boundary. This ap-
proach does not consider the difference in movement speeds
of different users. Likewise, [13] investigates how the user’s
movement speed and application QoS requirements can be
used to switch a user between a macrocell and femtocellular
network. All of these approaches principally apply for out-
door environments (as they implicitly assume the availability
of GPS-based estimates of user movement speed); moreover,
their performance results are based on simulations and have
not been empirically validated on a real testbed.

The problem of constructing an RF Map for indoor envi-
ronments based on measured signal strengths was first stud-
ied in [9], which proposed the TIX algorithm that used inter-
AP measurements of RSSI values to predict the RSSI read-
ings at intermediate points based on linear interpolation.
However, [9] did not study the problem of temporal varia-
tion of signal strengths in public indoor spaces. The ARI-
ADNE framework [10] tackles the RF construction problem
from a different perspective, using a two-dimensional floor
plan and ray tracing (along multiple paths) of signals from
a previously calibrated Wi-Fi AP to compute the unknown
signal strength at different places. While experimental re-
sults showed that the estimation error was within 3%−5% of
the maximum RSSI, an approach such as ARIADNE con-
siders only 2-D propagation and ignores the fact that the
indoor environment can vary significantly over a short time
span-e.g., doors to a classroom may be left open or closed,
ferromagnetic equipment may be set up for exhibits/kiosks
in the student concourse, etc.

Our work on real-time ’crowsourcing-based’ estimation of
RF properties is inspired by the work [7] in building the
EZ localization system. In particular, the EZ algorithm as-
sumes a log-distance path loss model (LDPM) between in-
door APs and mobile devices, and uses multiple simultane-
ous RSSI measurements from the various mobile devices to
estimate both the parameters of the log-distance model and
the locations of the APs. In contrast to the goals of EZ, our
aim is not to localize the mobile nodes, but instead to create
an appropriate RF map (i.e., appropriate choice of param-
eters in the LDPM) and thereby predict the signal strength
values at other locations (for which no recent measurements
exist) within the indoor environment. Thus, before applying
an optimization algorithm to estimate the LDPM models for
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Figure 1: Floor layout, Femtocell deployment and measurement points

a set of measurements with the same propagation behavior,
we must first also determine the number of distinct RF en-
vironments within the indoor space.

3. TESTBED AND EXPERIMENTAL SETUP
As mentioned before, our experimental testbed consists

of 6 commercially available FAPs (Huawei ePico3801B) de-
ployed across 2 floors of the SIS building on the SMU cam-
pus. The femtos support HSPA-based data transfers with
peak rate of 7.2 Mbps downlink and 1.9 Mbps uplink, and
operate on the 2.1GHz band, using FDD to support shared
access by multiple users. Each of the femtos has a maximum
capacity of 8 simultaneous voice and 16 simultaneous data
connections. It is important to note that, consistent with
our telecom operator’s deployment strategy, our FAPs were
configured to operate on a frequency band that is isolated
from the macro-cellular bands–in other words, our testbed
is essentially free from macrocellular interference.

Each floor had 3 of the femtos, deployed in static positions
(their positions remain unchanged from the initial deploy-
ment), by the telecom operator with the initial goal of com-
pletely covering the entire floor space of the 5th floor and
the public half of the 3rd floor. The FAPs on the 3rd floor
were placed inside lecture/seminar halls (see Figure 1a.),
while the FAPs on the 5th floor were placed in a mixture of
different locations (faculty offices, research center & Dean’s
office), as shown in Figure 1b. The 3rd floor deployment
experienced more variable human traffic (with seminar halls
having widely varying student densities); moreover, opening
or closing the doors of these lecture halls causes variations in
the signal power along the corridors. The FAPs on the 3rd

floor have overlapping coverage area (with all three FAPs
visible at certain locations). In contrast to the 3rd floor, the
5th floor has less variation in human traffic (as it is typi-
cally off limits for students and houses research and faculty
staff). While Line-Of-Sight free space propagation between
3rd & 5th floor is ostensibly not possible due to the inter-
vening floors, the floor layouts have some “open space” at
the edges of all the floors, allowing reflected propagation.
As a result, some of the FAPs from one floor are ‘visible’ at
certain specific points on the other floor.

To associate our measurements (of signal power RSCP,
signal quality Ec/No and throughput) with location ‘ground
truth’, we marked 57 specific points (approximately 2.5m
apart) on the 3rd floor covering both the corridor and the
seminar room seating area, and 40 different points (approxi-
mately 3m apart) along the corridors of the 5th floor. All the
FAPs were configured to operate on full power (100 mW).

All the measurements of both RF strengths and applica-
tion throughput were performed on the mobile device side
using the Nemo Outdoor tool (v5.8) [2]. The data through-
put measurements (which involved the download of large-
sized files using ftp) were made with a Qualcomm 5250 USB
3G-Modem attached to the laptop, while voice calls mea-
surements were made with a Nokia 6680 phone (that was
equipped with custom built firmware for Nemo Outdoor).
It is worth noting that laptop/phone models were identical
to the ones used by the telecom operator for their signal
power site survey. In addition to those Nemo-specific de-
vices, we also carried along 2 Android phones during our
measurement walkabouts, and used the Android APIs to
log the signal readings on those phones.

4. HANDOFF AND THROUGHPUT DEPEN-
DENCY ON MOVEMENT

We now describe our initial experiments that studied the
impact of different pedestrian movement speeds on two im-
portant parameters: a) handoff and b) data throughput.
To conduct this study, we had two participants walk along
a pre-specified trajectory at three different specific speeds
{Slow,Normal, Fast}. The specification was descriptive–
i.e., instead of an absolute value, the participants were in-
structed to walk at, or slower/faster than, their ‘normal’
pace. Simultaneously, we tracked the ‘ground truth’ of their
movement, at the granularity of the ‘specific points’, by not-
ing the timestamps at which they transited these points.

We measured the RSCP and Ec/No parameters under two
usage conditions, one with an active voice call, and the other
with an active downlink ftp-based data transfer. The par-
ticipants repeated thease measurements at different times of
the same day, and across different days. We observed that
the intensity of human traffic was much lower during the



Figure 2: Handoff location for Voice call Figure 3: Handoff location for Data call Figure 4: Cell residency time for voice call

weekend than on a weekday. From the measured data, we
derived the handoff time (and thus the residency duration
of an individual cell), handoff sequence and data throughput
at different movement speeds.

Handoff Behavior: Figures 2 and 3 illustrative the ob-
served representative behavior, in terms of the distance of the
handoff point from the current serving FAP (i.e., the implicit
cell size), vs. the 3 different movement speeds, for different
days (and different times within the same day). The figures
illustrate the behavior for movements that cause transition
from FAP1 to FAP2.

We observed the two following universal trends:

• The distance between the handoff location and the
serving FAP increases when the participant’s walk-
ing speed increases. As a corollary, the distance to
the target FAP also decreases with an increase in the
participant’s movement speed. In general, it is well
known that a faster moving mobile user will handoff
at a greater distance from the center of the serving
cell (as it will have moved farther in the period that
the time-to-trigger threshold is exceeded). What is
striking, however, is the magnitude of this variation–
it varied by as much as 4m (for a voice call) and 7m
(for a data session). This is an extremely significant
difference, given that the nominal cell size of a FAP
was around 10m, and this resulted simply from natu-
ral ‘lifestyle-driven’ changes in a participant’s walking
speed. Moreover, the increased distance also implies
that the mobile node stays attached to a ‘weaker sig-
nal’ FAP for a longer duration; as we shall see shortly,
this results in dramatic degradation in throughput.

• Besides the distance, the handoff sequence can also
change with only modest changes in the participant
movement speed. In particular, at higher movement
speeds, the handoff skips an entire cell–e.g., in Fig-
ure 1a., handing off from FAP1 directly to FAP3 (in-
stead of FAP2). Policies for dynamic assignment of
users between the femtocellular underlay and the macro
overlay must, therefore, take into account this impact
of movement speed on changing handoff patterns.

Taken together, these observations illustrate that even mod-
est ‘lifestyle driven’ changes in movement speed can lead
to dramatic changes in handoff behavior in indoor femto-
cellular environments, suggesting the need to incorporate
such movement context in future dynamic subscriber man-
agement algorithms.

Figures 2 and 3 illustrate another equally important point:
the handoff locations show significant longitudinal variation

(as much as ≈ 4m), under identical movement behavior, for
different times of the day, and different days. Moreover,
the handoff location is seen to depend on whether the ac-
tive application is engaged in a voice-call or data-call. This
variation is due to the fluctuations in the indoor RF propa-
gation environment, suggesting the need for mechanisms to
get more accurate, near-real time RF estimates.

As an alternative representation, Figure 4 plots the residency-
time (the total time the user stays attached to FAP1), while
the user is in a voice call, at 6 different times. It can be seen
that in the case of a slow walk, the residency times can vary
longitudinally by as much as 25 to 30s. Fast and normal
walk show lesser variation (< 10s), as the entire duration of
walk is much smaller compared to slow walk.

Throughput Behavior: We also studied the changes in
data throughput as a function of movement speed. Figures
5 and 6 plot the variation in throughput (and the serv-
ing cell ID) as a participant walks around at slow & fast
movement speeds, respectively. The figures show a very
dramatic (6-8 fold) drop in throughput as the walking
speed increases! The dramatic degradation for these TCP
data flows results from the longer period of ‘poor connec-
tivity’ experienced by the mobile device. The poorer link
quality and the more frequent incidence of handoffs lead to
greater TCP packet losses and consequent TCP timeouts.
Indeed, we can also observe that a handoff event (occuring
when the serving cell ID changes) always results in a tem-
porary (and sometimes very steep) dip in the application
throughput.

In Fig 7, we plot the average throughput (total bytes
transferred/ total walking time) for the entire walk, as a
function of different speeds, and for different time-of-the-
day/days. Clearly, the average throughput drops from a
healthy 1.8Mbps to only 400-600 Kbps when the walking
speed increases modestly. Moreover, the average through-
put also shows appreciable variability (by as much as 200+
Kbps) across different days, reinforcing the need for better
real-time prediction of indoor RF conditions.

5. DYNAMIC RF SIGNAL PREDICTION
Having motivated the need to accurately estimate the sig-

nal strength vectors (i.e., the RF map) in near-real time, as
a precursor to handoff and throughput prediction, we now
describe our initial work on dynamic RF prediction. In gen-
eral, the measured RF signal from a FAP at any location
is subject to a variety of attenuation affects, including: a)
Free space loss, where the signal power is diminished by the
outward geometric propagation of the waveform, b) Atten-



Figure 5: Femtocell throughput and handoff
Slow Walk

Figure 6: Femtocell throughput and handoff
Fast Walk

Figure 7: Average throughput for different
walking speeds

uation, due to the signal traversing solid objects such as
walls, window and the floors of buildings, c) Scattering, also
known as multipath, that results from the reflection off sur-
faces in the indoor environment, and d) Link Margin, which
reflects the quality (such as antenna gain) of the measure-
ment equipment being used.

For the testbed measurements and results reported in this
paper, we ignore the effects of Link Margin (which effectively
gets subsumed into the R term below), as all measurements
are performed on the same device. In this case, we model
the RF propagation in indoor environments using the well-
known log-distance path loss mode (LDPM) as follows:

Pij = Pi − 10αij log dij +Rij (1)

In Eqn. 1, the mobile node j, also called the user equip-
ment (UE), denoted by UEj , located at a distance dij (in
meters) from FAPi observes a signal strength (RSCP) of
Pij (measured in dBm). Here, Pi is the received signal code
power (RSCP) of FAPi at a distance of one meter, while αij

is the exponent path loss coefficient (often observed to be be-
tween 3-4 indoors) that captures the combined free space loss
& attenuation effects. Rij is a random variable that tries to
capture the variation in RSCP due to scattering effects; in
general, both αij and Rij depend on both transmitter and
receiver locations and are affected by the internal building
layout. We believe that the indoor environment should be
partitioned into different zones, characterized by different
value of [α,R]. Thus, our model is different from EZ [7]
model, which uses single αi for each FAPi across the entire
environment.

In this study, we assume that we know the transmit power
Pi (=100 mW) and 3-D location for each FAP and the true
distances for each (UE, AP) combination. These assump-

tions will be relaxed for our future work, when weâĂŹ will
apply ongoing work in indoor localization to estimate the
location of the UEs. To construct the real-time RF map at
any given location (indexed by j), we then need to compute
the (αij ,Rij) map for each FAP. Our current investigation
assumes a crowd-sourced model, where UEs located at spe-
cific locations report their RSCP vectors to a central server:
the central server’s goal then is to predict the RSCP vectors
at other locations, effectively by estimating the (αij ,Rij) tu-
ples for those locations. Our eventual goal (not addressed in
this paper) is to establish the accuracy to which the server
can delineate the cell boundaries for each FAP and predict
the handoff locations for different movement speeds. We
currently address two research questions:

• What algorithm do we use to estimate the (αij ,Rij)
tuples, and what is the estimation error that we ob-
serve?

• How does the estimation error vary with the number
of observation samples vs. number of unobserved loca-
tions? This question effectively will help us understand
how the accuracy degrades when the number of UEs
reporting their measured RSCP values drops, and thus
establishes the limits under which crowd-sourcing may
be useful.

5.1 The RF Prediction Algorithm
Assume that there are m FAPs and n UEs and that the

distances dij are known. UEj reports to a server its observed
RSCP vector [P1j , P2j , , Pmj ]. Our prediction algorithm has
two phrases: clustering and parameter estimation. In the
clustering phase, the goal is to identify the physical regions
that have the same (or similar) propagation effects (i.e., can
be associated with a single (αij ,Rij) value) and group them
in the same ‘logical’ cluster. Subsequently, the parameter
estimation phase determines the “best possible” estimates
for (αij ,Rij) values, independently for each cluster. The
algorithms work as follows:

• Clustering : For each UE, we create the 2m dimen-
sional feature vector, consisting of the m UE-FAP dis-
tances and RSCP values–i.e., for UEj , we obtain a 2m
dimensional vector [(d1j , d2j , . . . , dmj , P1j , P2j , . . . , Pmj ].
We then cluster these points in the 2m dimensional
space using the well known Expectation Maximization
(EM) [8] algorithm. (Note that, in our approach, the
number of clusters formed is not pre-specified but com-
puted by the EM algorithm.) Our rationale is that UEs
with similar distance and RSCP vectors should have
similar (α,R) values, and should thus belong to the
same logical group.

• Parameter Estimation: We now estimate the common
(α,R) tuple for each cluster. We assume that each
cluster is characterized by the same 2m dimensional
vector [(α1, R1), (α2, R2), , (αm, Rm)] vector. Assume
the number of UE in a cluster is k; we then need to
solve k ∗m LDPL equations to find the 2 ∗m values
(α,R). While there are several different approaches to
solving this set of over-determined equations, in our
implementation, we attempt to find a solution that
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minimizes the least mean absolute error,

J =

m∑
i=1

k∑
j=1

| Pij − Pi + 10αi log dij −Ri | (2)

Adapting the approach in [7], we use a Genetic algo-
rithm (GA) [3] technique that efficiently searches the
non-linear solution space efficiently to solve the set of
LDPL equations. We then repeat the process to find
the (α,R) tuple for all the other clusters generated in
phase one.

5.2 Performance Results
For the experiments in this paper, we do not focus on

actually implementing a real-time RF prediction solution.
Instead, our goal is to use measurements (on different days)
of the RSCP vectors (at the 57 sample points on the 3rd floor
and 40 sample points on 5th floor) to understand the efficacy
and accuracy bounds observed by our proposed algorithm.

5.2.1 Temporal Variation
We first note that there is, in fact, observable temporal

variation in the RSCP measurements at the same location.
Figures 8 and 9 present the temporal variation of RSCP
at two landmarks on the 3rd floor. The observed temporal
variation in RSCP of FAP signals is as much as 15 dBm. In
the extreme case at landmark 35, the signal from FAP5 is
only available on one day of experiment on May 5th, and is
not visible on the other days of experiments. Such temporal
variation arises due to dynamic and unpredictable changes
in a building’s environmental and layout conditions.

Due to such temporal variation of RSCP values, the num-
ber of clusters computed by the EM algorithm vary across
different days. Figure 10 plots the number of distinct clus-
ters computed by our algorithm (at 2 different times on May
2nd and also on May 5th), both separately for the 3rd and
5th floors and for a combination of both floors. Figure 11
presents the 4 clusters of 3rd floor on May 5th.

5.2.2 RSCP Modeling Accuracy
We first study the ability of our model-based approach to

accurately reconstruct the underlying RF measurements.Table
1 presents the differences between the measured RSCPs and
the predicted RSCPs of all FAPs across all the landmarks.
The table illustrates the maximum, minimum and mean pre-
diction errors for the 3 time instants (2 on May 2nd and1 on
May 5th) under two different models: a) In the Real-time
model, the RSCP readings from only that specific time in-

Figure 11: Sample clustering result on 3rd floor

stant are used by our 2-step estimation algorithm, while b)
In the Static model, the clustering and estimation is done
based on the average of all the observed readings across dif-
ferent days. In other words, the Real-time model generates
different (α,R) values for different time instants, whereas the
Static model generates a single (α,R) value, independent of
time.

We see that the mean error for real-time estimation is
3.3 dBm, indicating that our estimation process provides
significantly more accuracy than the temporal variation of
15dBm. Our mean prediction error also contrasts favorably
against the mean error of 5.4 dBm achieved by the static
model. More importantly, we computed the difference be-
tween the 95th−5th percentile of the estimation errors: this
turned out to be only 12.5 dBm for the Real-time model,
as compared to 24.6 dBm for the Static model. Our re-
sults demonstrate that our real-time prediction process is
capable of making fairly accurate estimates of the RSCP
vectors for unobserved locations. There are, however, a few
locations where the prediction error is as high as 33 dBm,
indicating that our model still needs additional fine-tuning.
Our real-time estimation algorithms (including the cluster-
ing and GA phases) needed approximately 2 mins to execute
on a consumer-grade laptop, indicating the computational
feasibility of our approach.

5.2.3 Predicting Unknown Values based on Partial
Observations

We now study how the estimation error varies with the
relative proportion of observation samples vs. the number
of unobserved points where the RSCP must be estimated.
For all our results, we have used a 10-fold cross validation
approach, where the sampled data set is randomly parti-



Table 1: Evaluation

Date of Exp 2 May, 10:30 2 May, 14:30 5 May, 14:30
Floor 3rd 5th 3rd 3rd 5th 3rd 3rd 5th 3rd

+5th +5th +5th

Real time

Number of Cluster 4 4 9 5 3 9 4 3 7
Min 2E-4 3E-5 4E-5 6E-5 5E-4 3E-4 5E-6 5E-4 6E-5
Max 25.695 18.848 20.656 12.911 22.34 22.693 33.719 28.585 32.906

Mean 3.318 2.931 3.106 2.559 3.182 3.131 3.770 3.617 3.934
Standard Dev 4.211 3.823 3.593 2.928 3.763 3.900 4.859 3.967 4.580

Static

Number of Cluster 4 4 8 4 4 8 4 4 8
Min 5E-06 5E-4 1E-4 5E-6 9E-4 1E-4 5E-6 5E-5 1E-4
Max 33.896 22.330 32.619 33.896 22.330 32.619 32.805 26.158 33.301

Mean 5.724 4.317 5.284 5.719 5.019 5.617 5.532 4.500 5.307
Standard Dev 7.657 4.973 6.685 7.542 5.378 6.784 7.432 4.952 6.624

tioned into 10 folds. To study the impact of changes in the
fraction of observation samples, we then use k folds for train-
ing our algorithm and the remaining (10-k) folds for testing
the resulting model. The number of training data folds k is
varied from 9 to 1 to study the variation in the proportion
of observation samples. Irrespective of the value of k, the
experiments are repeated 10 times: each time, we randomly
selects k out of the 10 folds for training the model and the
remaining (10 − k) folds for testing. The overall estima-
tion error (for each chosen value of k) is then obtained by
averaging the results of these 10 different runs.

The training data set ( k folds), containing all the sample
points with observed RSCP, is used to train the model with
our proposed 2-phase algorithm, presented in section 5.1.
For all the sample points in the testing data set (10−k folds),
we will predict the RSCP vectors [P1j , P2j , . . . , Pmj ] based
on their known distance vectors to the FAPs [(d1j , d2j , . . . , dmj ].
The validation works as follows:

• Predicting cluster membership: For each testing point,
find the top-5 nearest sample points from the training
data set. The cluster membership of the testing point
is determined by the majority vote from the cluster
membership of the 5 training points. If all the 5 train-
ing points belong to 5 different clusters, the cluster
membership of the nearest training point will be se-
lected as the cluster membership for the testing point.

• RSCP estimation: After defining the cluster member-
ship of the testing point, we use the estimated param-
eters of that cluster [(α1, R1), (α2, R2), , (αm, Rm)] to
estimate the expected RSCP vector [P1j , P2j , . . . , Pmj ]
by using the equation 1

We applied this 10-fold cross validation model, both in-
dependently for the 3rd floor (57 sample points), 5th floor
(40 sample points) and also the combination of both floors
(97 sample points). Figure 12 plots the average estimation
error of the RSCP values (in dBm) for different values of
k. Clearly, as expected, the average RSCP estimation errors
increases as the number of training data sets or observa-
tion samples decrease. In general, it appears that values
of k = 9 to 6 provide only marginal increase in the error,
suggesting that the crowd-sourced based estimation
process works quite well when RSCP observations
are available from mobile devices at ≈ 60% of the
total current sampled locations. It is also worth noting

that the RSCP estimation error for a combined model across
both floors is worse (higher) than when each floor is modeled
separately. This suggests that, in practice, we should model
each floor separately, to take into account the differences in
propagation characteristics across floors.
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Figure 12: Cross Validation with 10 folds

6. CONCLUSION
This work represents a preliminary testbed-based investi-

gation into the unique properties of femtocellular networks,
especially in densely populated indoor environments, so that
we can develop effective strategies for individualized, context-
aware management of subscribers jointly across a femto-
cum-macro cellular network. An initial set of longitudinal
observation data demonstrates that the handoff process in
such small-sized cellular environments is strongly influenced
(handoff locations can change by 70% of a cell’s radius) by
even modest changes in pedestrian movement speed, and
that the data throughput (at least for TCP flows) drops
dramatically (as much as 8-fold) at higher speeds. More im-
portantly, these variations are seen to have strong temporal
dependency, thus suggesting the need for a mechanism that
can use observational signal strength readings from selected
locations to construct a dynamic RF propagation map and
predict signal strength variations at other locations. Our
proposed clustering-cum-optimization technique for signal
strength estimation shows promise, as it incurs a mean error
of ≈ 3 dBm and works when RF ‘ground truth’ is observed
at 60% or more of the indoor location landmarks.



In ongoing work, we are investigating several important
and unresolved issues. First, we have to understand the sen-
sitivity of our eventual metrics (handoff parameters and data
throughput) to the RSCP prediction error–in other words,
build predictive classifiers and then study the questions of
‘how accurately can we predict handoff and throughput vari-
ation?’, and ‘how does this accuracy degrade with a reduc-
tion in observational samples?’ Second, we have to deal
with the practical reality that the indoor location reports are
themselves only approximate, and more importantly, the lo-
cation computation itself depends on accurate models of RF
attenuation. In other words, there is a ‘coupling’ between
RF propagation and location estimation that we need to
address.
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