
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2013

HUNTS: A Trajectory Recommendation System for Effective and HUNTS: A Trajectory Recommendation System for Effective and

Efficient Hunting of Taxi Passengers Efficient Hunting of Taxi Passengers

Ye DING
Hong Kong University of Science and Technology

Siyuan LIU
Carnegie Mellon University

Jiansu PU
Hong Kong University of Science and Technology

Lionel NI
Hong Kong University of Science and Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
DING, Ye; LIU, Siyuan; PU, Jiansu; and NI, Lionel. HUNTS: A Trajectory Recommendation System for
Effective and Efficient Hunting of Taxi Passengers. (2013). MDM '13 Proceedings of the 2013 IEEE 14th
International Conference on Mobile Data Management. 1, 107-116.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3472

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

HUNTS: A Trajectory Recommendation System for
Effective and Efficient Hunting of Taxi Passengers

Ye Ding1, Siyuan Liu3, Jiansu Pu1, Lionel M. Ni1,2
1 Department of Computer Science and Engineering; 2 Guangzhou HKUST Fok Ying Tung Research Institute

Hong Kong University of Science and Technology
3 Carnegie Mellon University

1,2 {valency, jspu, ni}@cse.ust.hk 3 syliu@andrew.cmu.edu

Abstract—Nowadays, there are many taxis traversing around
the city searching for available passengers, but their hunts of
passengers are not always efficient. To the dynamics of traffic and
biased passenger distributions, current offline recommendations
based on place of interests may not work well. In this paper,
we define a new problem, global-optimal trajectory retrieving
(GOTR), as finding a connected trajectory of high profit and high
probability to pick up a passenger within a given time period
in real-time. To tackle this challenging problem, we present
a system, called HUNTS, based on the knowledge from both
historical and online GPS data and business data. To achieve
above objectives, first, we propose a dynamic scoring system
to evaluate each road segment in different time periods by
considering both picking-up rate and profit factors. Second,
we introduce a novel method, called trajectory sewing, based
on a heuristic method and the Skyline technique, to produce
an approximate optimal trajectory in real-time. Our method
produces a connected trajectory rather than several place of
interests to avoid frequent next-hop queries. Third, to avoid
congestion and other real-time traffic situations, we update the
score of each road segment constantly via an online handler.
Finally, we validate our system using a large-scale data of around
15,000 taxis in a large city in China, and compare the results
with regular taxis’ hunts and the state-of-the-art.

I. INTRODUCTION

Taxi service is a major public transportation service in

large cities nowadays, and there are often a huge number of

unoccupied taxis traveling around the city. However, it is still

difficult to hire taxis in crowded areas in the meantime [1].

Such problem is much more severe in large modern cities (e.g.,

New York, Beijing, and London). For example, Figure 1 shows

the probability distribution of the passenger load factor (PLF)
of around 4,000 taxis generated from our data of a large city in

China in one month. PLF is the quotient of dividing the driving

distance when a taxi is occupied by a passenger, by the total

distance that the taxi has traveled. It shows the occupy rate of

a taxi in distance domain. According to Figure 1, we can find

that PLF is only 50% for suburban taxis, and around 60% for

urban taxis. Due to the low occupy rate, a passenger-hunting

recommendation system is an urgent demand of taxi drivers,

as well as the city authorities, to improve the taxi utilization

and reduce the energy cost.

To make a passenger-hunting recommendation, we can

make use of the geographical data collected from the GPS

equipments of taxis, and the business data collected from the

0 0.5 1
0

0.02

0.04

0.06

0.08

P
D
F

SUBURB

Fig. 1. The PLF of taxis, which is only 50% for suburban taxis, and around
60% for urban taxis.

Fig. 2. Passengers try to hire taxis in the midtown of Changsha, China [2].
In many cities of developing countries, there are often few taxi waiting lanes
near POIs, and people have to hire taxis in the middle of the street.

taximeters. By analyzing the above data, traditional methods

can identify the place of interests (POIs) [3], which are the

locations with high probabilities to pick up passengers, and

then recommend the best one to the taxi driver. However, a

POI recommendation has several drawbacks.

First, if taxis are not allowed to wait in POIs and pick up

passengers, POIs will not be suitable as recommendations.

This is because if the taxi driver drives to the POI but

cannot pick up a passenger, the taxi driver should then request

another POI recommendation. In this situation, the efficiency

of exhaustive querying is unacceptable. As a matter of fact,

taxis are indeed forbidden to stop in the middle of most roads

for the purpose of picking up passengers in many large cities.

Moreover, in many developing countries, there are often few

taxi waiting lanes near POIs, and people have to hire taxis in

the middle of the street, as shown in Figure 2.

Second, the hunting trajectory of consecutive POIs may

not be global-optimal. A taxi may pick up a passenger after

driving through many POIs. Although each POI is the best

recommendation of each step, but the resulting trajectory of

the greedy POI search may not be the best selection. A

0 1 2 3 4

x 104

0

500

1000

1500

INCOME

Fig. 3. The relationship between the income of taxis and the passengers that
taxis have picked up in one month.

recommendation should be global-optimal comparing with all

the possible hunting trajectories of the taxi, but not local-

optimal on each step.

Third, the objective of a taxi is to earn money, but seeking

for more passengers may not result in earning more money. In

Figure 3, we can find that there are two different patterns of

earning money: 1) picking up more passengers, and 2) picking

up less passengers but with higher income. The reason of such

phenomenon is that, a taxi may have to wait for a very long

time to pick up a passenger in the terminal or the airport, but

once the taxi picks up a passenger, the income could be quite

high because these passengers often travel to some farther

destinations. In an opposite situation, the picking-up rate may

be very high in shopping malls, but passengers after shopping

may travel to a near destination because they just cannot carry

their stuffs. Hence, a recommendation should achieve not only

higher picking-up rate, but also higher profit [4].

To overcome the drawbacks of the POI recommendation, in

this paper, first, we construct a connected hunting trajectory

rather than several POIs as a recommendation, and the taxi

driver can drive through the trajectory until a passenger is

picked up. Second, the hunting trajectory is approximate

global-optimal, which can achieve more profit than a series of

POI recommendations. Third, we consider both the picking-

up rate and the average income of the recommendation, to

make the hunting effective and efficient. Moreover, due to the

constant changing of real-time traffic and guest distribution,

our system can efficiently handle online data as input, and

produce recommendations in real-time.

The major contributions of this paper lie in the following

aspects:

• First, we create a system, called HUNTS, which produces

hunting trajectory recommendations for taxi drivers to

earn more money.

• Second, to make the recommendation, we define a new

problem, called global-optimal trajectory retrieving, as

finding a connected trajectory with high profit within a

given time period in real-time. To solve the problem, we

propose a novel method, called trajectory sewing, based

on a heuristic method and the Skyline technique, to utilize

each road segment and provide a recommendation.

• Third, we employ large scale real life taxi data to evaluate

and compare different methods, and our experiments

show that our recommendations work much better than

TABLE I
SPECIFICATIONS OF BUSINESS DATA

Data Type Description
Taxi ID Taxi registration plate number.
Begin / End Time Begin / end timestamp of the deal.
Distance Total distance of the deal.
Time Cost Total time of the deal.
Price Taxi fare of the deal.
Free Distance The distance between two deals while the

taxi is unoccupied.
Free Time The amount of time between two deals

while the taxi is unoccupied.
Taxi Company The company id of the taxi. One company

can only have one color of taxis.
Taxi Color The color of the taxi, green or red.

TABLE II
SPECIFICATIONS OF TRACE DATA

Data Type Description
Taxi ID Taxi registration plate number.
Timestamp Timestamp of the sample point.
Latitude / Longitude GPS location of the sample point.
Speed Current speed of the taxi.
Angle Current driving direction of the taxi.
Occupied Status Indicator of whether the taxi is occupied

by a passenger.

traditional next-hop POI recommendations, and regular

taxis’ hunts, in terms of effectiveness and efficiency.

Moreover, we have discovered some interesting findings

during our study.

In the following sections, we will first define the problem in

Section II, and then show our system consisted of a dynamic

scoring system, a recommender, and an online data handler

in Section III. In Section IV, we will evaluate the accuracy

and performance of our system. In Section V, we will discuss

some interesting findings during our study. At last in Section

VI and VII, related works and conclusions will be provided.

II. DATA DESCRIPTION AND PROBLEM DEFINITION

A. Data Description

Our data were collected in a large city of China in Septem-

ber, 2009, and it contains two datasets: one is the taxis’ traces

collected from GPS equipments, and the other one is the

business information describing the transactions for each deal

of these taxis. The format of our data is shown in Table I and

Table II. Our trace data contains the information of around

15,000 taxis, and the sampling rate is about 20 seconds. Our

business data contains the information of 4,197 taxis, and there

are 44 deals per taxi per day on average.

B. Terminologies

Road segment: A road segment τi is the road between two

crossroads. Some roads, like a highway, may have two road

segments between two crossroads, since they have different

directions. A road network R = {τi}ni=1 is consisted of road

segments.

Deal: A deal is the procedure from picking up a passenger

to dropping off the passenger.

Taxi fare: Taxi fare is the money paid by the passenger to

the taxi in the end of a deal. In this paper, taxi fare is the only

income of a taxi.

Taxi status: The status of a taxi can be either unoccupied

or occupied. A taxi is occupied if the taxi is handling a deal,

otherwise, it is unoccupied.

Picking-up rate: Picking-up rate is the probability of

picking up a passenger in a road segment.

Average income: Average income is the average taxi fare

of deals which start at a road segment within a time period.

Score: For a road network R = {τi}ni=1, where τi is a road

segment, we define δti as the score of τi on time t, which is the

measurement of the gain of the road segment τi. δ
t
i may vary

upon time. As mentioned previously, the design of δti should

consider both the average income and the picking-up rate of

τi. In this paper, δti is calculated via a dynamic scoring system

as shown in Figure 5, and the details will be shown in section

III.

C. Problem Definition

The problem, global-optimal trajectory retrieving, is to

maximize the score of a trajectory consisted of connected road

segments. The formal definition of the problem is shown in

Definition 1.

Definition 1. Global-Optimal Trajectory Retrieving (GOTR):
Given a start point s and a start time ts, find a trajectory
T = {τi}mi=1 ⊆ R of maximum

∑m
i=1 δ

t
i within a time period

t̂.

The problem definition is based on a well-designed δti as

we mentioned previously. Assume we have an appropriate

design of δti , the problem can be modeled to a longest path

problem with time constraint. Adopting from the definition

of the time-dependent shortest path problem [5], we define a

time-dependent longest path problem as shown in Definition

2.

Definition 2. Time-Dependent Longest Path (TDLP): Given
an undirected FIFO graph G = (V,E,Δ, T), let ei,j ∈ E be
the edge incident to vi and vj , and δi,j(t) ∈ Δ be the weight of
ei,j , where t is a time variable in a time domain, and ti,j ∈ T
be the time delay of ei,j . Find a path P = (s, v1, v2, . . . , vn)
starts at s on ts of maximum weight

∑
δi,j , while

∑
ti,j ≤ t̂.

Different from other path-finding problems, in this paper,

we do not restrict the resulting path to be a simple path.

This is because if there exists a cycle with high profit, the

driver can drive through the cycle repeatedly. Since there is

a time bound t̂, we can always find a feasible solution to

the problem. Moreover, similar as the time-dependent shortest

path problem, we consider the graph is a FIFO (First-In-

First-Out) graph. The definition of FIFO graph is shown in

Definition 3.

Definition 3. FIFO Graph: Let d(i, j, t) be a delay function
of edge ei,j . For any t, t′ ≥ 0, t ≤ t′, we have t+ d(i, j, t) ≤
t′ + d(i, j, t′).

a(t=1,δ=10) c(t=1,δ=1)

b(t=1,δ=10)

d(t=10,δ=10)

Fig. 4. An example of the global-optimal trajectory retrieving problem.

Online Picking-up Rate
Calculator

Online Average Income
Calculator

Online Score
Calculator

Road Segment
Score

Recommend
Trajectory

Dynamic Scoring System

Recommender

Taxi Driver

Taxi Trace & Business Data

Recommendation
Request

Trace

Online Data Handler

Taxi Fare

Fig. 5. System structure of HUNTS.

As shown in Definition 2, we consider the delay function

d(i, j, t) = ti,j is irrelevant to t, hence it is a FIFO graph.

Since the decision problem of the longest path problem is NP-

complete, longest path problem is NP-hard. Hence the time-

dependent longest path problem, as well as the global-optimal

trajectory retrieving problem, are also NP-hard.

To clearly illustrate the global-optimal trajectory retrieving

problem, please refer to the example of Figure 4. In Figure 4,

let t̂ = 2 and R = {a, b, c, d}, we aims to find the trajectory

{a, b} rather than {a, c} since the later one has a lower score∑
δ, and also not {a, d} since it exceeds the time limit t̂.

III. HUNTS: THE HUNTING SYSTEM

A. Overview

In this paper, our solution to the problem is based on the

system structure shown in Figure 5. The following subsections

will introduce the structure step by step in details, which

include the dynamic scoring system, the recommender, and

the online data handler.

B. Dynamic Scoring System

In this section, we will discuss the scoring system that

evaluates the score δti for each road segment τi. Since the

calculation for each road segment is the same, we will use δt

instead of δti in this section for convenience. In this paper, we

define δt as:

δt =
ptwt

d
(1)

Fig. 6. Picking-up rate of one road segment in one day. The size of the
timeslot is one hour, where 0 stands for 00:00 - 00:59, 1 stands for 01:00 -
01:59, etc.

where pt is the picking-up rate at time t, wt is the average

income, and d is the length of the road segment. Since pt and

wt are statistical, superscript t here is actually a small time

period.

Our design of score is based on the following observations:

1) the higher pt and wt is, we more tend to choose the road

segment since it is more possible to pick up a passenger with

higher income in the road segment; and 2) we more tend to

choose short road segments rather longer ones, since δt may

vary in different parts of a very long road segment, and it is

only higher because of some parts of the road segment. In

conclusion, we design the score of a road segment in a time

period by considering higher pt and wt, and lower d. In the

following subsections, we will discuss how to generate these

three values.

1) Picking-up Rate: To generate the picking-up rate, we

divide the number of taxis which picked up passengers in a

road segment, by the total number of taxis which passed by

the road segment while unoccupied. Since picking-up rate may

vary upon time, e.g., the picking-up rate could be much higher

on 19:00 when people are getting off work than 03:00 when

people barely appear on street, we use a timeslot t to do the

division for each road segment as follows:

pt =
|status(0 → 1)|t

|status(0)|t (2)

where |status(0 → 1)| is the number of taxis which passed by

the road segment and changed their status from unoccupied to

occupied, and |status(0)| is the number of unoccupied taxis

which passed by the road segment. Here we define status 0
as unoccupied, and status 1 as occupied. Figure 6 shows the

picking-up rate of one day generated using Formula 2.

In Figure 6, we can find that in the midnight (01:00-03:00),

the picking-up rate is almost 0 since it may not be possible to

pick up a passenger while people are sleeping. The picking-

up rate remains high during the night (21:00-24:00), and it

may because although the number of passing-by taxis is small,

these taxis often successfully pick up passengers.

Before calculating the picking-up rate, we should do a map

matching to map the sample points to road segments. In this

paper, we use a greedy map matching algorithm [6][7] as

shown in Algorithm 1.

Algorithm 1 Greedy Map Matching Algorithm

1: Separate the map into a set of subspaces S = {si}ni=1

of equal size, where each si contains at least one road

segment;

2: Find the subspace si where the sample point p ∈ si;
3: s′i ← si∪ neighbors of si;
4: dmin ← ∞;

5: r ← ∅;

6: for each road segment τj ∈ s′i do
7: Find the minimum perpendicular distance d from p to

τj ;

8: if d < dmin then
9: dmin ← d;

10: r ← τj ;

11: end if
12: end for
13: Resulting r is the matching of p.

Algorithm 2 Algorithm of Minimum Perpendicular Distance

1: dmin ← ∞;

2: for each component segments γi ∈ road segment τj do
3: d ← perpendicular distance of p to γi;
4: if d < dmin then
5: dmin ← d;

6: end if
7: end for
8: Resulting dmin is the minimum perpendicular distance

from p to τj .

Algorithm 1 maps a sample point to the nearest road seg-

ment of minimum perpendicular distance. In this paper, since

a road segment is actually a polyline, we define the minimum

perpendicular distance as the minimum distance between a

point p and all the component segments of a road segment.

The algorithm of finding minimum perpendicular distance is

shown in Algorithm 2. Algorithm 1 has a time complexity

of O(n2), because it enumerates all the road segments and

calculates the perpendicular distance of each road segment.

To increase performance, we split the map into grid sub-

spaces before finding the minimum perpendicular distance.

For each sample point, only the road segments lie in the same

subspace of the sample point are compared. Nevertheless, a

border problem, as shown in Figure 7, may occur if we only

consider the subspace that the sample point lies in. In Figure

7, although p is close to B, but since p ∈ A, p will be mapped

to A. In this paper, we also consider the eight neighbors of the

subspace to avoid the problem, as shown in line 3 of Algorithm

1.

Figure 8 shows the traffic of urban area generated from our

trace data using Algorithm 1. The average traffic in the off-

work time is 14.85 cars per road segment, while it is 7.11 cars

per road segment in the midnight. In Figure 8, the gradient

color from red to green shows the traffic situation from busy

to free, where busy indicates more cars in the road segment.

p

Road
A

Road
B

Fig. 7. The border problem of map matching. p is close to B, but since
p ∈ A, p will be mapped to A.

(a) Midnight 03:00-04:00 (b) Off-work 18:00-19:00

Fig. 8. Traffic of urban area in one day. Off-work time is obviously busier
than midnight.

It is obvious that off-work time is busier than midnight, but

not the same road segments. It explains the importance of the

time constraint.

2) Average Income: In this section, we will discuss how

to generate the average income for each road segment. As

mentioned previously, our observation shows that always head-

ing to the road segment with highest picking-up rate may not

be the best choice, since passengers in the terminal or the

airport may travel much farther than those in normal streets

or business areas. Hence, we should also consider the average

income of a road segment as one part of the score.

Similar as finding the picking-up rate, we use the timeslot

to calculate the average income of each road segment. In this

paper, we use the start time of a deal as the indicator of which

timeslot the deal belongs to. For example, if a deal starts at

23:50 on September 1st and ends at 00:10 on September 2nd,

we consider the deal belongs to September 1st, timeslot 23:00-

23:59 if the timeslot size is one hour.

In this paper, we only consider the average income of

taxis which picked up passengers in the road segment. The

calculation of the average income is shown in Formula 3.

wt =

∑
fare(0 → 1)t

|status(0 → 1)|t (3)

where |status(0 → 1)| is the number of taxis which passed

by the road segment and changed their status from unoccupied

to occupied, and fare(0 → 1) is the taxi fare of those taxis.

Figure 9 shows the average income of one road segment in

one day. In figure 9, we can find that the average income in the

midnight is zero since there are barely people hiring taxis in

the midnight, and the average income during daytime is about

25 dollars, which is reasonable according to our experience.

0 10 20
0

200

400

TIMESLOT

A
V
G

I
N
C
O
M
E

Fig. 9. Average income of one road segment in one day.

0 10 20
0

0.05

0.1

0.15

0.2

TIMESLOT

S
C
O
R
E

(a) Score of one road segment in one
day.

0 10 20
0

0.01

0.02

0.03

TIMESLOT

A
V
E
R
A
G
E

S
C
O
R
E

(b) Average score of all road seg-
ments in one day.

(c) Average score of urban area on 18:00-19:00 of one day. The color of
red to green shows the score of higher to lower, and grey stands for no
score, i.e, no passengers are picked up by any taxis on the road segment.

Fig. 10. Score of one road segment and the average score of all road segments
in one day.

3) Scoring: Once we have the picking-up rate and the

average income, we can calculate the score δt based on

Formula 1. Figure 10 shows the score of one road segment,

as well as the average score of all road segments in one day.

In Figure 10, we can find that the score is higher on average

during commuting (around 08:00 and 18:00), and lower during

midnight.

C. Recommender

Once the score of all the road segments are obtained, we

can recommend a trajectory to a taxi given its current location

and time. In this section, we will introduce our recommender

which produces a connected trajectory based on the score

calculated previously.

Recall Definition 1, the recommender aims to find a tra-

jectory T = {τi}mi=1 ⊆ R with maximum
∑m

i=1 δ
t
i within

a time period t̂ from the start point s with time ts. As

mentioned previously in Definition 2, we can model the global-

optimal trajectory retrieving problem to a time-dependent

longest path problem. Although the time-dependent longest

path problem seems like a longest path problem, or a time-

dependent shortest path problem, the solutions to these path-

finding problems cannot be directly adopted to solve the time-

dependent longest path problem. This is because of three major

limitations:

1) A traditional longest path problem often considers

weight of the graph is static. But in a dynamic weighted

graph, since weight varies upon time, we cannot com-

pare two weights in different time, hence traditional

algorithms may not work. For example, in Figure 11,

assume we start at S and try to find the longest path

in the graph, where the time delay of each edge is one,

and the weight of each edge is assigned as shown in

the figure. In the first step, since SB with weight 3

is better than SAB with weight 2, we consider SB
is the longest path to B. Similarly in the second step,

SBA with weight 4 is better than SA with weight 1

for A. Now consider the idea of dynamic programming

in a static weighted graph, in the third step, since C
is only adjacent to A, the longest path to C should

be equal to the longest path to A plus the weight of

AC, which is 5 via SBAC. However, since the weight

of AC varies upon time, we may miss the longer path

SAC with weight 101. The dynamic weighting problem

is the main difference between the longest / shortest

path problem and time-dependent longest / shortest path

problem. Similar as those shortest path algorithms based

on static graphs cannot be used to solve the time-

dependent shortest path problem, traditional algorithms

of longest path problem cannot be directly adopted to

solve the time-dependent longest path problem, too.

2) A traditional path-finding problem often assume there is

only one weight (often the physical distance) associated

with each edge in the graph, but in this paper, there

are two weights should be considered: score and time

delay. Since we have to compromise between these two

weights, it makes the problem very difficult, and tradi-

tional algorithms often do not consider such situation.

3) As mentioned in Definition 2, different from traditional

path-finding problems, in a real-life situation, we do

not restrict the resulting path to be a simple path, i.e.,

cycles are allowed. Hence traditional algorithms cannot

be adopted.

To solve the global-optimal trajectory retrieving problem, a

straight-forward method is to exhaustively enumerate all the

feasible trajectories and find the one with the highest score.

Algorithm 3 shows the exhaustive algorithm.

1) Exhaustive Algorithm: In algorithm 3, we construct a list

{Ti} of trajectories, and enumerate all the possible trajectories

start at s within the time period t̂. Finally it returns the

trajectory with highest score Ti(δ). As mentioned in Definition

1 and Definition 2, each road segment τi is associated with its

score δti and time delay ti. Similarly, for each Ti, Ti(δ) is the

total score of the trajectory, and Ti(t) is the total time delay.

A

S B

1|1|1

3|3|3

C

1|1|1

A

S B

C

1|1|1
1|1|1

Via S: t=1,w=1
Via SB: t=2,w=4

A

S B

C
1|100|1

1|1|1
1|1|1

Via SA: t=2,w=101
Via SBA: t=3,w=5

STEP 1: For B, SB is better. STEP 2: For A, SBA is better.

STEP 3: For C, s ince C is only
adjace nt to A and SBA is better
fo r A , SB AC s ho u l d b e t he
longest path to C. However, SAC
is actually better than SBAC.

3|3|3

3|3|3

Via S: t=1,w=3
Via SA: t=2,w=2

1|100|1 1|100|1

Fig. 11. Dynamic weighting problem.

Algorithm 3 Exhaustive Algorithm

1: T0 ← {s};

2: while there exists an open Ti where Ti(t) < t̂ do
3: for each subsequent road segment τj of τm ∈ Ti do
4: Create T ′ ← Ti ∪ τj ;

5: if T ′(t) > t̂ then
6: Drop T ′;
7: end if
8: end for
9: if all T ′ are dropped then

10: Mark Ti as closed;

11: else
12: Remove Ti;

13: end if
14: end while
15: Resulting Ti with max(Ti(δ)) is the optimal selection.

Each Ti is consisted of several road segments {τ1, τ2, . . . , τm}
sorted by arriving time, and they are connected one by one.

In this paper, if two road segments share a same crossroad,

i.e., two edges are incident to a same vertex in the graph, we

say the two road segments are neighbors. Since each edge is

incident to two vertices, we can partition the neighbors of a

road segment into two sets NL and NR. For a road segment

τj ∈ Ti, assume τj−1 ∈ NL and τj+1 ∈ NR, we say the road

segments in NR are the subsequent road segments of τj with

respect to τj−1. The reason of introducing the subsequent road

segments is that, one cannot drive back to the previous road

segment, or it will violate the FIFO restriction. The details are

shown in Figure 12.

During the enumeration process, Algorithm 3 behaves like

breadth-first search, and it stops when there are no more

a

b

c
d

e

fτj-1

τj

NL NR

Fig. 12. An example of the subsequent road segments. Let τj = c and
τj−1 = a, then NL = {a, b}, NR = {d, e, f}. Clearly the taxi cannot drive
back to NL, or the time delay of c will double. Hence the recommender can
only recommend the road segments in NR, which are the subsequent road
segments of τj with respect to τj−1.

Algorithm 4 Greedy Algorithm (GA)

1: T ← {s};

2: while T (t) < t̂ do
3: Find the subsequent road segment τj of τm ∈ T with the

highest score among all the subsequent road segments

of τm ∈ T ;

4: Append τj to T ;

5: end while
6: Resulting T is the approximate selection.

possible trajectories. Assume the lowest time delay of all

the road segments is t, Algorithm 3 takes at most t̂/t loops.

Assume the largest number of subsequent road segments of all

road segments is r, for each loop, Algorithm 3 creates at most

r new trajectories. Hence, the time complexity of Algorithm

3 is at most O(1+ r+ r2+ · · ·+ rt̂/t) ≤ O(rt̂/t+1). Since all

possible trajectories are enumerated, Algorithm 3 is an exact

algorithm.

2) Greedy Algorithm: As mentioned previously, a tradi-

tional recommender often recommends the road segment with

the highest probability to pick up a passenger to the taxi.

After driving to the road segment, if the taxi cannot pick

up a passenger, a new recommendation will be generated.

Such next-hop recommendation repeats until the taxi picks

up a passenger. If we consider there is a time limit t̂ of the

recommendation, the consecutive next-hop recommendation is

actually a greedy algorithm as shown in Algorithm 4.

Algorithm 4 is an approximation algorithm, as it tries to

find the best subsequent road segment at each step, but these

road segments may not lead to an optimal result. The accuracy

limitation of Algorithm 4 is the main reason why we introduce

the following two new algorithms.

3) Heuristic Algorithm: Inspired by the A∗ algorithm, in

this paper, we introduce a new heuristic algorithm as shown

in Algorithm 5, which is faster than Algorithm 3, and more

accurate than Algorithm 4.

In Algorithm 5, we use a heuristic estimation to evaluate

the optimality of a trajectory:

h(T) = T (δ) + (t̂− T (t)) ∗ ρ (4)

where ρ is the highest time-efficiency value of the road

Algorithm 5 Heuristic Algorithm (k-HA)

1: Create empty stack I;

2: T ← {s};

3: Push T into I;

4: T ∗ ← null;
5: while I is not empty do
6: Pop a trajectory from I to T ;

7: for each subsequent road segment τj of τm ∈ T do
8: Create T ′ ← T ∪ τj ;

9: if T ′(t) ≤ t̂ and T ′(δ) + (t̂ − T ′(t)) ∗ ρ ≥ T ∗(δ)
then

10: Push T ′ into I;

11: if T ′(δ) > T ∗(δ) then
12: T ∗ ← T ′;
13: end if
14: end if
15: end for
16: Reduce the size of I to k by removing lower-scored

trajectories in I;

17: end while
18: Resulting T ∗ is the approximate selection.

segments within a feasible region, which is the largest sphere

that a taxi can possibly reach within t̂. The time-efficiency of

a road segment is the quotient of dividing its score by its time

delay.

Different from Algorithm 3, during each iteration of Al-

gorithm 5, we check whether the new trajectory is possible

to be optimal by estimating the highest score it can reach. If

the highest score it can reach is even lower than the score

of the best trajectory so far, it will be pruned. Furthermore,

in the end of each iteration, we reduce the size of the stack

to a user-defined higher bound k, by removing lower-scored

trajectories in the stack. The higher k is, the more accurate

trajectory we can find. If k is set to 1, Algorithm 5 will

find the same trajectory as using Algorithm 4. Hence the

accuracy of Algorithm 5 is higher than Algorithm 4, and its

time complexity is lower than Algorithm 3.

Similar to other heuristic algorithms, Algorithm 5 is step-to-

step approaching to the optimal solution. Hence we can extract

a part of the resulting trajectory to the taxi while running the

algorithm. This is another benefit of Algorithm 5.
4) Trajectory Sewing Algorithm: To improve the accuracy

of Algorithm 5, we introduce another novel method, called

trajectory sewing, by using the Skyline operation [8] as shown

in Algorithm 6.

In this paper, we define the domination of the Skyline

operation in two dimensions: time delay T (t) and score T (δ).
If T1 has a lower time delay and a higher score than T2, we

say T1 dominates T2. For all T ∈ I , if there exists another

T ′ ∈ I − T that dominates T , T will be pruned. Since the

Skyline operation considers two dimensions rather than one

dimension in Algorithm 5, it is more accurate than Algorithm

5.

In conclusion, benefits from our scoring scheme, our rec-

Algorithm 6 Trajectory Sewing Algorithm (TS)

1: . . .

2: while I is not empty do
3: . . .

4: Remove trajectories which can be dominated by others

in I;

5: end while
6: . . .

ommender 1) considers the time influence of picking up

passengers; 2) considers both picking-up rate and average

income of a road segment; 3) produces a connected trajectory

rather than several POIs; and 4) finds an approximate global-

optimal trajectory.

D. Online Data Handler
As mentioned previously, since trace data and business data

are always streaming to the system, we should update the

score of road segments consecutively. In this paper, the score

of a road segment should always be the average of history.

However, since traffic and urban plan may change in real life,

there is no need to calculate the average of all the historical

values of score. Hence, we use the simple moving average to

calculate the average of score:

SMA(n+ 1) = SMA(n)− vn+1−m

m
+

vn+1

m
(5)

where SMA(n) is the simple moving average of n numbers,

vn is the value the n-th number, and m is the size of a stack

M . When we are calculating the simple moving average of

n + 1 numbers, we pop one number from the stack M , and

insert the (n+1)-th number into the bottom of M , and then get

the average value of the stack via Formula 5.
One critical problem of calculating the average is that, trace

data and business data may not come simultaneously. Trace

data is always available from GPS, whereas business data is

only available when the taxi drops off a passenger and reports

the taxi fare of the deal. Hence in this paper, we update

the picking-up rate and the average income separately, and

recalculate the score after the updating.

δt =
SMA(pt)SMA(wt)

d
(6)

Since the simple moving average requires a stack size m,

δt is always using the recent m records. This implies only m
days of data are used to train the score of road segments if

δt is updated daily. Please note that the average here could be

day average, or week average, i.e., one can assign seven score

values to a road segment and each score value represents one

day of a week. The reason of using week average is that the

picking-up rate and the average income may be different on

weekdays and weekends. In this paper, we use day average in

the experiments.
With the online data handler, we do not have to calculate

the score every time when recommending a trajectory, but just

query the latest score from the database. Such online data

handler dramatically increases the efficiency of the system.

IV. EVALUATION

A. Experiment Data

In this paper, we train our system using the historical data

of one week, which includes 15,231 taxis with 154 million

records. We use the online data handler to import all the

records, and use a timeslot of 10 minutes to calculate the

score of road segments. We compare our recommendations

with both ground truth data and traditional methods, and the

comparison covers both accuracy and performance. Since the

online data handler is used to import data, and it can be proved

as accurate, there is no need to evaluate it. The comparison

includes:

1) GT: The ground truth hunting trajectories of taxis in one

day that start at ts and end at ts + t̂.
2) GA: The recommendation generated via the traditional

next-hop greedy algorithm (Algorithm 4).

3) TS: The recommendation generated via the trajectory

sewing algorithm (Algorithm 6).

4) 10-HA: The recommendation generated via the heuristic

algorithm (Algorithm 5), where k = 10. Since the

heuristic algorithm requires a very long time to execute,

we only retrieve the result within three minutes.

The exhaustive algorithm is not included in the experiments

because it requires too much time to execute, which is not

acceptable. To compare the recommendations in different

situations, we conduct 90 different types of queries based on

different start time ts, different start point s, and different time

period t̂. In details:

1) ts: 09:00:00, 14:00:00, and 18:00:00.

2) s: 35 random road segments.

3) t̂: 300 seconds, 600 seconds, and 1800 seconds.

In conclusion, we generate 315 recommendations per

method and 36,534 ground truth trajectories. Since the ac-

curacy of a recommendation is not related to both ts, s, and

t̂, we treat all the recommendations equally.

B. Accuracy

In this paper, we use the unit potential income to evaluate

the accuracy of trajectories. As mentioned previously, the

picking-up rate reflects the probability of picking up a pas-

senger, and the average income reflects the potential income

if the taxi picks up a passenger. Hence, we can evaluate the

effectiveness of a recommendation via its picking-up rate, and

the efficiency via its average income. However, we cannot

evaluate the two metrics in separate ways, since efficiency

depends on effectiveness. For example, if the picking-up rate

of a recommendation is very low, no matter how high the

average income is, the recommendation still makes no sense.

Hence in this paper, we evaluate the accuracy in terms of

effectiveness and efficiency of each road segment via its

potential income as:

f t = ptwt (7)

where f t is the potential income of a road segment at time t, pt

is the picking-up rate, and wt is the average income if the taxi

10−2 100
0

0.2

0.4

0.6

0.8

1

UNIT POTENTIAL INCOME

C
D
F

10−HA
GA
GT
TS

Fig. 13. CDF of the average potential income of GT, GA, TS, and 10-HA.

(a) Case 1 (b) Case 2

Fig. 14. Comparing recommendations via different methods, GA is colored
green, 10-HA is colored cyan, and TS is colored red. The start point of each
case is the road segment colored by all three colors.

COMMUNITY

Fig. 15. Comparing recommendations with ground truth hunting trajectories,
GA is colored green, 10-HA is colored cyan, TS is colored red, and GT is
colored blue.

picks up a passenger. To fairly compare the potential income

of trajectories, we use the value of potential income per unit

distance as the unit potential income of the trajectory. In this

paper, we use 100 meters as the unit length. The comparing

of accuracy is shown in Figure 13.

In Figure 13, we can find that the accuracy of TS is always

better than GA for around 70% of experiments. In addition,

all the recommendations generated by TS are better than

the ground truth hunting trajectories. It explains that a taxi

driver may be experienced in finding shortest paths, but not in

hunting for passengers.

To clearly show the recommendations, let us look at some

examples in Figure 14. In case 1, the road segments recom-

mended by TS are the entrance of some factories, as well

as the restaurants in the other side of the main road. The

area in the south of the main road is a countryside village

(villages are often near factories in China because of low

labor costs), and the recommendations here make no sense. In

case 2, the road segments recommended by GA are through a

highway with high time cost but no passengers. This is because

10−2 100
0

0.2

0.4

0.6

0.8

1

RUNNING TIME (SECONDS)

C
D
F

GA
10−HA
TS

Fig. 16. CDF of execution time of 10-HA, TS, and GA.

traditional next-hop recommendations are lack of a global view

of real-life situations. These cases explain that our trajectory

sewing method is better than the traditional next-hop method.

In Figure 15, the circle recommended by TS is a community

entrance, and other road segments are the links between the

community and the main road. In real life, passengers often

wait in the entrance of the community to hire taxis. We can

find that regular taxis do not aware this situation. This case

explains that our recommendation generated by TS is indeed

better than regular taxis’ hunts.

In conclusion, our design of the score and correspondent

algorithms, especially the trajectory sewing algorithm (Algo-

rithm 6), achieves better accuracy comparing with traditional

next-hop recommendations, as well as regular taxis’ hunts.

C. Performance

In our experiments, we use a computer with Intel Core 2

Duo CPU @ 2.53GHz and 4 GB physical memory to evaluate

the performance of our system, and all the experiments are

running within one thread. As mentioned previously, we

conduct 90 experiments with different s, ts, and t̂ for the three

algorithms. Since s is a random variable, we use the average

execution time of experiments that with different s but same

ts and t̂ as the execution time of the algorithm upon ts and t̂.
Figure 16 shows the performance of the three algorithms.

Intuitively, we know the execution time of the three al-

gorithm should be GA≤TS≤10-HA, and it is so according

to Figure 16. Although TS requires more time than GA to

execute, its execution time is still in seconds, hence we believe

it is acceptable.

V. DISCUSSIONS

We discover several interesting things when exploring our

data. For example, there are two types of taxis in our data,

one is red, which is allowed to drive through the whole

city, and another one is green, which is allowed to drive in

the suburb only. The driving patterns of these two types of

taxis are quite different. Green taxis tend to pick up more

passengers, while red ones tend to pick up few passengers

but with longer distances. The reason of the choices could be

the area limitations. Figure 17 shows the relationship between

distance and pick-ups of green and red taxis in one month.

0 500 1000 1500
0

2000

4000

6000

8000

TOTAL

T
O
T
A
L

D
I
S
T
A
N
C
E

(
k
m
)

Fig. 17. Relationship between distance and pick-ups of green and red taxis
in one month.

Another interesting discovery is that, the driving patterns

of a taxi between before and after picking up a passenger are

quite different. For example, the average speed after picking

up is much higher than before. Moreover, the traces of taxis

after picking up passengers have many commons, while they

are almost totally different before. This also proves that taxi

drivers are experienced drivers in path-finding, but not in

passenger hunting.

VI. RELATED WORK

Trajectory mining: Mining knowledge from trajectories

has been studied for a long time. Some works studied the

features of moving objects from their trajectories [9]; some

works studied the techniques of trajectory analyzing, includ-

ing calibration [10], classification [11], clustering [12][13],

anomaly detection [14], etc; some works made further analysis

based on these techniques, like in [15], they detected flawed

road segments in the view of urban planning according to taxi

trajectories. The knowledges discovered in this field are the

basis of route planning.

Route planning: Route planning is an important applica-

tion that leveraging the knowledge discovered from historical

trajectories, which includes taxi hunting route recommenda-

tion [4], energy-efficient driving route recommendation [16],

fast driving route recommendation [17] [3], personalized route

planning [18], dynamic route planning [19] [20] [21], etc.

These works are either focus on identifying POIs, or combin-

ing popular route fragments. In this paper, we focus on both

identifying POIs and combining these POIs as a connected

trajectory.

VII. CONCLUSION AND FUTURE WORK

In this paper, we create a system, called HUNTS, to make

hunting trajectory recommendations for taxi drivers to earn

more money. To make recommendations, we study a new prob-

lem, called global-optimal trajectory retrieving, and to solve

the problem, we propose a novel trajectory sewing method,

based on the score which considers both picking-up rate and

average income of each road segment. The recommendations

are approximate global-optimal trajectories rather than several

POIs. At last, we evaluate the accuracy and the performance of

our system, by comparing with traditional methods and ground

truth data.

Choosing routes is like gambling, if all the taxis in the

same road segment choose the same route at the same time,

the picking up rate could be lower because of too many

competitors. In the future, we will study the game intelligence

of taxi competitions, and which is also a challenging problem.

VIII. ACKNOWLEDGMENT

This paper was supported in part by Huawei Corp. under

Contract YBCB2009041-27; Hong Kong, Macao and Taiwan

Science & Technology Cooperation Program of China under

Grant No. 2012DFH10010; Science and Technology Planning

Project of Guangzhou, China, under Grant No. 2012Y2-00030;

Singapore National Research Foundation under its Interna-

tional Research Centre @ Singapore Funding Initiative and

administered by the IDM Programme Office; and a University

Transportation Center grant (DTRT12-G-UTC11) from the US

Department of Transportation.

REFERENCES

[1] Taxi number stopped growing for 10 years in beijing. Beijing
Daily. [Online]. Available: http://politics.people.com.cn/n/2012/0816/
c1001-18753269.html

[2] Taxi number stopped growing for 8 years in changsha. Changsha
Evening. [Online]. Available: http://www.voc.com.cn/Topic/article/
201109/201109061730026480.html

[3] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” in ACM SIGKDD 2011.

[4] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to find my
next passenger?” in UbiComp 2011, 2011.

[5] A. Ziliaskopoulos and H. Mahmassani, Time-dependent, shortest-path
algorithm for real-time intelligent vehicle highway system applications,
1993.

[6] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-
matching for low-sampling-rate gps trajectories,” in ACM SIGSPATIAL
GIS 2009, 2009.

[7] O. Pink and B. Hummel, “A statistical approach to map matching using
road network geometry, topology and vehicular motion constraints,” in
IEEE ITSC 2008, 2008.

[8] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
IEEE ICDE 2001, 2001.

[9] Q. He, K. Chang, and E.-P. Lim, “Analyzing feature trajectories for event
detection,” in ACM SIGIR 2007.

[10] S. Liu, C. Liu, Q. Luo, L. Ni, and R. Krishnan, “Calibrating large scale
vehicle trajectory data,” in IEEE MDM 2012, 2012.

[11] J. Lee, J. Han, X. Li, and H. Gonzalez, “Traclass: trajectory classifica-
tion using hierarchical region-based and trajectory-based clustering,” in
VLDB 2008, 2008.

[12] S. Liu, Y. Liu, L. M. Ni, J. Fan, and M. Li, “Towards mobility-based
clustering,” in ACM SIGKDD 2010.

[13] J. gil Lee and J. Han, “Trajectory clustering: A partition-and-group
framework,” in ACM SIGMOD 2007, 2007.

[14] J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection: A partition-
and-detect framework,” in IEEE ICDE 2008.

[15] Y. Zheng, Y. Liu, J. Yuan, and X. Xie, “Urban computing with taxicabs,”
in UbiComp 2011, 2011.

[16] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani,
“An energy-efficient mobile recommender system,” in ACM SIGKDD
2010.

[17] J. Yuan, Y. Zheng, C. Zhang, and W. Xie, “T-drive: Driving directions
based on taxi trajectories,” in ACM SIGSPATIAL GIS 2010.

[18] J. Letchner, J. Krumm, and E. Horvitz, “Trip router with individualized
preferences (trip): Incorporating personalization into route planning,” in
AAAI 2006, 2006.

[19] H. Kanoh and K. Hara, “Hybrid genetic algorithm for dynamic multi-
objective route planning with predicted traffic in a real-world road
network,” in GECCO 2008, 2008.

[20] N. Malviya, S. Madden, and A. Bhattacharya, “A continuous query
system for dynamic route planning,” in IEEE ICDE 2011, 2011.

[21] J. Xu, L. Guo, Z. Ding, X. Sun, and C. Liu, “Traffic aware route planning
in dynamic road networks,” in DASFAA 2013, 2012.

	HUNTS: A Trajectory Recommendation System for Effective and Efficient Hunting of Taxi Passengers
	Citation

	paper.pdf

