
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2012

Distributed Incomplete Pattern Matching via a NovelWeighted Distributed Incomplete Pattern Matching via a NovelWeighted

Bloom Filter Bloom Filter

Siyuan LIU
Carnegie Mellon University

Lei KANG
Hong Kong University of Science and Technology

Lei CHEN
Hong Kong University of Science and Technology

Lionel NI
Hong Kong University of Science and Technology

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
LIU, Siyuan; KANG, Lei; CHEN, Lei; and NI, Lionel. Distributed Incomplete Pattern Matching via a
NovelWeighted Bloom Filter. (2012). Distributed Computing Systems (ICDCS), 2012 IEEE 32nd
International Conference on.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3470

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3470&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3470&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Distributed Incomplete Pattern Matching via a Novel Weighted Bloom Filter

Siyuan Liu ∗, Lei Kang #, Lei Chen #, Lionel Ni #

∗iLab, Heinz College, Carnegie Mellon University
#Hong Kong University of Science and Technology

Abstract—In this paper, we first propose a very interesting
and practical problem, pattern matching in a distributed
mobile environment. Pattern matching is a well-known problem
and extensive research has been conducted for performing
effective and efficient search. However, previous proposed
approaches assume that data are centrally stored, which is not
the case in a mobile environment (e.g., mobile phone networks),
where one person’s pattern could be separately stored in
a number of different stations, and such a local pattern is
incomplete compared with the global pattern. A simple solution
to pattern matching over a mobile environment is to collect
all the data distributed in base stations to a data center
and conduct pattern matching at the data center afterwards.
Clearly, such a simple solution will raise huge amount of
communication traffic, which could cause the communication
bottleneck brought by the limited wireless bandwidth to be
even worse. Therefore, a communication efficient and search
effective solution is necessary. In our work, we present a novel
solution which is based on our well-designed Weighted Bloom
Filter (WBF), called, Distributed Incomplete pattern matching
(DI-matching), to find target patterns over a distributed mobile
environment. Specifically, to save communication cost and
ensure pattern matching in distributed incomplete patterns,
we use WBF to encode a query pattern and disseminate the
encoded data to each base station. Each base station conducts
a local pattern search according to the received WBF. Only
qualified IDs and corresponding weights in each base station
are sent to the data center for aggregation and verification.
Through extensive empirical experiments on a real city-scale
mobile networks data set, we demonstrate the effectiveness and
efficiency of our proposed solutions.

Keywords-Incomplete pattern matching, time series, dis-
tributed mobile environment, Weighted Bloom Filter.

I. INTRODUCTION

Given a pattern time series, finding time series in database
that are similar to the given pattern (a.k.a. pattern matching)
is a well-studied problem due to its wide application do-
main. Most existing solutions assume that data are centrally
stored[2], [13], [16], [1], [3], [6], in other words, all the
time series data are collected to a data center. Under this
assumption, pattern matching is conducted locally over the
collected time series. However, in a distributed wireless
mobile environment, a person’s mobile phone communi-
cation data are often distributed in several base stations.
Even just for one day, his or her communication data may
be recorded in different base stations (e.g., near office or
home) at different time. Since the data stored in each base
station are not complete compared to data collected in the

data center, we call such distributed data as incomplete data
and define a new problem, Incomplete Pattern Matching
(IPM), that is, finding the pattern over incomplete data
in a distributed mobile environment. Our focus targets on
retrieving the pattern of interest in a communication and
time efficient way. The pattern that we are interested is
the communication data (number of calls, call duration and
number of partners, etc.) of a person along the time. The
existing solutions for centralized pattern matching are not
suitable for incomplete data unless all the data are collected
at the data center. However, such a solution incurs huge
amount of communication cost, which might degrade the
search performance onwards.

In fact, solutions for pattern matching over incomplete
data can be applied in many applications. For instance, a
mobile phone networks service provider wants to promote
a certain call package service to customers. Usually the
customers having similar communication patterns would
prefer similar call package services, thus given a preferred
customer’s pattern, the service provider needs to run a
pattern matching query over the networks to find customers
having the similar patterns. Though it is useful, it is quite
challenging to perform pattern matching over distributed
incomplete data.

Challenge 1 (Incomplete collecting): The data of a par-
ticular person is usually stored in several local base stations.
Usually a base station may serve numerous mobile phones
in one cell, and a data center may serve vast base stations.
The communication data of a person could be distributed
in a number of base stations. We call the communication
data stored in several base stations along a person’s moving
trajectory as a global pattern, and accordingly the commu-
nication data stored at each base station as a local pattern.
The distributed mobile environment causes the pattern data
to be incompletely stored in different base stations, and the
distributed incomplete data would cause either inaccurate
pattern matching results or high communication and storage
costs.

Challenge 2 (Dynamic matching): Global and local pat-
terns change along the time, which brings great challenges to
conduct pattern matching with high accuracy and efficiency.

To tackle the above major challenges, we propose DI-
matching, a framework for efficiently and accurately re-
trieving patterns from distributed incomplete data sets. The

whole process consists of three steps. First, we represent
and encode the given patterns utilizing our novel Weighted
Bloom Filter (WBF), where the weight encodes the relation
of local patterns and a corresponding global pattern along
the time. Second, the represented patterns stored in each
base station could be sampled and hashed into WBF to
check whether it is the pattern of interest. Matched patterns
together with the corresponding weights are submitted to
data center. Third, the data center aggregates the weights of
the patterns and ranks them by weight values.

Our contributions are summarized into three-folds. First,
we define communication pattern time series based on
practical applications, and propose a new problem, Incom-
plete Pattern Matching (IPM), to study the pattern match-
ing in terms of incomplete, dynamic and distributed data
in a distributed environment. Second, we design a novel
Weighted Bloom Filter (WBF), based on which, we devise
a communication-efficient and search-effective framework,
called DI-matching, to address IPM problem. Third, we
evaluate our methods with extensive empirical experiments.
The results confirm the efficiency and effectiveness of the
proposed solutions.

The rest of the paper is arranged as follows. The pre-
liminary information of our study is provided in Section II.
Section III defines IPM problem. In Section IV, we devise
DI-matching based on WBFs. The empirical experiments
to evaluate the merits of our methods are elaborated in
Section V. Section VI gives an overview of related work.
We conclude and outline our future work in Section VII.

II. PRELIMINARY

First, we introduce the mobile phone communication data
sets used in our study. Second, we define communication
pattern time series. Third, we briefly explain Bloom Filters.

A. Mobile Phone Communication Data Sets Basics

We were able to collect mobile phone data from a city in
China from January 1st, 2008 to December 31st, 2008. The
city area is around 8700 km2 covered by 5120 base stations,
serving about 3.6 million mobile phone users. Some raw data
characteristics are listed as follows.

Characteristic 1 (Distributed data sets): In the mo-
bile phone networks, the communication (call) data are
distributively stored in base stations, and usually uploaded
to data center once a month. A person’s communication
data are always stored in several base stations. Such a
data characteristic results in a distributed incomplete data
collection, and we cannot aggregate all the data to conduct
the pattern matching due to high communication cost. Hence
an accurate and efficient distributed pattern matching method
is required to handle the incomplete pattern data.

Characteristic 2 (Dynamic evolving data): In the mobile
phone networks, the communication data are generated when
a call is built up. That is the communication data are

Table I
MEANING OF SELECTED NOTATIONS IN THE PAPER

Variables Description
g Time interval
T Time series, g ∈ T
γg
i Pattern in time interval g

Γg The pattern set in the time interval g
ε User-specified approximation parameter
Oi Data object (mobile phone)
Z Universe of data objects
N0 Data center node
Nj Base station node
Vi Global value of data object Oi

Vi,j Local value of Oi at node Nj

a Number of patterns
b Number of samples in the pattern
k Number of hash functions
m Length of Weighted Bloom Filter
p Probability of a bit to be 0 in WBF
q Probability of a value to be in WBF

evolving along the time. Such data characteristic requires
that the proposed pattern matching method can compute and
update the results efficiently.

Characteristic 3 (Large scale data sets): In our collected
data sets, there are 3.6 million mobile phones, and the raw
data per day are more than 2 GB with more than 10 million
records. Hence, the search and storage costs over these data
are extremely expensive.

In the mobile phone communication data sets, there are
mainly three attributes for a person’s communication. Num-
ber of calls record the call count that a person makes within
a time interval. Call duration is the total duration of the calls
a person makes within a time interval. Number of partners is
the number of distinct persons that a person contacts within
a time interval. Hence we take these three attributes as an
example to define the communication pattern of a person in
a mobile phone communication networks. For convenience,
Table I summarizes the notations used in this paper. We use
person, mobile phone and object interchangeably to express
the same concept.

In practice, the communication companies would like to
take the communication pattern of a person as an overall
combination of the number of calls, call duration, and
number of partners, etc., and the formal definition is as
follows.

Definition 1: Given a person Oi in mobile phone net-
works, a time interval g, Oi has the attribute set Sg

i =
{sg,1i , ..., sg,fi , ..., sg,mi }, where 1 ≤ f ≤ m and m is the
number of attributes. The communication pattern within the
time interval g, γg

i is

γg
i =

1

m

m∑
f=1

wfs
g,f
i (1)

where wg
f is the weight of an attribute f in the time

interval g. The communication pattern set is Γg =

{γg
1 , ..., γ

g
i , ..., γ

g
n}, where i ∈ N, i = 1, 2, ..., n, and n is

the number of persons.
In our study, we take the mean of three attributes (m=3),

the number of calls, the call duration, and the number of
partners, as pattern values. Our solution can be extended to
other cases where m > 3 and other functions. The default
time interval is set as a minute, which is set by the mobile
service company. The time interval does impact the matching
results. Hence, in our paper, we hold the time interval as
a minute. In fact our method can work in different time
intervals via simple adjustments. We say a pattern matches
with the given one if and only if their global patterns match.

B. Bloom Filter Basics

Bloom Filter (BF) [7] is a simple space-efficient random-
ized data structure for approximately representing a set to
support membership queries. BF allows false positives, but
the space savings often outweigh this disadvantage when the
probability of the error is sufficiently low. Burton Bloom
introduced Bloom Filter in 1970 [7], and ever since it has
been widely used in database and networking applications
[8]. Bloom Filter can be considered as an array of 0s and
1s. When a value is hashed into the Bloom Filter, the
corresponding bits are turned to 1 from 0. To check whether
a value is in a given set, we can hash the value into the
Bloom Filter to check whether all the corresponding bits
are 1s. It allows a false positive, and gurranttee no false
negative. BF has significant space and time advantages
[7], [8], but one notable issue in Bloom Filter is that the
accuracy may not be good enough, that is, it only guarantees
a false positive probability lower bound [21], [22]. In our
study, we design Weighted Bloom Filter, to address the
incomplete pattern matching problem. The major difference
between WBF and BF is that each bit with 1 in WBF has
a pointer pointing to the weight of corresponding hashed
values. With this scheme, the false positive probability could
be significantly reduced.

III. PROBLEM: INCOMPLETE PATTERN MATCHING

In this section, we define a new pattern matching problem,
Incomplete Pattern Matching, which is different from tradi-
tional pattern matching methods in two aspects. First, pat-
terns are incomplete. Second, the environment is distributed
in a large scale.

A. Running Example

In the following parts, we will refer to the example
scenario that represents a typical application of incomplete
pattern matching. It will serve to motivate our approach and
we will use it to validate our incomplete pattern matching
algorithms. The example application we consider is to pro-
vide call package service to mobile phone customers, which
requires to search similar communication patterns across a
distributed set of base stations. Numerous service providers

are thirsting for retrieving their target customers according
to their pattern examples (given a user pattern). Following
is a continuous searching query:

Searching Query. Which mobile phone users whose
communication patterns are the most similar ones to the
given pattern across all base stations?

Obviously, along the time the number of service providers,
patterns, and base stations are accumulating and evolving.
This query is required to provide near real time feedback
to service providers (in the data center), allowing them to
adapt their advertising strategies and budgets in response
to observed similar patterns. Furthermore, the effects of
changes made to the data center would be observable
shortly afterward, achieving tight closed-loop interaction
with immediate feedbacks. Thus, online realtime monitoring
is preferable to off-line analysis in this scenario.

In the next subsection, we formally define the Incomplete
Pattern Matching problem.

B. Problem Definition

We consider a distributed online searching environment
with l+ 1 nodes: a data center node N0, and l remote base
station nodes N1, N2, ..., Nl. Collectively, the base station
nodes monitor a set Z of n objects (mobile phones) Z =
{O1, O2, ..., On}, each object Oi is associated with a set of
natural numbers Vi, where Vi =

{
γ1
i , γ

2
i ..., γ

t
i , ...

}
(each

represents a value of its corresponding attribute, and t is a
time interval). The complete global values of an object may
not be observed by an individual node (base station). For
an individual base station node Nj , the partial (local) values
of object Oi are denoted as Vi,1,Vi,2, ...,Vi,j . The overall
(global) values of object Oi, which is not materialized on
any node, is defined to be Vi =

∑
1≤j≤l Vi,j .

We define the Incomplete Pattern Matching (IPM) prob-
lem as follows.

Problem Statement: Incomplete Pattern Matching (a top-
K query)

Given a user-interested time series pattern Vu and a user-
specified approximation parameter ε, find a set Ω of the time
series Vi such that

∀γt
u ∈ Vu,∀γt

i ∈ Vi,
∣∣γt

u − γt
i

∣∣ ≤ ε (2)

where ε > 0, and the number of returned results through
the above query is K, where K is a number indicating the
top-K most similar patterns (|Ω| = K). 2

If ε = 0, the data center reports the exact top-K set. For
non-zero values of ε, a corresponding degree of errors are
tolerant in the reported top-K set. The objective of retrieving
top-K similar object patterns in the incomplete patterns is
to provide, in the data center, an approximate top-K set that
is valid within ε over the time, while minimizing the costs
in communication and storage.

In this paper, we take the similarity distance function
defined in Eq. (2) as an example. Because in the mobile

phone networks, the communication data are computed at
every a time interval, and we call two persons having a
similar communication pattern if and only if they are similar
in each time interval. Hence we utilize L1-norm similarity
distance function. At the same time, the mobile phone
networks data (the number of calls, the call duration, and
the number of partners) are all integers, hence we discuss
the integer case in our work. For the decimal numbers or
other distance functions, we leave them as future work.

C. Analysis and Observation

The challenge here is that a person’s data are stored in
several base stations, say he or she lives in one place but
works in another. We call each piece of data stored in each
base station is a local pattern, and the gathering of the whole
data is the global pattern.

Intuitively, we may have two approaches to conduct the
pattern matching task in the distributed mobile environment.

Approach 1: we may ship the global data from all the
nodes to the data center, which conducts their aggregation
and then applies the pattern matching algorithms in time
series. This approach is clearly inefficient and often infea-
sible due to the communication and storage costs between
the data center and nodes, when there are huge number of
nodes with a large amount of time series data.

Approach 2: Each base station locally employs pattern
matching algorithms on its own data set to find the similar
ones, and the data center aggregates the local matched
patterns to find the global ones. This approach reduces
communication overhead, but may miss items which are
unmatched in base stations, while their aggregated patterns
across all nodes match with the given one. On the other hand,
even a pattern in a base station matches with the given one,
we cannot ensure this one is a “real” target. For instance,
assume that a given pattern is {3, 4, 5}, where there are
3 base stations respectively having three patterns {1, 1, 1},
{2, 2, 0}, and {0, 1, 4}. Obviously, the three patterns are
individually unmatched with the given one, but when we
aggregate the three patterns, we can find the global pattern
exactly matches with the given one. However, given the
same pattern, and the 3 base stations respectively posses
three patterns {3, 4, 5}, {3, 4, 5}, and {3, 4, 5}. We can find
even if the individual patterns exactly match with the given
pattern, the global one {9, 12, 15} is totally different from
the given one.

Nevertheless, the data center relies on data or communica-
tions (messages) from distributed nodes to retrieve the target
patterns. The above naı̈ve solutions explained that messages
that contain the global data sets are inefficient, and messages
that contain only the local matched patterns are lossy. The
main reason is that the local data are incomplete comparing
to the global data. Thus, the core problem of incomplete
pattern matching is to devise an appropriate scheme for
summarizing given patterns and local data in time series. In

0 2 4 6 8
0

0.01

0.02

0.03

0.04

Time series (unit: 6 hours, length: 2 days)

P
at

te
rn

 v
al

ue
 (

no
rm

al
iz

ed
)

Category 1
Category 2
Category 3
Category 4
Category 5
Category 6

(a) Periodicity, divisibility

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of local patterns

C
D

F

(b) Similarity

Figure 1. Realistic pattern features

other words, each node should be able to feedback small yet
informative messages to the data center so that the center can
derive global matched patterns in an efficient and accurate
fashion.

Before presenting our novel solution, we introduce a
number of interesting discoveries from the raw data sets.

Observation 1: In the global perspective, the patterns
appear periodical and divisible features. In Figure 1 (a)
(pattern values are normalized to the mean value), we show
the communication patterns of six population categories
(based on occupations) in two days. Based on our data sets,
we can observe that in each day, the pattern shapes are
similar. The periodical data are helpful for us to speed-up
computation and save storage. In our solution, we utilize
the time order in the period to conduct the matching. We
accumulate the values in the original pattern along the time,
and find that the patterns in different categories are more
divisible over the time.

Observation 2: In the individual perspective, the local
patterns of similar global patterns appear some interesting
similarity. In Figure 1 (b), we show the local pattern sim-
ilarity (as defined in Eq. (2)) distribution of the similar
global patterns. X-axis is the number of local patterns which
are similar, and y-axis is the percentage in Cumulative
Distribution Function (CDF). We can observe that in the
similar global patterns the percentage that there exist more
than one similar local patterns is greater than 90 %. In other
words, within the same communication category, even the
local patterns are variational, at least one local pattern is
similar. The similar observations could be found in [15],
[10], [14], [11], [12]. It is easy to understand that in our
real life, we say two persons in the same category (similar
communication patterns), and then they may have similar
daily behaviors (e.g., occupations, routes, and schedules).
We utilize this observation to design a Weighted Bloom
Filter and conduct pattern matching in a distributed mobile
environment.

IV. FRAMEWORK: DI-MATCHING

The overview of DI-matching is explained in Figure 2.
First, a set of given patterns (original patterns, e.g. a global
pattern with corresponding local patterns) are represented
and encoded at data center side. Second, a Weighted Bloom
Filter is constructed on the represented and encoded patterns.

Original patterns

...

Number:

e

Represented

patterns

...

Number:

1
(,)

e

i

a C e i

=

=å

Hashing

Weighted Bloom

Filter (WBF)

1 0 ... 0

Distribute

ID Pattern

...

...

1 1 ... 1

0 1 ... 1

1 0 ... 0

...

WBFs

ID Weight

ID Weight

Aggregate ID

Rank similarity

Data center

Base stations

0.2

Figure 2. Distributed incomplete pattern matching overview

Third, the Weighted Bloom Filter is distributed to base
stations where the pattern matching is conducted. Finally,
the similar patterns’ IDs and weights are sent back to data
center to decide the top-K similar patterns.

A. Pattern Representation and Encoding

Bloom Filter is designed to tell whether a value we want
exists or not, but cannot distinguish a value sequence. For
example, a Bloom Filter may consider {1, 2, 3} and {3, 2,
1} as the same pattern because the values 1, 2 and 3 are the
same in the two patterns, but in our application scenario,
{1, 2, 3} and {3, 2, 1} are two totally different time series
patterns. Hence to distinguish the patterns with same values,
we develop a pattern representation and encoding method
which utilizes the time information hidden in the pattern
values.

Recalling Definition 1 to define a time series pattern,
that is a communication pattern (pattern, for short in the
following parts), e.g. {1, 2, 3}, contains two pieces of
information, the value at each time interval and the order
of this value along the time. We utilize these information
together to represent and encode the pattern as follows.

Given an original pattern V T , for its value at time interval
g, V g, we transform it into its accumulation form f(g),
where

f(g) = f(g − 1) + V g (3)

f(0) = V 0, and g = 1, ..., t.
In other words, the value f(g) of the new form is the

accumulated value of the original pattern. For example,
{1, 2, 3} is the original pattern and the new one turns
to be {1, 3, 6}. We transform the original pattern to this
accumulation form for three merits. First, accumulation
form can represent the patterns with same values into a
unified monotonic form, which is more straightforward and
easy to distinguish the actual different patterns. Second, the
difference between different patterns may be enlarged at
each time point, because the difference is also accumulated

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Time series (unit: 6 hours, length: 1 week)

A
cc

um
ul

at
ed

 v
al

ue

Category 1
Category 2
Category 3
Category 4
Category 5
Category 6

Figure 3. Pattern representation

as the accumulation of the value itself. Third, the attribute
value and the order information are combined into the new
value in its accumulation form. Given a value of the new
form, we can easily estimate the original value and the time
interval as long as the scale and tail values are known. Thus,
we can make comparisons among patterns, regardless the
orders in them (they are already ordered in the accumulation
form). In our application scenario, the pattern values are
time series, which means the sequence is important. The
accumulated calling patterns can represent a person’s calling
behavior much better than the calling patterns in individual
time intervals because the accumulation method is able to
enlarge the pattern difference and the sequence difference in
time series.

For example, the time series patterns {1, 2, 3} and {3, 2,
1} (the value sequence in the vector is the time sequence)
can be transformed as {1, 3, 6} and {3, 5, 6}, which can be
easily distinguished as the values are different at 1 and 5 (the
first two values), and the values at the same time indicate
the order of the original values (5 is latter than 3 because 5
is larger than 3).

We illustrate the results of the method by real life data in
Figure 1 (c). X-axis is the time series, with the unit being six
hours and the time length being two weeks. We accumulate
the values in the original pattern by Eq. (3). We can observe
that the accumulated patterns are not only distinguishable by
values but also embedded the time information.

Suppose we receive a pattern set, which consists of three
local patterns, e.g. one user’s home, work place and shopping
place are in different base stations. Another user’s home
and work place are in the same base station, hence we
cannot match the pattern with the user’s pattern with a single
pattern or global pattern comparison. In the base station, we
need to compare the pattern of each person with all the
possible combinations of the given patterns. Given a pattern
set consisting of one global pattern and several local patterns,
we need to compare the pattern of each person with each
pattern in the pattern set. Say the patterns in the pattern set
are collected from one person traveling l base stations, the

Algorithm 1 Data Center Side: Weighted Bloom Filter
Input: local pattern set S, number of local patterns e(e =

|S|) and sample number b
Output: Weighted Bloom Filter set WBF

1: Begin
2: represent patterns by Eq. (3), get S′

3: take the combinations of pattern S′

4: get the new pattern set S′′ and a = |S′′|
5: for pattern i do
6: sample b points (vij , i = 1, 2, ..., a and j = 1, 2, ..., b)

and the maximum point is vib
7: for each point do
8: the weight is wij =

vib
vab

9: hash each value vib into WBF using k hash func-
tions, and add the weight of this point to the pointer
of the bits that turned to be 1s.

10: end for
11: end for
12: return WBF .
13: End

number of comparison Ψ is

Ψ =
l∑

j=1

C(l, j) (4)

where C(l, j) is the number of j-combinations from a given
set of l elements.

Obviously there exists significant time cost in this pro-
cedure if we simply adopt traditional pattern matching
methods. Thus we hash all the patterns into one Bloom Filter
and then distribute this Bloom Filter to all the base stations.
In each base station, we just hash each person’s converted
pattern into this Bloom Filter to see if this pattern belongs
to the given pattern set. If the target bits are all 1s, then we
say this person is a target person, otherwise no. Weighted
Bloom Filter is designed in the following subsection.

B. Weighted Bloom Filter

Weighted Bloom Filter is an extended version of Bloom
Filter, where each bit equals to 1 points to a weight value,
which can reduce and upper-bound the false positive prob-
ability.

Suppose the given global pattern is {3, 4, 5}, with two
local patterns {1, 2, 3} and {2, 2, 2}. There are two persons
in the base station, with the patterns, say {3, 4, 5} and {1,
2, 3}. They are both possible target person but in different
levels (global-matched or local-matched). Unfortunately, a
Bloom Filter cannot distinguish the two patterns because
Bloom Filter only decides whether a value exists. Hence, we
devise a novel Weighted Bloom Filter (WBF) to distinguish
the global-matched ones and local-matched ones, and then
inform the data center the similarity (values) of the selected

Algorithm 2 Base Station Side: Pattern Matching
Input: Weighted Bloom Filter and the pattern set
Output: Weights of the patterns or zero

1: Begin
2: convert a pattern into an accumulated form and sample

b points;
3: for each point vi(i = 1, 2, ..., b) do
4: hash into WBF
5: if corresponding bits contain 0 then
6: return zero
7: if all bits contain the same weight then
8: put the weight into an array
9: end if

10: end if
11: end for
12: if all the weights of every point are the same then
13: return the weight
14: else return zero
15: end if
16: End

persons. The center combines the value of the same person
from different base stations, ranks the similarity, and delivers
the final results to the users.

The advantages of WBF are three-folds. First, the commu-
nication cost between base stations and data center is highly
reduced, because we can only send the ID and weight back
to data center, instead of ID and time series pattern. Second,
we can learn the similarity in a much more precise style. The
pattern matching in base stations can distinguish the global-
matched or local-matched patterns. Third, the false positive
rate is reduced by the calculation of weights, because only all
the values of a pattern having the same weight is accepted.
For example, there are two patterns in Bloom Filter {1, 2,
3} and {2, 4, 5}, a pattern {1, 4, 5} (an unmatched pattern)
returns a matched result in Bloom Filter, but in WBF, {1, 4,
5} returns an unmatched result so that it will not be accepted
as a matched result.

In a WBF, each pattern and each value of each pattern are
attached with weights. The principles of WBF are described
as below.

• If a pattern of a person matches with a given global
pattern, the weight of this pattern in WBF is 1.

• If a pattern of a person matches with a local pattern of
the given global pattern, and the weights of all local
patterns from all the base stations belonging to this
person is summed up to 1, if this person is a “real”
target person.

• The weight of each value in a pattern is equal to the
weight of this pattern.

The WBF design details are introduced as follows.
First, the pattern representation and weight assignment

are conducted in the data center. Suppose we get a pattern

Algorithm 3 Data Center Side: Similarity Ranking
Input: person IDs and the corresponding weights (suppose

r pair totally)
Output: the top-K target persons

1: Begin
2: for each ID do
3: take the sum of the weights, if larger than 1, delete

this ID
4: rank the IDs in descending order
5: take the top-K IDs and return them
6: end for
7: End

from a user that consists of several local patterns, the sum
of which is a global pattern. Note that if and only if the
global patterns match, we call a target pattern. We convert
the given patterns to the accumulated forms and calculate
all possible combinations of these new patterns (there are a
new patterns, a > 1, and in the real life applications, a is
always a large number). The weight of a local pattern is the
maximum value in it over the maximum value in the global
pattern, e.g., the weight of a pattern {1, 2, 3} is 3/9, with
respect to the global pattern {4, 7, 9}. All the weights of the
patterns are maintained by an array W .

To further save the communication, storage and compu-
tation costs, we can utilize a sampling scheme on patterns.
For each of these patterns (the number of these patterns is
a), we will sample b values (uniform sampling) and set the
weight of each value as the weight of this pattern. There
are totally n = ab values that should be hashed into a WBF
with length m. This filter begins as an array of all 0s. Each
value is hashed k times by different hash functions, and each
hash yields a bit location which is set to 1. If one bit is set
to 1 from 0 in WBF by a value, this bit is added into a
queue that contains the weight of this value. If this bit is
already set to 1, the weight of this value is pushed back to
the queue. Note that in our problem definition, we define the
approximate similarity, hence when we conduct the hashing,
we hash all the possible approximate values into WBF. We
summarize this method in Algorithm 1, which constructs
WBFs of given patterns in the data center. First, we represent
the given patterns by Eq. (3). Second, the sample method
is provided to compress the represented patterns. Third, we
calculate the weights of patterns. At last, the given patterns
are hashed into a WBF.

Second, the pattern matching is carried out in base
stations. In base stations, the patterns to be checked are
processed by the same above methods. The sampled values
of a pattern is hashed into WBF. If all the target bits are 1s
and all the weights are the same (1 bit may contain 2 or more
weight value), this pattern is returned as a target pattern. The
number of pattern weight calculations is bounded by nk, as
each bit of 1 contains a weight at most and the sampled

b points are hashed into bk bits at most. We summarize
this method in Algorithm 2, which carries out the pattern
matching in base stations and reports possible matched
patterns to the data center.

Algorithm 2 is carried out in base stations to conduct the
pattern matching. First, the patterns in the base stations are
represented and sampled by the same methods we discussed
in Algorithm 1. Second, we match the values of the patterns
in the Weighted Bloom Filter from the data center, and if and
only if the weights of every value (point) are the same, we
now find the possible matched patterns. At last, the possible
matched ones are sent back to the data center with the IDs
and weights.

Last, the matched patterns are submitted to the data
center, and similarity ranking is provided. The data center
adds up all the pattern weights of the same person, deletes
the sum of the weights larger than 1 and ranks the persons
in descending order from 1. The top-K persons are finally
returned. The reason for the weight sum larger than 1 is that
a person’s local patterns in different base stations may match
with the given global pattern and also match with the given
local patterns. Obviously this person is not our target person
because this person’s aggregated global pattern is different
from the given global pattern. The method is summarized in
Algorithm 3, which ranks the similarities of the patterns by
the weights.

The time complexity of the three algorithm are analyzed
as follows.

Algorithm 1 time complexity: We need to hash n = ab
values into Bloom Filter by k hash functions, so the time
complexity is O(nk).

Algorithm 2 time complexity: We need to hash b values
into WBF by k hash functions, and the time complexity is
O(bk). The comparison of weights costs kb at most. Totally,
the time complexity is O(bk).

Algorithm 3 time complexity: We travel all the IDs and
cost O(r), while the ranking costs O(r log r), thus, totally
the time complexity is O(r log r).

V. EMPIRICAL EVALUATION

In this section, we evaluate our proposed methods using
large scale real life data. First, we give the experiment
description including real life data sets, experiment setup and
comparison methods. Second, we investigate the parameter
setting impacts in our method. Base on the parameter study,
we conduct the experiments to evaluate accuracy, efficiency
and effectiveness of our solutions and comparison methods.
At last, we demonstrate the upper bound tightness of WBF
by the empirical experiment results.

A. Experiment Description

Data sets description: The data set scale is around 1
Tera-Bytes. The data we collected from each base station,
are called Call Detail Record (CDR) and Cell Detail List

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of patterns (*100)

P
re

ci
si

on

Naive
BF
WBF

(a) Accuracy

0 1 2 3 4 5
0

30

60

90

120

150

Number of patterns (*100)

T
im

e
co

st
 (

*1
0

se
co

nd
)

Naive
BF
WBF

(b) Time cost

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of patterns (*100)

C
om

m
un

ic
at

io
n

co
st

Naive
BF
WBF

(c) Communication

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of patterns (*100)

St
or

ag
e

co
st

Naive
BF
WBF

(d) Storage cost

Figure 4. Accuracy and efficiency evaluation

(CDL). Basically, CDR contains mobile phone ID, call type
ID, opposite mobile phone ID, start time, call duration,
adversary ID, and call moment. CDL records cell (base
station) ID and cell location. Base on CDR and CDL, we
can get the personal communication data (Definition 1) in
the base stations [20].

We elaborate our methods by the following two data sets.
Data set 1 is CDR data collected from January 1st, 2008

to December 31st, 2008.
Data set 2 is collected from an empirical experiment

with 310 persons in the city we conducted from March
28th, 2009 to March 31st, 2009, including the CDR and
real population situation (e.g., occupations and daily routes).
Based on the domain knowledge, we classify these 310
persons into different categories and the persons in the same
category have the similar communication patterns. We take
this knowledge as ground truth.

Experiment environment: A server with four Intel Core
Quad CPUs, Q9550 2.83 GHz and 32 GB main memory.
In our experiment, we set one thread as a base station.
The number of threads are the same as the number of base
stations in our real life data set.

Comparison methods: We compare our work with (i)
naı̈ve method (as we discussed in Approach 1, Section III-C,
ships all the distributed data to data center and conducts
pattern matching) and (ii) Bloom Filter based method [7],
[8].

B. Convergence study

In WBF, there are three parameters. The first one is a,
the number of patterns as the input. The second one is b,
the number of sample values, and the third one is k, the
number of hashing functions. a and k are given by users,
hence the setting of b should be studied in our experiment.
We utilize four groups of data (four days data in Data set 1)
to illustrate the impact of b on the pattern matching accuracy.
The conclusion is that when the number of sample values
(uniform sampling) is 5, the accuracy rates in different
groups of data become converged, and when the number of
sample values is 12, the accuracy rates in different groups
of data become stable. Hence, in the following experiments,
we set b as 12.

C. Accuracy and Efficiency Evaluation

We evaluate the accuracy and efficiency in four aspects,
that is, precision, time cost, communication cost, and storage
cost.

First, we introduce the definitions of evaluation metrics.
Accuracy is defined by the precision, that is True pos-
itive/(True positive+False positive); it is the fraction of
retrieved similar patterns that are relevant to the search.
Time cost is the time that our method consumes in searching
the target patterns. Communication cost is the message size
cost from pattern matching between base stations and data
center. Storage cost is the space cost to store the patterns
in base stations. The experiment data set is Data set 1. We
evaluate three methods, naı̈ve method (Naı̈ve, ships data to
data center and conducts pattern matching), Bloom Filter
(BF, utilize a Bloom Filter in DI-matching, instead of WBF)
and our Weighted Bloom Filter (WBF, utilize a Weighted
Bloom Filter in DI-matching).

Second, we show and analyze the experiment results. In
Figure 4 (a), x-axis is the number of patterns, and y-axis is
the precision. The result shows that our method, WBF has
the similar precision to the naı̈ve method, which possesses
the best precision because the naı̈ve method conducts pattern
matching after ships all the distributed data to data center,
that is this method conducts pattern matching in the global
collected data. At the same time, the BF has much less
precision, especially as the number of patterns increases,
because BF takes many different time series patterns as the
similar ones while WBF can achieve much higher precision
due to distinguishing the different time series patterns. In
Figure 4 (b), x-axis is the number of patterns, and y-axis
is the time cost. Our method is against the exponentially
increasing time cost of the naı̈ve method and the linearly
increasing in BF, almost not sensitive to the number of
patterns. This merit has been explained in the algorithm time
complexity analysis. In Figure 4 (c), x-axis is the number
of patterns, and y-axis is communication cost(in percentage
of the naı̈ve method). WBF performs much better than the
other two methods. Because in a Weighted Bloom Filter, the
matching number is greatly cut down by the weight-based
scheme. In Figure 4 (d), x-axis is the number of patterns, and
y-axis is the storage cost(in percentage of the naı̈ve method).
Even though we hash weights into the WBF, actually it

Table II
INCOMPLETE PATTERN MATCHING EFFECTIVENESS

Days Precision Recall F1
March 28th, 2009 0.98 0.99 0.98
March 29th, 2009 0.99 0.99 0.99
March 30th, 2009 0.97 0.99 0.98
March 31st, 2009 0.98 0.99 0.98

brings little storage cost while as a trade-of, it achieves low
communication cost and high accuracy.

To summarize, WBF can achieve high accuracy, low
computation, storage, and communication cost. With the
increasing number of patterns, WBF-based method saves
more.

D. Effectiveness Evaluation

In Table II, we evaluate the incomplete pattern matching
effectiveness on Data set 2. We take 310 persons as our
study participants, among them there are six categories as
shown in Figure 1. We take these persons and categories
(similar patterns) as given patterns into our data set to test
the effectiveness of the method. If the retrieved pattern is
indeed a similar one based on the ground truth, we call it
true, otherwise, false. In the evaluations, the precision is
the fraction of retrieved similar patterns that are relevant
to the search. The recall is defined as True positive/(True
positive+False negative); it is the fraction of the relevant
similar patterns are successfully retrieved. F1 is the f -
measure defined as 2(Precision*Recall)/(Precision+Recall).
As shown in Table II, our methods perform well in empirical
experiments, achieving more than 97% precision and 99%
recall.

VI. RELATED WORK

Our work is mainly relative to two categories of current
research work. The first category is the pattern matching
method, and the second category is the distributed data
mining. We review the two category work in terms of basic
idea, the advantages and disadvantages as follows.

Pattern matching: Faloutsos et. al [13] studied a fast
subsequence matching in time-series by the indexing. Bag-
nall et. al [6] proposed the clipping as a transformation for
the shape similarity analysis of time series. Ahmed et. al [3]
defined distributed pattern matching problem and presented
a P2P-architecture solution. Agrawal et. al [2] presented the
pattern matching over event streams in RFID-based inven-
tory management. Agrawal et. al [1] studied the frequent
pattern mining. Yang et. al [17] presented a shared execution
strategy for processing multiple pattern mining requests over
streaming data. Cole et. al [26] proposed a fast algorithm to
conduct the approximate string matching, and Navarro et.
al [25] summarized the techniques for approximate string
matching in [5]. Our work is very different from the approx-
imate string matching problem because approximate string

matching is trying to conduct the string matching tolerant
of errors, but our problem requires an accurate matching.
At the same time, the distributed matching also makes the
techniques for handling the approximate string matching
not suitable, in terms of efficiency, scalability and accuracy.
Chazelle et. al [23] generalized classical Bloom Filter with
arbitrary functions as Bloomier Filter, while our WBF can
handle the distributed and incomplete pattern matching. We
are the first to propose Incomplete Pattern Matching, and
study it in a distributed mobile environment.

Distributed data management: Zhao et. al [19] tried
to retrieve items whose frequency of occurrence above a
certain threshold in the distributed data sets. Our work is
different from theirs in two aspects. First, their problem
was to retrieve the frequent items, and the errors may come
from the threshold, while in our problem, there is no such
criteria, and we try to conduct the pattern matching. Second,
they focused on the frequent patterns (items) mining in the
static scenario, while our problem focuses on a dynamic
mobile environment. Chen et. al [29] proposed the Peer-to-
Peer multi-keyword searching utilizing an optimized Bloom
Filter to cut a large amount of traffic cost. The similar works
utilizing Bloom Filter to solve the distributed problems are
also proposed in [27], [28], [30]. But in our new problem,
we require high accuracy and scalability which can not
be provided by the previous Bloom Filters. Babcock et. al
[5] studied the top-k monitoring queries in distributed data
streams. Zeinalipour-Yazti et. al [18] searched the distributed
spatiotemporal similarity, that is, given a query trajectory Q,
finding trajectories that follow a motion similar to Q, when
each of the target trajectories is segmented across a number
of distributed nodes. Approximate continuous querying over
distributed streams was studied by Cormode et. al in [9].
Akdere et. al [4] proposed a plan-based complex event
detection method across distributed sources. We are the first
to study dynamic incomplete pattern matching in terms of
high efficiency and effectiveness.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a new problem, Incomplete
Pattern Matching, which considers pattern matching in a
distributed mobile environment with incomplete data sets.
To address the challenges from the incomplete data sets, we
devise a novel Weighted Bloom Filter, and propose a frame-
work, DI-matching, to efficiently and accurately retrieve the
similar patterns in distributed incomplete data sets. Weighted
Bloom Filter’s properties are also analyzed. The empirical
experiments confirm the merits of our methods.

In the future work, we will study more application scenar-
ios, e.g., more distance functions for similarity computation.
We also hope this paper can draw more attentions into
the Incomplete Pattern Matching problem and our proposed
method, Weighted Bloom Filter.

VIII. ACKNOWLEDGMENT

This research was supported in part by Hong Kong RGC
Grant HKUST617710, China NSFC Grants 60933011, and
National High Technology Research and Development (863)
Program of China under Grant No. 2011AA010500. Siyuan
Liu’s research is in part supported by the Singapore Na-
tional Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by
the IDM Programme Office. Lei Chen’s research is sup-
ported by National Grand Fundamental Research 973 Pro-
gram of China under Project No. 2012CB316200, HP IRP
Project 2011, Microsoft Research Asia Grant, MRA11EG05,
HKUST SSRI11EG01, and NSFC No.60003074.

REFERENCES

[1] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent
pattern mining with uncertain data. In Proc. of the 15th ACM
SIGKDD, 2009.

[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In Proc. of the 34th ACM
SIGMOD, 2008.

[3] R. Ahmed and R. Boutaba. Distributed pattern matching: A key
to flexible and efficient p2p search. IEEE Journal on Selected
Areas in Communications, 25(1), 2007.

[4] M. Akdere, U. Çetintemel, and N. Tatbul. Plan-based complex
event detection across distributed sources. Proc. VLDB Endow.,
1(1), 2008.

[5] B. Babcock and C. Olston. Distributed top-k monitoring. In
Proc. of the 29th ACM SIGMOD, 2003.

[6] A. Bagnall, C. A. Ratanamahatana, E. Keogh, S. Lonardi, and
G. Janacek. A bit level representation for time series data
mining with shape based similarity. Data Min. Knowl. Discov.,
13(1), 2006.

[7] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7), 1970.

[8] A. Broder, M. Mitzenmacher, and A. Mitzenmacher. Network
applications of bloom filters: A survey. In Internet Mathemat-
ics, 2002.

[9] G. Cormode and M. Garofalakis. Approximate continuous
querying over distributed streams. ACM Trans. Database Syst.,
33(2), 2008.

[10] N. Du, C. Faloutsos, B. Wang, and L. Akoglu. Large
human communication networks: patterns and a utility-driven
generator. In Proc. of the 15th ACM SIGKDD, 2009.

[11] N. Eagle and A. Pentland. Reality mining: sensing complex
social systems. Personal Ubiquitous Comput., 10(4), 2006.

[12] N. Eagle, A. Pentland, and D. Lazerc. Inferring social network
structure using mobile phone data. Proceedings of the National
Academy of Sciences, 106(36), 2009.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc. of
the 20th ACM SIGMOD, 1994.

[14] K. Farrahi and D. Gatica-Perez. What did you do today?:
discovering daily routines from large-scale mobile data. In
Proc. of the 16th ACM MM, 2008.

[15] R. D. Malmgren, J. M. Hofman, L. A. Amaral, and D. J.
Watts. Characterizing individual communication patterns. In
Proc. of the 15th ACM SIGKDD, 2009.

[16] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In Proc.
of the 13rd ACM SIGKDD, 2007.

[17] D. Yang, E. A. Rundensteiner, and M. O. Ward. A shared
execution strategy for multiple pattern mining requests over
streaming data. Proc. VLDB Endow., 2(1), 2009.

[18] D. Zeinalipour-Yazti, S. Lin, and D. Gunopulos. Distributed
spatio-temporal similarity search. In Proc. of the 15th ACM
CIKM, 2006.

[19] Q. G. Zhao, M. Ogihara, H. Wang, and J. J. Xu. Finding
global icebergs over distributed data sets. In Proc. of the 25th

ACM PODS, 2006.

[20] Due to the anonymity of the review process, the website and
the datasets will be published after the paper is accepted.

[21] S. Cohen and Y. Matias. Spectral bloom filters. In Proc. of
the 29th ACM SIGMOD, 2003.

[22] D. Guo, J. Wu, H. Chen, and X. Luo. Theory and network
applications of dynamic bloom filters. In Proc. of the 25th

IEEE INFOCOM, 2006.

[23] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier
filter: an efficient data structure for static support lookup tables.
In Proc. of the 15th ACM-SIAM SODA, 2004.

[24] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. ACM
Commun., 51(1), 2008.

[25] G. Navarro. A guided tour to approximate string matching.
ACM Comput. Surv., 33(1), 2001.

[26] R. Cole and R. Hariharan. Approximate string matching: a
simpler faster algorithm. In Proc. of the 9th ACM-SIAM SODA,
1998.

[27] H. Cai, P. Ge and J. Wang. Theory and Network Applications
of Dynamic Bloom Filters. In Proc. of the 4th IEEE NAS, 2008.

[28] D. Guo, J. Wu, H. Chen and X. Luo. Applications of Bloom
Filters in Peer-to-peer Systems: Issues and Questions. In Proc.
of the 25th IEEE INFOCOM, 2006.

[29] H. Chen, H. Jin, L. Chen, Y. Liu and L. Ni. Optimizing Bloom
Filter Settings in Peer-to-Peer Multi-keyword Searching. IEEE
TKDE, 2011.

[30] F. Cuenca-acuna, C. Peery , R. Martin and T. Nguyen.
PlanetP: Using Gossiping to Build Content Addressable Peer-
to-Peer Information Sharing Communities. IEEE Press, 2003.

	Distributed Incomplete Pattern Matching via a NovelWeighted Bloom Filter
	Citation

	tmp.1488276894.pdf.ruUmu

