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Differentially Private Subspace Clustering

Yining Wang, Yu-Xiang Wang and Aarti Singh
Machine Learning Department, Carnegie Mellon Universty, Pittsburgh, USA

{yiningwa,yuxiangw,aarti}@cs.cmu.edu

Abstract

Subspace clustering is an unsupervised learning problem that aims at grouping
data points into multiple “clusters” so that data points in a single cluster lie ap-
proximately on a low-dimensional linear subspace. It is originally motivated by
3D motion segmentation in computer vision, but has recently been generically
applied to a wide range of statistical machine learning problems, which often in-
volves sensitive datasets about human subjects. This raises a dire concern for
data privacy. In this work, we build on the framework of differential privacy
and present two provably private subspace clustering algorithms. We demonstrate
via both theory and experiments that one of the presented methods enjoys formal
privacy and utility guarantees; the other one asymptotically preserves differential
privacy while having good performance in practice. Along the course of the proof,
we also obtain two new provable guarantees for the agnostic subspace clustering
and the graph connectivity problem which might be of independent interests.

1 Introduction

Subspace clustering was originally proposed to solve very specific computer vision problems having
a union-of-subspace structure in the data, e.g., motion segmentation under an affine camera model
[11] or face clustering under Lambertian illumination models [15]. As it gains increasing attention
in the statistics and machine learning community, people start to use it as an agnostic learning tool in
social network [5], movie recommendation [33] and biological datasets [19]. The growing applica-
bility of subspace clustering in these new domains inevitably raises the concern of data privacy, as
many such applications involve dealing with sensitive information. For example, [19] applies sub-
space clustering to identify diseases from personalized medical data and [33] in fact uses subspace
clustering as a effective tool to conduct linkage attacks on individuals in movie rating datasets. Nev-
ertheless, privacy issues in subspace clustering have been less explored in the past literature, with
the only exception of a brief analysis and discussion in [29]. However, the algorithms and analysis
presented in [29] have several notable deficiencies. For example, data points are assumed to be inco-
herent and it only protects the differential privacy of any feature of a user rather than the entire user
profile in the database. The latter means it is possible for an attacker to infer with high confidence
whether a particular user is in the database, given sufficient side information.

It is perhaps reasonable why there is little work focusing on private subspace clustering, which
is by all means a challenging task. For example, a negative result in [29] shows that if utility is
measured in terms of exact clustering, then no private subspace clustering algorithm exists when
neighboring databases are allowed to differ on an entire user profile. In addition, state-of-the-art
subspace clustering methods like Sparse Subspace Clustering (SSC, [11]) lack a complete analysis of
its clustering output, thanks to the notorious “graph connectivity” problem [21]. Finally, clustering
could have high global sensitivity even if only cluster centers are released, as depicted in Figure 1.
As a result, general private data releasing schemes like output perturbation [7, 8, 2] do not apply.

In this work, we present a systematic and principled treatment of differentially private subspace
clustering. To circumvent the negative result in [29], we use the perturbation of recovered low-
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dimensional subspace from the ground truth as the utility measure. Our contributions are two-fold.
First, we analyze two efficient algorithms based on the sample-aggregate framework [22] and estab-
lished formal privacy and utility guarantees when data are generated from some stochastic model or
satisfy certain deterministic separation conditions. New results on (non-private) subspace clustering
are obtained along our analysis, including a fully agnostic subspace clustering on well-separated
datasets using stability arguments and exact clustering guarantee for thresholding-based subspace
clustering (TSC, [14]) in the noisy setting. In addition, we employ the exponential mechanism [18]
and propose a novel Gibbs sampler for sampling from this distribution, which involves a novel tweak
in sampling from a matrix Bingham distribution. The method works well in practice and we show it
is closely related to the well-known mixtures of probabilistic PCA model [27].

Related work Subspace clustering can be thought as a generalization of PCA and k-means clus-
tering. The former aims at finding a single low-dimensional subspace and the latter uses zero-
dimensional subspaces as cluster centers. There has been extensive research on private PCA
[2, 4, 10] and k-means [2, 22, 26]. Perhaps the most similar work to ours is [22, 4]. [22] applies the
sample-aggregate framework to k-means clustering and [4] employs the exponential mechanism to
recover private principal vectors. In this paper we give non-trivial generalization of both work to the
private subspace clustering setting.

2 Preliminaries
2.1 Notations

For a vector x ∈ Rd, its p-norm is defined as ‖x‖p = (
∑
i x

p
i )

1/p. If p is not explicitly specified
then the 2-norm is used. For a matrix A ∈ Rn×m, we use σ1(A) ≥ · · · ≥ σn(A) ≥ 0 to
denote its singular values (assuming without loss of generality that n ≤ m). We use ‖ · ‖ξ to
denote matrix norms, with ξ = 2 the matrix spectral norm and ξ = F the Frobenious norm. That
is, ‖A‖2 = σ1(A) and ‖A‖F =

√∑n
i=1 σi(A)2. For a q-dimensional subspace S ⊆ Rd, we

associate with a basis U ∈ Rd×q , where the q columns in U are orthonormal and S = range(U).
We use Sdq to denote the set of all q-dimensional subspaces in Rd.

Given x ∈ Rd and S ⊆ Rd, the distance d(x,S) is defined as d(x,S) = infy∈S ‖x− y‖2. If S is
a subspace associated with a basis U , then we have d(x,S) = ‖x − PS(x)‖2 = ‖x −UU>x‖2,
where PS(·) denotes the projection operator onto subspace S . For two subspaces S,S ′ of dimension
q, the distance d(S,S ′) is defined as the Frobenious norm of the sin matrix of principal angles; i.e.,

d(S,S ′) = ‖ sin Θ(S,S ′)‖F = ‖UU> −U′U′>‖F , (1)

where U,U′ are orthonormal basis associated with S and S ′, respectively.

2.2 Subspace clustering

Given n data points x1, · · · ,xn ∈ Rd, the task of subspace clustering is to cluster the data points
into k clusters so that data points within a subspace lie approximately on a low-dimensional sub-
space. Without loss of generality, we assume ‖xi‖2 ≤ 1 for all i = 1, · · · , n. We also use
X = {x1, · · · ,xn} to denote the dataset and X ∈ Rd×n to denote the data matrix by stacking
all data points in columnwise order. Subspace clustering seeks to find k q-dimensional subspaces
Ĉ = {Ŝ1, · · · , Ŝk} so as to minimize the Wasserstein’s distance or distance squared defined as

d2
W (Ĉ, C∗) = min

π:[k]→[k]

k∑
i=1

d2(Ŝi,S∗π(i)), (2)

where π are taken over all permutations on [k] and S∗ are the optimal/ground-truth subspaces. In a
model based approach, C∗ is fixed and data points {xi}ni=1 are generated either deterministically or
stochastically from one of the ground-truth subspaces in C∗ with noise corruption; for a completely
agnostic setting, C∗ is defined as the minimizer of the k-means subspace clustering objective:

C∗ := argminC={S1,··· ,Sk}⊆Sdq cost(C;X ) = argminC={S1,··· ,Sk}⊆Sdq
1

n

n∑
i=1

min
j
d2(xi,Sj). (3)

To simplify notations, we use ∆k(X ) = cost(C∗;X ) to denote cost of the optimal solution.
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Algorithm 1 The sample-aggregate framework [22]
1: Input: X = {xi}ni=1 ⊆ Rd, number of subsets m, privacy parameters ε, δ; f , dM.
2: Initialize: s =

√
m, α = ε/(5

√
2 ln(2/δ)), β = ε/(4(D + ln(2/δ))).

3: Subsampling: Select m random subsets of size n/m of X independently and uniformly at
random without replacement. Repeat this step until no single data point appears in more than√
m of the sets. Mark the subsampled subsets XS1

, · · · ,XSm .
4: Separate queries: Compute B = {si}mi=1 ⊆ RD, where si = f(XSi).
5: Aggregation: Compute g(B) = si∗ where i∗ = argminmi=1ri(t0) with t0 = (m+s

2 + 1). Here
ri(t0) denotes the distance dM(·, ·) between si and the t0-th nearest neighbor to si in B.

6: Noise calibration: Compute S(B) = 2 maxk(ρ(t0 + (k+ 1)s) · e−βk), where ρ(t) is the mean
of the top bs/βc values in {r1(t), · · · , rm(t)}.

7: Output: A(X ) = g(B) + S(B)
α u, where u is a standard Gaussian random vector.

2.3 Differential privacy

Definition 2.1 (Differential privacy, [7, 8]). A randomized algorithmA is (ε, δ)-differentially private
if for all X ,Y satisfying d(X ,Y) = 1 and all sets S of possible outputs the following holds:

Pr[A(X ) ∈ S] ≤ eε Pr[A(Y) ∈ S] + δ. (4)
In addition, if δ = 0 then the algorithm A is ε-differentially private.

In our setting, the distance d(·, ·) between two datasets X and Y is defined as the number of different
columns in X and Y. Differential privacy ensures the output distribution is obfuscated to the point
that every user has a plausible deniability about being in the dataset, and in addition any inferences
about individual user will have nearly the same confidence before and after the private release.

3 Sample-aggregation based private subspace clustering

In this section we first summarize the sample-aggregate framework introduced in [22] and argue
why it should be preferred to conventional output perturbation mechanisms [7, 8] for subspace clus-
tering. We then analyze two efficient algorithms based on the sample-aggregate framework and
prove formal privacy and utility guarantees. We also prove new results in our analysis regarding
the stability of k-means subspace clustering (Lem. 3.3) and graph connectivity (i.e., consistency) of
noisy threshold-based subspace clustering (TSC, [14]) under a stochastic model (Lem. 3.5).

3.1 Smooth local sensitivity and the sample-aggregate framework

Figure 1: Illustration of instability of k-means
subspace clustering solutions (d = 2, k = 2, q =
1). Blue dots represent evenly spaced data points
on the unit circle; blue crosses indicate an addi-
tional data point. Red lines are optimal solutions.

Most existing privacy frameworks [7, 8] are
based on the idea of global sensitivity, which
is defined as the maximum output perturbation
‖f(X1) − f(X2)‖ξ, where maximum is over
all neighboring databases X1,X2 and ξ = 1 or
2. Unfortunately, global sensitivity of cluster-
ing problems is usually high even if only clus-
ter centers are released. For example, Figure
1 shows that the global sensitivity of k-means
subspace clustering could be as high as O(1),
which ruins the algorithm utility.

To circumvent the above-mentioned chal-
lenges, Nissim et al. [22] introduces the
sample-aggregate framework based on the con-
cept of a smooth version of local sensitivity.
Unlike global sensitivity, local sensitivity measures the maximum perturbation ‖f(X ) − f(X ′)‖ξ
over all databases X ′ neighboring to the input database X . The proposed sample-aggregate frame-
work (pseudocode in Alg. 1) enjoys local sensitivity and comes with the following guarantee:
Theorem 3.1 ([22], Theorem 4.2). Let f : D → RD be an efficiently computable function where
D is the collection of all databases and D is the output dimension. Let dM(·, ·) be a semimetric on
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the outer space of f . 1 Set ε > 2D/
√
m and m = ω(log2 n). The sample-aggregate algorithm

A in Algorithm 1 is an efficient (ε, δ)-differentially private algorithm. Furthermore, if f and m are
chosen such that the `1 norm of the output of f is bounded by Λ and

Pr
XS⊆X

[dM(f(XS), c) ≤ r] ≥ 3

4
(5)

for some c ∈ RD and r > 0, then the standard deviation of Gaussian noise added is upper bounded
by O(r/ε) + Λ

ε e
−Ω( ε

√
m
D ). In addition, when m satisfies m = ω(D2 log2(r/Λ)/ε2), with high

probability each coordinate ofA(X )− c̄ is upper bounded by O(r/ε), where c̄ depending onA(X )
satisfies dM(c, c̄) = O(r).

Let f be any subspace clustering solver that outputs k estimated low-dimensional subspaces and
dM be the Wasserstein’s distance as defined in Eq. (2). Theorem 3.1 provides privacy guarantee
for an efficient meta-algorithm with any f . In addition, utility guarantee holds with some more
assumptions on input dataset X . In following sections we establish utility guarantees. The main
idea is to prove stability results as outlined in Eq. (5) for particular subspace clustering solvers and
then apply Theorem 3.1.

3.2 The agnostic setting

We first consider the setting when data points {xi}ni=1 are arbitrarily placed. Under such agnostic
setting the optimal solution C∗ is defined as the one that minimizes the k-means cost as in Eq. (3).
The solver f is taken to be any (1 + ε)-approximation2 of optimal k-means subspace clustering; that
is, f always outputs subspaces Ĉ satisfying cost(Ĉ;X ) ≤ (1 + ε)cost(C∗;X ). Efficient core-set
based approximation algorithms exist, for example, in [12]. The key task of this section it to identify
assumptions under which the stability condition in Eq. (5) holds with respect to an approximate
solver f . The example given in Figure 1 also suggests that identifiability issue arises when the input
data X itself cannot be well clustered. For example, no two straight lines could well approximate
data uniformly distributed on a circle. To circumvent the above-mentioned difficulty, we impose the
following well-separation condition on the input data X :
Definition 3.2 (Well-separation condition for k-means subspace clustering). A dataset X is
(φ, η, ψ)-well separated if there exist constants φ, η and ψ, all between 0 and 1, such that

∆2
k(X ) ≤ min

{
φ2∆2

k−1(X ),∆2
k,−(X )− ψ,∆2

k,+(X ) + η
}
, (6)

where ∆k−1, ∆k,− and ∆k,+ are defined as ∆2
k−1(X ) = minS1:k−1∈Sdq cost({Si};X ); ∆2

k,−(X ) =

minS1∈Sdq−1,S2:k∈Sdq cost({Si};X ); and ∆2
k,+(X ) = minS1∈Sdq+1,S2:k∈Sdq cost({Si};X ).

The first condition in Eq. (6), ∆2
k(X ) ≤ φ2∆2

k−1(X ), constrains that the input dataset X cannot
be well clustered using k − 1 instead of k clusters. It was introduced in [23] to analyze stability of
k-means solutions. For subspace clustering, we need another two conditions regarding the intrinsic
dimension of each subspace. The ∆2

k(X ) ≤ ∆2
k,−(X ) − ψ asserts that replacing a q-dimensional

subspace with a (q − 1)-dimensional one is not sufficient, while ∆2
k(X ) ≤ ∆2

k,+(X ) + η means an
additional subspace dimension does not help much with clustering X .

The following lemma is our main stability result for subspace clustering on well-separated datasets.
It states that when a candidate clustering Ĉ is close to the optimal clustering C∗ in terms of clustering
cost, they are also close in terms of the Wasserstein distance defined in Eq. (2).
Lemma 3.3 (Stability of agnostic k-means subspace clustering). Assume X is (φ, η, ψ)-well sepa-
rated with φ2 < 1/1602, ψ > η. Suppose a candidate clustering Ĉ = {Ŝ1, · · · , Ŝk} ⊆ Sdq satisfies

cost(Ĉ;X ) ≤ a · cost(C∗;X ) for some a < 1−802φ2

800φ2 . Then the following holds:

dW (Ĉ, C∗) ≤ 600
√

2φ2
√
k

(1− 150φ2)(ψ − η)
. (7)

The following theorem is then a simple corollary, with a complete proof in Appendix B.

1dM(·, ·) satisfies dM(x, y) ≥ 0, dM(x, x) = 0 and dM(x, y) ≤ dM(x, z) + dM(y, z) for all x, y, z.
2Here ε is an approximation constant and is not related to the privacy parameter ε.
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Algorithm 2 Threshold-based subspace clustering (TSC), a simplified version
1: Input: X = {xi}ni=1 ⊆ Rd, number of clusters k and number of neighbors s.
2: Thresholding: construct G ∈ {0, 1}n×n by connecting xi to the other s data points in X with

the largest absolute inner products |〈xi,x′〉|. Complete G so that it is undirected.
3: Clustering: Let X (1), · · · ,X (`) be the connected components in G. Construct X̄ (`) by sam-

pling q points from X (`) uniformly at random without replacement.
4: Output: subspaces Ĉ = {Ŝ(`)}k`=1; Ŝ(`) is the subspace spanned by q arbitrary points in X̄ (`).

Theorem 3.4. Fix a (φ, η, ψ)-well separated dataset X with n data points and φ2 < 1/1602,
ψ > η. Suppose XS ⊆ X is a subset of X with size m, sampled uniformly at random without
replacement. Let Ĉ = {Ŝ1, · · · , Ŝ2} be an (1 + ε)-approximation of optimal k-means subspace
clustering computed on XS . If m = Ω(

kqd log(qd/γ′∆2
k(X ))

γ′2∆4
k(X )

) with γ′ < 1−802φ2

800φ2 − 2(1 + ε), then we
have:

Pr
XS

[
dW (Ĉ, C∗) ≤ 600

√
2φ2
√
k

(1− 150φ2)(ψ − η)

]
≥ 3

4
, (8)

where C∗ = {S∗1 , · · · ,S∗k} is the optimal clustering on X ; that is, cost(C∗;X ) = ∆2
k(X ).

Consequently, applying Theorem 3.4 together with the sample-aggregate framework we obtain a
weak polynomial-time ε-differentially private algorithm for agnostic k-means subspace clustering,
with additional amount of per-coordinate Gaussian noise upper bounded by O( φ2

√
k

ε(ψ−η) ). Our bound
is comparable to the one obtained in [22] for private k-means clustering, except for the (ψ−η) term
which characterizes the well-separatedness under the subspace clustering scenario.

3.3 The stochastic setting

We further consider the case when data points are stochastically generated from some underlying
“true” subspace set C∗ = {S∗1 , · · · ,S∗k}. Such settings were extensively investigated in previous
development of subspace clustering algorithms [24, 25, 14]. Below we give precise definition of the
considered stochastic subspace clustering model:

The stochastic model For every cluster ` associated with subspace S∗` , a data point x(`)
i ∈ Rd

belonging to cluster ` can be written as x(`)
i = y

(`)
i + ε

(`)
i , where y(`)

i is sampled uniformly at
random from {y ∈ S∗` : ‖y‖2 = 1} and εi ∼ N (0, σ2/d · Id) for some noise parameter σ.

Under the stochastic setting we consider the solver f to be the Threshold-based Subspace Clustering
(TSC, [14]) algorithm. A simplified version of TSC is presented in Alg. 2. An alternative idea is to
apply results in the previous section since the stochastic model implies well-separated dataset when
noise level σ is small. However, the running time of TSC is O(n2d), which is much more efficient
than core-set based methods. TSC is provably correct in that the similarity graph G has no false
connections and is connected per cluster, as shown in the following lemma:
Lemma 3.5 (Connectivity of TSC). Fix γ > 1 and assume max 0.04n` ≤ s ≤ minn`/6. If for
every ` ∈ {1, · · · , k}, the number of data points n` and the noise level σ satisfy

n`
log n`

>
γπ
√

2q(12π)q−1

0.01(q/2− 1)(q − 1)
;
σ(1 + σ)√

log n

√
q
√
d
≤ 1

15 log n
−

√
1−min

6̀=`′
d2(S∗` ,S∗`′)

q
;

σ̄ <

√
d

24 log n

[
cos

(
12π

(
γ
√

2πq log n`
n`

) 1
q−1

)
− cos

((
0.01(q/2− 1)(q − 1)√

π

) 1
q−1

)]
,

where σ̄ = 2
√

5σ + σ2. Then with probability at least 1 − n2e−
√
d − n

∑
` e
−n`/400 −∑

` n
1−γ
` /(γ log n`) − 12/n −

∑
` n`e

−c(n`−1), the connected components in G correspond ex-
actly to the k subspaces.

Conditions in Lemma 3.5 characterize the interaction between sample complexity n`, noise level
σ and “signal” level min` 6=`′ d(S∗` ,S∗`′). Theorem 3.6 is then a simple corollary of Lemma 3.5.
Complete proofs are deferred to Appendix C.
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Theorem 3.6 (Stability of TSC on stochastic data). Assume conditions in Lemma 3.5 hold with
respect to n′ = n/m for ω(log2 n) ≤ m ≤ o(n). Assume in addition that limn→∞ n` = ∞ for all
` = 1, · · · , L and the failure probability does not exceed 1/8. Then for every ε > 0 we have

lim
n→∞

Pr
XS

[
dW (Ĉ, C∗) > ε

]
= 0. (9)

Compared to Theorem 3.4 for the agnostic model, Theorem 3.6 shows that one can achieve consis-
tent estimation of underlying subspaces under a stochastic model. It is an interesting question to
derive finite sample bounds for the differentially private TSC algorithm.

3.4 Discussion

It is worth noting that the sample-aggregate framework is an (ε, δ)-differentially private mechanism
for any computational subroutine f . However, the utility claim (i.e., the O(r/ε) bound on each
coordinate of A(X ) − c) requires the stability of the particular subroutine f , as outlined in Eq.
(5). It is unfortunately hard to theoretically argue for stability of state-of-the-art subspace clustering
methods such as sparse subspace cluster (SSC, [11]) due to the “graph connectivity” issue [21]3.
Nevertheless, we observe satisfactory performance of SSC based algorithms in simulations (see
Sec. 5). It remains an open question to derive utility guarantee for (user) differentially private SSC.

4 Private subspace clustering via the exponential mechanism
In Section 3 we analyzed two algorithms with provable privacy and utility guarantees for sub-
space clustering based on the sample-aggregate framework. However, empirical evidence shows
that sample-aggregate based private clustering suffers from poor utility in practice [26]. In this sec-
tion, we propose a practical private subspace clustering algorithm based on the exponential mecha-
nism [18]. In particular, given the dataset X with n data points, we propose to samples parameters
θ = ({S`}k`=1, {zi}ni=1) where S` ∈ Sqd, zj ∈ {1, · · · , k} from the following distribution:

p(θ;X ) ∝ exp

(
−ε

2
·
n∑
i=1

d2(xi,Szi)

)
, (10)

where ε > 0 is the privacy parameter. The following proposition shows that exact sampling from
the distribution in Eq. (10) results in a provable differentially private algorithm. Its proof is trivial
and is deferred to Appendix D.1. Note that unlike sample-aggregate based methods, the exponential
mechanism can privately release clustering assignment z. This does not violate the lower bound in
[29] because the released clustering assignment z is not guaranteed to be exactly correct.
Proposition 4.1. The random algorithm A : X 7→ θ that outputs one sample from the distribution
defined in Eq. (10) is ε-differential private.

4.1 A Gibbs sampling implementation

It is hard in general to sample parameters from distributions as complicated as in Eq. (10). We
present a Gibbs sampler that iteratively samples subspaces {Si} and cluster assignments {zj} from
their conditional distributions.

Update of zi: When {S`} and z−i are fixed, the conditional distribution of zi is
p(zi|{S`}k`=1, z−i;X ) ∝ exp(−ε/2 · d2(xi,Szi)). (11)

Since d(xi,Szi) can be efficiently computed (given an orthonormal basis of Szi ), update of zi can
be easily done by sampling zj from a categorical distribution.

Update of S`: Let X̃ (`) = {xi ∈ X : zi = `} denote data points that are assigned to cluster ` and
ñ` = |X̃ (`)|. Denote X̃(`) ∈ Rd×ñ` as the matrix with columns corresponding to all data points in
X̃ (`). The distribution over S` conditioned on z can then be written as

p(S` = range(U`)|z;X ) ∝ exp(ε/2 · tr(U>` A`U`)); U` ∈ Rd×q,U>` U` = Iq×q, (12)

where A` = X̃(`)X̃(`)> is the unnormalized sample covariance matrix. Distribution of the form in
Eq. (12) is a special case of the matrix Bingham distribution, which admits a Gibbs sampler [16]. We
give implementation details in Appendix D.2 with modifications so that the resulting Gibbs sampler
is empirically more efficient for a wide range of parameter settings.

3Recently [28] established full clustering guarantee for SSC, however, under strong assumptions.
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4.2 Discussion
The proposed Gibbs sampler resembles the k-plane algorithm for subspace clustering [3]. It is
in fact a “probabilistic” version of k-plane since sampling is performed at each iteration rather
than deterministic updates. Furthermore, the proposed Gibbs sampler could be viewed as posterior
sampling for the following generative model: first sample U` uniformly at random from Sdq for
each subspace S`; afterwards, cluster assignments {zi}ni=1 are sampled such that Pr[zi = j] = 1/k
and xi is set as xi = U`yi + PU⊥`

wi, where yi is sampled uniformly at random from the q-
dimensional unit ball and wi ∼ N (0, Id/ε). Connection between the above-mentioned generative
model and Gibbs sampler is formally justified in Appendix D.3. The generative model is strikingly
similar to the well-known mixtures of probabilistic PCA (MPPCA, [27]) model by setting variance
parameters σ` in MPPCA to

√
1/ε. The only difference is that yi are sampled uniformly at random

from a unit ball 4 and noisewi is constrained to U⊥` , the complement space of U`. Note that this is
closely related to earlier observation that “posterior sampling is private” [20, 6, 31], but different in
that we constructed a model from a private procedure rather than the other way round.

As the privacy parameter ε → ∞ (i.e., no privacy guarantee), we arrive immediately at the exact
k-plane algorithm and the posterior distribution concentrates around the optimal k-means solution
(C∗, z∗). This behavior is similar to what a small-variance asymptotic analysis on MPPCA models
reveals [30]. On the other hand, the proposed Gibbs sampler is significantly different from previous
Bayesian probabilisitic PCA formulation [34, 30] in that the subspaces are sampled from a matrix
Bingham distribution. Finally, we remark that the proposed Gibbs sampler is only asymptotically
private because Proposition 4.1 requires exact (or nearly exact [31]) sampling from Eq. (10).

5 Numerical results
We provide numerical results of both the sample-aggregate and Gibbs sampling algorithms on syn-
thetic and real-world datasets. We also compare with a baseline method implemented based on the
k-plane algorithm [3] with perturbed sample covariance matrix via the SuLQ framework [2] (de-
tails presented in Appendix E). Three solvers are considered for the sample-aggregate framework:
threshold-based subspace clustering (TSC, [14]), which has provable utility guarantee with sample-
aggregation on stochastic models, along with sparse subspace clustering (SSC, [11]) and low-rank
representation (LRR, [17]), the two state-of-the-art methods for subspace clustering. For Gibbs
sampling, we use non-private SSC and LRR solutions as initialization for the Gibbs sampler. All
methods are implemented using Matlab.

For synthetic datasets, we first generate k random q-dimensional linear subspaces. Each subspace is
generated by first sampling a d× q random Gaussian matrix and then recording its column space. n
data points are then assigned to one of the k subspaces (clusters) uniformly at random. To generate
a data point xi assigned with subspace S`, we first sample yi ∈ Rq with ‖yi‖2 = 1 uniformly
at random from the q-dimensional unit sphere. Afterwards, xi is set as xi = U`yi + wi, where
U` ∈ Rd×q is an orthonormal basis associated with S` and wi ∼ N (0, σ2Id) is a noise vector.

Figure 2 compares the utility (measured in terms of k-means objective cost(Ĉ;X ) and the Wasser-
stein’s distance dW (Ĉ, C∗)) of sample aggregation, Gibbs sampling and SuLQ subspace clustering.
As shown in the plots, sample-aggregation algorithms have poor utility unless the privacy parameter
ε is truly large (which means very little privacy protection). On the other hand, both Gibbs sampling
and SuLQ subspace clustering give reasonably good performance. Figure 2 also shows that SuLQ
scales poorly with the ambient dimension d. This is because SuLQ subspace clustering requires
calibrating noise to a d × d sample covariance matrix, which induces much error when d is large.
Gibbs sampling seems to be robust to various d settings.

We also experiment on real-world datasets. The right two plots in Figure 2 report utility on a sub-
set of the extended Yale Face Dataset B [13] for face clustering. 5 random individuals are picked,
forming a subset of the original dataset with n = 320 data points (images). The dataset is prepro-
cessed by projecting each individual onto a 9D affine subspace via PCA. Such preprocessing step
was adopted in [32, 29] and was theoretically justified in [1]. Afterwards, ambient dimension of
the entire dataset is reduced to d = 50 by random Gaussian projection. The plots show that Gibbs
sampling significantly outperforms the other algorithms.

4In MPPCA latent variables yi are sampled from a normal distributionN (0, ρ2Iq).
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Figure 2: Utility under fixed privacy budget ε. Top row shows k-means cost and bottom row shows
the Wasserstein’s distance dW (Ĉ, C∗). From left to right: synthetic dataset, n = 5000, d = 5, k =
3, q = 3, σ = 0.01; n = 1000, d = 10, k = 3, q = 3, σ = 0.1; extended Yale Face Dataset B
(a subset). n = 320, d = 50, k = 5, q = 9, σ = 0.01. δ is set to 1/(n lnn) for (ε, δ)-privacy
algorithms. “s.a.” stands for smooth sensitivity and “exp.” stands for exponential mechanism.
“SuLQ-10” and “SuLQ-50” stand for the SuLQ framework performing 10 and 50 iterations. Gibbs
sampling is run for 10000 iterations and the mean of the last 100 samples is reported.
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Figure 3: Test statistics, k-means cost and dW (Ĉ, C∗) of 8 trials of the Gibbs sampler under different
privacy settings. Synthetic dataset setting: n = 1000, d = 10, k = 3, q = 3, σ = 0.1.

In Figure 3 we investigate the mixing behavior of proposed Gibbs sampler. We plot for multiple
trials of Gibbs sampling the k-means objective, Wasserstein’s distance and a test statistic 1/

√
kq ·

(
∑k
`=1 ‖1/T ·

∑T
t=1 U

(t)
` ‖2F )1/2, where U

(t)
` is a basis sample of S` at the tth iteration. The test

statistic has mean zero under distribution in Eq. (10) and a similar statistic was used in [4] as a
diagnostic of the mixing behavior of another Gibbs sampler. Figure 3 shows that under various
privacy parameter settings, the proposed Gibbs sampler mixes quite well after 10000 iterations.

6 Conclusion
In this paper we consider subspace clustering subject to formal differential privacy constraints. We
analyzed two sample-aggregate based algorithms with provable utility guarantees under agnostic and
stochastic data models. We also propose a Gibbs sampling subspace clustering algorithm based on
the exponential mechanism that works well in practice. Some interesting future directions include
utility bounds for state-of-the-art subspace clustering algorithms like SSC or LRR.
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Appendix A Some basic properties regarding the distances

Proposition A.1. Let S1,S2,S3 ∈ Sdq be three q-dimensional subspaces. Then d(S1,S3) ≤
d(S1,S2) + d(S2, S3) and d2(S1,S3) ≤ 2(d2(S1,S2) + d2(S2,S3)).

Proof. Let U1,U2,U3 ∈ Rd×q be orthonormal basis associated with S1,S2 and S3. We then have
d(S1,S3) = ‖U1U

>
1 −U3U

>
3 ‖F ≤ ‖U1U

>
1 −U2U

>
2 ‖F + ‖U2U

>
2 −U3U

>
3 ‖F = d(S1,S2) +

d(S2,S3). The other inequality holds due to the fact that ‖U1U
>
1 − U3U

>
3 ‖2F ≤ 2(‖U1U

>
1 −

U2U
>
2 ‖2F + ‖U2U

>
2 −U3U

>
3 ‖2F ).

Proposition A.2. For any x ∈ Rd and S,S ′ ∈ Sdq , we have d(x,S ′) ≤ d(x,S) + d(S,S ′) and
d2(x,S ′) ≤ 2(d2(x,S) + d2(S,S ′)).

Proof. By definition, d(x,S ′) = ‖x − PS′(x)‖2 ≤ ‖x − PS′(PS(x))‖2 ≤ ‖x − PS(x)‖2 +
‖PS(x) − PS′(PS(x))‖2 ≤ d(x,S) + supy∈S,‖y‖2≤1 ‖y − PS′(y)‖2. Note also that
supy∈S,‖y‖2≤1 ‖y−PS′(y)‖2 ≤ supy∈S,‖y‖2≤1 ‖UU>y −U′U′>y‖2 ≤ ‖UU>−U′U′>‖2 ≤
d(S,S ′). Here U and U ′ are orthonormal basis associated with S and S ′. Therefore, d(x,S ′) ≤
d(x,S) + d(S,S ′). The other inequality follows by the same argument.

Proposition A.3. Fix S ∈ Sdq and let U ∈ Rd×q be an orthonormal basis associated with S.
Suppose U′ = U + E and S ′ = range(U′). Then d(S,S ′) ≤

√
2‖E‖F .

Proof. Apply Wedin’s Theorem (Theorem F.2 in Appendix F) and note that σq(U) = 1.

Appendix B Proofs of sample-aggregate private subspace clustering: the
agnostic case

The main objective of this section is to prove Theorem 3.4 for differentially private subspace clus-
tering under the fully agnostic setting. The theorem is a simple consequence of Lemma 3.3 in the
main text and the following lemma:

Lemma B.1. Fix γ > 0. Suppose XS contains m = Ω(kqd log(qd/γ)
γ2 ) data points subsampled

from X uniformly at random without replacement. Then with probability at least 3/4 over random
samples U , the following holds uniformly for all candidate subspace sets C:

cost(C;XS) ≤ 2cost(C;X ) + γ. (13)

B.1 Proof of Lemma B.1

Lemma B.2 ([39]). Fix X and f : X → [0,M ] for some positive constant M > 0. Let XS be
a subset of X with t elements, each drawn uniformly at random from X without replacement. Let
ε, δ > 0. Then Pr[|EX [f(x)]− EXS [f(x)]| ≥ ε] ≤ δ when t ≥ M2 ln(2/δ)

2ε2 .
Corollary B.3. Fix X and a finite set of functions F , where 0 ≤ f(x) ≤ M for every x ∈ X
and f ∈ F . Let XS be a subset of X with m elements, each drawn uniformly at random from X
without replacement. Let ε, δ > 0. Then Pr[∃f ∈ F , |EX [f(x)] − EXS [f(x)]| ≥ ε] ≤ δ when
m ≥ M2 ln(2|F|/δ)

2ε2 .

Proof. Apply Lemma B.2 and use union bound over all f ∈ F .

Lemma B.4. Fix ε > 0. There exists S ⊆ Sdq with |S| = O((qd)qd/2/εqd) such that for any S ∈ Sdq ,
minS′∈S d(S,S ′) ≤ ε.

Proof. By a standard convering number argument, there exists L ⊆ Rd with |L| = O((
√
d/ε)d)

such that for any x ∈ Rd, ‖x‖2 ≤ 1, we have minx′∈L ‖x − x′‖2 ≤ ε. Consequently, there exists
Lq ⊆ Rd×q with |Lq| = O((qd)qd/2/εqd) such that for any U ∈ Rd×q with unit column norms,
minU′∈Lq ‖U−U′‖F ≤ ε. Proposition A.3 then yields the lemma.
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We are now ready to prove Lemma B.1.

Proof of Lemma B.1. Suppose S is a finite subset of Sdq such that for every S ∈ Sdq ,
minS′∈S d

2(S,S ′) ≤ γ/4. By Lemma B.4, there exists such S with |S| = O((qd/γ)qd/2). Let
X be the set of data points and F = {f(·; C)|C = {S1, · · · ,Sk} ⊆ S}, where f(x; C) =

minkj=1 d
2(x,Sj). By definition, EX [f(x; C)] = cost(C;X ) and |F| = O((qd/γ)kqd/2). Sub-

sequently, applying Corollary B.3 we obtain

Pr
XS

[
∀C ⊆ S,

∣∣cost(C;XS)− cost(C;X )
∣∣ ≤ γ

2

]
≥ 3

4

whenever |XS | = Ω(kqd log(qd/γ)
γ2 ). Consequently, applying Proposition A.2 we have

Pr
XS

[
∀C ⊆ Sdq , cost(C;XS) ≤ 2cost(C;X ) + γ

]
≥ 3

4
.

B.2 Proof of Lemma 3.3

We first define some notations that will be used in the proof. Throughout the section we assume
the dataset X is (φ, η, ψ)-well separated. Let Xi = {x ∈ X : d(x,S∗i ) ≤ d(x,S∗j ),∀j} denote
the collection of all data points in X that are clustered to the cluster corresponding to S∗i . Define
ni = |Xi|. By definition,

∑k
i=1 ni = n. Define r2

i = ∆2
1(Xi), Di = minj 6=i d(S∗i ,S∗j ) and

d2
i = φ2n∆2

k−1(X )/ni. Let X cor
i = {x ∈ Xi : d(x,S∗i )2 ≤ r2i

ρ } for some parameter ρ ∈ (0, 1).

Proposition B.5. r2
i ≤ d2

i ≤
2φ2

1−2φ2D
2
i .

Proof. Since X is well-separated we have d2
i = φ2∆2

k−1(X ) · n/ni ≥ ∆2
k(X ) · n/ni ≥

1
ni

∑
x∈Xi d(x,S∗i )2 ≥ ∆2

1(Xi) = r2
i . Hence the first inequality.

For the second inequality, we only need to prove that (1 − 2φ2)n∆2
k−1(X ) ≤ 2niD

2
i . By well-

separatedness (1− 2φ2)n∆2
k−1(X ) = n(∆2

k−1(X )− 2∆2
k(X )). On the other hand, by diverting all

points in X ∗i into the cluster associated with S∗j with d(S∗i ,S∗j ) = Di, we have

n∆2
k−1(X ) ≤

∑
6̀=i

∑
x∈X`

d2(x,S∗` ) +
∑
x∈Xi

d2(x,S∗j )

≤
∑
6̀=i

∑
x∈X`

d2(x,S∗` ) + 2
∑
x∈Xi

d2(x,S∗j ) + 2nid
2(S∗i ,S∗j )

≤ 2n∆2
k(X ) + 2niD

2
i .

Rearranging the terms we get n(∆2
k−1(X )− 2∆2

k(X )) ≤ 2niD
2
i .

Proposition B.6. For any ρ ∈ (0, 1), |X cor
i | ≥ (1− ρ)|Xi| = (1− ρ)ni.

Proof. By definition r2
i = 1

ni

∑
x∈Xi d

2(x,S∗i ) = E[T ], where T is the random variable of
d2(x,S∗i ) for a vector chosen from Xi uniformly at random. By Markov’s inequality, Pr[T >
r2i
ρ ] ≤ ρ and hence |X cor

i | = ni Pr[T ≤ r2i
ρ ] ≥ (1− ρ)ni.

Lemma B.7. Suppose cost(Ĉ;X ) ≤ α∆2
k(X ) for some α < 1−802φ2

800 . Then there exists a permuta-
tion π : [k]→ [k] such that d(Ŝi,S∗π(i)) ≤ Di/10 for every i = 1, · · · , k.

Proof. Pick ρ = 800φ2

1−2φ2 . By conditions on α we have α ≤ ( 1
ρ − 1)φ2. In the remainder of the proof

we show that for every i ∈ [k], there exists some j ∈ [k] such that d(S∗i , Ŝj) ≤ 2di√
ρ ≤ Di/10, where

the last inequality is due to Proposition B.5 and the choice of ρ. This is sufficient for the conclusion
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in Lemma B.7 since no two subspaces S∗i and S∗i′ can be within the range of Di/10 to the same
subspace Ŝj due to the definition of Di and triangle inequality presented in Proposition A.1.

Assume by way of contradiction that there exists i ∈ [k] such that d(S∗i , Ŝj) > 2di√
ρ . This implies

that any point in X cor
i = {x ∈ Xi : d(x,S∗i ) ≤ ri√

ρ} is at least di√
ρ away from any subspace in Ĉ,

due to di ≥ ri and the triangle inequality. Therefore, cost(Ĉ;X ) ≥ |X
cor
i |
n

d2i
ρ ≥ ( 1

ρ − 1)nin d
2
i , where

the last inequality is due to Proposition B.6. Finally, ( 1
ρ − 1)nin d

2
i = ( 1

ρ − 1)nin · φ
2n∆2

k−1(X ) >

αni∆
2
k−1(X ) ≥ α∆2

k−1(X ), and hence the contradiction.

Lemma B.8. Fix a candidate subspace set Ĉ = {Ŝ1, · · · , Ŝ2}. Define R̂i = {x ∈ X : d(x, Ŝi) ≤
d(x, Ŝj) + D̂i/4,∀j}, where D̂i = minj 6=i d(Ŝi, Ŝj). Suppose there exists a permutation π : [k]→
[k] such that d(Ŝi,S∗π(i)) ≤ Dπ(i)/10 for every i, where Di = minj 6=i d(S∗i ,S∗j ). Then we have

Xπ(i) ⊆ R̂i and further more |Xπ(i)| ≥ β|R̂i| for β = 1−2φ2

1+48φ2 .

Proof. Without loss of generality we assume π(i) = i; that is, d(Ŝi,S∗i ) ≤ Di/10 for every i =

1, · · · , k. By triangle inequality in Proposition A.1, we have 4
5Di ≤ D̂i ≤ 6

5Di. Fix an arbitrary
x ∈ Xi. By definition, d(x,S∗i ) ≤ d(x,S∗j ). Therefore, d(x, Ŝi) ≤ d(x,S∗i ) + Di

10 ≤ d(x,S∗j ) +
Di
10 ≤ d(x, Ŝj) + Di

5 ≤ d(x, Ŝj) + D̂i
4 . Therefore, Xi ⊆ R̂i.

We next prove that |Xi| ≥ β|R̂i|. The approach we take is to assume |Xi| = β|R̂i| for some real

number β and show that β ≥ 1−2φ2

1+48φ2 . Let aj =
|R̂i∩Xj |
|R̂i|

and we arbitrarily assign ajni
1−ai points in Xi

to the cluster associated with subpace S∗j . This will clear the S∗i subspace since
∑
j 6=i

ajni
1−ai = ni.

As a result, we have

n∆2
k−1(X ) ≤ n∆2

k(X )− ni∆1(Xi) +
∑
x∈Xi

d2(x,S∗j )

≤ n∆2
k(X ) + ni∆1(Xi) + 2

∑
j 6=i

ajni
1− ai

· d2(S∗i ,S∗j )

≤ 2n∆2
k(X ) +

2β

1− β
∑
j 6=i

aj |R̂i|d2(S∗i ,S∗j ).

The last inequality is due to the fact that niai = |Xi|·|R̂i|
|Xi∩R̂i|

= |R̂i| and ai
1−ai = |Xi|

|R̂i|−|Xi|
≤ β

1−β .

On the other hand, for any y ∈ Xj∩R̂i, one has d(y,S∗i ) ≤ d(y, Ŝi)+ Di
10 ≤ d(y, Ŝj)+ Di

5 + Di
10 ≤

d(y,S∗j ) + 3
10 (Di+Dj). Consequently, d(S∗i ,S∗j ) ≤ d(y,S∗i ) +d(y,S∗j ) ≤ 2d(y,S∗j ) + 3

10 (Di+

Dj) ≤ 2d(y,S∗j ) + 3
5d(S∗i ,S∗j ) and hence d(S∗i ,S∗j ) ≤ 5d(y,S∗j ). Subsequently,

n∆2
k−1(X ) ≤ 2n∆2

k(X ) +
2β

1− β
∑
j 6=i

aj |R̂i|d2(S∗i ,S∗j )

= 2n∆2
k(X ) +

2β

1− β
∑
j 6=i

|R̂i ∩ Xj |d2(S∗i ,S∗j )

≤ 2n∆2
k(X ) +

50β

1− β
∑
j 6=i

∑
y∈R̂i∩Xj

d2(y,S∗j )

≤ 2n∆2
k(X ) +

50β

1− β
· n∆2

k(X ).

By the well-separatedness of X , we have

∆2
k(X ) ≤ φ2∆2

k−1(X ) ≤
(

2 +
50β

1− β

)
φ2∆2

k(X ).

Therefore, 2 + 50β
1−β ≥ 1/φ2, which implies β ≥ 1−2φ2

1+48φ2 .
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Lemma B.9. Assume φ ≤ 1/2. Fix a candidate subspace set Ĉ = {Ŝ1, · · · , Ŝn}. Let X̂i = {x ∈
X : d(x, Ŝi) ≤ d(x, Ŝj),∀j} denote the set of all data points that are clustered into Ŝi. Suppose
d(Ŝi,S∗i ) ≤ Di/10 for every i. Then |X̂i4Xi| ≤ 150φ2|Xi|, where 4 denotes the symmetric
difference operator between two sets.

Proof. We first derive a lower bound on |X̂i ∩ Xi|. We first claim that for any x ∈ X , d(x,S∗i ) ≤
2
5Di yields x ∈ X̂i. To see this, note that d(x, Ŝi) ≤ d(x,S∗i ) + d(S∗i , Ŝi) ≤ 2

5Di + 1
10Di = 1

2Di

and for every j 6= i, d(x, Ŝj) ≥ d(S∗i , Ŝj) − d(x,S∗i ) ≥ 9
10Di − 2

5Di = 1
2Di. Therefore,

d(x, Ŝi) ≤ d(x, Ŝj) for every j 6= i.

On the other hand, by Proposition B.5 d(x,S∗i ) ≤ ri√
ρ′

with ρ′ = 25φ2

2(1−2φ2) implies d(x,S∗i ) ≤ 2
5Di.

Consequently, by Proposition B.6 we have |X̂i ∩Xi| ≥ |{x ∈ Xi : d(x,S∗i ) ≤ ri√
ρ′
| ≥ (1− ρ′)|Xi|.

In addition, Lemma B.8 asserts that |Xi| ≥ β|R̂i| ≥ β|Xi|. Therefore, |X̂i4Xi| ≤ (2ρ′ + 1
β −

1)|Xi| ≤ 75φ2

1−2φ2 |Xi| ≤ 150φ2Xi, assuming φ ≤ 1
2 .

Proposition B.10. Let σq(Xi) denote the qth largest singular value of Xi. We then have σ2
q (Xi) ≥

nψ and σ2
q+1(Xi) ≤ nη.

Proof. By principal component analysis, n∆2
k(X ) =

∑k
i=1

∑
p≥q+1 σ

2
p(Xi). Therefore,

n∆2
k,−1(X ) ≤ n∆2

k(X ) + σ2
q (Xi) for any i. Since X is (φ, η, ψ)-well separated, we have

n∆2
k,−1 ≥ n∆2

k + nψ. Consequently, σ2
q (Xi) ≥ nψ. On the other hand, we have n∆2

k,+1(X ) ≤
n∆2

k(X )− σ2
q+1(Xi) for any i and n∆2

k,+1(X ) ≥ n∆2
k − nη. Hence σ2

q+1(Xi) ≤ nη.

Lemma B.11. Following the same notations in Lemma B.11. Suppose φ2 < 1/150. If |X̂i4Xi| ≤
150φ2|Xi| holds for every i, then d(S∗i , Ŝi) ≤

600
√

2φ2

(1−150φ2)(ψ−η) .

Proof. Let Bi = Xi ∩ X̂i, Yi = Xi\Bi and Zi = X̂i\Bi. Since |X̂i4Xi| ≤ 150φ2|Xi|, we have
|Bi| ≥ (1 − 150φ2)|Xi| and |Yi|, |Zi| ≤ 150φ2|Xi|. Let Bi,Yi,Zi be the matrices associated

with Bi,Yi and Zi. Define Ai =
BiB

>
i +YiY

>
i

|Bi|+|Yi| and Ãi =
BiB

>
i +ZiZ

>
i

|Bi|+|Zi| . By principal component

analysis, S∗i and Ŝi are the span of top-q eigenvectors associated with Ai and Ãi. By Wedin’s
Theorem (Theorem F.2 in Appendix F), the distance d(S∗i , Ŝi) can be bounded by upper bounding
the perturbation between Ai and Ãi, for example, ‖Ai − Ãi‖F .

Define Āi =
BiB

>
i

|Bi| and consider separately ‖Ai − Āi‖F and ‖Ãi − Āi‖F . By definition, we have

‖Ai − Āi‖F =

∥∥∥∥BiB
>
i

|Bi|
− BiB

>
i + YiY

>
i

|Bi|+ |Yi|

∥∥∥∥
F

≤
∥∥∥∥( 1

|Bi|
− 1

|Bi|+ |Yi|

)
BiB

>
i

∥∥∥∥
F

+

∥∥∥∥ YiY
>
i

|Bi|+ |Yi|

∥∥∥∥
F

≤ |Yi| · ‖Bi‖2F
|Bi|(|Bi|+ |Yi|)

+
‖Yi‖2F
|Bi|+ |Yi|

≤ |Yi| · |Bi|
|Bi|(|Bi|+ |Yi|)

+
|Yi|

|Bi|+ |Yi|

=
2|Yi|

|Bi|+ |Yi|
≤ 300φ2

1− 150φ2
.

Using essentially the same line of argument one can show ‖Ãi − Āi‖F ≤ 300φ2

1−150φ2 as well. There-

fore, ‖Ai − Ãi‖F ≤ 600φ2

1−150φ2 . Applying Wedin’s Theorem and Proposition B.10 we get

d(S∗i , Ŝi) ≤
√

2‖Ai − Ãi‖F
σq(Ai)− σq+1(Ai)

≤
√

2|Xi|‖Ai − Ãi‖F
σ2
q (Xi)− σ2

q+1(Xi)
≤
√

2|Xi|‖Ai − Ãi‖F
n(ψ − η)

≤ 600
√

2φ2

(1− 150φ2)(ψ − η)
.
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Combining Lemma B.7 to B.11 we arrive at a proof of the key lemma.

Proof of Lemma 3.3. Given a < 1−802φ2

800φ2 and X being (φ, η, ψ)-well separated, we have

cost(Ĉ;X ) ≤ α∆2
k−1(X ) for some α < 1−802φ2

800 . By Lemma B.7, d(S∗i , Ŝi) ≤ Di/10 hold
for every i = 1, · · · , k, after possible rearrangement of {Ŝi}ki=1. Applying Lemma B.8, B.9
and B.11 we obtain d(S∗i , Ŝi) ≤

600
√

2φ2

(1−150φ2)(ψ−η) . Finally, dW (Ĉ, C∗) ≤
√
kmaxi d(S∗i , Ŝi) ≤

600
√

2φ2
√
k

(1−150φ2)(ψ−η) .

Appendix C Proofs of sample-aggregate private subspace clustering: the
stochastic case

In this section we prove Theorem 3.6 that details a stability result for threshold-based subspace
clustering under the stochastic datasetting. We first cite the following lemma from [14] which states
that (under certain separation conditions) with high probability the similarity graph G recovered by
the robust TSC algorithm has no false connections; that is, two data points i and j are connected in
G only if they belong to the same cluster (subspace).

Lemma C.1 ([14], Theorem 3; no false connection of TSC). Suppose s ≤ minn`/6 and√
1−min

6̀=`′
d2(S∗` ,S∗`′)

q
+
σ(1 + σ)√

log n

√
q
√
d
≤ 1

15 log n
(14)

with d ≥ 6 log n; then the similarity graph G constructed by Algorithm 2 has no false connections
with probability at least 1− 10

n −
∑
` n`e

−c(n`−1) for some absolute constant c > 0.

Based on Lemma C.1, to prove Lemma 3.5 it remains to show that data points within the same
cluster are indeed connected in the similarity graph G. The proof is presented in Appendix C.1.
With Lemma C.1 and 3.5, Theorem 3.6 can be easily proved as follows:

Proof of Theorem 3.6. By Lemma C.1 and 3.5, we know that under the stated conditions the simi-
larity graph G output by the TSC algorithm has no false connections and is connected per cluster.
Fix a cluster ` and consider the observed data points X(`) = Y(`) +E(`). Since both the signal Y(`)

and the noise E(`) are stochastic, by standard analysis of PCA one can show that the top-q subspace
of X(`) converges to the underlying subspace S∗` in probability as the number of data points n` goes
to infinity [43]. The theorem then holds because m = o(n) and hence n′ = n/m→∞.

C.1 Proof of Lemma 3.5

Proposition C.2. Suppose yi = xi + εi with εi ∼ N (0, σ
2

d Id) and σ > 0. Then with probability
at least 1− n2e−

√
d − 2/n the following holds:

∣∣〈yi,yj〉 − 〈xi,xj〉∣∣ ≤ (2
√

5σ + 5σ2)

√
6 log n

d
; ∀i, j ∈ {1, · · · , n}, i 6= j. (15)

Proof. Applying Theorem F.3 (in Appendix F) and set t = 4 and ρ =
√

6 log n/d in Theorem F.3.
Applying also the union bound over all (i, j) ∈ {1, · · · , n} pairs with i 6= j. Then the following
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holds uniformly for all i 6= j with probability at least 1− n2e−d − 2/n:

‖εi‖2 ≤
√

5σ;∣∣〈εi,xj〉∣∣ ≤ √
5σ ·

√
6 log n

d
, ∀i, j;

∣∣〈εi, εj〉∣∣ ≤ 5σ2 ·
√

6 log n

d
, ∀i 6= j.

The proof is then completed by noting that∣∣〈yi,yj〉 − 〈xi,xj〉∣∣ ≤ ∣∣〈εi,xj〉∣∣+
∣∣〈εj ,xi〉∣∣+

∣∣〈εi, εj〉∣∣
≤ (2

√
5σ + 5σ2)

√
6 log n

d
.

Lemma C.3 ([14], Lemma 3; extracted from the proof of Lemma 6.2. in [42]). Let Sd−1 = {x ∈
Rd : ‖x‖2 = 1} denote the d-dimensional unit sphere. For an arbitrary p ∈ Sd−1, defineC(p, θ) =
{q ∈ Sd−1 : ϑ(p, q) ≤ θ} where ϑ(p, q) = arccos(〈p, q〉) is the angle between p and q. Let L(·)
denote the Lebesgue area of a region and Θ(·) be the inverse function of L(C(p, θ)) with respect to
θ. Then for each d ≥ 1 and M ≥ 1, there exists a partition R1, · · · , RM of the unit sphere Sd−1

such that 5 supx,y∈Rm ϑ(x,y) ≤ θ∗ for every m = 1, · · · ,M . Here θ∗ = 8Θ(L(Sd−1)/M).

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. By Lemma C.1 we already know that the similarity graph G has no false
connections. Fix a cluster ` ∈ {1, · · · , k}. Let x(`)

i = U(`)a
(`)
i where a(`)

i ∈ Sq−1. Set
M = n`/(γ log n`) and let R1, · · · , RM be a partition of the unit sphere Sq−1 as characterized
in Lemma C.3. Here q is the intrinsic rank of an underlying subspace. We need to prove the fol-
lowing two properties hold with high probability: (A) every region Rm contains at least one point
in A(`) = {a(`)

i }
n`
i=1; (B) for every a(`)

i , all data points a(`)
j belonging to the neighboring region of

the region containing a(`)
i are connected with a(`)

i .

Property (A) is easy to prove. By union bound, the probability that some region is empty can be
upper bounded by

M

(
1− 1

M

)n`
≤Me−n`/M =

n1−γ
`

γ log n`
.

We next turn to prove Property (B). Unlike the noiseless case, the s-nearest-neighbor graph is com-
puted based on the noise-perturbed data points {yi}ni=1. It is no longer true that data points belong-
ing to neighboring regions have larger inner products compared to data points that do not belong
to the same or neighboring regions. Hence, we adopt a different argument from the one presented
in [14]. Instead of showing that |C(x

(`)
i , 3θ∗)| ≤ s̃ = s/2, we show that |C(a

(`)
i , rθ∗)| ≤ s̃

for some r � 3 and in addition |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
i 〉| for every a(`)

j /∈ C(a
(`)
i , rθ∗) and

a
(`)
j′ ∈ C(x

(`)
i , 3θ∗). 6 This guarantees that all points in C(a

(`)
i , 3θ∗) are connected to y(`)

i in the
s-nearest-neighbor graph.

Fix a(`)
i ∈ A(`) and set r such that

rθ∗ =

(
0.01(q/2− 1)(q − 1)√

π

) 1
q−1

. (16)

5By definition R1 ∪ · · · ∪RM = Sd−1 and Ri ∩Rj = ∅ for i 6= j.
6Note that |〈y,y(`)

i 〉| = |〈−y,y
(`)
i 〉| by symmetry. So a point far from y

(`)
i could have large inner product

and be connected with y
(`)
i . We take s̃ = s/2 to avoid this issue.
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Define p = L(C(a
(`)
i , rθ∗))/L(Sq−1), where θ∗ is given in Lemma C.3. By definition,

E[|C(a
(`)
i , rθ∗)|] = pn`. Note that by symmetry p does not depend on a(`)

i . Set s̄ = (0.01 + p)n`.
We then have

s̄

n`
= 0.01+

L(C(a
(`)
i , rθ∗))

L(Sq−1)
≤ 0.01+

L(Sq−2)(rθ∗)q−1

L(Sq−1)(q − 1)
≤ 0.01+

√
πΓ( q−1

2 )(rθ∗)q−1

Γ( q2 )(q − 1)
≤ 0.02.

(17)
The second inequality is an application of Eq. (5.2) in [42] and the last inequality is due to Eq. (16).
On the other hand, by tail bounds of binomial distribution (Theorem 1 in [41]) we have

Pr
[∣∣C(a

(`)
i , rθ∗)

∣∣ > n`(p+ 0.01)
]
≤ e−

0.012n2
`

2(pn`+0.01n`/3) ≤ e−
n`
400 , (18)

where in the last inequality we used the fact that pn` ≤ 0.01n`. Since s̄ ≤ 0.02n` ≤ s̃, we
proved that with probability at least 1− e−

n`
400 there will be no more than s̃ data points contained in

C(a
(`)
i , rθ∗).

The final step of the proof is to show that |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
j 〉| for every a(`)

j /∈ C(a
(`)
i , rθ∗)

and a(`)
j′ ∈ C(x

(`)
i , 3θ∗). By Proposition C.2, we have with probability at least 1− ne−

√
d

∣∣〈y(`)
j ,y

(`)
i 〉
∣∣ ≤ ∣∣〈a(`)

j ,a
(`)
i 〉
∣∣+ (2

√
5σ + 5σ2)

√
6 log n

d
≤ cos(rθ∗) + (2

√
5σ + 5σ2)

√
6 log n

d
(19)

and∣∣〈y(`)
j′ ,y

(`)
i 〉
∣∣ ≥ ∣∣〈a(`)

j′ ,a
(`)
i 〉
∣∣− (2

√
5σ + 5σ2)

√
6 log n

d
≥ cos(3θ∗)− (2

√
5σ + 5σ2)

√
6 log n

d
.

(20)
Since rθ∗ is dictated in Eq. (16), we only need to obtain an upper bound on θ∗. Following the same
argument on page 25 in [14] we have

θ∗ ≤ 4π

(√
2πq

M

) 1
q−1

= 4π

(
γ
√

2πq log n`
n`

) 1
q−1

. (21)

Consequently, |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
j 〉| when σ̄ = 2

√
5σ + 5σ2 satisfies

σ̄ <

√
d

24 log n

[
cos

(
12π

(
γ
√

2πq log n`
n`

) 1
q−1

)
− cos

((
0.01(q/2− 1)(q − 1)√

π

) 1
q−1

)]
.

(22)
The right-hand side of the above condition is strictly positive if n` satisfies

n` >
γπ
√

2q log n`
0.01(q/2− 1)(q − 1)

· (12π)q−1.

Appendix D Supplementary materials for private subspace clustering via
the exponential mechanism

D.1 Proof of Proposition 4.1

Proof. Define the score function h(·;θ) as h(X ;θ) =
∑n
i=1 d

2(xi,Szi). Since ‖xi‖2 ≤
1, it is straightforward that h(·;θ) has global sensitivity upper bounded by 1; that is,
supd(X ,X ′)=1 |h(X ;θ) − h(X ′;θ)| ≤ 1 for all θ. Eq. (10) is then a direct application of the
exponential mechanism.
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Algorithm 3 Gibbs sampling for matrix Bingham distribution (Eq. (23))
1: Input: symmetric matrix A, diagonal matrix B, current sample U, dimensions d and q.
2: for each r ∈ {1, · · · , q} in random order do
3: Let U(r) ∈ Rd be the rth column of U and U(−r) be the matrix excluding U(r).
4: Let N be an orthonormal basis of the null space of U(−r).
5: Compute z = N>U(r) and Ã = BrrN

>AN.
6: Update z by Gibbs sampling from the vector Bingham distributrion with parameter Ã.
7: Set U(r) = Nz.
8: end for
9: Output: the updated sample U.

Algorithm 4 Gibbs sampling for vector Bingham distribution (Eq. (24))
1: Input: symmetric matrix A, current sample x, dimension d.
2: Let A = EΛE>, Λ = diag(λ) be the eigen-decomposition of A. Compute y = E>x.
3: for each j ∈ {1, · · · , d} in random order do
4: Compute q1, · · · , qd as y2

1/(1− y2
i ), · · · , y2

d/(1− y2
i ).

5: Sample θ ∈ (0, 1) from the density p(θ) ∝ e(λi−q>−iλ−i)θ × θ−1/2(1− θ)(d−3)/2.
6: Set s = +1 or −1 with equal probability.
7: Set yi = siθ

1/2 and for each j 6= i set y2
j = (1− θ)qj , leaving the sign unchanged.

8: end for
9: Output: the updated sample x = Ey.

D.2 Gibbs sampling for matrix Bingham distribution

In this section we give details of a Gibbs sampler proposed in [16] for sampling from a matrix
Bingham distribution. One component in the Gibbs sampler (the rejection sampling step) is slightly
modified to make the sampling more efficient.

The objective is to sample from the following matrix-Bingham distribution:

p(U; A,B) ∝ exp(tr(BU>AU)), (23)

where U is a d×q matrix lying on a Stiefel manifold; that is, U>U = Iq×q . In our problem A is an
unnormalized sample covariance matrix and B = εIq×q , with ε the privacy budget. As a simplified
case, when q = 1 we arrive at a vector version of the Bingham distribution:

p(x; A) ∝ exp(x>Ax), (24)

with x constrained on the d-dimensional sphere {x ∈ Rd : ‖x‖2 = 1}. Gibbs samplers for both
Eq. (23) and (24) were proposed in [16] and presented in Algorithm 3 and 4.

In Algorithm 4, step 4 requires sampling from a non-standard 1-dimensional distribution

p(x; k, a) ∝ x−1/2(1− x)keax · 10<x<1 =: f(x). (25)

In [16] a rejection sampling algorithm was proposed to sample x from Eq. (25), with a Beta(1/2, 1+
min(k,max(k−a,−1/2))) envelope distribution. However, such a distribution is highly inefficient
when |a| � 0 for which no Beta distribution serves as a good envelope distribution. To address this
problem, we propose two separate rejection sampling schemes for Eq. (25) when |a| � 0.

Case 1: a � 0 In this case, the mass of the distribution will concentrate on x → 0. We use
Gamma distribution Γ(1/2, 1/|a|) truncated on (0, 1) as an envelope distribution. That is, x ∼ g(·)
and g(·) is defined as

g(x) =
1

Z
· x−1/2eax · 10<x<1,

with Z a normalization constant. The constant M = supx f(x)/g(x) can be computed as

M = Z · sup
0<x<1

x−1/2(1− x)keax

x−1/2eax
≤ Z.

The step-by-step algorithm is as follows:
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1. Sample x ∼ Γ(1/2, 1/|a|). If x ≥ 1, throw away x and re-draw the sample.
2. Sample u ∈ (0, 1) from the uniform distribution over (0, 1).
3. If u ≤ (1− x)k, accept the sample; otherwise reject the sample and try again.

The proposed rejection sampling algorithm is efficient because when a � 0, the envelope distribu-
tion g has very high density over the region near zero; consequently, (1 − x)k is close to one and
hence the acceptance rate is high.

Case 2: a� 0 In this case, the mass of the distribution will concentrate on x→ 1. However, we
have a singularity at x = 0 (i.e., limx→0 f(x) =∞). This makes the sampling particularly difficult
as a distribution proportional to eax will be infinitely off at the region near zero. To circumvent
the problem, we propose a mixture distribution as the envelope, which have good approximation
property at both regions near 0 and 1.

First define density h as

h(x) =
1

Z
· (1− x)keax · 10<x<1,

where Z =
∫ 1

0
(1− x)keaxdx is the normalization constant. Note that samples from h(·) can be

obtained by first sampling z from a Gamma distribution Γ(k + 1, 1/a) truncated on (0, 1) and then
apply transform of variable x = 1− z. The density of the envelope distribution g(·) is then defined
as a mixture distribution:

g(x) =
1

Z
· Beta(x; 1/2, k + 1) +

(
1− 1

Z

)
· h(x).

The constant M = sup f(x)/g(x) can be computed by

M = max

(
sup

0<x≤1/a

f(x)

g(x)
, sup
1/a<x<1

f(x)

g(x)

)

≤ max

(
Z · sup

0<x≤1/a

x−1/2(1− x)keax ·B(1/2, k + 1)

x−1/2(1− x)k
, 2 · sup

1/a<x<1

x−1/2(1− x)keax

(1− x)keax

)
≤ Z ·max(2

√
a, eB(1/2, k + 1)).

Here for the second inequality we applyZ ≥ 2 for reasonably large a andB(·, ·) is the Beta function.
The normalization constant Z can be approximately computed using numerical integration. How-
ever, empirical evidence suggests that Z is huge for large a values (e.g., Z > 10100 if a > k+ 500).
Therefore, we could simply take Z → ∞, which simplifies the rejection sampling algorithm as
follows:

1. Sample z ∼ Γ(k + 1, 1/a). If z ≥ 1 then throw away z and re-draw the sample.
2. Compute x = 1− z, M = max(2

√
a, exp(1) ·B(1/2, k + 1)).

3. Sampe u from the uniform distribution over (0, 1).

4. If u < x−1/2/(M(1 + e−axBeta(x; 1/2, k + 1))), accept the sample; otherwise reject the
sample and try again.

The proposed rejection sampling scheme is efficient because when a � 0 the density h(·) is very
skewed to one. Therefore, x−1/2 will be close to 1 and e−ax will be very samll, which means the
acceptance rate is high.

D.3 Justification of generative model in Section 4.2

Recall the generative model presented in Section 4.2:

1. For each ` ∈ [k], sample U` (orthonormal basis of S`) uniformly at random from Sdq .

2. For each i ∈ [n], sample zi ∈ [k] such that Pr[zi = j] = 1/k, yi uniformly at random
from the q-dimensional unit ball, and wi ∼ N (0, Id/ε). Set xi = U`yi + PU⊥`

wi.
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Algorithm 5 Differentially private query answering via the SuLQ framework
1: Input: query parameters S1, · · · ,Sk ∈ Rqd, ` ∈ [k]; privacy parameters ε, δ > 0.
2: Let A` = {xi : argmin`′d(xi,S`′) = `} and form B = A`A

>
` .

3: Noise calibration: Set B̃ = B + σW, where W is a standard Normal random matrix and
σ = 2

√
2 ln(1.25/δ)/ε.

4: Singular value decomposition: Let B̃ = UVD> be the top-q singular value decomposition
of B̃. U ∈ Rd×q denotes the top q left singular vectors of B̃.

5: Output: new subspace S ′` spanned by columns of U.

In this section we derive a Gibbs sampler for the considered model and show that the derived Gibbs
sampler is identical to the one presented in Section 4.1. This result establishes formal connection
between our proposed Gibbs sampling algorithm for private subspace clustering and a probabilistic
graphical model that resembles the mixtures of probabilistic PCA (MPPCA, [27]) model.

First we note that the prior distribution specified in the generative model is completely non-
informative; that is, p0(θ) = p0(θ′) for any θ = (C,x,y, z) and θ′ = (C′,x′,y′, z′). On the
other hand, the likelihood model is as follows:

p(xi|zi = `,yi, C) =

{
N (xi; U`yi, Id/ε), if PS`xi = U`yi;
0, otherwise. (26)

Here U` ∈ Rd×q is an orthonormal basis associated with S` and PS` stands for the projection
operator onto subspace S`. Integrating yi out we obtain

p(xi|zi = `, C) ∝ exp
(
−ε

2
· d2(xi,S`)

)
. (27)

A Gibbs sampler can then be derived as follows:

Update of zi By Eq. (27), the conditional distribution of zi is

p(zi = `|xi, C) ∝ p0(zi = `)p(xi|zi = `, C) ∝ exp
(
−ε

2
· d2(xi,S`)

)
.

Therefore, we can sample zi from a normalized categorical distribution as specified above.

Update of S` By Eq. (27), the conditional distribution of S` is

p(S`|x, z) ∝ p0(S`)
∏
zi=`

p(xi|zi = `,S`) ∝ exp

(
−ε

2
·
∑
zi=`

d2(xi,S`)

)
.

Denote A` = {xi : zi = `} as all data points in cluster ` and let U` be the orthonormal basis of S`.
We then have

p(U`|x, z) ∝ exp
(ε

2
· tr(U>` A`U`)

)
,

which corresponds to a matrix Bingham distribution.

The above presented Gibbs sampler is identical to the one proposed in Section 4.1 in the main text,
thus justifying our use of the above-mentioned generative model as an equivalent characterization of
the proposed private subspace clustering algorithm. This is perhaps not surprising, as the marginal
likelihood model Eq. (27) is exactly the same with the sampling distribution dictated by the expo-
nential mechanism, as shown in Eq. (10) in the main text.

Appendix E Private subspace clustering via the SuLQ framework

In this section we introduce a simple iterative subspace clustering algorithm based on the SuLQ
framework [2]. Before presenting the algorithm, we first review k-plane [3], a straightforward iter-
ative method for subspace clustering:

1. For each data point xi, compute zi = argmin1≤`≤kd(xi,Sk).
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2. For each cluster `, let A` = {xi : zi = `} ∈ Rd×n` denote all data points assigned to
cluster `. Update S` as the linear subspace spanned by the top-q eigenvectors of A`A

>
` .

3. Repeat step 1 and 2 until convergence.

Suppose the k-plane algorithm is run for T iterations. From the pseudocode of k-plane, the algorithm
needs to query the database X for kT times, each time asking the following question:

- Given S1, · · · ,Sk and ` ∈ [k] as inputs, output the orthonormal basis U` ∈ Rd×q
of a q-dimensional subspace S ′` such that S ′` best captures A>` A`; i.e., ‖A`A

>
` −

(PS′`A`)(PS′`A`)
>‖2 is minimized. Here A` is defined in terms of (S1, · · · ,Sk).

Algorithm 5 is a simple procedure that approximately answers the above question while preserving
(ε, δ)-differential privacy. It is in fact a special case of the SuLQ framework proposed in [2]. The
following proposition is immediate.

Proposition E.1. Algorithm 5 is an (ε, δ)-differentially private algorithm.

Proof. Define b(X ) = vec(A>` A`) ∈ Rd2 . LetX ′ be an arbitrary database such that d(X ,X ′) = 1.
That is, exactly one column x in X is replaced by a new column x′ in X ′. We then have

‖b(X )− b(X ′)‖22 ≤
d∑

i,j=1

(x′ix
′
j − xixj)2 ≤ 2

d∑
i,j=1

(x′2i x
′2
j + x2

ix
2
j ) ≤ 4,

where the last inequality is due to the constraint ‖x‖2, ‖x′‖2 ≤ 1. Consequently,

∆2b = sup
d(X ,X ′)=1

‖b(X )− b(X ′)‖2 ≤ 2.

The Gaussian mechanism (Theorem A.1, [9]) then suggests that one can release b while preserving
(ε, δ)-differential privacy by calibrating i.i.d. Gaussian noise to b:

Release b(X ) +
2
√

2 ln(1.25/δ)

ε
·w,

where w is a d2-dimensional standard Normal. The final singular value decomposition step does
not affect privacy because differential privacy is close to post-processing.

The following proposition is then a direct application of advanced composition [9].

Proposition E.2. Suppose the k-plane algorithm is run for T iterations, each iteration query-
ing Algorithm 5 k times with privacy parameters ε and δ. Then the overall algorithm is (ε′, δ′)-
differentially private with

ε′ =
√

2kT ln(1/δ)ε+ kTε(eε − 1),

δ′ = (kT + 1)δ.

Appendix F Concentration theorems

Theorem F.1 ([44], Theorem 1.2). Let A be an n × n matrices with entries i.i.d. sampled from
standard Gaussian distribution. Then there exist absolute constants c1 > 0, 0 < c2 < 1 such that
for every t > 0,

Pr
[
σn(A) ≤ t

√
n
]
≤ c1t+ cn2 ,

where σn(A) is the least singular value of A.

Theorem F.2 (Wedin’s theorem; Theorem 4.1, pp. 260 in [45]). Let A,E ∈ Rm×n be given
matrices with m ≥ n. Let A have the following singular value decomposition U>1

U>2
U>3

A [ V1 V2 ] =

[
Σ1 0
0 Σ2

0 0

]
,
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where U1,U2,U3,V1,V2 have orthonormal columns and Σ1 and Σ2 are diagonal matrices. Let
Ã = A + E be a perturbed version of A and (Ũ1, Ũ2, Ũ3, Ṽ1, Ṽ2, Σ̃1, Σ̃2) be analogous sin-
gular value decomposition of Ã. Let Φ be the matrix of canonical angles between range(U1) and
range(Ũ1) and Θ be the matrix of canonical angles between range(V1) and range(Ṽ1). If there
exists δ > 0 such that

min
i,j

∣∣[Σ1]i,i − [Σ2]j,j
∣∣ > δ and min

i

∣∣[Σ1]i,i
∣∣ > δ,

then

‖ sin Φ‖2F + ‖ sin Θ‖2F ≤
2‖E‖2F
δ2

.

Theorem F.3 ([32], Lemma 18, Properties of Gaussian random vectors). Let ε ∼ N (0, σ
2

d I) be a
d-dimensional random Gaussian vector with coordinate-wise variance σ2. Then the following holds
for some fixed z ∈ Rd and t, ρ > 0:

Pr
[
‖εi‖22 > (1 + t)σ2

]
≤ e

n
2 (log(t+1)−t);

Pr
[∣∣〈εi, z〉∣∣ > ρ‖εi‖2‖z‖2

]
≤ 2e−

nρ2

2 .

References
[35] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the SULQ framework. In PODS,

2015.
[36] P. S. Bradley and O. L. Mangasarian. k-plane clustering. Journal of Global Optimization, 16(1), 2000.
[37] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in

Theoretical Computer Science, 9(3–4):211–407, 2014.
[38] R. Heckel and H. Bölcskei. Robust subspace clustering via thresholding. arXiv:1307.4891, 2013.
[39] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American

statistical association, 58(301):13–30, 1963.
[40] P. Hoff. Simulation of the matrix bingham-conmises-fisher distribution, with applications to multivariate

and relational data. Journal of Computational and Graphical Statistics, 18(2):438–456, 2009.
[41] S. Janson. On concentration of probability. Contemporary combinatorics, 10(3):1–9, 2002.
[42] P. Leopardi. Diameter bounds for equal area partitions of the unit sphere. Electronic Transactions on

Numerical Analysis, 35:1–16, 2009.
[43] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica

Sinica, 17:1617–1642, 2007.
[44] M. Rudelson and R. Vershynin. The littlewood–offord problem and invertibility of random matrices.

Advances in Mathematics, 218(2):600–633, 2008.
[45] G. W. Stewart, J.-g. Sun, and H. B. Jovanovich. Matrix perturbation theory. Academic press New York,

1990.
[46] M. Tipping and C. Bishop. Mixtures of probabilistic principle component anlyzers. Neural computation,

11(2):443–482, 1999.
[47] Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. In ICML, pages 89–97, 2013.

21


	Differentially Private Subspace Clustering
	Citation

	Introduction
	Preliminaries
	Notations
	Subspace clustering
	Differential privacy

	Sample-aggregation based private subspace clustering
	Smooth local sensitivity and the sample-aggregate framework
	The agnostic setting
	The stochastic setting
	Discussion

	Private subspace clustering via the exponential mechanism
	A Gibbs sampling implementation
	Discussion

	Numerical results
	Conclusion
	Some basic properties regarding the distances
	Proofs of sample-aggregate private subspace clustering: the agnostic case
	Proof of Lemma B.1
	Proof of Lemma 3.3

	Proofs of sample-aggregate private subspace clustering: the stochastic case
	Proof of Lemma 3.5

	Supplementary materials for private subspace clustering via the exponential mechanism
	Proof of Proposition 4.1
	Gibbs sampling for matrix Bingham distribution
	Justification of generative model in Section 4.2

	Private subspace clustering via the SuLQ framework
	Concentration theorems

