
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2014

PrivateDroid: Private Browsing Mode for Android PrivateDroid: Private Browsing Mode for Android

SU MON KYWE
Singapore Management University, monkywe.su.2011@phdis.smu.edu.sg

Christopher LANDIS

Yutong PEI

Justin SATTERFIELD

Yuan TIAN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
SU MON KYWE; LANDIS, Christopher; PEI, Yutong; SATTERFIELD, Justin; TIAN, Yuan; and TAGUE, Patrick.
PrivateDroid: Private Browsing Mode for Android. (2014). 2014 IEEE 13th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom): Proceedings. 27-36.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3465

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3465&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3465&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
SU MON KYWE, Christopher LANDIS, Yutong PEI, Justin SATTERFIELD, Yuan TIAN, and Patrick TAGUE

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/3465

https://ink.library.smu.edu.sg/sis_research/3465

PrivateDroid: Private Browsing Mode for Android
Su Mon Kywe*

Singapore Management University
Singapore

Email: monkywe.su.2011@smu.edu.sg

Christopher Landis
Carnegie Mellon University

Pittsburgh, USA
Email: clandis@alumni.cmu.edu

Yutong Pei
Carnegie Mellon University

Pittsburgh, USA
Email: ypei@andrew.cmu.edu

Justin Satterfield
Carnegie Mellon University

Pittsburgh, USA
Email: jsatterf@andrew.cmu.edu

Yuan Tian
Carnegie Mellon University

Pittsburgh, USA
Email: yt@cmu.edu

Patrick Tague
Carnegie Mellon University

Pittsburgh, USA
Email: tague@cmu.edu

Abstract—Private browsing mode is a privacy feature adopted
by many modern computer browsers. With the increased use
of mobile devices and escalating privacy concerns for mobile
users, browser applications on mobile devices have also started
incorporating private browsing mode. Even so, the use of private
browsing mode is limited to the browser applications and cannot
be applied directly on other third-party mobile applications. In
this paper, we propose PrivateDroid, which provides a private
browsing mode for third-party applications on the Android plat-
form. First, we discuss three possible approaches of implementing
mobile private browsing mode: code instrumentation, an extra
sandbox, and a Linux container approach. Then, we implement
PrivateDroid, which creates a new sandbox for every application
in private mode and destroys the sandbox once the application is
closed. After that, we evaluate usability, efficiency and security
of the system with 25 popular Android applications. Our design
considerations, implementation details, evaluation results, and
challenges lay a foundation of private browsing mode on mobile
platforms.

Index Terms—Mobile Privacy, Private Browsing Mode

I. INTRODUCTION

Private browsing mode of modern browsers plays a great
role in protecting user privacy. People use it to search for
something private, such as medical conditions, new job oppor-
tunities, to browse secretly for gifts, or to log into personal
accounts on public computers so as to not leave a history
of their online actions. Private browsing mode ensures that
personal information, such as browsing histories, cookies and
cache information, are cleared once the browsing session
ends. With the increased use of mobile devices, some mobile
browsers have also incorporated the private browsing mode.
However, it is not trivial to guarantee similar level of privacy
due to the architectural differences between Personal Com-
puters (PCs) and mobile devices. To make matters worse,
Android allows any third-party applications with appropriate
permission to access the web and leave history or cache
information behind. Thus, private browsing mode in mobile
browsers is not sufficient to ensure privacy of mobile users.

In this paper, we introduce PrivateDroid, which extends
the private browsing mode concept to third-party Android

*This work was done, when the author was in Carnegie Mellon University

applications. PrivateDroid is a modified version of Android
framework, in which users can specify a mobile application to
launch in private mode. PrivateDroid leverages the sandboxing
mechanism of the Android framework. When an application is
launched in private mode, PrivateDroid creates a new sandbox
for that application. Once it is closed, PrivateDroid removes
the sandbox together with its private data storage directory.
Thus, all locally stored state information of users is destroyed
when users exit the private mode application. Moreover, Pri-
vateDroid spoofs the International Mobile Equipment Identity
(IMEI) of mobile devices. Hence, whenever an application is
launched in the private mode, it would ‘think’ that it is the
first time running on that device.

The contributions of our paper are as follows.

1) We are the first to investigate the problem of the pri-
vate browsing mode concept in the context of mobile
applications. We also propose three different designs of
implementing private mode for mobile applications. We
discuss their strengths and weaknesses in terms of secu-
rity, efficiency, usability, and ease of implementation.

2) From the proposed designs, we choose the extra sandbox
approach, which is relatively lightweight and provides
a balance between security and usability. We imple-
ment it as PrivateDroid and incorporate various usability
features for private mode, such as indicators for active
sessions of private mode.

3) We evaluate PrivateDroid with 25 popular Android ap-
plications. The evaluation results and our challenges
reveal insights into different ways of improving private
mode for mobile applications.

Our paper is organized as follows. Section II provides
background information on Android architecture, Android’s
sandbox, and our threat model. In Section III, we propose
and compare three different approaches for implementing
private mode for mobile applications. Section IV discusses the
implementation details of PrivateDroid and evaluation results
are given in Section V. Section VI summarizes the related
work and we conclude our paper in Section VII.

II. BACKGROUND

A. Android Platform
1) Android OS Architecture: The Android architecture con-

sists of three layers, namely the application layer, middleware
layer, and kernel layer. Android’s application layer includes
default system applications, such as the Contacts List, and
other third-party applications installed by users. The middle-
ware layer provides services to the application layer via the
application framework or Application Programming Interfaces
(APIs). The middleware layer also includes the Dalvik virtual
machine in which applications run, along with core Java
libraries. As the foundation of this architecture, the kernel
layer is responsible for managing drivers, network sockets,
processes, and file systems.

2) Android Sandbox: The main purpose of Android’s sand-
box is to isolate applications. When an application is installed,
Android assigns a unique user ID and private data directory
in which the application can store its data. After that, each
app, with its unique user ID, runs in its own Dalvik virtual
machine. In this way, the sandbox ensures that each application
manages its own processes and files and cannot interfere with
other applications’ processes and files. If an application wants
to communicate with the Android system or other third-party
applications, it is required to request appropriate permissions.
During application uninstallation, the sandbox destroys the
application’s user ID and its private data directory.

B. Threat Model
As the private browsing mode is a relatively new concept

of browser security, even some popular PC browsers, such as
Chrome and Firefox, do not have commonly agreeing threat
models. However, according to G. Aggarwal et al. [1], there
are two types of attackers that should be prevented by private
browsing mode: local attackers and web attackers.

1) Local Attackers: Local attackers are people who have
physical access to the device or malicious software that is
installed on the device after the browsing session. An example
scenario is where a user plans to secretly buy a surprised
gift for a family member. The family member becomes a
local attacker in this case. Local attackers are passive; they
will not install tracking applications or key loggers to detect
application usage history. Local attackers can be generally
prevented by removing all the cookies, session caches, and
browsing histories added by users in private browsing mode.

Nonetheless, clearing such information is much more dif-
ficult in mobile applications than in PC browsers. Consider
a scenario where a person borrows a mobile phone from her
friend, launches the Instagram application in private mode,
takes a photo and uploads it to her Instagram network.
Instagram application normally stores the photo in its local
storage before uploading it to the social network. To prevent
local attackers, when the user closes the private session of
Instagram application, the photo should also be removed from
the device’s storage along with her cookie information.

Note that even the popular PC browsers do not completely
prevent local attackers to support usability. For instance, they

do not remove the files downloaded during the private session.
In this paper, we also decide to follow a relatively loose
security model. PrivateDroid is designed to clear private data
from both internal storage, such as application private data
directory, and external storage, such as SD card. However, it
will not remove data added via Inter-Process Communication
(IPC). For example, if a mobile application in private mode
modifies a contact of user’s address book, PrivateDroid will
not revert such information.

2) Web Attackers: According to G. Aggarwal et al. [1],
there are three goals of web attackers: (1) to link a user
visiting in private mode to the same user visiting in public
mode, (2) to link a user visiting in private mode to the same
user visiting in private mode and (3) to determine if the user
is currently using the application in private mode. Some PC
browsers prevent web attackers by separating the availability
of public and private cookies. On the other hand, some other
popular PC browsers, such as Safari, do not even consider web
attackers in their threat model.

In the context of mobile devices, applications have access
to a lot of user identifiers, such as the IMEIs of the devices
and personal email accounts, allowing web attackers to easily
link a user across different sessions. Thus, to completely
prevent web attackers, all available user identifiers from the
mobile devices should be spoofed during the private mode
session. Our current implementation of PrivateDroid spoofs
the device IMEI so that they look legitimate to web attackers.
Note that Internet Protocol (IP) address tracking and browser
fingerprinting are not prevented by private mode.

III. DESIGN CONSIDERATIONS

In this section, we present three possible approaches of
implementing private mode for mobile applications. The first
approach is code instrumentation, in which the source code
of third-party applications are modified to support private
mode. The second approach uses a Linux Container, in which
Operating System (OS)-level virtualization is used to separate
public and private modes. The third approach is the extra
sandbox approach, in which applications in different modes
are isolated in terms of their processes and file systems. We
will discuss the security, efficiency, usability, and ease of
implementation of all approaches.

A. Approach I: Code Instrumentation

The first approach is to apply code instrumentation to
third-party mobile applications. Code instrumentation is the
insertion or modification of specific code to the original source
files. It can be used to analyze and modify the application
source code that accesses mobile user identifiers or the code
that creates permanent states on mobile devices. For instance,
every TelephonyManager.getDeviceId() method in
the application source code can be replaced with a fake IMEI
value. Similarly, the source code that leaves permanent data
on the device can be modified or disabled. Thus, this approach
can be used to prevent both local attackers and web attackers
of private mode users.

1) Security: Source code instrumentation is normally used
for data logging, debugging, or software performance analysis
and not for security. Moreover, static analysis of source codes
is known to have imperfect coverage and may fail to modify
the applications that use Java reflection and code obfuscation.
Listing 1 shows simple obfuscated code with Java reflection
for the TelephonyManager.getDeviceId() method.
Unfortunately, it is not uncommon for application developers
to use automated tools with more complex obfuscation meth-
ods. Thus, we rate the security of the code instrumentation
approach as bad.

Listing 1. Invoking TelephonyManager.getDeviceId() via Java
Reflection and Code Obfuscation

char[] s = {’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,
’i’,’j’, ’k’,’l’,’m’,’n’,’o’,’p’,’q’,’r’,
’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’};

char[] S = {’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,
’I’,’J’,’K’,’L’,’M’,’N’,’O’,’P’,’Q’,’R’,
’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’};

String className = "" + S[19] + s[4] + s[11]
+ s[4] + s[15] + s[7] + s[14] + s[13] +
s[24] + S[12] + s[0] + s[13] + s[0] +
s[6] + s[4] + s[17];

String methodName = "" + s[6] + s[4] + s[19]
+ S[3] + s[4] + s[21] + s[8] + s[2] +
s[4] + S[8] + s[3];

Class iClass = Class.forName(className);
Method iMethod =

iClass.getDeclaredMethods(methodName,
null);

String deviceIMEI = iMethod.invoke();

2) Efficiency: Source code instrumentation involves four
time-consuming steps: (1) reverse engineering the binary code
of applications, (2) searching for the source code to be
modified, (3) modifying the source code, and (4) repackaging
those applications. All of these steps would be performed on
mobile devices during application installation; therefore, this
approach will not only increase the source code size but also
considerably lengthen the installation duration. However, this
is just a one-time process and little difference can be observed
by users after the installation process has completed. We rate
the efficiency of this approach as moderate.

3) Usability: Repackaging third-party applications will
break some functionality of the applications. For instance,
Oauth [2], which allows users to use their Facebook or Google
accounts to authenticate themselves in other applications,
requires valid application signatures. However, repackaging in-
validates the signatures and makes these applications unusable.
Nonetheless, such cases are rare and we rate the usability level
of code instrumentation as moderate.

4) Ease of Implementation: Implementing source code in-
strumentation involves modifying the source code of Android
framework to repackage third-party applications. However,
compared to modifying the kernel layer, this approach is easier
to implement. As such, we rate the ease of implementation as
moderate for the source code instrumentation approach.

B. Approach II: Linux Container

The second approach is to maintain two parallel Android
OSs on one single device: one for public mode and another
for private mode. When an application is launched in private
mode, it will be installed on the private container and run in
an isolated environment. After the private session is ended,
the application will be uninstalled from the private container,
removing all the states that are created during the process. The
private container should also be able to spoof users’ identities
to enforce private mode.

1) Security: In this approach, all three layers of the Android
architecture, including application, middleware, and kernel
layers, are separated into two distinct and parallel containers.
Only then, all the IPCs, file systems, and run-time memories
will be isolated by container. This approach is often used in
enterprises to isolate cooperate applications from third-party
applications [3]. Therefore, we rate the security level of Linux
container approach as good.

2) Efficiency: A very robust security policy is normally
accompanied by high complexity. The same goes for this
Linux container approach. If we choose to run both contain-
ers simultaneously and continuously, it will negatively affect
the device resources, including storage, memory, and battery
consumption. On the other hand, if the private mode container
is launched only when the user switches the private mode on,
the user will need to wait for the private version of the OS to
boot. Launching time can also be exacerbated by installation
time of private applications in the private container. Thus, we
rate the efficiency as bad for Linux container approach.

3) Usability: Assuming that Linux container is correctly
implemented, it will not interfere with the functionalities of
third-party applications. Therefore, we rate the usability level
of Linux container as good.

4) Ease of Implementation: This approach requires mod-
ifying Android’s kernel layer source code to separate its
file system as well as isolating the run-time memories of
the two systems. Hence, we evaluate it as bad for ease of
implementation.

C. Approach III: Extra Sandbox

Our third approach is to create a new and isolated sandbox
for every application in private browsing mode. This approach
utilizes the default sandboxing mechanism of Android that iso-
lates applications. By creating extra sandboxes for applications
in private mode, we can limit the private applications to run
only in their own processes with assigned user IDs and to have
access only to their own internal data directories. Thus, all the
processes and data from private mode applications are isolated
from the applications in public mode.

1) Security: The sandbox mechanism only isolates certain
aspects of applications, such as private data storage and code
execution. Hence, creating a new sandbox does not prevent
private mode applications from communicating with other
public applications or establishing persistent states by writing
to the content providers, such as the contact list of mobile
phones. Therefore, we rate the security level as moderate.

2) Efficiency: Every time an application is launched in
private mode, it is reinstalled in a new sandbox with a new
user ID and data directory. Similarly, when an application is
closed from private mode, it is uninstalled and its user ID
and data directory are destroyed. Although the time delay in
launching is hardly noticeable for applications with a relatively
small source code size (less than about 5 MB), the installation
time delay is observable for applications with a larger source
code size. Therefore, we rate the usability of an extra sandbox
approach as moderate.

3) Usability: Creating a new sandbox for each private mode
application requires changing the private mode application
package’s name so that both public and private versions of
applications can co-exist on the same platform. This has po-
tential of causing name confusions for the application running
in private mode. We rate usability of this approach as moderate
and we further discuss this issue in Section V.

4) Ease of Implementation: Implementing the extra sand-
boxes involves modifying the source code of Android frame-
work. Nonetheless, it is easier than Linux container approach
of modifying the kernel layer. Therefore, we rate the ease of
implementation as good.

D. Choosing an Appropriate Design

We summarize the merits and demerits of each of these
approaches in Table I. By looking at the comparison, people
can chose an appropriate design approach based on different
user requirements. For instance, requirements that focus pri-
marily on security may prefer the Linux container approach.
However, in this paper, we chose the extra sandbox approach,
as it provides a balance between security and usability. It has
a moderate level of security, efficiency, and usability and it is
relatively easy to implement. Thus, PrivateDroid applies the
extra sandbox approach with additional usability features, such
as private mode indicators.

IV. IMPLEMENTATION

PrivateDroid is implemented on Android OS version 4.3.2.1,
Jelly Bean (API Level 18). In PrivateDroid, we added 367,
modified 4, and removed 14 source lines of code across
18 files, added 1 additional file containing 20 source lines
of code, and added 12 image icon files: six of both icons
to accommodate the divers display resolutions. The added
icons are the public and private mode selectors and indicators.
PrivateDroid is tested on an unlocked LG E960 Google Nexus
4 Global System for Mobile Communications (GSM) Phone
with 8 GB of internal storage.

A. Creating the Extra Sandbox

The extra sandbox for a private mode application is created
by reinstalling the application with a different package name.
Reinstalling creates a new user ID and a new data direc-
tory for the private mode application. Therefore, whenever
a user launches an application in private mode, it will run
in a completely new state and process without affecting any
functionalities or data storage of the original application in
public mode. The following technical steps are performed to
reinstall the application and create a new sandbox.

1) A system application, Launcher, is modified to detect
whether an application is launched in private or public
mode. When launching an application in private mode,
Launcher sends an intent with an updated package
name to another system application, PackageIn-
staller, which is responsible for every application
installation. To obtain a new package name for private
mode applications, we simply append “.private” at the
end of the original package name.

2) In normal situations, PackageInstaller prompts
the users to confirm installation and approve permissions
before initializing the installation process. However, in
a private mode scenario, such prompts are not required
as users have already approved them during the first in-
stallation. Therefore, we modify PackageInstaller
to bypass all of the prompts, when the application for
installation is a private mode application.

3) PackageInstaller then interacts with the Pack-
ageManager and the PackageManagerService
to complete the installation process. We also mod-
ify PackageManager and the PackageManager-
Service accordingly to bypass verification process
and ensure that package names, process names and data
directories of private mode applications are changed
accordingly.

4) Once the reinstallation is successful, Launcher laun-
ches the private mode application by starting its main
activity via an intent.

PrivateDroid does not allow users to launch system applica-
tions, such as the Settings application, in private mode. This is
to avoid having duplicate settings in a mobile device. Instead,
PrivateDroid triggers the message in Figure 1, when users
attempt to launch system applications in private mode.

Moreover, PrivateDroid does not permit users to run the
same application in public and private mode simultaneously.
This is due to our implementation decision not to change the
component names, such as the names of activities, services
and content providers, of the applications in private mode.

TABLE I
COMPARISON AMONG DIFFERENT APPROACHES FOR PRIVATE MODE

Approach Security Efficiency Usability Ease of Implementation
I. Code Instrumentation Bad Moderate Moderate Moderate
II. Linux Container Good Bad Good Bad
III. Extra Sandbox Moderate Moderate Moderate Good

Fig. 1. Warning Message for Launching Systems Applications in Private
Mode

Changing their names without changing the application source
code may cause the applications to crash. On the other hand,
not changing their names introduces complications when both
public and private mode applications run simultaneously. This
is mainly caused by the use of intents, as intents communicate
via the class names of the receiving application. Therefore, in
the current implementation or PrivateDroid, we do not allow
users to run the same applications in both public and private
modes. Instead, we show a warning message, as demonstrated
in Figure 2.

Fig. 2. Warning Message for Simultaneously Running Public and Private
Mode Applications

B. Destroying the Extra Sandbox

PrivateDroid implements this capability in the recent appli-
cations panel, shown in Figure 3, because it tends to be the
location where the users generally close applications. From the
user standpoint, closing an application running in private mode
is accomplished exactly the same way as closing an application
in public mode. To implement this capability, we modified
RecentsPanelView of the SystemUI package. Once the
user “flings” or “swipes” a private mode application from the
recent applications panel, we call the PackageManager’s
deletePackage method to uninstall the application. Unin-
stallation removes both the data directory and the source
Application Package (APK) file generated during the private
mode installation process. Thus, a completely new sandbox
will be re-created, the next time the user launches the appli-
cation in private mode.

C. Improving the Extra Sandbox

Destroying the extra sandbox only removes the internal
storage of private mode applications. However, there are still
chances that private mode applications may have left data in

Fig. 3. Private Mode Application in Recent Applications Panel

external storage, which is mainly the SD card of the device.
Therefore, we modify the Android OS Environment to
indicate that the external storage is not present when a private
mode application tries to check the status of external storage
via the getExternalStorageState() method. More-
over, the getDataDirectory() and getExternal-
StorageDirectory() methods are modified to return
the internal storage directory instead when a private mode
application tries to retrieve the external storage paths of the
devices. Thus, all the data of private mode applications are
stored in their internal storage directories and are removed
once the applications are closed.

Here we assume that applications normally use the getDa-
taDirectory() and getExternalStorageDirect-
ory() methods to access the external storage. The assump-
tion is reasonable, as the exact path of external storage varies
from device to device and applications are recommended to
use these methods. Moreover, in this case, we are mainly
protecting against local attackers and not web attackers. Thus,
we accept the slight possibility that applications may still
access the external storage without calling these methods,
such as by getting the root directory and navigating the
subdirectories dynamically.

D. Spoofing the IMEI

Implementing the extra sandbox takes care of local attackers
by removing any data that the application may have stored
on the phone. However, web attackers can still uniquely
and persistently identify the users by accessing the unique
identifiers of the mobile devices and sharing state information
with a remote server. Hence, PrivateDroid also incorporates
spoofing a fake IMEI for applications launched in private
mode.

To obtain the IMEI, applications call getDeviceId()
method of TelephonyManager. Thus, the spoofing mecha-
nism is implemented within this method and spoofing occurs,
whenever applications in private mode call this method. To
make the spoofed value appear legitimate, PrivateDroid emu-
lates the structure defined by the Global System for Mobile
Communications Association (GSMA) technical specification
of “TS.06 IMEI Allocation and Approval Process” [4]. It
defines the IMEI as a 15-digit value with 3 fields as shown in
the Figure 4. The first 8 digits represent the Type Allocation
Code (TAC), a unique identifier for the specific type of device.
The next 6 digits contain the serial number assigned by the
manufacturer of the device. The final digit is a check-sum
digit generated by Luhn’s algorithm, defined by technical
specification GSM TS 02.16 [5].

Fig. 4. Structure of the 15-Digit IMEI

PrivateDroid creates a legitimate IMEI value by starting
with the real TAC of the device, generating a pseudorandom
serial number, and calculating a check-sum for the entire
sequence of digits. This value, returned to the calling private
mode application, would pass formatting or validity checks
that applications could perform. However, note that if the user
closes a private mode application and re-launches it in private
mode, PrivateDroid will spoof a different IMEI. Consequently,
an application that makes multiple requests for the IMEI will
be able to detect the spoofing.

E. Selecting and Indicating Private Mode

Since user-friendliness is one of the primary requirements of
PrivateDroid, we incorporate multiple private mode indicators
in our framework. First of all, PrivateDroid includes a switch
between private mode and public mode as shown in the
Figure 5. The yellow icon indicates normal browsing mode,
while the green icon indicates private browsing mode. The two
modes can be toggled with one tap from the user. Once the
private mode switch is on, all the applications will be launched
in private mode. We implement this indicator by modifying the
Hotseat within the Launcher application.

Fig. 5. Private Mode Selector/Indicator

The second indicator is displayed in the recent application
panel, shown in Figure 3, in which all the open applications are

listed. The labels of applications in private browsing mode are
highlighted in green, while public mode applications have the
default transparent background. This is also the place, where
users can close the private mode applications and destroy their
state information by “flinging” them out of the stack.

The third and fourth indicators are shown in Figures 6 and
7. When a user launches an application in private mode, a
notification is sent to the user and the notification light flashes
as a reminder of the private mode state. PrivateDroid incor-
porate these indicators by modifying the Notification-
ManagerService of the Android framework. These indi-
cators are chosen, in such a way that they do not interfere
with the user interfaces of third-party applications. At the
same time, they allow users to easily distinguish between
applications that are run in private browsing mode and those
run in public mode.

Fig. 6. Private Mode Notification Message

Fig. 7. Private Mode Notifications

V. EVALUATIONS, LIMITATIONS AND SUGGESTIONS

We evaluate PrivateDroid with 25 popular applications that
each have at least 5 million downloads. We exclude the appli-
cations that are unlikely to be used in private browsing mode,
as they do not appear to store users’ state or information.
Examples of these applications include antivirus, weather,
wallpaper, and flashlight applications. Table II shows a list of
tested applications with their package names as well as how
we categorize them.

With these applications, we test the usability (i.e., whether
their functionalities are affected by our modified private mode
framework) and the efficiency (i.e., how long they take to
launch in private mode) of PrivateDroid. We also qualitatively
evaluate the security of PrivateDroid (i.e., to what extent
PrivateDroid can prevent local and web attackers).

A. Security

Although PrivateDroid removes state information from ex-
ternal and internal storage and spoofs IMEIs with seemingly-

TABLE II
TESTED APPLICATIONS BY NAMES

Application Name Package Name
4 Social Networking Applications

Facebook com.facebook.katana
Instagram com.instagram.android
Linkedin com.linkedin.android
Twitter com.twitter.android

12 Utility Applications
Adobe Reader com.adobe.reader
Amazon Kindle com.amazon.kindle
Barcode Scanner com.google.zxing.client.android
Chrome Browser com.android.chrome- Google
CNN App for com.cnn.mobile.android.phoneAndroid Phones
Ebay com.ebay.mobile
IMDb Movies & TV com.imdb.mobile
Pandora com.pandora.android
Viber com.viber.voip
WhatsApp Messenger com.whatsapp
Yelp com.yelp.android
Youtube com.google.android.youtube

9 Game Applications
Angry Birds com.rovio.angrybirds
Bejeweled Blitz com.ea.BejeweledBlitz na
Clash of Clans com.supercell.clashofclans
Cut the Rope com.zeptolab.ctr.adsFULL FREE
Drag Racing com.creativemobile.DragRacing
Fruit Ninja com.halfbrick.fruitninjafree
Subway Surfers com.kiloo.subwaysurf
Temple Run com.imangi.templerun
Temple Run 2 com.imangi.templerun2

legitimate fakes, there are still other security features that have
yet to be implemented.

1) Limiting Access to Content Providers: Redirecting exter-
nal storage access and removing data from internal storage are
not enough to ensure that no persistent state or data are stored
by private mode applications. Applications can still leave data
in content providers or databases. To make matters worse for
PrivateDroid, there are centralized content providers, such as
Calendar and Contacts List, that do not belong to a private
mode application.

One way to limit the possibility of private mode applica-
tions establishing persistent data is to apply a taint tracking
mechanism [6] while allowing private mode applications to
access content providers. With fine-grained taint tracking, if
an application modifies a row within a content provider, that
change can be reversed once the private session is closed.
However, taint tracking is very resource-intensive with regard
to processing and battery consumption. In addition, taint
tracking, with its many known bypasses, is not secure [7].

Another way is to modify the Android framework to redirect
access attempts to content providers. This can be accomplished
by modifying ContentResolver methods, which provide
the basic Create, Retrieve, Update, and Delete (CRUD) func-
tions to access content providers. Unfortunately for Privat-
eDroid, application intents provide another indirect way of
accessing content providers. Intents allow an application to

call another application with access to perform desired actions
on its behalf. As intents are part of Android’s IPCs, we will
discuss more about them in the following subsection.

2) Limiting Inter-Process Communications: IPCs in An-
droid include intents and binders. They allow communications
between application components and provide an additional
path of communication that could lead to compromising
private mode. One way to solve this problem is to block
all intents from private mode applications. Obviously, such
a modification will result in application failures.

Alternatively, one can analyze private mode applications’
intents and redirect those that are bound for public mode ap-
plications to the private mode version of the intended receiving
applications. Analyzing IPCs in Android has been performed
in ComDroid by E. Chin et al. [8]; however, ComDroid only
performs static analysis and is still has an open question on
how to perform dynamic analysis on Android IPCs. Our paper
does not cover this since the dynamic analysis itself is a big,
open research problem beyond this scope.

3) Spoofing Other User Identifiers: Our implementation of
the private mode framework only spoofs devices’ IMEIs. This
is because the IMEI is one of the main sources of privacy
leaks in Android devices, as shown by E. Chin et al. [9], C.
Gibler et al. [10], and Z. Yang et al. [11]. However, there are
other user and device identifiers, such as the phone number,
email accounts, subscriber IDs, IP addresses, etc. These unique
identifiers should also be spoofed to build a security-robust
private mode framework.

B. Efficiency

In this section, we evaluate the efficiency of the extra
sandbox approach by calculating the application launch time.
Launch time is the main bottleneck in the extra sandbox
approach, as most private mode functions, such as reinstalla-
tion, are performed during the launch. After the launch, users
will notice little or no difference in CPU or battery usage
between private and public mode applications. We calculate
the launch time as the time differences between when the user
taps the application launcher icon and when the application
user interface is triggered. The loading time of applications is
excluded in our prototype.

First, we launch each application 5 times in private mode
and another 5 times in public mode. We then calculate average
scores of launch times and compare the launch times between
private and public modes. Figure 8 shows the average launch
time difference for all tested applications. The time difference
for each application is obtained by subtracting average launch
time in public mode from average application launch time in
private mode. Overall, private mode prolongs the application
launch by an average of 7.108 seconds. However, note that
in terms of run-time and battery life, there is little or no
difference between private mode and public mode, once the
private application is re-installed and launched.

Moreover, we still can improve the efficiency of Private-
Droid by pre-installing the private applications before the
launch. This can be accomplished by having a system thread

Fig. 8. Average Launch Time Difference between Applications in Private and Public Mode

create an extra sandbox for each application, once the original
installation is finished or after closing a private mode applica-
tion, as described in section IV-B. This solution comes with
storage overhead because all of the applications on the device
need to be duplicated for the private mode. Thus, in situations
where the efficiency is more important than storage capacity,
we suggest modifying PrivateDroid to pre-install applications
in their private mode extra sandboxes.

C. Usability

Re-installation is successful for all applications (i.e. extra
sandboxes can be properly created for all these applications).
After re-installation, 18 out of 25 tested applications run well
without any errors. Their functionalities are not affected by the
extra sandboxes. However, 7 applications throw errors when
certain functions are triggered. Table 9 compares the number
of applications that function normally in private mode and
the number of applications that do not in each application
category. The result is not very satisfactory, considering that
popular applications, such as Facebook, can crash in Private-
Droid. We include the detailed explanations of the thrown
errors and make a few suggestions so that such mistakes can
be avoided in a future implementation.

1) Permission Denial: Ebay, Linkedin, and Viber each
throw a SecurityException when they are launched
in private mode. Analyzing the error messages shows that
these applications in private mode still try to access content
providers and services from the original, public mode ap-
plications. Whereas Ebay and Linkedin throw this exception
when they attempt to access their own content providers,
Viber throws this exception when it tries to start its services.
These permission denial problems are caused by the confusion
in component names because we do not rename application
components, such as content providers and services, during
private mode installation. The solution involves renaming
all of the components and modifying the source code of
private mode applications that access these components. In
other words, code instrumentation and application repackaging

Fig. 9. The number of applications for each category

should be incorporated with the extra sandbox approach to
obtain higher usability.

2) Third-Party Libraries: The Facebook, Amazon Kindle,
and Pandora applications each throw a Resources$Not-
FoundException upon launching. Analyzing the errors
shows that they are thrown from other packages or libraries
that exist inside the private mode applications. For instance,
the exception from Pandora (com.pandora.android) is
thrown from the com.comscore.analytics analytics
library inside the application.

We hypothesize the explanation as follows. The third-
party libraries or packages included inside the applications
can access the resources from the original applications by
importing the R.java files. The syntax used for accessing re-
sources is [<package_name>.]R.<resource_type>-
.<resource_name>. Thus, it is likely that these libraries
may have attempted to import resources using the original
package name while the package name of the application
had been changed for private mode (i.e., they have been
concatenated with “.private”). This subsequently leads to
ResourceNotFound exceptions in private mode applica-

tions. Similar to the solution in the previous section, the best
solution to solve this error is to change the source code of
external libraries so that they only import and use the R.java
files from the private mode applications and not from the
original, public mode applications.

VI. RELATED WORK

Our related work is divided into two parts. The first part is
about the problem of tracking by third-party servers, cookie
management, and the private browsing mode of PC browsers.
The second part is related to spoofing user identities and
protecting data in mobile devices.

A. Private Browsing and Third-Party Tracking

G. Aggarwal et al. [1] define the goals of private browsing,
its threat model, and survey its implementation in differ-
ent modern browsers, including Firefox, Chrome, Internet
Explorer, and Safari. E. Y. Chen et al. [12] introduce an
application isolation mechanism in which a user can enjoy
a multi-browser experience in a single browser. A. M. Dunn
et al. [13] propose Lacuna, which allows private applications
to talk to peripheral devices, such as graphic, sound, and
Universal Serial Bus (USB) input devices. Moreover, J. Wang
et al. [14] introduce an isolated, lightweight virtual environ-
ment in browsers called SafeFox. SafeFox runs in its own
process namespace, file system, and IP address in a browser.
Similarly, K. Onarlioglu et al. [15] propose Privexe, which
allows desktop applications to use OS services for private
execution. However, these solutions are mainly intended for
computer browsers and cannot be applied directly in mobile
phones.

U. Shankar et al. [16] introduce a cookie management
system named Doppelganger. With Doppelganger, users can
set fine-grained privacy policies for cookies (locally-stored
state information) when using a web browser. This is similar
to our private mode implementation in that users choose which
applications are to run in private mode. Yet, cookies are not
the only aspect of protecting users’ privacy. T.-F. Yen et
al. [17] show that even deleting cookies cannot prevent third-
party websites from tracking users’ information because of
other information available to remote servers. J. R. Mayer et
al. [18] provide a comprehensive survey on different kinds of
technologies used in tracking by third-party websites, policies
against tracking, and users’ opinions on defending against
tracking. F. Roesner et al. [19] develop a client-side detection
tool, which can automatically detect tracking from third-
party websites and analyze the tracking behavior. They also
categorize five types of mainstream web tracking: third-party
analytics, advertising, advertising with pop-ups, advertising
networks, and social widgets.

B. Protecting Data in Mobile Devices

There are many mobile platform extensions that limit third-
party applications’ access to mobile users’ identities and
other personal information. AppFence [20] introduces two
privacy controls: substituting sensitive data with shadow data

and blocking the network transmission of sensitive data. The
authors then examine how these controls affect applications’
user interfaces.

For users who prefer to choose their mode for releasing
private data, Taming Information Stealing Smartphone Appli-
cations (TISSA) [21] provides four options to users: trusted,
empty, anonymized, and bogus. The trusted option operates
as in normal phones via a permission system. The empty
option simply returns an empty result, indicating that the
requested information is not present. The anonymized option
still allows the data access but anonymize the users. On the
other hand, the bogus option provides a fake result of the
requested information. MockDroid [22] allows users to try
applications’ functionalities without compromising the user
data by providing only empty data. The protected data include
location, Internet, Short Message Service (SMS)/Multimedia
Message Service (MMS), calendar, contacts, device ID, and
broadcast intents. Although the above solutions also spoof the
IMEI with legitimate-looking fakes, the exact mechanism of
spoofing is not provided, unlike this paper.

Some other mechanisms provide fine-grained access control
policies to users. They allow users to define policies on when
and how frequently the data can be accessed. Apex [23] allows
users to set “always allow,” “always deny,” or “allow under
certain constraints” on Android’s permission list. Very similar
to Apex, Context-Related Policy Enforcement (CRePE) [24]
allows users to set run-time constraints on application data
access. The constraints are based on the time and location
contexts of users. These solutions, however, focus on the
access control mechanism of personal data to third-party appli-
cations. They do not emphasize removing state information to
prevent local attackers. Other solutions, such as CleanOS [25],
constantly encrypts the sensitive data on mobile devices and
stores the key on the cloud. However, unlike PrivateDroid,
these mechanisms do not prevent local attackers, such as
family members, or web attackers.

VII. CONCLUSION

With the expanding use of mobile devices and third-party
applications, security and privacy concerns arise concurrently.
Private mode, which clears the history, cache, and state
information, is one way of improving mobile user privacy.
In this paper, we initiate the effort of extending the private
browsing mode concept to third-party mobile applications.
Our paper first applies the threat model of local attackers
and web attackers in the context of third-party mobile ap-
plications. We describe the fundamental differences between
implementing private browsing mode in web browsers on
PCs and private mode in mobile devices, highlighting the
challenges of introducing private mode to mobile devices. We
contemplate various ways of implementing a private mode
for mobile applications and provide their relative advantages
and disadvantages. Our paper also includes implementation
details of PrivateDroid, which embraces a balanced level of
security, efficiency, and usability. Limitations of PrivateDroid
are also objectively identified and prospective improvements

are suggested in the paper. Thus, we believe that our paper is
the first step toward creating a better private mode mechanism
for future mobile devices.

VIII. ACKNOWLEDGMENT

This research is supported by the Singapore National Re-
search Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM
Programme Office, Media Development Authority (MDA).

REFERENCES

[1] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh, “An analysis
of private browsing modes in modern browsers,” in Proceedings of
the 19th USENIX Conference on Security, ser. USENIX Security
’10. Berkeley, CA, USA: USENIX Association, 2010, p. 6. [Online].
Available: http://dl.acm.org/citation.cfm?id=1929820.1929828

[2] B. Leiba, “OAuth web authorization protocol.” IEEE Internet
Computing, vol. 16, no. 1, pp. 74–77, 2012. [Online]. Available:
http://dblp.uni-trier.de/db/journals/internet/internet16.html#Leiba12

[3] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 2nd ed. Wiley Publishing, Inc., 2008.

[4] (2013, October) IMEI allocation and approval process vers.
7.0. GSM Association. [Online]. Available: http://www.gsma.com/
newsroom/wp-content/uploads/2013/12/TS.06-v7-Approved.pdf

[5] (2000, August) Digital cellular telecommunications system (phase 2+)
international mobile station equipment identities (IMEI) (GSM 02.16
version 5.2.0 release 1996). Global System for Mobile Communications
(GSM). [Online]. Available: http://www.etsi.org/deliver/etsi gts/02/
0216/05.02.00 60/gsmts 0216v050200p.pdf

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI ’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[7] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kafar, “On the
effectiveness of dynamic taint analysis for protecting against private
information leaks on android-based devices.” in SECRYPT, P. Samarati,
Ed. SciTePress, 2013, pp. 461–468. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/secrypt/secrypt2013.html#SarwarMBK13

[8] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in Android,” in Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’11. New York, NY, USA: ACM, 2011, pp. 239–252.
[Online]. Available: http://doi.acm.org/10.1145/1999995.2000018

[9] J. Kim, Y. Yoon, K. Yi, and J. Shin, “ScanDal: Static analyzer for
detecting privacy leaks in Android applications,” in MoST 2012: Mobile
Security Technologies 2012, H. Chen, L. Koved, and D. S. Wallach,
Eds. Los Alamitos, CA, USA: IEEE, May 2012. [Online]. Available:
http://ropas.snu.ac.kr/scandal/

[10] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks:
Automatically detecting potential privacy leaks in Android applications
on a large scale,” in Proceedings of the 5th International Conference
on Trust and Trustworthy Computing, ser. TRUST ’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 291–307. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2 17

[11] Z. Yang and M. Yang, “LeakMiner: Detect information leakage on
Android with static taint analysis,” in Proceedings of the 2012 Third
World Congress on Software Engineering, ser. WCSE ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 101–104. [Online].
Available: http://dx.doi.org/10.1109/WCSE.2012.26

[12] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson, “App isolation:
Get the security of multiple browsers with just one,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’11. New York, NY, USA: ACM, 2011, pp. 227–238.
[Online]. Available: http://doi.acm.org/10.1145/2046707.2046734

[13] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel, “Eternal sunshine of the
spotless machine: Protecting privacy with ephemeral channels,”
in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 61–75. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387887

[14] J. Wang, Y. Huang, and A. K. Ghosh, “SafeFox: A safe lightweight
virtual browsing environment.” in HICSS. IEEE Computer Society,
2010, pp. 1–10. [Online]. Available: http://dblp.uni-trier.de/db/conf/
hicss/hicss2010.html#WangHG10

[15] K. Onarlioglu, C. Mulliner, W. K. Robertson, and E. Kirda, “PrivExec:
Private execution as an operating system service.” in IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2013, pp.
206–220. [Online]. Available: http://dblp.uni-trier.de/db/conf/sp/sp2013.
html#OnarliogluMRK13

[16] U. Shankar and C. Karlof, “Doppelganger: Better browser privacy
without the bother,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security, ser. CCS ’06. New
York, NY, USA: ACM, 2006, pp. 154–167. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180426

[17] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host fingerprinting and
tracking on the web: Privacy and security implications,” in Proceedings
of the 19th Annual Network & Distributed System Security Symposium,
Feb. 2012.

[18] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy
and technology,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 413–427. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.47

[19] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation,
ser. NSDI ’12. Berkeley, CA, USA: USENIX Association, 2012, p. 12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2228298.2228315

[20] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting Android to protect
data from imperious applications,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 639–652. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046780

[21] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on Android),” in Proceedings of the
4th International Conference on Trust and Trustworthy Computing, ser.
TRUST ’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 93–107.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2022245.2022255

[22] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid:
Trading privacy for application functionality on smartphones,” in
Proceedings of the 12th Workshop on Mobile Computing Systems and
Applications, ser. HotMobile ’11. New York, NY, USA: ACM, 2011,
pp. 49–54. [Online]. Available: http://doi.acm.org/10.1145/2184489.
2184500

[23] M. Nauman, S. Khan, and X. Zhang, “Apex: Extending Android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’10. New
York, NY, USA: ACM, 2010, pp. 328–332. [Online]. Available:
http://doi.acm.org/10.1145/1755688.1755732

[24] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE: Context-
related policy enforcement for Android,” in Proceedings of the 13th
International Conference on Information Security, ser. ISC ’10. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 331–345. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1949317.1949355

[25] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda, “CleanOS: Limiting mobile data exposure with idle
eviction,” in Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 77–91. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387880.2387888

http://dl.acm.org/citation.cfm?id=1929820.1929828
http://dblp.uni-trier.de/db/journals/internet/internet16.html#Leiba12
http://www.gsma.com/newsroom/wp-content/uploads/2013/12/TS.06-v7-Approved.pdf
http://www.gsma.com/newsroom/wp-content/uploads/2013/12/TS.06-v7-Approved.pdf
http://www.etsi.org/deliver/etsi_gts/02/0216/05.02.00_60/gsmts_0216v050200p.pdf
http://www.etsi.org/deliver/etsi_gts/02/0216/05.02.00_60/gsmts_0216v050200p.pdf
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dblp.uni-trier.de/db/conf/secrypt/secrypt2013.html#SarwarMBK13
http://dblp.uni-trier.de/db/conf/secrypt/secrypt2013.html#SarwarMBK13
http://doi.acm.org/10.1145/1999995.2000018
http://ropas.snu.ac.kr/scandal/
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1109/WCSE.2012.26
http://doi.acm.org/10.1145/2046707.2046734
http://dl.acm.org/citation.cfm?id=2387880.2387887
http://dblp.uni-trier.de/db/conf/hicss/hicss2010.html#WangHG10
http://dblp.uni-trier.de/db/conf/hicss/hicss2010.html#WangHG10
http://dblp.uni-trier.de/db/conf/sp/sp2013.html#OnarliogluMRK13
http://dblp.uni-trier.de/db/conf/sp/sp2013.html#OnarliogluMRK13
http://doi.acm.org/10.1145/1180405.1180426
http://dx.doi.org/10.1109/SP.2012.47
http://dl.acm.org/citation.cfm?id=2228298.2228315
http://doi.acm.org/10.1145/2046707.2046780
http://dl.acm.org/citation.cfm?id=2022245.2022255
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/2184489.2184500
http://doi.acm.org/10.1145/1755688.1755732
http://dl.acm.org/citation.cfm?id=1949317.1949355
http://dl.acm.org/citation.cfm?id=2387880.2387888

	PrivateDroid: Private Browsing Mode for Android
	Citation
	Author

	Introduction
	Background
	Android Platform
	Android OS Architecture
	Android Sandbox

	Threat Model
	Local Attackers
	Web Attackers

	Design Considerations
	Approach I: Code Instrumentation
	Security
	Efficiency
	Usability
	Ease of Implementation

	Approach II: Linux Container
	Security
	Efficiency
	Usability
	Ease of Implementation

	Approach III: Extra Sandbox
	Security
	Efficiency
	Usability
	Ease of Implementation

	Choosing an Appropriate Design

	Implementation
	Creating the Extra Sandbox
	Destroying the Extra Sandbox
	Improving the Extra Sandbox
	Spoofing the IMEI
	Selecting and Indicating Private Mode

	Evaluations, Limitations and Suggestions
	Security
	Limiting Access to Content Providers
	Limiting Inter-Process Communications
	Spoofing Other User Identifiers

	Efficiency
	Usability
	Permission Denial
	Third-Party Libraries

	Related Work
	Private Browsing and Third-Party Tracking
	Protecting Data in Mobile Devices

	Conclusion
	Acknowledgment
	References

