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Abstract—In this paper, we analyze factors that determine
the check-in decisions of users on venues using a location-
based social network dataset. Based on a Foursquare dataset
constructed from Singapore-based users, we devise a stringent
criteria to identify the actual home locations of a subset of
users. Using these users’ check-ins, we aim to ascertain the
neighborhood effect on the venues visited, compared with the
activity level of users. We further formulate the check-in count
prediction and check-in prediction tasks. A comprehensive set of
features have been defined and they encompass information from
users, venues, their neighbors, and friendship networks. We next
propose regression and classification models to address the two
prediction tasks respectively. Our experiments have shown that
the two models especially the classification models outperform
the baseline methods when all features are used. We also analyze
feature importance and found that despite their similarity, the
two prediction tasks actually require different weights on the
features as learned by the regression and classification models.
Finally, it was found that user’s home location for deriving user-
venue distance feature is a better feature than user’s center of
the mass.

I. INTRODUCTION

Motivation. With the wide use of smartphones and tablets,
many users today are attracted to use location-based social
networks (LBSN) to share information about their visits to
different locations in their own cities or other parts of the
world, to give comments on these visited locations, to search
for locations, and to interact with friends. Each mention of visit
to some location is often known as a check-in. By analyzing
all the check-in data of a user or a group of users, one can then
derive interesting insights about users’ check-in behaviors.

There are several important applications that can benefit
from these insights and they include location recommendation,
user profiling, and business intelligence. The insights also al-
low city planners to design better public transportation systems
and housing plan to meet residents’ needs. Businesses can
leverage on the insights to determine suitable store locations.

We believe that the home locations of users and locations
of venues affect the way users perform their visits or check-
ins. Intuition tells us that people living in a city are less likely
to visit other cities compared with places within their home
city. Such an intuition should also apply at the fine-grained
neighborhood level. Neighborhood information comes in two
forms: (a) user’s neighborhood, and (b) venue’s neighborhood.
While every venue’s location is known and static, the user’s
location is dynamic and the determination of the user’s home

location is itself a research problem. This explains why previ-
ous research on location-based social networks did not study
users’ check-ins considering all aspects of neighborhood effect.

Research Objectives. In this paper, we analyze a
Foursquare dataset that consists of almost one year of check-in
data by Singapore-based users. We focus on determining the
neighborhood effect on these users’ check-in behavior. To do
that, we first need to determine the home locations of a subset
of these users. We seek to answer the research questions of (a)
how likely a user will perform check-ins on places nearby his
home versus far away places, and (b) how likely two neighbors
will share check-ins places.

We also propose to address two closely related but different
check-in activity prediction tasks. The first task predicts the
number of check-ins a user performs on a venue. The second
task predicts if check-in on a venue will be performed by a
user. In these tasks, we want to determine features that can
allow us to produce accurate prediction results.

In the following, we summarize our results and findings:

• We carefully collected a set of publicly available
check-in data which comprises the check-in behavior
of users from Singapore and determine the home
locations of a subset of them through some stringent
criteria. This gives us a good user dataset to embark
on this research.

• We conduct some analysis of the check-in behavior
of the dataset to determine the neighborhood and
user/venue popularity effect on check-ins.

• We propose a taxonomy of features covering user,
venue, user/venue neighborhood information which
are subsequently used in the check-in count prediction
and check-in prediction tasks.

• In our experiments, we show that our proposed su-
pervised methods generally perform better than unsu-
pervised baseline methods. We also show that user’s
home location for deriving user-venue distance feature
is a better feature than user’s center of the mass.
Users who are active in performing check-ins, venue
popularity and venue distance from user’s home lo-
cation, alone or combined with other features, can
significantly affect the prediction results.

Paper Outline. The rest of the paper is organized as
follows. Section II summarizes related works. Section III



shows the insight of our dataset and Section IV defines the
check-in activity prediction tasks and our proposed feature set.
Section V covers the experiment setup and evaluation of our
proposed methods. The analysis of feature importance will be
given in Section VI. Section VII will conclude the paper and
offer some directions for future works.

II. RELATED WORKS

Our work is related to two bodies of research works. The
first body of works focuses on analyzing check-ins made by
users in LBSN, e.g., Foursquare. The second body of works
performs prediction of user movement.

Check-in analysis in location-based social networks.
Anastasios et al., using a large number of foursquare check-ins
[18], found that users demonstrate different temporal patterns
of check-ins at different types of venues on weekdays and
weekends. 20% of the consecutive check-ins are found within
the distance of 1 km, while much smaller proportion of such
check-ins are found larger than the distance of 10 km.

Cramer et al. conducted a user-study to understand the
check-in behavior of users in Foursquare and to determine the
motivation behind location sharing among users [7]. Beyond
check-in behavior, Vasconcelos et al. studied their behaviors
of posting tips, dones and to-dos [22]. The work also clustered
users into profile types (e.g., influential users, spammers, etc.)
according to their behaviorial patterns.

Home location identification. Prior to the era of LBSN,
researchers heavily depends on GPS data from phones to
determine home locations [21]. With the logged user mobility
data, Krumm attempted to predict the home locations of users
by using heuristics rules [11]. Using the users’ home locations
as input for web search engine, it is shown that the user names
may be compromised. In our context, the home locations of
users are self-reported instead of using heuristics rules which
may not be accurate.

Check-in prediction research. Much research has been
done in mining user trajectories from GPS data [10], [12], [13],
[24]. Such device-tracked movement data is quite different
from self-reported movement data found in LBSN such as
Foursquare1 or Facebook Places 2.

Chen et al. [5] proposed the use of matrix factorization
with multi-center Gaussian model to recommend users new
venues. They used social information as the regularization.
However, the work does not consider user and venue neighbors
in the recommendation approach. Cho et al. [6] viewed check-
in locations of users as the mixture of check-ins near home
and work. They further proposed Bayesian models to predict
the check-ins using time and social network features. Our
differences are that we do not consider the time of check-ins
and our method assumes one home location for each user.

Gao et. al.[9] addressed the cold start problem of predicting
a user checking into a new venue under the effect of neighbors
and friends on social network. In our research, we also consider
both distance and social network factors in check-in prediction.
We further consider neighborhood of previously visited venues

1https://foursquare.com/
2https://www.facebook.com/places/

as another factor in our prediction. Noulas et al. [17] is the first
work which tried to predict the next move of users. However,
this work and others [14], [1], [4], [23], [19] do not consider
the impact of neighbors of users to their check-in behaviors.

III. CHECK-IN DATA ANALYSIS

A. Dataset

We first crawled a Foursquare dataset (denoted by FQ)
that consists of 1.11 millions check-ins by Singapore users
who publish their check-ins on public Twitter stream between
August 15, 2012 and June 3, 2013. As shown in Table I
(second column), this dataset consists of 55,891 users and
75,346 venues in Singapore. These users declare Singapore
to be their profile location.

TABLE I: Dataset Statistics

FQ H FQ

# users 55,891 856

# venues 75,346 12,020

# check-in’s 1.11M 63,777

# user-venue pairs with > 0 check-ins 541,588 28,298

From this dataset, we then identify a subset of users whose
home locations can be determined. This subset of users and
their check-in data form a smaller dataset denoted by H FQ.
We describe the home location identification method in the
next subsection.

B. Home Location Identification

Home location could influence a user’s activity region. For
example, people normally visit the supermarkets near home for
grocery shopping, attend schools and patronize fitness facilities
in the home neighborhoods. Home location could also infer
the social status of a user (e.g., living in luxurious apartments
versus public housing) that could be strongly correlated with
the purchase patterns and thus check-in behaviors. While the
FQ dataset covers all check-in data from a set of users, it has
no information about the users’ home locations.

In this research, we therefore select a subset of users whose
home locations can be clearly identified using both their check-
ins and check-in messages. The following are the detailed
steps:

• We select a subset of venues under the “home (pri-
vate)” category which is in turn a sub-category of the
“residence” category. There are 8,447 venues satisfy-
ing this criteria. There are 74,944 check-ins on these
venues by 5,199 users. At this point, it is still unclear
if these venues are the home locations of 5,199 users.

• We further select a subset of 3,276 users who have
checked in at only one “home (private)” venue. This
rules out users who have multiple “home (private)”
venues.

• We finally select an even smaller set of users who also
shouted some home relevant messages during check-
ins. We use a set of “home” related key phrases, e.g.,
“back home”, “home finally”, etc., to identify such
messages. As long as any of the key phrases are found,
the check-in location is used as the home location.



We finally obtained a dataset which includes 856 users and
their home locations. We call this dataset H FQ. These users
have 63,777 check-ins on 12,020 venues as shown in Table I.
Note that this represents 1.5% of all users and 5.7% of all
tweets in FQ. As a user can have multiple check-ins on the
same venue, the number of unique user-venue pairs with non-
zero check-ins is 28,298.

Center of the mass. For evaluation purposes, we also
define the center of the mass of each user as only a small
fraction of users have home locations. Suppose that user u has
performed check-ins at n venues and we denote the location
set of these venues as S = {(lati, lngi)|i ∈ N ∧ 1 ≤ i ≤ n}
where (lati, lngi) represents the latitude and longitude of each
check-in venue i. The center of the mass of u is defined by

(latu,lngu) where latu =
∑

i
lati
n

and lngu =
∑

i
lngi
n

.

Center of the mass is often not the same as true home
location unless the user performs check-in at home location
only, which is very rare. Center of the mass may also likely
return a location where no venue can be found. In Section IV,
we will derive features from both user’s home location and
center of the mass to ascertain their utility in predicting missing
check-ins.

C. Check-in Venue Category Analysis

Foursquare has a three-level category hierarchy for
venues3. Each venue is assigned to one of the nine level-
one categories, i.e., food, shop & service, professional &
other places, travel & transport, nightlife & spot, arts &
entertainment, college & university, outdoors & recreation,
and residence as shown in Table II. In addition, zero or more
detailed level-two or level-three categories under the already
assigned level-one category may be further assigned to the
venue. For example, a food venue can be assigned level-
two category, say Indian restaurant, as well as a level-three
category, say North or South Indian Food. In this work, we
use the level-two category label to determine venue similarity.
Two venues are considered as similar if they share any same
level-two category.

The statistics of the H FQ dataset is shown in Table II.
We leave out the level-three categories since they are too fine-
grained for this research. The largest level-one categories by
number of level-two categories are shop & service and food.
Nevertheless, they are not the largest by other measures. The
food and professional & other places categories have most
number of venues. The food category has most number of
users.

D. Neighborhood Effect on Check-in Activities

Analysis of distance between users and visited venues.
It has been reported in previous works [6] that users are most
likely to visit locations nearer to their home locations than far
away locations. These works often involve the predicted home
locations of users instead of user-reported home locations.
In the following, we report the analysis using the distance
between check-ins and actual home locations in H FQ dataset.
We also present the results at the user level.

3https://developer.foursquare.com/categorytree
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Fig. 1: Fraction of check-ins as a function of distance from
home in H FQ dataset.

For each user, we bin her check-ins according to the
distance from the user’s home location. Every 1-km distance is
a bin and we compute the probability of check-ins within each
bin by dividing the number check-ins within the bin by the total
number of check-ins of this user. As shown in Figure 1, the
median, 25-percentile and 75-percentile probabilities of check-
ins decreases with the distance. The maximum distance from
home location to venue is 36.7 km as this is almost the largest
diameter of the city. As the large distance bins involve the
check-ins of very few users, we remove the bins with distance
larger than 25 km. Based on this result, we could conclude
that users are more likely to perform check-ins near their home
locations.

Analysis of visited venues between neighbors. When two
users’ home locations are near to each other, there could be
similarity between their check-ins that can be attributed to
the similar daily patterns shared by people living in the same
neighborhood. Cho et. al earlier showed that periodicity and
friendships can have effect on users’ check-in locations [6].
The work however did not consider neighborhood effect.

We ascertain this neighborhood effect using the H FQ
dataset. Empirically, we define two users to be neighbors when
the distance between their home locations is less than 100
meters. We found that the average Jaccard similarity between
the venues visited by a user and his xi neighbors is 0.0105.
Compared with 0.005, the average Jaccard similarity between
a user and randomly selected xi users, the user clearly shows
more similarity in the visited venues with his neighbors than
with strangers. From this result, we could conclude that the
effect of neighborhood is two times stronger than the random
one. Hence, neighborhood effect should be included into the
process of predicting check-ins.

Figure 2 shows the average Jaccard Similarity of check-
in venues between pairs of users with different inter-home
distance. We first calculated the inter-home distance and Jac-
card Similarity of check-in venues of every pair of users in
H FQ. We then group pairs of users into distance bin of 1
km. For example, the first bin contains all user pairs whose
distance is less than 1 km. The second bin contains user pairs
whose distance is between 1 km and 2 km. We exclude those



TABLE II: Category Statistics of H FQ Dataset

Level-1 cateogry Food Shop & Professional & Travel & Nightlife & Arts & College & Outdoors Residence

Service Other Places Transport Spot Entertainment University Recreation

# sub-categories 59 64 42 25 16 31 27 35 1

(19.67)% (21.33)% (14.00)% (8.33)% (5.33)% (10.33)% (9.00)% (11.67)% (0.33)%

# venues 3,657 1,654 2,302 1,085 380 438 553 509 856

(31.98)% (14.47)% (20.13)% (9.49)% (3.32)% (3.83)% (4.84)% (4.45)% (7.49)%

# users 689 696 856 624 279 493 363 425 856

(13.05)% (13.18)% (16.21)% (11.82)% (5.28)% (9.34)% (6.87)% (8.05)% (16.21)%

# check-ins 11,501 11,501 10,337 8,781 1,840 2,577 4,218 1,645 8,247

(18.96)% (18.96)% (17.04)% (14.48)% (3.03)% (4.25)% (6.96)% (2.71)% (13.60)%
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Fig. 2: Relationship between Jaccard score and distance be-
tween every users in H FQ.

user pairs with distance larger than 25 km as they are few
in number. Figure 2 shows that the average Jaccard Similarity
decreases with inter-home distance. Hence, neighbors are more
likely to share common venues.

Analysis of inter-friend distance and check-ins. Among
856 users of H FQ, there are 271 users who have friends.
We compute the distance between every pair of friends in
H FQ and the Jaccard similarity of their check-in venues
(excluding all home venues). The distance between two friends
is defined as the Euclidean distance between their home
locations. When a friend pair shares no venues in common, its
Jaccard similarity score is 0. To avoid the many 0-value Jaccard
similarity affecting our correlation, we filter away such pairs.
We compute the Pearson correlation between distance and
Jaccard similarity of check-in venues. A negative correlation
value -0.14 has been observed suggesting that the similarity
between two friends’ check-in venues tends to decrease with
inter-friend distance. As not all friends’ home locations are
known, this weak correlation result could also be caused by
data sparsity and hence should be investigated further.

E. Correlation between User/Venue Activity Level and Venue
Distance

In our data, there are users or venues who are very active
in performing check-ins or receiving check-ins. Our intuition
is that if a user has many check-ins, he is likely to check-in on
venues farther away. Similarly, a venue with many check-ins
is likely to be visited by users who live farther away.

To verify the first intuition, we rank users in the H FQ
dataset by the number of check-ins they perform and group
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Fig. 3: (a) Correlation between check-in popularity of users
and the average mean distance; (b) Correlation between check-
in popularity of venue and the average mean distance

them using the equal size strategy. That is, every 50 users in
the sorted order is assigned to a bin and their average of mean
distance between check-in venues and each home location is
computed. This results in an average mean distance for each
of the 17 bins as shown in Figure 3. The Pearson correlation
score between the number of check-ins performed by users and
the average mean distance of check-in venues is 0.2587. This
implies that active users are likely to visit far away venues.

Next, we perform the same analysis on venues to ascertain
that popular venues by check-in count (e.g., airports, shopping
malls, etc.) attract more people from farther away home
locations as shown in Figure 3. The size of bin increases
to 500 because of larger number of venues. The Pearson
correlation score between the venue’s check-in popularity and
the average mean distance of their check-in users is 0.0707.
This correlation is smaller implying that popular venues may
still only attract users from nearby home locations, and/or
some less popular venues may attract mostly users from far
away home locations.

IV. PREDICTION OF CHECK-IN ACTIVITIES

A. Task Definitions

We define two check-in activity prediction tasks to evaluate
the different types of features. There are several ways to define
the check-in activity prediction task. Among them are the
following two closely related yet simple tasks which we have
chosen to be our focus. They are:

• Check-in Count Prediction: In this problem formula-
tion, we assume that there are no previous check-ins
from the target user to a new venue, and we want



to predict how many check ins the target user will
make on the venue. The predicted number can be any
number larger than or equal to 0. This is a regression
analysis problem. Formally, given a set of users U
and a set of venues X , and their check-in tuples each
consisting of three elements, (u, x, cux), where u ∈ U ,
x ∈ X , and cux (≥ 0) denote the number of check-
ins a user u has performed on venue x. Our task is
to predict how many check-ins a target user u′ (∈ U )
will perform on a venue x′ (∈ X).

• Check-In Prediction: This is a binary classification
problem. Given a set of users U , a set of venues X ,
and a training set of tuples (u, x, iux)’s where user
u ∈ U , venue x ∈ X , and indicator iux = 1 if u
performs at least one check-in on x (i.e., cux > 0);
and iux = 0 otherwise. Our task is to predict whether
a target user u′ (∈ U ) visits a venue x′ (∈ X).

There are several useful applications that can benefit from
the above two tasks. The two prediction tasks are involved
in the recommendation of new venues to a user. Check-in
prediction is the binary version of check-in count prediction
that focuses more on accurate prediction of venues than the
ranking of venues. The same prediction tasks can also be used
in target advertising applications. As both prediction tasks are
closely related, it is reasonable to expect the same feature set
to be used in both.

B. Feature classification

For each user-venue pair (u, x), we would like to develop
models that can perform both prediction tasks using a set of
features that can be derived for the user-venue pair. Based on
the analysis results in Section III, we have derived six different
feature types, namely: (a) user features, (b) venue features, (c)
user-venue features, (d) friend-venue features, (e) neighbor-
venue features, and (f) user-venue complex features.

• User features UF: These are features related to the
user u only.

◦ UF1: number of venues visited by u:∑
x∈X iux.

◦ UF2: number of check-ins performed by u:∑
x∈X cux

• Venue features VF: These are features related to the
venue x only.

◦ VF1: number of users who perform check-ins
at x:

∑
u∈U iux

◦ VF2: number of check-ins performed on x:∑
u∈U cux

• User-Venue features UVF: This feature set covers the
direct interaction between u and x as well as between
u and venues related to x which could affect u’s
decision to perform check-ins at x.

◦ UVF1: number of check-ins performed by u
at venues of type identical to the type of x:∑

x′∈X,type(x′)=type(x) cux′

◦ UVF2: Euclidean distance (in meters) between
the home location of u and x denoted by
dist(u, x).

◦ UVF3: number of check-ins u performs on
the neighbors of x:

∑
x′∈X,dist(x′,x)<100 cux′ .

Note that we empirically define a venue’s
neighbor to be another venue less than 100
meters away.

◦ UVF4: number of check-ins u performs on
neighbors of x that are of the same type:∑

x′∈X,type(x′)=type(x),dist(x′,x)<100 cux′

• Friend-Venue features FVF: This feature set captures
the effect of friends of user u on his decision to
perform check-ins on x or venues related to x.

◦ FVF1: number of check-ins of friends of u on
x:∑

u′∈F (u) cu′x where F (u) denotes the set of

friends of u.
◦ FVF2: number of check-ins of

friends of u on venues similar to x:∑
u′∈F (u),x′∈X,type(x′)=type(x) cu′x′ .

◦ FVF3: number of check-ins of
friends of u on venues near to x:∑

u′∈F (u),x′∈X,dist(x′,x)<100 cu′x′

◦ FVF4: number of check-ins of friends of u on
venues near and similar to x:∑

u′∈F (u),x′∈X,dist(x′,x)<100,type(x)=type(x′) cu′x′

• Neighbor-Venue features NVF: This feature set cap-
tures the effect of neighbors on u performing check-
ins at venues related to x or also x itself on u’s check-
ins on x.

◦ NVF1: number of check-ins that the neighbors
of u on x:

∑
u′∈N(u) cu′x

◦ NVF2: number of check-ins that the
neighbors of u on venues similar to x:∑

u′∈N(u),type(x′)=type(x) cu′x′

◦ NVF3: number of check-ins that
neighbors of u on venues near to x:∑

u′∈N(u),dist(x′,x)<100 cu′x′

◦ NVF4: number of check-ins that neighbors of
u on venues near to and similar to x:∑

u′∈N(u),dist(x′,x)<100,type(x′)=type(x) cu′x′

• User-Venue complex features UVIF: The features in
this group try to capture the intuition in Section III-E
by combining some features together.

◦ UVIF1: The product between the inverse of
distance between u and x, and number of
venues visited by u:

1
dist(u,v) ·

∑
x′∈X iux′ .

◦ UVIF2: The product between the inverse of
distance from u to x and number of users
visiting x:

1
dist(u,v) ·

∑
u′∈U iu′x.

◦ UVIF3: The product between number of
venues visited by u and number of users
visiting x:∑

x′∈X iu,x′ ·
∑

u′∈U iu′,x. The intuition is that
if u is active in performing check-ins, and x is
a venue attracting check-ins, u is more likely
to perform check-ins on x.

For features that require the home locations of users
(i.e., UVF2, FVF2, NVF1, NVF2, NVF3, NVF4, UVIF1, and



UVIF2), we could replace the user home locations by center of
the mass as defined in Section III-B. If features using center of
mass could perform as well as those using home location, they
will permit the check-in activity prediction task to be applied
to users without home locations. Such users constitute more
than 98% of all users as shown in Table I. For these features,
we use subscript h and c in the feature name (e.g., UVF2h and
UVF2c) to denote the use of home location and center of the
mass respectively. For example, UVF2h denotes the distance
the user’s home location to the venue x, while UVF2c denotes
the distance from user’s center of the mass to the venue x.

C. Prediction Methods

To give us insights into the importance of features, we
apply two methods for each task and measure the weight of
parameters.

Check-in count prediction. We apply two methods,
namely linear regression and Support Vector Regression (SVR),
to predict the number of check-ins by the target user and on
the target venue.

The linear regression model for solving check-in count
prediction is formulated as:

hΘ(u, x) = θ0 + θ1 · fux1
+ θ2 · fux2

+ ...+ θn · fuxn

= Fux ·Θ
(1)

hΘ is the model we want to learn. θi’s are the coefficients
of the features fuxi

’s of the user u and venue x. Fux and Θ are
the feature vector and θi vector respectively (with fux0

= 1).
Our objective is to learn the parameters Θ that minimize the
least square error of the predicted value and the actual value in
the training set [2]. The optimum value of Θ which minimizes
least square error can be derived using a closed form solution.

While linear regression minimizes least square error, SVR
[20] aims to get the flatness (i.e., seeking a small Θ) in Equa-
tion 1. Formally, we can rewrite it as a convex optimization
problem with slack variables ξux and ξ∗ux for each user-venue
pair (u,x).

minimize
Θ,ξ,ξ∗

1

2
‖Θ‖2 + C

∑

ux

(ξux + ξ∗ux)

subject to cux − Fux ·Θ ≤ ǫ+ ξux, ∀(u, x)

Fux ·Θ− cux ≤ ǫ+ ξ∗ux, ∀(u, x)

where C > 0 and ǫ are parameters to be learnt. C is the
trade off between getting flatness and the amount up to which
deviations larger than ǫ are tolerated. This problem could be
converted to its dual form for solving and Θ is reconstructed
from the solution of the dual problem. In our experiments, we
use the SVR implementation in the LIBSVM library [3].

Check-in prediction. We use two prediction methods
for this task, namely logistic regression and Support Vector
Machine(SVM).

In logistic regression, the probability of check-in by user
u on venue v is defined as a sigmoid function

P (iux = 1|Φ) =
1

1 + exp(−gΦ(u, x))
(2)

where Φ is the parameter set to be learned from training
data. gΦ(u, x) is the linear combination between features of
user u and venue x with parameter Φ. We learn Φ by maximiz-
ing the log likelihood of training data with L2-regularization
[15]. In our experiments, we use the logistic regression model
provided by the LIBLINEAR library [8].

Support Vector Machine(SVM) [2] is the method to find
a good hyperplane which has the largest distance to separate
the different classes of training instances. Formally, it is the
optimization problem with slack variable ξux for every pairs
of user u and venue x.

minimize
Θ,ξ

1

2
‖Θ‖2 + C

∑

ux

ξux

subject to iuxgΦ(u, x) ≥ 1− ξux, ∀(u, x)

ξux ≥ 0, ∀(u, x)

where C > 0 is the regularization parameter. Similar to
SVR, SVM can also be written as dual form and Θ can be
reconstructed from the dual solution. In our experiments, we
use the SVM implementation in the LIBSVM library [3].

In all our prediction methods, features are normalized by
z-normalization technique [16] in all the data instances before
they are used in training and testing.

V. EXPERIMENTS AND RESULTS

In this section, we describe the evaluation of our proposed
methods for the check-in count prediction and check-in predic-
tion tasks. The objective of the experiments is to determine:
(a) the accuracy using different methods with different feature
sets; (b) the importance of home location information; and (c)
the importance of features in the two tasks.

A. Training and Test Data

Based on H FQ, we first constructed an experiment dataset
with balanced user-venue pairs with non-zero check-in counts,
and user-venue pairs with zero check-in counts. This dataset
is used in both the prediction tasks. In the case of check-in
prediction task, the check-in counts are converted into true (if
> 0) and false (otherwise) before they are used.

The above dataset is created by selecting for each user-
venue pair with non-zero check-ins another user-venue pair
without check-ins. We do this by pairing the user with a
randomly selected venue which the user has not performed
check-in. This leads to a balanced set of positive and negatives
instances. We finally derive an experiment dataset with 28,298
positive user-venue pairs and 28,298 negative user-venue pairs.

We divide above data into ten folds randomly such that
each fold maintains a balanced set of positive and negative
user-venue pairs. Each fold has between 632 and 645 users,
between 4,723 and 4,817 venues, and around 5,660 user-venue
pairs. To measure prediction accuracy, we use each fold of
data for testing and the remaining nine folds for training, and



average the accuracy across different choices of test fold. In
this setup, it turns out that not every user/venue in each test
fold can also be found in the remaining folds. When this
arises, the test user-venue pairs concerned will be excluded
from evaluation.

B. Experiment Setup

Baseline methods. In addition to linear regression and
support vector regression for check-in count prediction, we
introduce three baseline methods for comparison.

• Average check-in count B1: This baseline ignores the
user and venue information, and returns the average
check-in count of all user-venue pairs in the training
data (both positive and negative). It therefore returns
the same predicted value for all test user-venue pairs.
We expect this baseline to perform poorly.

• Average user’s check-in count B2: This baseline re-
turns the average check-in count of the user in the
training data as the prediction. B2 leverages on the
previous check-ins of the user but not the venue.

• Average venue’s check-in count B3: This baseline
returns the average check-in count of the venue in the
training data. This is similar to B2 except the choice
of venue.

The three baseline methods can also be adapted for the
check-in prediction task. B1 is similar to a random guess which
should yield an accuracy of 50%. For B2 and B3, we rank
the test user-venue pairs by the decreasing predicted check-in
count and select the top 50% pairs as the predicted pairs with
some check-in.

Feature Configurations. For the four supervised methods,
we adopt three feature configurations depending on the type of
user location, i.e., home location and center of the mass. The
configurations Gh and Gc include features with home location
and center of the mass as user location respectively. The feature
configuration Gt includes all features, i.e., Gt = Gh ∪Gc.

Performance measure. We use mean average square error
and mean accuracy to measure the performance of the check-
in count prediction and check-in prediction respectively. The
former is derived by averaging the squared differences between
predicted and observed check-in counts for all the test user-
venue pairs in each test fold, followed by taking the mean
of the average squared errors across all test folds. Similarly
for check-in prediction, we take the mean of the accuracy of
prediction across all test folds.

C. Results of Check-in Count Prediction

We first examine the performance of linear regression (LiR)
and SVR. For SVR, we use the linear kernel and empirically
set the parameters ǫ and C to be 2 and 1 respectively. As our
output variable is check-in count, ǫ = 2 is a reasonable margin
of tolerance for false prediction.

The check-in count prediction accuracy results are shown
in Table III. The table shows that linear regression yield the
best accuracy in feature configurations Gh and Gt. SVR also
performs better with Gh and Gt feature configurations. In other

words, home location plays an important part improving the
prediction accuracy. The feature configuration Gc using center
of the mass apparently yields less accurate results in both LiR
and SVR methods. What is surprising is that the improvements
of LiR and SVR over B2 are quite small. Recall that B2 returns
user’s average check-in count which actually works reasonably
well for this prediction task. This result is interesting and will
be further investigated in our future work.

TABLE III: Check-In Count Prediction Accuracy (Mean aver-
age square error)

Methods/Features Gc Gh Gt

LiR 4.29 4.03 4.03

SVR 4.33 4.24 4.23

B1 4.31

B2 4.26

B3 4.95

D. Result of Check-in Prediction

Table IV shows the average accuracy of logistic regression
(LoR) and SVM with three feature configurations Gt, Gh

and Gc. The results show that the two supervised methods
outperform the baselines quite significantly with at least 10
percentile point difference. B2 is still the strongest baseline
but its accuracy is no longer close to the supervised methods.
Among the feature configurations, Gt and Gh again perform
better than Gc confirming that center of mass is inferior
than home location in this prediction task. The findings are
consistent with that in check-in count prediction.

TABLE IV: Mean Accuracy of Check-In Prediction methods

Method Gc Gh Gt

LoR 77.54% 78.34% 78.78%

SVM 77.88% 78.02% 78.34%

B1 50%

B2 67.47%

B3 56.23%

VI. FEATURE ANALYSIS

As the earlier results show that the feature configuration Gt

gives the best prediction results, we want to further analyze the
importance of features. Table V shows the coefficient learnt
for each feature in check-in count prediction and check-in
prediction with the Gt configuration. The coefficients with
larger magnitudes are deem to be more important and thus
shown in boldface.

The Spearman correlation between the feature coefficients
of linear regression and SVR is 0.8216 while the Spearman
correlation between that of SVM and logistic regression is
0.7165. This shows us that the different methods have positive
correlation in ranking the feature importance.

For the check-in count prediction task, the features VF1,
VF2, UVF4, and UVIF1h have the largest absolute coefficients
returned by both linear regression and SVR. In particular,
UVIF1h and VF2 are the more important features. The former
is related to the combination of user’s level of active check-ins
and the distance between his home location and venue. The
latter is related to venue popularity by check-in count. For the



check-in prediction task, logistic regression and SVM share
three out of the four most important features, namely VF1,
UVF3 and UVIF3. VF1 is related to popularity of venue by
user count, UVF3 is related to the familiarity of the venue’s
neighborhood through check-ins, and UVIF3 is related to
the combination of user’s level of active check-ins and the
popularity of venue by user count.

Interestingly, both friend-venue feature set (FVF) and
neighbor-venue feature set NVF do not contribute much to the
accuracy of the two prediction tasks. This can be attributed to
many friends or neighbors of users not found in our H FQ
dataset.

TABLE V: Average coefficients of features.

Count Prediction Check-in Prediction

LiR SVR LoR SVM

User features UF1 -1.66 -0.02 4.73 0.58

UF2 4.57 0.04 -0.85 -0.14

Venue features VF1 -14.49 -0.15 18.36 1.89

VF2 47.17 0.21 1.66 -0.33

User-Venue features UVF1 2.30 0.04 4.45 0.21

UVF2h -1.04 -0.06 -2.25 -0.26

UVF2c -0.96 -0.02 -3.59 -0.21

UVF3 7.19 0.10 18.72 3.73

UVF4 21.75 0.15 2.59 0.45

Friend-Venue features FVF1 5.30 0.03 0.80 0.07

FVF2 0.51 0.00 0.64 -0.01

FVF3 0.40 -0.00 1.51 0.00

FVF4 -5.59 -0.00 -0.20 -0.01

Neighbor-Venue features NVF1h -0.83 0.04 1.04 0.10

NVF1c -3.19 0.00 -0.12 0.00

NVF2h -1.31 -0.04 -2.22 -0.12

NVF2c -0.73 -0.00 -0.78 -0.02

NVF3h 0.29 -0.00 3.68 0.06

NVF3c -1.37 -0.01 -0.17 -0.02

NVF4h 0.04 0.01 0.19 -0.01

NVF4c -0.38 0.00 0.01 -0.01

User-Venue complex features UVIF1h 47.17 0.49 1.66 -0.03

UVIF1c 1.50 0.02 0.74 0.01

UVIF2h 4.22 0.05 7.90 0.29

UVIF2c -3.53 -0.00 0.42 0.01

UVIF3 1.59 0.11 7.47 3.48

VII. CONCLUSION AND FUTURE WORKS

In this paper, we studied the check-in patterns of users
through their exact home locations. To the best of our knowl-
edge, this is the first work using the exact home location of
users to analyse and predict the check-in behavior of users in
location-based social networks. Our empirical analysis shows
that users are more likely to perform check-ins on places near
their home locations. As a result, neighbors are more likely
to share more common check-in venues. We also found active
users tend to perform check-ins on places farther away from
their home locations.

Due to the setup of the problem, we show that social and
neighbor relationships are not as strong as the distance of
venue from the user’s home location and venue popularity
in influencing user check-in decisions. Our experiment also
shows that the supervised methods in general can predict the
check-in count and check-in decisions more accurately than
the baseline methods.

In the future, we plan to extend our work to study more
detailed check-in behavior using additional dimensions of
information. We plan to include temporal information (e.g.,
weekday versus weekend, hour of the day, etc.) of check-ins

as well as user attributes in the analysis and prediction tasks.
Check-ins could also be contributed by events and detecting
events beyond the user’s usual check-in patterns is also an
interesting research direction.
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