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ABSTRACT

Modeling user check-in behavior provides useful insights about
venues as well as the users visiting them. These insights can be
used in urban planning and recommender system applications. Un-
like previous works that focus on modeling distance effect on user’s
choice of check-in venues, this paper studies check-in behaviors
affected by two venue-related factors, namely, area attractiveness

and neighborhood competitiveness. The former refers to the abil-
ity of an area with multiple venues to collectively attract check-
ins from users, while the latter represents the ability of a venue to
compete with its neighbors in the same area for check-ins. We first
embark on a data science study to ascertain the two factors using
two Foursquare datasets gathered from users and venues in Singa-
pore and Jakarta, two major cities in Asia. We then propose the
VAN model incorporating user-venue distance, area attractiveness
and neighborhood competitiveness factors. The results from real
datasets show that VAN model outperforms the various baselines
in two tasks: home location prediction and check-in prediction.

Keywords

Neighborhood Competition, Area attractiveness, location-based so-
cial network

1. INTRODUCTION
Motivation. The popularity of smartphones and wearable de-

vices in recent years has helped to create new location based social
networking (LBSN) applications for users to publish their visits (or
check-ins) to different venues. By analyzing these check-in data,
one may derive useful insights for urban planning, business recom-
mendation, and other applications.

Previous works on LBSN data have shown that users prefer to
visit venues near their home locations[7, 5]. This is also known as
the distance effect. It underscores the importance of home location
of users when analyzing their movement. Other than the distance
effect which is specific to a user-venue pair, there are other venue
factors that have not yet been studied and modeled.

In this paper, we introduce area attractiveness and neighborhood

competitiveness as two new venue factors for analyzing and mod-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA

c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983657

eling check-in behavior. Area attractiveness refers to the ability
of an area with multiple venues to collectively attract check-ins
from users. Neighborhood competitiveness specifies the ability of a
venue to compete with its neighbors in the same area for check-ins.
We hypothesize that when a user decides a venue to visit, she will
first select an area before finalizing the venue in the area. This two
stage process suggests that some areas attract more visitors than
others. The choice of area will reduce the cognitive load on the
user as she has fewer candidate venues in the area to choose from.

Learning the area attractiveness and neighborhood competitive-
ness factors from check-in data gives rise to several useful applica-
tions. Urban planners can redesign a city’s transportation network
by making attractive areas more accessible. Businesses need to
know both area attractiveness and neighborhood competitiveness
in order to decide the new store locations. A personalized store
recommendation app can also leverage on the two factors when
making suggestions to its users.

Research Objectives. In this research, we therefore aim to in-
corporate area attractiveness and neighborhood competition into
a new unified model for analyzing user-venue check-in behavior.
This model should also include the distance effect which has al-
ready been used in the earlier models.

There are however several research challenges. Firstly, area at-
tractiveness and neighborhood competitiveness are new concepts
that have not been formally studied earlier. It is not easy to illus-
trate the effects of these two factors using real data. Hence, there
is a need to conduct data science research on the factors. Secondly,
the check-ins from users to venues are the results of multiple user
and venue factors interacting with one another. Exactly how the in-
teraction takes place is unclear. The challenge is therefore to create
some generative stories to describe this interaction. Finally, there is
no obvious ground truth in real datasets for evaluation of proposed
models. We will need to adopt an indirect approach to conduct
model evaluation.

Our results and findings of this research are as follows:

• We carefully gather Foursquare check-in data of users and
venues from two cities, Singapore and Jakarta. Next, we de-
termine the exact home locations of a subset of users through
some stringent criteria. This gives us good datasets to em-
bark on this research.

• We conduct an empirical analysis of the gathered check-in
data and demonstrate the existence of neighborhood compet-
itiveness, area attractiveness factors and also distance effect.

• We propose a probabilistic model called VAN to capture the
check-in behavior of users incorporating these above effects.

• The performance of our proposed model is evaluated on real



datasets so as to demonstrate its superior accuracy. Specif-
ically, we apply our proposed model and other baselines to
two crucial tasks: home location prediction and check-in pre-
diction. We show that our proposed model outperforms the
baselines with reasonable results.

2. RELATED WORKS
Check-in prediction research: Chen et al. [4] surveyed the per-

formance of matrix factorization in check-in prediction. Then, they
proposed a model to combine matrix factorization and multi-center
Gaussian model to predict the check-ins in LBSN with social in-
formation as the regularization. However, the work does not con-
sider distance from users to areas and the neighborhood competi-
tion among venues. Cho et al. [5] viewed check-in locations of
users as the mixture of check-ins near home and work. Our differ-
ences are that we assume only one home location for each user and
the size of area in our model is predefined as parameter.

Home location identification: There are some works [10, 1] tack-
ling home location identification problem but they predict the home
locations of users at city level instead of giving exact locations.

Neighborhood Competition: Hu et al. [8] showed that there is
weak correlation in rating between venue and its neighbors. More-
over, this correlation is independent of venue category. However,
their model does not give the exact home location of users nor the
ranking of venues. Doan et al. [6] proposed a new model named
Competitive Rank based on PageRank to mine the competition be-
tween venues and their neighbors. The drawback of this model
is that it considers every check-in to be the same but ignores the
distance from the user to the check-in venue. To the best of our
knowledge, the Huff model [9] measures the competitiveness of a
store by its size but size information is not available in practice. Qu
et al. [13] incorporates information from social network into Huff
model. This extended model also replace users’ home location by
users’ activity centers but not using the home location of users can
reduce the performance in check-in prediction[7].

3. EMPIRICAL ANALYSIS OF CHECK-IN

BEHAVIORAL DATA
In this section, we describe the two datasets as well as prepro-

cessing methods to clean the data. We then use them to conduct
empirical analysis on the check-in behavior to find the evidence of
distance effect, area attractiveness and neighborhood competition.

3.1 Datasets
To study user check-in behavior and how it is affected by user

and venue characteristics, we need Foursquare datasets that capture
complete check-in data of both users and venues. We thus decided
to crawl check-in data of users and venues in two cities, Singapore
and Jakarta. Due to Foursquare’s crawling restrictions, we could
only crawl the publicly visible check-in data via Twitter APIs.

SG Dataset. This dataset consists of 1.11 millions check-ins
by 55,891 Singapore Foursquare users on 75,346 venues between
August 15, 2012 and June 3, 2013 (see Table 1). The users and
venues are determined to be located in Singapore based on their
profile declared location and venue’s geo-location respectively.

JK Dataset. Similarly, we crawled another Foursquare dataset
for the users and venues in Jakarta the largest city in Indonesia from
July 2014 to May 2015. There are 119,618 check-ins performed by
14,974 users on 38,183 venues. The numbers are generally smaller
than those of SG dataset.

Users with home locations. Among the users in the SG (or JK)
datasets, we identify a subset of users whose home locations can

be determined using the method described in Section 3.2. We then
construct another dataset to include users with home locations and
the venues that they perform check-ins on. This leads us to the
H_SG and H_JK datasets. The number of users with home loca-
tion in H_SG and H_JK are 856 and 455 respectively. Compared
with SG and JK users, the users in H_SG and H_JK are relatively
more active in performing check-ins. For example, SG has about
20 check-ins per user while H_SG has about 74 check-ins per user.

Table 1: Dataset Statistics
SG H_SG JK H_JK

# users 55,891 856 14,974 455

# venues 75,346 12,020 38,183 4,380

# check-in’s 1.11M 63,777 119,618 9,557

# user-venue pairs 541,588 28,298 81,188 5,422
with > 0 check-ins

3.2 Home Location Identification
We selected a subset of users whose home locations can be clearly

identified using both their check-ins and check-in messages. The
following are the detailed steps:

• We selected a subset of venues under the “home (private)”
category which is in turn a sub-category of the “residence”
category. We found 8447 and 1985 venues satisfying this
criteria in the SG and JK datasets respectively.

• We further identified 3276 and 891 users who performed
check-ins at only one “home (private)” venue each in the
SG and JK datasets respectively. This rules out users who
performed check-ins at multiple “home (private)” venues.

• We finally selected an even smaller set of users who also
shouted some home relevant messages during their check-
ins to their “home (private)" venues. These messages have to
include some “home” related key phrases, e.g., “back home”,
“home finally”, etc.. For the JK dataset, we use the matching
Malay key phrases like “Tidur dulu” (sleep first), “Rumah”
(House), “Pondok”(cottage), “sampai di rumah” (arrived to
home), “bobo”(sleep).

We finally obtained 856 users with home locations among (1.5%
of all SG users) those users in the SG dataset. We denote the
Foursquare dataset of these users and their check-in venues by H_SG.
These users have 63,777 check-ins on 12,020 venues as shown in
Table 1. Note that this represents 1.5% of all users and 5.7% of
all check-ins in SG. Similarly, we obtained the H_JK dataset for
455 Jakarta users (3% of all JK users) with home locations. These
dataset covers 4380 venues and 9557 check-ins.

3.3 Distance Effect
Using H_SG and H_JK datasets with exact users’ home loca-

tions, we are able to study distance effect within a city, i.e., distance
between the geo-coordinates of user’s home location and venue lo-
cation. We derive the probability of users performing check-ins
on venues that are within a distance bin away from users’ reported
home locations. Specifically, for each user, we divide the city into
several circular rings with the user’s home location at the center.
Every ring has a width of 1 kilometer. In other words, the first
ring covers distance range [0,1km), the second ring covers distance
range [1km, 2km), and so on. As the large distance rings involve
the check-ins of very few users, we exclude rings with distance
larger than 25 km. Next, we compute the probability of the user
performing check-ins on venues within each distance ring. We fi-
nally compute for each distance ring the average probability of all
users performing check-ins on venues within that distance ring.



We plot the average probability for different distance rings in
Figure 1(a) and observe that: (a) users are more likely to visit or
check into venues nearer to their home locations; (b) the decreasing
probability trend appears in both H_SG and H_JK datasets; (c)
the probability becomes more stable for venues within the distance
rings 10 to 15 km away from users in both datasets.

3.4 Area Attractiveness
Despite the distance effect, some venues may still attract check-

ins from users far away. Li et. al. [10] developed an influence scope
model for measuring the attractiveness of venues to their followers.
In this paper, instead of examining attractiveness at the venue level,
we model attractiveness at the area level. There are three significant
advantages of doing so. Firstly, it reduces the number of parameters
in modeling which in turn reduces the learning time. Secondly, we
address data sparsity issue at the venue level. Finally, we believe
that the area a venue belongs to has a major influence over its ability
to attract users. Due to space limitations, we are going to illustrate
this by the following empirical analysis on only H_SG dataset.

We empirically select three well known fast food chains, i.e.,
McDonald, KFC and Starbucks, with many branches. We expect
branches of the same chain to be very similar to one another by food
variety, food quality, ambience and service. Hence, at the venue
level, we should not expect any difference among their abilities
to attract users from other locations. We now divide the city into
square areas of width equals to 0.05 degree (equivalent to about
5.55 km on the equator) and assign every venue to exactly one area.
The location of each area is its center of the mass derived from the
locations of its venues. The detail of area construction is in Section
4. We call the top five areas with most number of venues the dense

areas while the areas from ranks 10 to 15 the sparse areas. We
exclude other lower ranked areas as they do not contain any of the
three fast food venues.

For each fast food chain, we examine the distances between each
dense area (represented by its center of mass) and the home loca-
tions of users who perform check-ins to its venues inside the area.
We then generate a boxplot for the user-area distance of all dense
areas. We perform the same procedure for sparse areas. Figure 1(b)
shows that for each fast food chain, branches within the dense ar-

eas attract users farther than branches in the sparse areas. This sug-
gests that the attractiveness of area plays an important role bringing
far away users to the venues in the area.

3.5 Neighborhood Competition Effect
To show competition among venues within the same area, we

adopt the method originally proposed by Weng et al.[14] to study
competition among memes. We divide the check-in history into
weeks. We then measure the following entropies for each week.

• System entropy (Es): Es(t) = −
∑

v fv(t) log fv(t) where
fv(t) is the fraction of check-ins in week t performed on

venue v, i.e., fv(t) = #cks(v,t)∑
v #cks(v,t)

. The system entropy

essentially measures the degree to which the distribution of
check-ins concentrates on a small fraction of venues.

• Average area entropy (EA): We first define the entropy of
an area a to be Ea(t) = −

∑

v∈a
fv,a(t) log fv,a(t) and

fv,a(t) = #cks(v,t)∑
v∈a #cks(v,t)

. We then take the average of all

area entropies, i.e., EA(t) = AvgaEa(t). We divide the city
into square cells of 0.05 degree width. The construction of
areas is discussed further in Section 4. Similar to system en-
tropy, average area entropy captures the degree to which the

distribution of check-ins of an area concentrates on a small
fraction of venues (in the area).

• Average user entropy (EU ): We next define the average
user entropy as EU (t) = Avgu∈UEu(t) where entropy of
user u is Eu(t) = −

∑

v
fu,v(t) log fu,v(t) and fu,v(t) =

#cks(u,v,t)
#cks(u,t)

. This entropy quantifies the concentration of users’

attention on the venues they perform check-ins on.

Figure 1(c) shows the three entropies over weeks in both H_SG

and H_JK datasets. The first important observation is that the av-
erage user entropy is much smaller than system entropy. It clearly
suggests that each user’s attention is limited to very small fraction
of venues in the entire city. Venues therefore have to compete to
gain attraction from users. Secondly, we observed from Figure 1(c)
that system entropy is much larger than average area entropy in
both datasets. This implies that check-ins within an area concen-
trated on smaller fraction of venues than the fraction of venues in
the entire city receiving check-ins from the whole user population.

The above empirical analysis concludes that venues compete more
with their nearby neighbors than those farther away. Thus, group-
ing venues into areas and modeling competition among venues in
each area is an appropriate modeling approach.

4. VISITATION BY ATTRACTIVENESS AND

NEIGHBORHOOD COMPETITION MODEL
In this section, we propose the Visitation by Attractiveness and

Neighborhood competition (VAN) model and study its parameter
learning process.

4.1 Model Description
Let U and V denote the set of users and venues in a city respec-

tively. We divide the city into mutually exclusive square cells of
width s. We use av to denote the square or area which contains v.
More notations and their meanings are shown in Table 2.

The VAN model makes the following assumptions for each check-
in between user and venue:

• First of all, every user chooses an area to perform a check-in
based on its attractiveness and the distance between the user
and the area.

• Secondly, every venue must compete against their neighbor-
ing venues in order to gain a check-in.

We assign each venue v a competitiveness value σv to measure
its ability to compete with its neighbors. The value of σv is positive,
and the larger the σv the more competitive the venue v.

The neighbors of a venue v, N(v), are venues within av and
the areas adjacent to av denoted by Adj(av). That is, N(v) =
{v′|v′ ∈ Adj(av)}∪{v

′|v′ ∈ av}\{v}. We consider the venues in
Adj(av) as neighbors because we want to include venues in these
nearby area as competitors of v. Otherwise, the competing neigh-
bors of some venues near the border of av might not be included.

The center of area a is defined as the center of the mass location
of venues inside a. The attractiveness of area σa is defined by
the root mean square of the competitiveness scores of venues in a.

That is, σa =
√

∑

v∈a σ
2
v . It means that the venues inside the area

contribute their competitiveness together to attract user check-ins.
Every check-in of user i to venue v follows a two-step process.

Firstly, user i must select the area av . Secondly, the venue v in area
av must win over all other neighboring venues in N(v) to gain a
check-in from user i.
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Figure 1: The plots of empirical studies.

Table 2: Table of Notations.
Notations Meaning

U / V / C set of all users/venues/check-ins

wiv number of check-in of user i to venue v

wv total number of check-in of venue v

av area av containing venue v

s the width of area

σv competitiveness score of venue v

σav attractiveness of area av
N(v) set of neighbor venues of v

CDF (·) cumulative density function of standard normal distribution

S(·) Sigmoid function

p(i → av) probability of user i visiting area av

• User i selects the area av under the effect of attractiveness
of area av . Moreover, if the distance between i and av in-
creases, the probability of user i choose area av decreases.
We model this by zero-mean Gaussian distribution whose
variance is σav . The Euclidean distance between user i and
av is the random variable generated from the distribution. In
other words, the home location of user i is generated from
the Gaussian distance whose mean is the location of area av

and variance is σav .

• To model the winning of venue v over its neighbors, we need
to model the difference of competitiveness of v and that of
one of its neighbor, say v′ . We propose two options: cu-

mulative distribution function (CDF) of standard Gaussian
distribution i.e. CDF (σv − σv′ ; 0, 1) and Sigmoid function

of σv − σv′ , i.e. S(σv − σv′) . Both functions map dif-
ferences between the competitiveness values of two venues
into the range [0, 1]. If venue v is more competitive than its
neighbor v′ i.e. σv > σv′ , the two functions will return a
higher probability of v winning the check-in over v′.

Example: Figure 2 depicts two check-ins at venue v by user i i.e.
wiv = 2. To perform each check-in at venue v, user i has to select
area (b, 3)(enclosed by red box) considering the distance from his
home location to the center of area (b, 3) and the attractiveness
of area (b, 3). Moreover, the venue v needs to win over all of its
neighbors in the adjacent areas (i.e. venues within the green box).

4.2 Formalization & Inference
The probability piv of a check-in from user i to venue v is:

piv = p(i → av)
∏

v′∈N(v)

p(v > v
′) (1)

Equation 1 says that piv depends on two components: p(i → av)
denoting the probability of user i selecting area av and p(v > v′)
denoting the probability of venue v winning over its neighbor v′.

Figure 2: Example of Check-in graph.

Let (xi, yi) and (xav , yav ) denote the location of user i and cen-
ter of area av respectively. The probability p(i → av) is defined:

p(i → av) = N ((xi, yi); (xav , yav ), σ
2
av
) (2)

We model the attractiveness of each area av by a bivariate Gaus-
sian distribution with center of area as mean and covariance ma-
trix representing the attractiveness of av , i.e., σav . The larger Eu-
clidean distance between user i and center of area av , the smaller
the p(i → av). The covariance matrix is diagonal and has same
value σav because we assume that the attractiveness of area av in
x-axis is similar to its attractiveness in y-axis.

The log-likelihood of a set of check-ins C from users from U on
venues from V is then defined.

L(C|{σv}v∈V ) =
∑

(i,v)∈C

wiv log piv

=
∑

(i,v)∈C

wiv log p(i → av) +
∑

v

wv

∑

v′∈N(v)

log p(v > v
′)

=
∑

(i,v)∈C

wiv

(

−2 log σav −
1

2σ2
av

((xi − xav )
2 + (yi − yav )

2)

)

+
∑

v

wv

∑

v′∈N(v)

log p(v > v
′) + const

(3)
As shown in Table 2, wiv denotes the number of check-ins be-

tween user i and venue v, and wv denotes the total number of
check-ins on venue v. We consider two options to model the prob-
ability p(v > v′), i.e., Sigmoid function and cumulative density
function of standard Gaussian distribution. Depending on the choice
of the above options, we derive two variants of VAN models de-
noted by VANSigmoid and VANCDF .

Inference of user home locations: Taking derivative w.r.t. the



x-coordinate of user i’s home location and set it to 0 gives us:

∂L

∂xi

=
∑

v

wiv

(

−
1

2σ2
av

2(xi − xav )

)

= 0

xi =

∑

v
wiv

σ2
av

xav

∑

v
wiv

σ2
av

and yi =

∑

v
wiv

σ2
av

yav

∑

v
wiv

σ2
av

(4)

Based on Equations 4, we derive some interesting observations
about the home location of user i.

• The home location of user i is the weighted average of cen-
ters of area of venues checked in by i.

• The weight associated to each area has two components: the
number of check-ins of user i to venue in the area and the
attractiveness of the area. The former helps to predict the
home location close to the check-in area due to distance ef-
fect. However, area attractiveness has an inverse effect on
the importance of area. That is, more attractive areas should
contribute less to identifying the home location of user i.

• Suppose the maximum and minimum of x-coordinate (i.e.
latitude) of city are xmax and xmin respectively so we have
∀av : xmin ≤ xav ≤ xmax. Thus, ∀i ∈ U : xmin ≤
xi ≤ xmax. Similarly, ∀i ∈ U : ymin ≤ yi ≤ ymax

for y-coordinate. Hence, the weighted average of centers of
check-in areas ensures that the home location of user i to be
within the city boundary.

Inference of competitiveness of venues: To maximize L with
respect to σv and the constraint σv > 0, we add the regularization
term

∑

v∈V log σv and use gradient descent with back-tracking[3]
to find the optimal values of σv . The regularization term

∑

v∈V log σv

helps us to keep all σv positive because if ∃v ∈ V : σv → 0, then
log σv and

∑

v∈V
log σv will become −∞.

5. EVALUATION USING REAL DATA
We evaluate the VAN models on real dataset in two separate

tasks: home location prediction task and check-in prediction task.
The geography degree is chosen as the unit of parameter s.

5.1 Home location prediction
Description: In this task, we aim to predict the home locations

of users using our VAN models and some baselines. Among the
baseline methods for comparison, Periodic Mobility Model (PMM) [5]
is the state-of-the-art home location prediction method.

Setup: In total, we have the exact home location of 856 users
in H_SG dataset. However, there are 341 of them whose home lo-
cation cannot be predicted by PMM model as these users have too
few check-ins or too few venues not giving PMM enough data to
learn their home locations. Hence, we will conduct the experiment
on the remaining 515 users. In the experiment, we randomly sepa-
rate 515 users into five equal folds. For each run, we hide the home
location of users in one fold and use all check-in data from all five
folds and home location of users from the remaining four folds as
input. Each model will then predict the home location of users in
the hidden fold. For PMM, only the check-in data of users is used
to predict their home locations. Hence, each time, we select one
fold and predict home location of users in that fold by their check-
in data. Similar to H_SG, there are 154 out of 455 users in H_JK

whose home locations could be predicted by PMM. We therefore
also divide them into five folds in the experiment.

Note: Our model could perform over the entire dataset but to
guarantee the fairness, we only conduct experiment over the subset
of users in which PMM could perform in both datasets.

Baselines: We consider several baselines below in this task.

• Center of the mass COM: This model returns the center of
the mass of all check-ins of a user as his/her home location.

• Most check-in venue MCV: This model selects the most fre-
quent check-in venue of a user as his/her home location.

• Periodic Mixture Model PMM [5]: It groups check-ins of a
user into two clusters named home and work. The home clus-
ter represents non-working hours check-ins and the center of
this cluster is the predicted home location of the user.

The two simple baselines COM and MCV are used for compari-
son because they appear in previous research works [5, 7, 13].

Performance Measure: We measure the distance between the
predicted home venue pi and the actual home location hi of user
i. The overall performance is thus defined by the average error

(errorm) between all predicted home locations and actual home
locations. Moreover, we define another metric prec@k is ratio of
users whose distance from their predicted home location to actual

home is less than k. Formally, errorm =
∑

i∈U dist(pi,hi)

|U|
; prec@k =

|{i:dist(pi,hi)<k}|
|U|

where dist(·, ·) returns the physical distance be-

tween two locations. In our experiment, we choose k = 5km.

Table 3: Home prediction result of H_SG and H_JK. The unit

of average error in this table is meter. The best result of each

dataset is highlighted. Average Error(prec@5km)
s H_SG H_JK

COM - 6570.3 (46.2%) 5564.4 (43.4%)

MCV - 7117.7 (40.3%) 5547.2 (45.5%)

PMM - 6126.3 (49.3%) 4823.2 (60.8%)

V ANSigmoid

0.1 5561.8 (50.7%) 5623.8 (53.3%)
0.05 5046.4 (59.8%) 5125.2 (60.4%)

0.025 5475.2 (56.7%) 4757.8 (64.4%)

V ANCDF

0.1 5564.6 (51.46%) 5331.1 (56.1%)
0.05 5181.6 (60.4%) 4866.1 (59.1%)

0.025 5213.8 (56.9%) 4357.2 (68.2%)

Result: Table 3 depicts the performance of baselines and our
models with different s parameter values in H_SG and H_JK.

In the case of H_SG dataset, our VANSigmoid and VANCDF

model outperform PMM model by 12.34% and 13.16% in term
of average error, respectively. Compared with other baselines, the
VAN models yield accuracy of average error with up to 28% im-
provement. Both variants of VAN model also perform better in
prec@5km metric. The superior performance of VAN models is
not affected by the s parameter.

For H_JK, we observe that the performance of our VAN models
is affected by the s parameter setting. The optimal s value is 0.025.
Under this setting, our VAN models outperform PMM and other
baselines. The reason for the poorer performance of other settings
may be due to the sparsity of check-ins in this dataset.

5.2 Check-in prediction task
In this section, we evaluate our model in check-in prediction

task. This task predicts check-ins between users and venues.
Setup: We sort check-ins in the H_SG and H_JK datasets by

time and then divide each dataset into 10 folds. For each run of
experiment, we hide one fold as test set and use the remaining nine
folds as training set.

Baselines: For comparison, we use some baselines below

• Probabilistic Matrix Factorization PMF[12]: It factorizes check-
in matrix into user-latent factor and venue-latent factor ma-
trix alone. We use the number of latent factors K = 10.



Table 4: The recall@k of H_SG and H_JK datasets in check-in prediction task. We highlight the best result for each value of k.
V ANCDF V ANSigmoid PMF MGM PMF-MGM N-MF Expo-MF

k s 0.1 0.05 0.025 0.1 0.05 0.025 100m 200m

20 4.4% 1.9% 1.1% 4.2 % 1.95% 0.48% 1.4% 0.36% 1.35% 0.3% 0.29% 1.5%
H_SG 50 8.7% 4.2% 3.1% 8.67% 4.62% 1.67% 2.6% 0.61% 2.5 % 0.8% 0.75% 1.6%

100 12.1% 6.6% 6 % 12.26% 10.53% 5.65% 3.8% 1.11% 3.7 % 1.4% 1.35% 2.3%

20 0.38% 0.56% 0.8% 0.36% 0.74% 0.96% 0.14% 0.24% 0.14% 0.57% 0.7% 0.3%
H_JK 50 2.2% 1.9 % 1.6% 1.73% 1.74% 1.51% 0.29% 0.7 % 0.3 % 0.96% 1.2% 1.1%

100 4.3% 4 % 3.2% 3.8% 3.49% 3 % 1.12% 1.8 % 1.1 % 1.4% 1.7% 2.5%

• Multi-center Gaussian Model MGM[4]: It proposed a check-
in prediction method using multiple Gaussian distributions
as the activity centers of users. We automatically detect the
clusters of MGM by applying the non-parametric method
from Blei et. al. [2]. The α parameter of MGM which con-
trols the impact of high frequent check-ins venues is set to
default value α = 0.2.

• Fusion Framework PMF-MGM[4]: It combines matrix fac-
torization and MGM. It is reported to outperform PMF and
MGM models. We implemented this combined method using
PMF and MGM as its components.

• Matrix Factorization with Neighborhood Influence N-MF[8]:
It studies the characteristics of geographical neighbors based
on the matrix factorization framework. We use the number
of latent features K = 20 and two venues are neighbors if
their distance is less then a predefined threshold d. In our
experiment, we set d to 100 meters and 200 meters.

• Exposure Matrix Factorization Expo-MF[11]: It incorporates
the location of venues and user exposure to increase the per-
formance of check-in prediction under matrix factorization
framework. Similar to their experiment, we apply K-Means
to cluster venues, the location vector of each venue is its
probability to each cluster. We use K = 100 for the number
of latent factors and the number of clusters in K-Means.

We have different values of latent factors K for PMF, N-MF

and Expo-MF because we choose K that produces the best predic-
tion performance for each model in the pool of values 10, 20, 100.
These values are default setting reported in the original papers.

Performance Measure: After training, for each user, we select
the top k venues predicted by each method and compare against all
the venues checked in by the users in the test data.We use recall@k

as the metric to compare the performance of our model and the
baselines. Finally, we report the average recall@k over all folds.
We do not use precision@k because we cannot distinguish be-
tween a user disliking a venue and a user not knowing the venue.

Formally, recall@k = 1
|U|

∑

u∈U

|L(u,k)∩Lt(u)|
|Lt(u)|

where L(u, k) is

the top k venues of each user u of each predictive method; Lt(u)
represents set of venues of user u in test set and | · | returns the
number of elements of set.

Result: The result of check-in prediction task for two datasets
H_SG and H_JK are shown in Table 4 . In our experiment, our
model with Sigmoid or CDF function always outperforms all base-
lines in both datasets. For instance, in H_SG, our model could
achieve recall up to three times better than PMF and 10 times
better than MGM . Overall, in both datasets, if we reduce the area
width, the performance of V AN model decreases. Specifically, the
performance of area width of 0.05 is usually better than the one of
area width of 0.025 but worse than that of area width 0.1. Addition-
ally, the result of V ANCDF usually outperforms V ANSigmoid.
Expo-MF only considers the location of venues while N-MF uses
the information of neighbor alone. However, these two baselines
do not enjoy better result than both variants of VAN model. Thus,

the results suggest that neighborhood competition and area attrac-
tiveness are useful factors to be modeled. Between two baselines,
MGM performans better than PMF in H_JK dataset but not in
H_SG. PMF-MGM is the hybrid of MGM and PMF so its per-
formance is in the middle of both models.

6. CONCLUSION
In this paper, we model user visitation by using two new fac-

tors: neighborhood competition and area attractiveness. Our ex-
periments show that our model outperforms several baselines in
check-in prediction and home location prediction tasks.
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