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ABSTRACT
This paper aims to investigate efficient and scalable machine learn-
ing algorithms for resolving Non-negative Matrix Factorization (N-
MF), which is important for many real-world applications, partic-
ularly for collaborative filtering and recommender systems. Un-
like traditional batch learning methods, a recently proposed on-
line learning technique named “NN-PA" tackles NMF by apply-
ing the popular Passive-Aggressive (PA) online learning, and found
promising results. Despite its simplicity and high efficiency, NN-
PA falls short in at least two critical limitations: (i) it only exploits
the first-order information and thus may converge slowly especial-
ly at the beginning of online learning tasks; (ii) it is sensitive to
some key parameters which are often difficult to be tuned manual-
ly, particularly in a practical online learning system. In this work,
we present a novel family of online Adaptive Passive-Aggressive
(APA) learning algorithms for NMF, named “NN-APA", which
overcomes two critical limitations of NN-PA by (i) exploiting
second-order information to enhance PA in making more infor-
mative updates at each iteration; and (ii) achieving the parameter
auto-selection by exploring the idea of online learning with expert
advice in deciding the optimal combination of the key parameter-
s in NMF. We theoretically analyze the regret bounds of the pro-
posed method and show its advantage over the state-of-the-art NN-
PA method, and further validate the efficacy and scalability of the
proposed technique through an extensive set of experiments on a
variety of large-scale real recommender systems datasets.

CCS Concepts
•Computing methodologies→Machine learning; Artificial in-
telligence;

Keywords
Non-Negative Matrix Factorization, Online Learning, Adaptive
Regularization, Learning with Expert Advice
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1. INTRODUCTION
Non-negative Matrix Factorization (NMF) [14] represents an im-

portant family of algorithms for matrix completion, which aim to
reconstruct a partially observed matrix by factorizing the matrix as
the product of two low-rank matrices and imposing non-negativity
in the matrix factorization. NMF has achieved great successes in
various real-world applications, ranging from recommender sys-
tems [24, 2], text mining [25], to feature selection [16]. We focus on
the application of NMF techniques for matrix completion tasks in
collaborative filtering and recommender systems, where matrix fac-
torization based techniques are often shown as the most successful,
according to many competitions, e.g., the Netflix challenge [13].

Traditional approaches usually formulate NMF as a batch learn-
ing task and solve it by applying different batch optimization tech-
niques [15, 17, 18, 1, 9]. These methods might be good for solving
certain tasks in some domain (e.g., image analysis), but often suf-
fer from poor scalability when dealing with online recommender
systems where the rating data usually arrives sequentially and thus
it may suffer from expensive re-training cost due to their batch
learning manner. Recently, online learning methods have been ex-
plored to tackle NMF. One state-of-the-art approach is the NN-
PA method [2], which formulates NMF as an online learning task
and resolves it by applying a popular online Passive-Aggressive
(PA) algorithm [6]. Compared with traditional approaches, NN-PA
solves NMF in an online learning fashion [11], which is thus more
scalable, easier to implement, and does not require tuning the learn-
ing rate as often needed in traditional optimization approaches.

Despite the advantages and encouraging results, NN-PA falls
short in two major critical limitations. First of all, it only exploit-
s the first-order information in the online update process, and thus
may converge slowly especially at the beginning of an online learn-
ing task. Second, it is sensitive to some key parameters (e.g., the
regularization and matrix rank parameters), which are often diffi-
cult or even impossible to be tuned manually in the online learning
process, particularly in practical online recommender systems. Our
work is motivated to address these two limitations.

To this end, we propose a novel family of online Adaptive
Passive-Aggressive learning algorithms for solving NMF, named
“NN-APA" for short. Our new method overcomes the two limi-
tations of NN-PA by exploring two ideas. First of all, unlike the
first-order learning approach, we exploit second-order information
in making more informative updates to enhance the efficacy of PA
learning at each iteration. Second, we attempt to achieve the pa-
rameter auto-selection by exploring the idea of online learning with
expert advice [8, 4] in deciding the optimal combination of the key
parameters in NMF. We theoretically analyze the regret bounds of
the proposed new method and shows its advantage over the state-
of-the-art NN-PA method, and further validates the efficacy and
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scalability of the proposed technique through an extensive set of
experiments on a variety of large-scale real recommender systems
datasets.

The rest of paper is organized as follows. Section 2 gives a formal
formulation of NMF and then reviews the key ideas of the impor-
tant related work of NN-PA for solving online NMF task. Section
3 presents the proposed new family of online NN-APA algorithms.
Section 4 gives theoretical analysis of the proposed algorithms, and
Section 5 discusses our empirical results. Section 6 briefly reviews
related work and their differences to our work, and finally Section
7 concludes this work.

2. PROBLEM FORMULATION
In this section, we first gives a formal problem formulation of a

Non-negative Matrix Factorization (NMF) task, and then review the
important work of the Non-Negative Passive-Aggressive (NN-PA)
method [2] for solving an online NMF task.

2.1 Problem Settings
Given a non-negative data matrix R ∈ Rm×n, with row index
{i|i ∈ 1, ...,m} and column index {j|j ∈ 1, ..., n}. Let us denote
its entries as rij . The target of Non-negative Matrix Factorization
is to find two non-negative matrices U ∈ Rk×m and V ∈ Rk×n
whose product can well approximate the data matrix R, i.e.,

min
U,V

1

2
‖R− U>V ‖2F , s.t. U ∈ Rk×m+ , V ∈ Rk×n+ , (1)

where ‖·‖F is the matrix Frobenius norm and k is a rank parameter
and is an integer k � min{m,n}. Although the objective function
is convex when U or V is fixed, it is a non-convex optimization
problem when considering both of them together. So it is hard to
find global minimum. Alternatively, if one can iteratively optimize
U and V [5, 12] until convergence to obtain a local minimum.

2.2 The NN-PA Method: Revisited
Passive-Aggressive (PA) [6] algorithms are originally designed

for regular online classification and regression problems, which is
easy to implement without any hand-tuning of learning rate param-
eter compared to other online learning algorithms [11]. Recently,
PA techniques are extended to solve NMF problems, for which the
proposed Non-Negative Passive-Aggressive methods (NN-PA) [2]
have demonstrated their scalability when datasets are very large.
Specifically, suppose entries of data matrix arrive sequentially and
periodically, where entry rtij is revealed at round t. We denote the
i-th column of U as uti and j-th column of V as vtj . Then, NN-
PA methods alternatively update uti and vtj while keeping another
matrix fixed by solving the following optimization task:

ut+1
i = arg minui∈Rk

+

1
2
‖ui − uti‖2 s.t. `(ui,vtj , rtij) = 0, (2)

vt+1
j = arg minvj∈Rk

+

1
2
‖vj − vtj‖2 s.t. `(uti,vj , rtij) = 0, (3)

where `(u,v, r) = max(|u>v − r| − ε, 0) is the ε insensitive
loss. Take ut+1

i into consideration, intuitively speaking, ut+1
i is

assigned to be the projection of previous uti onto the half-space
of vectors which attain a ε-intensive loss of zero on the curren-
t vtj . An update is passive if ε-intensive loss is zero and leave ui
unchanged in order to retain information learned by previous itera-
tions. In contrast, the algorithm will aggressively force ui to satisfy
the constraint max(|u>i vti − rtij | − ε, 0) = 0, without any param-
eter settings about learning rate, due to correctly predicting current
rtij with a sufficiently high margin.

NN-PA method is similar to PA [6] method except that it has
non-negative constraints on the model. It is easy to solve (2) if we

do not consider the non-negative constraints, since the solution of
this optimization problem has a simple closed-form solution:

ut+1
i = uti + τtsgn(rtij − uti · vti)vti ,where τt =

`(uti,v
t
j , r

t
ij)

‖vti‖2
.

We can observe that the learning rate depends on the loss of the
current model. Unfortunately, with the non-negative constraint, E-
q. (2) does not enjoy a general closed-form solution anymore.
To overcome this limitation, NN-PA methods provide both exact
and approximate solutions. The approximate update solution first
computes the closed-form solution without considering the non-
negative constraints, and then projects the model into the non-
negative subspace. Compared with the exact solution, approximate
update is more efficient and performs comparably or even better[2].

Although NN-PA is simple and efficient, it suffers from two ma-
jor drawbacks: (1) it converges relatively slowly due to the nature
of first-order learning, and (2) its performance is sensitive to the
settings of some key parameters, such as matrix rank k, and regu-
larization parameter C, which are often difficult to choose or tune
in advance prior to the learning tasks.

3. THE PROPOSED NN-APA METHOD
To overcome the limitations of NN-PA for a Non-negative Matrix

Factorization (NMF) tasks, we first propose a new scheme of Non-
Negative Adaptive Passive-Aggressive learning termed “NN-APA"
by exploring the idea of adaptive regularization techniques [7],
which attempts to adaptively set the time-varying proximal func-
tion for each feature by means of a data-driven way. This method
relies on only first order information but has some properties of sec-
ond order methods, so that it can achieve asymptotically sub-linear
regrets. Second, to overcome the challenge of critical parameter
selection, we then present a new scheme of Non-Negative Adap-
tive PA learning with multiple experts denoted as “NN-APA(m)",
which combines multiple experts each has a combination of differ-
ent parameter settings, where the weights of the experts are updated
based on the Hedge algorithm [8]. In the following, we discuss the
details of the proposed scheme for online NMF tasks.

3.1 Non-Negative Adaptive PA Learning
Our goal is to improve NN-PA by exploring the adaptive regu-

larization [7]. This technique has gained extensive popularity for
large-scale optimization problems and especially works well with
sparse gradients. It adaptively sets the time-varying proximal func-
tion for each feature in a data-driven way to achieve asymptotically
small regret. The intuition behind this updating strategy is fairly
simple, i.e., rarely occurring features might be more informative
and discriminative than those of frequently occurring features. It
dynamically incorporates knowledge of the geometry of the data
from earlier iterations and pre-emphasizes infrequently occurring
features. Therefore, this adaption facilitates the utilization of in-
formative but comparatively rare features and speeds up relative
convergence.

Specifically, we incorporate historic geometric property by ad-
justing the proximal function in Eq. (2) to control the gradient
step of the algorithm which keeps the current weight vector staying
close to previous weight vector. Instead of original Euclidean dis-
tance, we can employ Mahalanobis distance dA(u,u′) = ‖u −
u′‖Gt =

√
(u− u′)>Gt(u− u′) as the proximal function,

where Gt =
√∑t

γ=0(g>γ gγ) + δI is the covariance matrix of
accumulated gradient, gγ denotes a subgradient for loss function,
and η0 is a global learning rate shared by all dimensions. Besides
the rare features, this accumulation of gradients gradually promotes
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weight of proximal function which has the same effect of annealing
for reducing the step size over time.

To this end, we propose the Non-Negative Adaptive Passive-
Aggressive (NN-APA) method, which extends the NN-PA method
in [2] by exploring the proximal function as a squared Mahalanobis
norm where the matrix is a covariance matrix of accumulated gradi-
ents of online loss functions. Specifically, we formulate the online
updating strategy as the following optimization:

ut+1
i = arg min

ui∈Rk
+

1

2
‖ui − uti‖2Gt

, (“NN-APA”)

s.t. max(|u>i vti − rtij | − ε, 0) = 0.

(4)

Without the non-negative constraint, its Lagrangian is:

L(ui, θ, µ) =
1

2
‖ui − uti‖2Gt

+ θ(−rtij + u>i v
t
i − ε)

+ µ(rtij − u>i v
t
i − ε),

(5)

where θ ≥ 0 and µ ≥ 0 are two Lagrange multipliers. This op-
timization problem has a convex objective function and feasible
affine constraints. These are sufficient conditions for Slater’s con-
dition to hold. Therefore, satisfying the Karush-Kuhn-Tucker (KK-
T) conditions is a necessary and sufficient condition for finding the
problem’s optimum. Let u∗i and (θ∗, µ∗) be the primal and dual
optimal points. Setting the partial derivatives of L(ui, θ, µ) with
respect to the elements of ui to zero gives:

∇uiL(ui, θ, µ) = Gt(ui − uti) + (θ − µ)vti = 0, (6)

which can be further simplified as

u∗i = uti − (θ∗ − µ∗)G−1
t vti . (7)

Plugging the above equation into the Eq. (5), taking the derivative
of L with respect to (θ, µ) and setting them to zero, we can get a
closed-form solution:

u∗i = uti + τtsgn(rtij − u>i v
t
i)G
−1
t vti

where τt =
`(uti,v

t
j , r

t
ij)

‖vti‖2G−1
t

.
(8)

After getting the above solution, we can project it into the non-
negative subspace using,

ut+1
i = ΠGt

Rk
+

(u∗i ) = arg min
u∈Rk

+

‖u− u∗i ‖2Gt
. (9)

This is a QP problem, which can be efficiently solved using the
off-the-shelf tool box. Moreover, if the matrix Gt is diagonal, this
optimization enjoys a closed form solution: ut+1

i = max(0,u∗i ).
As discussed above, we can also introduce slacks variable ξ for

NN-APA to avoid overfitting when dealing with noisy observation-
s. Analogous to the PA variants, we propose NN-APA-I and NN-
APA-II respectively with two types of loss as follows:

ut+1
i = arg min

ui∈Rk
+

1

2
‖ui − uti‖2Gt

+ Cξ, (“NN-APA-I”)

s.t. max(|u>i vtj − rtij | − ε, 0) ≤ ξ and ξ ≥ 0,

ut+1
i = arg min

ui∈Rk
+

1

2
‖ui − uti‖2Gt

+ Cξ2, (“NN-APA-II”)

s.t. max(|u>i vtj − rtij | − ε, 0) ≤ ξ,

Without considering the non-negative constraints, we can derive the
closed-form solutions for the two algorithms as

u∗i = max(uti + τtsgn(rtij − u>i v
t
i)G
−1
t vti , 0) (10)

where

τt =


min

(
C,
`(uti,v

t
j , r

t
ij)

‖vti‖2G−1
t

)
(NN-APA-I)

`(uti,v
t
j , r

t
ij)

‖vti‖2G−1
t

+ 1
2C

(NN-APA-II)
(11)

Finally, we project the above solutions onto the non-negative do-
main. Algorithm 1 summarizes the proposed NN-APA method.

Algorithm 1 Non-Negative Adaptive PA Algorithm “NN-APA"

Input: current iteration variable uti , input data vtj , C for slack
variable, ε for loss function, δ ≥ 0 for adaptive regularization
Compute prediction ptij = uti · vtj
Receive an incoming rating instance rtij
Suffer a loss `t = max(|pij − rtij | − ε, 0)
if `t = 0 then

ut+1
i = uti

else
Compute subgradient gui ∈ ∂u`(ui,vj , rij)
Hui = Hui + g>ui

gui (full matrix adaption)
Hui = Hui + diag(g>ui

gui) (diagonal matrix adaption)
Compute Gtui

=
√
δI +Hui

Compute τt by
Eq. (8) for NN-APA
Eq. (11) for NN-APA-I and NN-APA-II

ut+1
i = ΠGt

u∈Rk
+

[uti + τtsgn(rtij − uti · vtj)G−1
t vti ]

end if
Output: ut+1

i

Remark. Computing the full matrix Gt for the adaptive regular-
ization function could be computationally expensive, particularly
when the rank k is large. To reduce computational cost, a common
way is to explore diagonal matrix adaption, which only considers
diagonal matrix of outer products of the gradients that have been
observed to update the parameters. This strategy is significantly
more efficient than the full matrix adaption, and enjoys the same
worst-case time complexity as the existing NN-PA method.

3.2 NN-APA Learning with Multiple Experts
The goal of NMF is to seek a low-rank matrix that can be fac-

tored into two non-negative matrices U ∈ Rk×m+ , V ∈ Rk×n+ with
rank of at most k. NMF is sensitive to the setting of the rank pa-
rameter k. Specifically, if k is too small, the feature space is too
restricted to represent the original matrix accurately, and thus suf-
fers from underfitting. On the other hand, if k is too large, it may
be over complex and thus suffers from overfitting. In addition, the
proposed NN-APA method also could be sensitive to the setting of
parameter C, which acts as a form of regularization and balances
the trade-off between aggressiveness at each iteration. The parame-
ter sensitivity of both k and C will be analyzed in our experiments.

Typically, in a batch NMF task, one can choose parameters such
as k manually or tuned by grid search on training data via cross
validation. Unfortunately, such an approach has some critical draw-
backs for online learning tasks. First of all, data arrives sequentially
in online learning, making it difficult to choose a good parameter
prior to the learning task. Second, even if one manages some way
to fix the parameter manually prior to the online learning tasks, the
optimal values of parameters may change over time in the online
learning process, which is common for many real-world online rec-
ommender systems where user preferences may change over time.
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As a result, such kind of traditional approaches would suffer from
sub-optimal performance for online applications.

To tackle the above challenge, we propose a new method of
NN-APA learning with multiple experts termed “NN-APA(m)" for
short. We create a set of experts S with diverse combinations of pa-
rameter settings (e.g., rank parameter k and regularization param-
eter C in our experiments), and define it as S =

{
(ks, Cs), s =

1, . . . , |S|
}

. The key idea of our approach is to approximate the
original matrix R by learning a weighted combination of multiple
experts without requiring manual parameter selection, i.e.,

R̂ =

|S|∑
s=1

wts(U
t
s)
>V ts (12)

where wts ≥ 0 denotes the importance weight of the expert s at the
t-th iteration. The rest challenge then is how to learn wts, U ts , V ts
sequentially by an effective online learning scheme.

To tackle this problem, we apply the Hedge algorithm [8], a well-
known technique for prediction with expert advice in decision-
theoretic online learning [4, 21]. The intuition of our approach is
to dynamically update the weight of each expert according to their
online predictive performance in the online learning process.

Specifically, at the beginning, the weights for the experts w0

are initialized as a uniform distribution, i.e., w0
s = 1/|S|, s =

1, . . . , |S|. At the end of each iteration, the weights are updated
according to the instantaneous loss of each expert, i.e.,

ŵt+1
s = wtsβ

`ts , s = 1, ..., |S| (13)

where β ∈ (0, 1) is a decaying learning rate to decrease importance
with respect to the loss `ts suffered at current iteration t, i.e.,

`ts = `(uts,i,v
t
s,j , rij) = max(|uts,i

>
vts,j − rtij | − ε, 0) (14)

In addition, to ensure the weight vector is a distribution, the weight
vector is normalized at the end of each iteration as follows:

wt+1
s = ŵt+1

s /

|S|∑
s=1

ŵt+1
s . (15)

Although the above scheme can achieve auto-selection of param-
eters in online learning, a drawback with this scheme is the extra
computational cost as every expert must be updated at each itera-
tion, which is expensive particularly when the number of experts
|S| is large. To address this issue, we explore a stochastic updating
scheme to reduce the computational cost. Specifically, we define a
sampling probability denoted by q̂ts, which determines the proba-
bility of an expert being selected for update:

q̂ts =
wts

max1≤s≤|S| wts
. (16)

This sampling probability implies that the higher the combination
weight, the higher the probability of being selected for update at
each iteration. To avoid potentially good experts with low weight-
s at the beginning from completely losing out, we introduce a s-
moothing term ρ ∈ (0, 1), so that the new probability of a matrices
pair being selected for update becomes:

qts = (1− ρ)
wts

max1≤s≤|S| wts
+ ρ, (17)

which balances the trade-off between exploration and exploitation.
Algorithm 2 summarizes the proposed “NN-APA(m)" algorithm.

Algorithm 2 The Multi-expert NN-APA algorithm “NN-APA(m)”
Input: update parameter β, parameter ρ, a set of |S| experts with
different values of k and C
Initialization: w0 = 1

S 1, initialize each (Us,Vs) randomly
for t = 1, . . . , T do

Receive an incoming rating instance rij ;
Compute prediction r̂ij by weighted combination in Eq. (12);
Compute sampling probability for each expert qte by Eq. (17);
for s = 1, . . . ,S do

Draw a bernoulli sampling bs ∼ Bernoullin(qts);
if bs == 1 then

Compute loss `(uts,i,v
t
s,j , rij) by (14);

Update matrix pair Us and Vs as Algorithm 1;
end if

end for
Update wt+1 based on (13) and (15)

end for

4. REGRET ANALYSIS
We now analyze the theoretical performance of the proposed

method in terms of online regret bound analysis. To ease our dis-
cussion, we simplify some notations in our analysis as follows:

xt = vtjt or utit , (“input”)

yt = rit,jt (“target”)

w = u or v (“variable”)

wt+1 = ut+1
it

or vt+1
jt

(“solution”)

wt = utit or vtjt (“current status”)

Gt = Gtut
it

or Gtvt
jt

(“current status”)

Then, we can prove the following theorem to facilitate later proofs.

THEOREM 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of
input-target pairs, where xt ∈ Rk+ and yt ∈ R+. Let w1, . . . ,wT

be a sequence of vectors obtained by the proposed NN-APA-I algo-
rithm, then the following inequality holds for any w ∈ Rk+:

T∑
t=1

[`(wt,xt, yt)− `(w,xt, yt)] ≤
1

2C
D2tr(GT ) + Ctr(GT ), (18)

where D = maxt ‖wt−w‖. Moveover, taking C = D√
2

, we have

T∑
t=1

[`(wt,xt, yt)− `(w,xt, yt)] ≤
√
2Dtr(GT ). (19)

The detailed proof can be found in Appendix A.
Remark. We now try to compare the regret bound of our NN-

APA directly with the regret bound of NN-PA in [2]. To do so, we
rewrite the regret bound of NN-PA as follows:

T∑
t=1

[`(wt,xt, yt)− `(w,xt, yt)] ≤
‖w‖2A

2C
+
C
∑T
t=1 ‖gt‖

2
A−1

2
,

where A = I , gt = Ltxt and Lt = I(`(wt,xt, yt) > 0). To
compare this with our bound, we allow A � 0, tr(A) ≤ 1, and
try to optimize the leading factor in the upper bound of NN-PA, i.e.,

min
A

T∑
t=1

‖gt‖2A−1 , s.t. A � 0, tr(A) ≤ 1,
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As a result, we can find the optimal choice of A = GT /tr(GT )
and the best possible bound achieved by NN-PA as follows:

T∑
t=1

[`(wt,xt, yt)− `(w,xt, yt)] ≤
‖w‖2

GT /tr(GT )

2C
+

C[tr(GT )
2]

2

≤
‖w‖2

2C
+

C[tr(GT )
2]

2
≤ ‖w‖tr(GT ).

It is important to note that this bound is the “ideally" optimal bound
for NN-PA, but practically is not achievable because the parameter
A = I is used by default for NN-PA. Even if we allow one to
use any PSD matrix, it is also impossible to choose the optimal
A prior to the learning task since GT is not known in advance.
However, the proposed NN-APA enjoys O(Dtr(GT )), but does
not require knowing GT in advance. This implies that NN-APA is
theoretically better than NN-PA, since it achieves the optimal regret
bound (without considering the constant factor ) while NN-PA does
not.

According to the theory of the Hedge algorithm [8], we can show
that our multi-expert method can achieve an optimal upper bound
of regret by

√
T ln |S|/2 with |S| experts after T iterations. This

implies that NN-APA(m) can asymptotically approach the best ex-
pert (i.e., the NN-APA with best parameter setting) and ensure the
per-round regret vanishes over time in a sub-linear rate. The theo-
retical analysis can be followed directly from the result in [8]. We
omit the detailed proof due to space limitation.

5. EXPERIMENTS
In this section, we evaluate the empirical performance of the pro-

posed NN-APA method on real-world datasets. To examine every
aspect of the proposed method, we have implemented several vari-
ants of the NN-APA algorithms, and compare with the state-of-the-
art algorithms for online NMF tasks on a wide range of datasets
collected from real-world recommender systems.

5.1 Experimental Testbed and Setup

5.1.1 Datasets
To comprehensively examine the empirical performance, we

conduct the experiments of online NMF techniques for collab-
orative filtering on a variety of publicly available recommender
systems datasets, ranging from small-scale datasets including
MovieLens1 and HetRec20112, to medium-scale datasets including
Flixster3 and large-scale datasets with over one hundred million
rating samples, including the popular Netflix4 and Yahoo-music5

datasets. Table 1 gives a summary of the dataset statistics used in
our experiments.

Dataset #Ratings #Items #Users #density
HetRec 2011 855,598 10109 2113 4.0%
Movielens 100k 100,000 1682 943 6.3%
Movielens 1M 1,000,209 3900 6040 4.2%
Flixster 8,196,077 147,612 48,794 0.12%
Movielens 10M 10,000,054 10,681 71,567 1.3%
Netflix 100,480,507 17770 480,189 1.18%
Yahoo-Music 115,579,440 98,213 1,948,882 0.06%

Table 1: Summary of datasets used in our experiments.

1http://grouplens.org/datasets/movielens/
2http://grouplens.org/datasets/hetrec-2011/
3http://www2.cs.sfu.ca/ sja25/personal/datasets/
4http://www.netflixprize.com/
5http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

5.1.2 Compared Methods and Performance Metrics
We compare the proposed algorithms and their variants with the

state-of-the-art algorithms for NMF tasks as follows:

• SGD: Stochastic Gradient Descent (SGD), or equivalently
Online GD, widely used in solving MF tasks for collabora-
tive filtering [13]. We adapt SGD for solving NMF tasks by
enforcing the NN constraint at the end of each iteration;

• NN-PA: the state-of-the-art Non-negative Passive Aggres-
sive (NN-PA) learning algorithm proposed in [2];

• OMTCF: the Online Multi-Task Collaborate Filtering algo-
rithm in [23];

• NN-APAdiag: the proposed NN-APA algorithm by only ex-
ploiting diagonal matrix adaptation;

• NN-APAfull: the proposed NN-APA algorithm by exploiting
full matrix adaptation;

• NN-APA(u): the proposed multi-expert NN-APA algorith-
m using a naive uniform combination of multiple experts,
which allows us to examine the efficacy of the proposed on-
line learning with expert advice;

• NN-APA(m): the proposed multi-expert NN-APA algorithm
using the Hedge algorithm for learning with expert advice.

Note that PA algorithms has three variants [6]. In our experiments,
due to space limitation, we only evaluate the series of PA-II variants
(i.e., NN-PA-II and NN-APA-II) which are highly comparable to
the series of PA-I variants, but often better than the PA algorithm
without soft margin. For performance metrics, we adopt the widely
used “Mean Absolute Error (MAE)" and also measure time cost of
each algorithm.

5.1.3 Experimental Setup and Parameter Settings
For experimental setup, each dataset is randomly divided into

two parts: 80% for training and 20% for test. We repeat such a
random permutation 10 times for each dataset and compute the
average results of each algorithm over the 10 runs. For parame-
ter settings, we adopt the same parameter tuning schemes for all
the compared algorithm to enable fair comparisons. We perform
grid search to choose the best parameters for each algorithm on
the training set. Specifically, we search the ranges of values for pa-
rameter C in [10−2, 10], and for parameter δ in [10−2, 1]. For the
setup of the proposed NN-APA(m) algorithm with multiple experts,
we create a set of 15 experts specifying by different combinations
of parameters C and K and adopt the NN-APAdiag algorithm for
each expert learning. More specifically, we create experts by seting
C ∈ {0.01, 0.05, 0.4, 0.8, 5} and K ∈ {5, 10, 15} for small-scale
datasets, and C ∈ {0.02, 0.1, 0.8, 1.6, 10} and K ∈ {10, 15, 20}
for medium-scale datasets.

5.2 Experimental Results

5.2.1 Evaluation of Recommendation Errors
Table 2 and Table 3 summarize the average MAE results of dif-

ferent algorithms for recommendation tasks on small-scale datasets
and medium-scale datasets, respectively. From the results, we can
draw several observations as follows.

First of all, by examining the MAE results, it it clear to see that
the proposed NN-APA algorithms, NN-APAdiag and NN-APAfull,
outperform both SGD, NN-PA and OMTCF significantly for al-
l cases. This encouraging results validate the efficacy of the pro-
posed adaptive learning technique in exploiting second-order in-
formation. By examining the time costs, NN-APAdiag runs slightly
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Table 2: Evaluation of predictive errors of recommendation on small-scale datasets

ML100K Training MAE Test MAE Time (s)
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

SGD 0.9743 ± 0.0016 0.8891 ± 0.0021 0.8720 ± 0.0018 0.8348 ± 0.0026 0.7795 ± 0.0019 0.7961 ± 0.0021 4.44 4.56 4.53
NN-PA 0.8877 ± 0.0010 0.8440 ± 0.0010 0.8386 ± 0.0016 0.8199 ± 0.0011 0.7837 ± 0.0010 0.7961 ± 0.0012 6.19 6.64 6.88
OMTCF 1.0700 ± 0.0012 0.8721 ± 0.0008 0.8759 ± 0.0010 0.7954 ± 0.0007 0.7932 ± 0.0013 0.7960 ± 0.0008 5.71 5.82 6.02

NN-APAdiag 0.8319 ± 0.0006 0.8090 ± 0.0006 0.8065 ± 0.0009 0.7663 ± 0.0005 0.7706 ± 0.0004 0.7685 ± 0.0006 8.90 8.97 8.91
NN-APAfull 0.8505 ± 0.0009 0.8169 ± 0.0010 0.8173 ± 0.0006 0.7692 ± 0.0007 0.7689 ± 0.0008 0.7727 ± 0.0006 54.24 70.45 94.23

NN-APA(u) 0.8842 ± 0.0006 0.7779 ± 0.0010 64.40
NN-APA(m) 0.8028 ± 0.0004 0.7681 ± 0.0008 16.39

HetRec 2011 Training MAE Test MAE Time (s)
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

SGD 0.7622 ± 0.0276 0.7176 ± 0.0245 0.6990 ± 0.0228 0.6872 ± 0.0226 0.6896 ± 0.0227 0.6627 ± 0.0201 35.70 37.46 38.99
NN-PA 0.7333 ± 0.0077 0.6877 ± 0.0083 0.6889 ± 0.0092 0.6490 ± 0.0084 0.6482 ± 0.0091 0.6509 ± 0.0079 45.13 50.31 53.99
OMTCF 0.7825 ± 0.0067 0.6990 ± 0.0062 0.6912 ± 0.0040 0.6619 ± 0.0072 0.6530 ± 0.0067 0.6539 ± 0.0038 40.71 43.82 48.02

NN-APAdiag 0.6781 ± 0.0051 0.6651 ± 0.0037 0.6710 ± 0.0032 0.6367 ± 0.0057 0.6370 ± 0.0046 0.6447 ± 0.0039 73.72 78.02 83.91
NN-APAfull 0.6769± 0.0044 0.6617± 0.0045 0.6606± 0.0022 0.6262± 0.0036 0.6259± 0.0046 0.6191± 0.0019 475.66 570.57 643.71
NN-APA(u) 0.6921 ± 0.0006 0.6363 ± 0.0008 555.69
NN-APA(m) 0.6581 ± 0.0010 0.6324 ± 0.0007 170.94

ML1M Training MAE Test MAE Time (s)
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

SGD 0.8891 ± 0.0021 0.7997 ± 0.0022 0.8585 ± 0.0028 0.7610 ± 0.0021 0.7575 ± 0.0017 0.8040 ± 0.0021 41.85 43.07 45.13
NN-PA 0.8228 ± 0.0011 0.7841 ± 0.0011 0.8382 ± 0.0018 0.7867 ± 0.0019 0.7490 ± 0.0027 0.7925 ± 0.0022 58.82 60.07 68.31
OMTCF 0.8821 ± 0.0018 0.7987 ± 0.0014 0.7898 ± 0.0014 0.7641 ± 0.0017 0.7544 ± 0.0021 0.7569 ± 0.0018 48.97 53.02 60.91

NN-APAdiag 0.7677± 0.0013 0.7623 ± 0.008 0.7706 ± 0.0011 0.7347 ± 0.0023 0.7410 ± 0.0017 0.7480 ± 0.0012 91.32 97.62 103.31
NN-APAfull 0.7790 ± 0.0006 0.7694 ± 0.011 0.7661± 0.0011 0.7346± 0.0008 0.7351± 0.0005 0.7339± 0.0008 518.33 590.65 653.14
NN-APA(u) 0.7935 ± 0.0006 0.7406 ± 0.0010 691.01
NN-APA(m) 0.7572 ± 0.0012 0.7339 ± 0.0008 191.91
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Figure 1: Evaluation of online cumulative MAE performance of different algorithms in the online learning process.

slowly than NN-PA but it is highly competitive to NN-PA with the
same time complexity. However, the NN-APAfull using full matrix
adaptation is much slower than the other algorithms, although it
achieves the best MAE results for most cases. The high computa-
tion cost is because the update of the full matrix has to deal with

O(K2) number of parameters and the time cost of inverting the full
matrix is very expensive, particularly for a large value of K.

Furthermore, by examining the two variants of the proposed NN-
APA with multiple experts, we found that the NN-APA(m) using
the Hedge algorithm significantly outperforms the NN-APA(u) us-
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Table 3: Evaluation of predictive errors of recommendation on medium-scale datasets

ML10M Training MAE Test MAE Time (s)
k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

SGD 0.7300 ± 0.0011 0.7411 ± 0.0012 0.7138 ± 0.0013 0.7199 ± 0.0021 513.4880 601.5571
NN-PA 0.7191 ± 0.0005 0.7309 ± 0.0002 0.6967 ± 0.0003 0.7005 ± 0.0002 659.0901 722.4095
OMCTF 0.7283 ± 0.0014 0.7312 ± 0.0011 0.7179 ± 0.0010 0.7222 ± 0.0016 513.4880 601.5571

NN-APAdiag 0.7015 ± 0.0003 0.7133 ± 0.0003 0.6820 ± 0.0006 0.6886 ± 0.0001 967.6965 987.1562
NN-APAfull 0.6975 ± 0.0004 0.7076 ± 0.0002 0.6593 ± 0.0001 0.6502 ± 0.0008 7033.1093 10254.1272
NN-APA(u) 0.7214 ± 0.0006 0.6841 ± 0.0005 6623.92
NN-APA(m) 0.6953 ± 0.0008 0.6803 ± 0.0008 2556.81

Flixster Training MAE Test MAE Time (s)
k = 10 k = 20 k = 10 k = 20 k = 10 k = 20

SGD 0.7526 ± 0.0046 0.7499 ± 0.0031 0.7180 ± 0.0036 0.7140 ± 0.0029 426.6991 440.8333
NN-PA 0.7458 ± 0.0021 0.7485 ± 0.021 0.7112 ± 0.0018 0.7104 ± 0.019 460.3416 464.5119
OMCTF 0.7482 ± 0.0037 0.7467 ± 0.0042 0.7122 ± 0.0028 0.7081 ± 0.0031 426.6991 440.8333

NN-APAdiag 0.7255 ± 0.0011 0.7314 ± 0.0006 0.7041 ± 0.0015 0.7106 ± 0.0014 728.9019 788.9788
NN-APAfull 0.7268 ± 0.0009 0.7173 ± 0.0010 0.6882 ± 0.0005 0.6686 ± 0.0011 5691.3419 8621.1302
NN-APA(u) 0.7349 ± 0.0016 0.6978 ± 0.0007 5246.07
NN-APA(m) 0.7055 ± 0.0011 0.6867 ± 0.0008 2373.21

ing the naive uniform combination in terms of both MAE results
and computational efficiency. The gain in MAE by NN-APA(m)
is because it automatically gives more weights to good experts
while NN-APA(u) treats all the experts the same and thus could
be harmed by the poor experts. The gain in time cost is because
NN-APA(m) does not necessarily update each expert during the on-
line learning process due to its stochastic sampling strategy, while
NN-APA(u) treats all experts equally and has to update each ex-
pert whenever the loss is nonzero. This encouraging result vali-
dates the efficacy of the Hedge algorithm for learning with expert
advice and the importance of focusing the updates on good expert-
s to save computational costs. By further comparing NN-APA(m)
with the other algorithms without multiple experts (but their pa-
rameters were tuned by grid search), we found that the proposed
NN-APA(m) is able to achieve highly competitive or even better
results than the existing single-expert algorithms.

Finally, it is very important to note that NN-APA(m) does not re-
quire tuning the parameters manually, and is thus particulary suit-
able for online learning tasks.

5.2.2 Evaluation of Online Performance
To further examine the online learning performance of different

algorithms in detail, Figure 1 shows some examples of online cu-
mulative MAE performance of different algorithms in the online
learning process.

From the results, we can see that the proposed NN-APA algo-
rithms significantly outperform the other existing algorithms. This
confirms our theoretical results of online regret analysis in that NN-
APA can effectively exploit the underlying geometry of the data ob-
served so far to achieve a more informative and effective update for
online learning tasks. Last but not least, we found the NN-APA(m)
with multiple experts outperforms the single-expert NN-APA for
most cases. We conjecture that the reason is not only becuase NN-
APA(m) is able to automatically identify the good expert with best
parameters and but also has ensemble effect for boosting the per-
formance using multiple good experts.

5.2.3 Evaluation of Training Efficiency
The previous experimental results in Table 2 and Table 3 indi-

cate two facts: (i) the proposed NN-APA algorithm outperforms
the existing SGD and NN-PA algorithms in terms of MAE after

processing a single pass of all rating samples; but (ii) NN-APA is
slightly slow in terms of total time cost for a singe pass. This raises
a question, that is, if each algorithm is given the same amount of
time for training, which algorithm is able to achieve better learning
performance in terms of MAE results.

To answer the above question, Figure 2(e) shows our experimen-
tal results by comparing three different algorithms given the same
training time on two large-scale datasets under different settings of
K. From the experimental results, it is clear to see that the proposed
NN-APA algorithm using diagonal matrix adaptation achieves the
best results for all the cases. Besides, it is interesting to observe that
the gain of our algorithm over the others becomes more significant
when K is large. We think the reason is primarily because when
using a large K, the existing first-order algorithms may be more
risky and unreliable in finding the right direction for online updates.
However, the proposed NN-APA algorithm can take advantage of
exploiting the second order information in making a more precise
and reliable update. This result is also consistent to our subsequent
experiments of parameter sensitivity in that our NN-APA algorithm
is much more robust in terms of parameter settings.

5.2.4 Evaluation of Parameter Sensitivity
For the proposed NN-APA algorithm, there are two key param-

eters: the rank parameter K and the regularization parameter C. It
will be interesting to examine how the algorithm may be sensitive
to the parameter settings. Figure 4 and Figure 3 show the results of
parameter sensitive evaluations using different values of K and C.

First of all, by examining the influence of rank parameter K, we
found all the algorithms are sensitive to the setting of parameterK,
where K cannot be too small (“underfitting") or too large (“over-
fitting"). This result further confirms the importance and challenge
of setting a proper value of parameter K in an online collaborative
filtering task.

Second, by examining the influence of regularization parameter
C, we found that the proposed NN-APA algorithm is relatively less
sensitive to the setting of parameter C as compared to the other
algorithms. This is primarily because of imposing the non-negative
constraint in our formulation. To further validate this importance,
we examine the impact of imposing non-negative constraints in the
next experiment.
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Figure 2: Cumulative MAE over time on large-scale datasets

5.2.5 Evaluation of Non-Negative Constraint Impact
To examine the importance of imposing the non-negative con-

straint in the proposed NN-APA algorithm, we implement a variant
of Adaptive PA learning (APA) without imposing the non-negative
constraint. As seen from the results in Figure 3, the NN-APA with
non-negative constraint is much more robust than the APA with-
out non-negative constraint, which validates the importance of non-
negative matrix factorization techniques.

5.2.6 Interpretation of Qualitative NMF Results
Another important advantage of NMF is that it tends to yield

more interpretable solutions. The recommendation system data
contains tag information for each item and the coefficients in a ba-
sis of NMF results could be regarded as the relative importance.
Thus, in this experiment, we attempt to examine the interpretation
quality of our final NMF results with the tag of each item. We thus
compute the matrix decomposition of the ML10M dataset and il-
lustrate the top 5 coefficients of each basis with the tag information
of each movie. Table 4 indicates that the related movies tend to be
clustered into the same topic while some topics may contain irrele-
vant movies. For example, topic 1 contains mostly about “comedy",
topic 3 contains mostly about “drama", but topic 5 is relatively less
coherent as compared to the other topics. Therefore, in addition
to obtaining better quantitative MAE results, NN-APA potentially

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

8

C

M
A

E

 

 

APA

PA

NN−PA

NN−APA

(a) ML100K

10
−2

10
−1

10
0

10
1

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C

M
A

E

 

 

APA

PA

NN−PA

NN−APA

(b) ML1M

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

8

9

10

C

M
A

E

 

 

APA

PA

NN−PA

NN−APA

(c) HetRec 2011

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

8

9

10

C

M
A

E

 

 

APA

PA

NN−PA

NN−APA

(d) ML-10M

Figure 3: Evaluation of C and non-negative constraint impact
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Figure 4: Prediction error when using different values of K

also yields interpretable qualitative results, which may gain impor-
tant insights when being deployed in real-world applications.

6. RELATED WORK
Non-negative matrix factorization (NMF) has been a challenging

open research problem in multivariate analysis and linear algebra
as well as numerical optimization. NMF found many applications
in different fields, such as computer vision, document clustering,
audio signal processing, web search, recommender systems, and
beyond. To resolve the optimization challenge of NMF problems,
many optimization techniques have been extensively proposed over
the past decade, including multiplicative methods [15, 17], project-
ed gradient descent [18], active set methods [1], and MahNMF [9].
However, most of them are offline or batch learning methods, which
suffer from a number of limitations when dealing with large-scale
online applications where data may often arrive sequentially. The
batch learning approaches are usually computationally intensive,
of very high space complexity, and extremely expensive cost for
re-training the models with new training data.

Recently, online learning methods have also been actively stud-
ied for solving collaborative filtering and NMF tasks [3, 20, 22, 23,
19], which enjoy high efficiency and scalability over batch learning
methods. However, they often assume data is fully observed and
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Table 4: Interpretation of the qualitative results. We extracted 6 components of item matrix from ML10M dataset and show the top
5 movies of each component. For comparison, we also show annotated tags of each movie.

Topic 1 Topic 2 Topic 3
Martin Lawrence Live: Runteldat Cinderella Roller Boogie

(Comedy,Documentary) (Animation,Children) (Drama)
Clifford Jonah: A VeggieTales Movie Girl Who Leapt Through Time

(Comedy) (Animation,Children,Musical) (Animation,Drama)
Even Cowgirls Get the Blues Digimon: The Movie Cool as Ice

(Comedy,Romance) (Adventure,Animation,Children) (Drama)
Bratz Spirited Away I Never Promised You a Rose Garden

(Comedy) (Adventure,Animation,Children,Fantasy) (Drama)
Who Pulled the Plug Material Girls Nazar

(Comedy) (Children,Comedy,Drama) (Drama)
Topic 4 Topic 5 Topic 6

Slaughterhouse 2 Ape Cloverfield
(Horror) (Horror,Sci-Fi) (Action,Mystery,Sci-Fi,Thriller)

Amityville Curse Carnosaur Omega Code
(Horror) (Horror,Sci-Fi) (Action)

Howling III: The Marsupials Night of the Comet Cannonball Run III
(Comedy,Horror) (Comedy,Horror,Sci-Fi) (Action,Comedy)

Baby Spirited Away No Holds Barred
(Horror) (Adventure,Animation,Children,Fantasy) (Action)

Hollow Man II Material Girls Cobra
(Action,Horror,Sci-Fi,Thriller) (Children,Comedy,Drama) (Action,Crime)

need to restart on the arrival of new data. One solution is to direct-
ly utilize state-of-the-art optimization methods in the recommen-
dation system like SGD [13] with an additional non-negative con-
straint. The other one is to treat NMF as a stochastic optimization
problem and updating the matrices in an incremental manner. For
example, OR-NMF [10] utilizes the robust stochastic approxima-
tion, but is not directly applicable to solve online collaborative fil-
tering tasks. Our work is closest to the state-of-the-art online NMF
method “NN-PA" [2], which uses the popular PA online learning
without requiring to hand-tune the learning rate, and can achieve
O(
√
T ) regret bound. Unlike the first-order NN-PA method, our

NN-APA method improves the efficacy of NN-PA via a second-
order online learning approach.

7. CONCLUSIONS
This paper presented NN-APA — a novel family of online learn-

ing algorithms for Non-negative Matrix Factorization (NMF) tasks,
and explored the application of the proposed technique for resolv-
ing online collaborative filtering tasks from rating data arriving se-
quentially in a recommender system. The proposed NN-APA tech-
nique is able to overcome two critical limitations of the state-of-
the-art NN-PA method by two ideas: (i) exploring the second-order
information of underlying data in improving the slow convergence
particularly at the beginning of online learning task, and (ii) explor-
ing online learning with expert advice in avoiding tedious param-
eter selection and tuning during the online learning processes. We
also analyzed the regret bound of the proposed method and showed
that it is theoretically better than that of the NN-PA algorithm. Fi-
nally, our encouraging results from extensive experiments validat-
ed the efficacy of the proposed new technique towards real-world
large-scale collaborative filtering and recommender systems.
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Appendix: Proof of Theorem 1
PROOF. We simplify the notation by denoting `t(w) =

`t(w,xt, yt). Then, we can show that the update of NN-APA-I is
the same as

wt+1 = argmin
w

P (w) =
1

2
‖w −wt‖2Gt

+ C`t(w),

where `t(w) = `(w,xt, yt). Since wt+1 minimizes P (w), and
P (w) is strongly convex with respect to ‖ · ‖Gt , we have

P (w) ≥ P (wt+1) +∇P (wt+1)
>(w −wt+1) +

1

2
‖w −wt+1‖2Gt

.

Because∇P (wt+1) = 0, we have

1

2
‖w −wt‖2Gt

+ C`t(w)

≥
1

2
‖wt+1 −wt‖2Gt

+ C`t(wt+1) +
1

2
‖w −wt+1‖2Gt

.

Re-arranging the above inequality gives
C`t(wt+1)− C`t(w)

≤
1

2
‖w −wt‖2Gt

−
1

2
‖w −wt+1‖2Gt

−
1

2
‖wt+1 −wt‖2Gt

.

In addition, since `t is ‖xt‖G−1
t

-Lipschitz w.r.t. ‖ · ‖Gt , we have

`t(wt)− `t(wt+1) ≤ ‖Ltxt‖G−1
t
‖wt −wt+1‖Gt

= ‖gt‖G−1
t
‖wt −wt+1‖Gt ,

where Lt = I(`t(wt) > 0), and gt = ∇w`t(wt). Combining the
above two inequalities, we get

C`t(wt)− C`t(w) ≤
1

2
‖w −wt‖2Gt

−
1

2
‖w −wt+1‖2Gt

−
1

2
‖wt+1 −wt‖2Gt

+ C‖gt‖G−1
t
‖wt −wt+1‖Gt .

Summing the above inequality over t = 1, . . . , T , we have
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T∑
t=1

C[`t(wt)− `t(w)] ≤
T∑
t=1

[
1

2
‖w −wt‖2Gt

−
1

2
‖w −wt+1‖2Gt

−
1

2
‖wt+1 −wt‖2Gt

+ C‖gt‖G−1
t
‖wt −wt+1‖Gt ].

We can bound each of the terms respectively as follows

T∑
t=1

[‖wt −w‖2Gt
− ‖wt+1 −w‖2Gt

]

≤ ‖w1 −w‖2G1
+

T∑
t=2

[‖wt −w‖2Gt
− ‖wt −w‖2Gt−1

]

= ‖w1 −w‖2G1
+

T∑
t=2

[‖wt −w‖2(Gt−Gt−1)
]

≤ ‖w1 −w‖2tr(G1) +

T∑
t=1

tr(Gt −Gt−1)‖wt −w‖2

≤ D2tr(GT ), and

T∑
t=1

[−
1

2
‖wt+1 −wt‖2Gt

+ C‖gt‖G−1
t
‖wt −wt+1‖Gt ]

≤
C2

2

T∑
t=1

‖gt‖2
G−1

t

≤ C2tr(GT ),

where we used −a2/2 + ab ≤ b2/2 for the first inequality and
Lemma 10 of the paper [7]. In summary, we have

T∑
t=1

C[`t(wt)− `t(w)] ≤
1

2
D2tr(GT ) + C2tr(GT )

Re-arranging the above inequality concludes the proof.
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