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Abstract

Learning from data streams has been an important open research problem in the era of
big data analytics. This paper investigates supervised machine learning techniques for
mining data streams with application to online anomaly detection. Unlike conventional
machine learning tasks, machine learning from data streams for online anomaly detection
has several challenges: (i) data arriving sequentially and increasing rapidly, (ii) highly
class-imbalanced distributions; and (iii) complex anomaly patterns that could evolve dy-
namically. To tackle these challenges, we propose a novel Cost-Sensitive Online Multiple
Kernel Classification (CSOMKC) scheme for comprehensively mining data streams and
demonstrate its application to online anomaly detection. Specifically, CSOMKC learns a
kernel-based cost-sensitive prediction model for imbalanced data streams in a sequential or
online learning fashion, in which a pool of multiple diverse kernels is dynamically explored.
The optimal kernel predictor and the multiple kernel combination are learnt together, and
simultaneously class imbalance issues are addressed. We give both theoretical and extensive
empirical analysis of the proposed algorithms.

Keywords: Cost-Sensitive Learning; Online Learning; Multiple Kernel Learning;

1. Introduction

With an increasing interest in mining large data streams, there is a need to design scal-
able and effective learning algorithms that can comprehensively address emerging big data
analytics challenges. In this paper we focus our attention on supervised learning for data
streams with imbalanced labels with application to anomaly detection. Real world examples
include intrusion detection (Roesch et al., 1999), anomaly detection in video surveillance
(Xiang and Gong, 2008), fraud detection in markets (Donoho, 2004), and many others
(Chandola et al., 2009). Despite extensive studies this remains a challenging problem due
to a number of issues including: (i) high complexity (nonlinearity) of the (anomaly) pat-
terns; (ii) high class-imbalanced distributions where the number of anomaly examples could
be significantly less than normal ones; (iii) high variety of patterns dynamically changing
due to a variety of anomaly behaviors, and high variety of data to be processed (hetero-
geneous data sources, multi-modal data etc.); (iv) high volume and velocity of sequentially
arriving data; and (v) pattern evolution or concept drifts.

c⃝ 2016 D. Sahoo, P. Zhao & S.C. Hoi.



Sahoo Zhao Hoi

Most existing strategies only partly address the challenges posed by imbalanced data
streams, and as a result the current state of the art is not able to provide a comprehensive
solution to mining imbalanced data streams or for anomaly detection. We design Cost-
Sensitive Online Multiple Kernel Classification (CSOMKC) algorithms, which provide a
novel method to address all the above challenges of cost-sensitive online classification (and
online anomaly detection) from big data streams, including (i) highly complex patterns via
kernel methods; (ii) high class imbalance via cost-sensitive learning; (iii) high variety and
data heterogeneity via multiple kernel learning; (iv) high volume and velocity via online
learning algorithms; as well as (v) dealing with the concept drifting via online multi-kernel
learning. Designing such a technique is a significantly challenging, and would have several
applications. To the best of our knowledge, this is the first learning method that can
simultaneously address all these issues in a simple, efficient, scalable yet effective framework.

Traditional classification algorithms aim to maximize accuracy. However, if the data
exhibits imbalanced label distribution, accuracy becomes a poor measure of performance.
As a result, we consider alternate metrics sum (weighted combination of specificity and
sensitivity) and cost (weighted cost of misclassification of positive and negative instances) for
evaluation of algorithms on imbalanced data streams. We develop a cost-sensitive multiple
kernel formulation for the problem to be solved based on maximizing sum or minimizing cost
and then design an online solution. We split the learning procedure in each online learning
iteration - by first updating the kernel based prediction function for each of the kernels in
the predefined pool (each kernel can be a different function, or different modality of data
source), followed by dynamically exploring the multiple kernels, and updating the kernel
combination. Both are done in an online manner, thus dealing with scalability concerns
and concept drift. In addition, both the updates account for the cost-sensitive nature of
the data streams. Further, we derive theoretical guarantees, and obtain the lower bound
and upper bound of sum and cost respectively, obtained by our algorithms. We conduct
extensive empirical analysis and show how our proposed methods outperform other state of
the art cost-sensitive algorithms.

2. Related Work

Our work is primarily related to online learning and cost-sensitive learning and their inter-
secting studies. Online Learning refers to a family of scalable learning methods that incre-
mentally update the model from a stream of data (Cesa-Bianchi and Lugosi, 2006; Hoi et al.,
2014). Many of these techniques are based on maximum-margin classification, starting from
the classical Perceptron Algorithm (Rosenblatt, 1958) to the more recent Online Gradient
Descent (Zinkevich, 2003), Relaxed Online Maximum Margin Algorithm (ROMMA) (Li and
Long, 2002), Approximate Maximal Margin Algorithm (ALMA) (Gentile, 2002), Margin In-
fused Relaxed Algorithm (MIRA) (Crammer and Singer, 2003), Passive Aggressive (PA)
algorithms (Crammer et al., 2006), etc. Most of these methods do not consider imbalanced
data distribution and hence are not suitable for imbalanced data streams or online anomaly
detection. The most closely related work is the class of cost-sensitive online learning meth-
ods that directly try to optimize over a cost-sensitive metric. These include PAUM Li et al.
(2002) which is a Perceptron based algorithm for uneven margins, cost-sensitive variant of
Passive-Aggressive algorithms CPAPB (Crammer et al., 2006); and CSOC - cost-sensitive
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online classification (Wang et al., 2014). There also have been some efforts in attempting
to maximize the Area Under the Curve in an online manner (Zhao et al., 2011; Ding et al.,
2015). Yet, none of these methods explore how to address the complexity of data through
other methods (e.g. kernels or multi-kernel solutions), thus limiting their applicability in
real world settings.

Another closely related area of work is one that deals with learning with kernels. Kernel
methods have shown tremendous success in detecting complex nonlinear patterns owing to
their ability to induce a high-dimensional reproducible kernel Hilbert space, and learning
linear patterns in this space (Schölkopf and Smola, 2002). Unfortunately, there are sev-
eral types of kernels, and the appropriate kernel function is not known, particularly while
mining data streams where the kernel function could evolve. To address this, learning the
kernel function was proposed. Some of the popular techniques include marginalized ker-
nels (Kashima et al., 2003), idealized kernels (Kwok and Tsang, 2003), graph-based spectral
learning (Bousquet and Herrmann, 2003) and non-parametric kernel learning (Zhuang et al.,
2011). Multiple Kernel Learning (MKL) (Lanckriet et al., 2004; Sonnenburg et al., 2006;
Gönen and Alpaydın, 2011) evolved as one of the most popular kernel learning technique.
Many techniques have been proposed to solve the MKL optimization including SimpleMKL
(Rakotomamonjy et al., 2008), Extended Level Method (Xu et al., 2008) and Mirror De-
scent (Aflalo et al., 2011). Despite this MKL was plagued with computational challenges
and high retraining costs. Online Learning with Kernels (Kivinen et al., 2004) and Online
Multiple Kernel Learning (Jin et al., 2010; Martins et al., 2010; Hoi et al., 2013)have also
been proposed to address scalability, but they do not generalize well with imbalanced data
streams.

3. CSOMKC: Cost-Sensitive Online Multiple-Kernel Classification

3.1. Problem Setting

Consider a binary classification task. Here, our goal is to learn a function f : Rd → R
based on a sequence of training examples D = {(x1, y1), . . . , (xT , yT )}, where xt ∈ Rd is a
d-dimensional instance representing the features and yt ∈ Y = {−1,+1} is the class label
assigned to xt. We use ŷ = sign(f(x)) to predict the class assignment for any x, and
the magnitude of f(x) to measure the classification confidence. Performances of the learnt
functions are usually evaluated based on accuracy A:

A =

∑T
t=1 I(ŷt=yt)

T

Here I is the indicator function resulting in 1 if the condition is true, and 0 otherwise.
Unfortunately, many real world datasets present imbalanced labels. For a dataset with 99%
labels as −1, a model that classifies all instances as −1 has an accuracy of 99%, which prima
facie seems good, but it is obviously not a good performance. Clearly, Accuracy is not a
good performance indicator for (imbalanced) classification. Accordingly, for imbalanced
labels, we evaluate algorithms on cost-sensitive measures: sum and cost.

Sum is the weighted sum of sensitivity and specificity of the algorithm. Let Tp = {t |yt =
+1} and Tn = {t |yt = −1} denote the set of positive and negative instances respectively.
M = {t |yt ̸= ŷt} is the set of indexes that correspond to a mistake. Similarly, we have
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Mp = {t |yt ̸= ŷt; yt = +1}, and Mn = {t |yt ̸= ŷt; yt = −1} for mistakes on positive and
negative instances. Lastly, |S| denotes the number of instances in any set S. Sensitivity

(Se) and Specificity (Sp) are defined as: Se =
|Tp|−|Mp|

|Tp| and Sp = |Tn|−|Mn|
|Tn| . The weighted

sum parameterized by α ∈ [0, 1] is given as:

sum = α(Se) + (1− α)(Sp)

For α = 0.5, sum is reduced to balanced accuracy.
Cost is the weighted sum of mistakes on positive and negative instances, and is param-

eterized by c ∈ [0, 1]:
cost = c(|Mp|) + (1− c)(|Mn|)

Here, the aim is to tradeoff the cost of wrongly classifying a positive instance against the
cost of wrongly classifying a negative instance using tradeoff parameter c.

Our objective is to either maximize sum or minimize cost. We transform both to the
following objective:

min
f

∑
yt=+1

ρIŷt ̸=yt +
∑

yt=−1

Iŷt ̸=yt (1)

where ρ = α|Tn|
(1−α)|Tp| for maximizing sum, and ρ = c

1−c for minimizing cost.

3.2. Cost-Sensitive Multiple Kernel Classification

Data streams may exhibit complex nonlinear patterns. Kernels have evolved as popular tools
to detect nonlinearity by mapping a low dimensional feature space to a high dimensional
space. We aim to learn a kernel-based prediction function to optimize the cost-sensitive
measure in Eq. (1), in order to detect nonlinear patterns. We propose to use Multiple
Kernel Learning (MKL) so that: (i) prior knowledge of appropriate kernel is not required;
(ii) model’s learning capacity increases when multiple kernels complement each other; and
(iii) heterogeneous data sources can be combined into one prediction model (e.g. using
different kernels for numeric and text data, or different kernels for different modalities of
data). This way we are able to learn a powerful model which can detect complex nonlinear
patterns and handle a variety of data.

To do this, we first define a loss function as the convex surrogate of the indicator function
(which is not convex and has been used in Eq. (1)), and we get:

ℓρ(f, (x, y)) = (ρIy=1 + Iy=−1) ∗max(0, 1− y(f · x)) (2)

Using this loss function, Eq. (1) can be cast into the following regularized optimization
(C is the regularization tradeoff parameter):

min
f

1

2
∥f∥2 + C

T∑
t=1

ℓρ(f, (x, y)) (3)

Our goal is to solve this using MKL. Consider a collection of m different predefined
kernel functions K = {κi : Rd × Rd → R, i = 1, . . . ,m}. MKL aims to learn a kernel-
based prediction model by identifying the best convex combination of the m kernels, that
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is, a weighted combination θ = (θ1, . . . , θm). The proposed cost-sensitive multiple kernel
machine can be cast into the following optimization:

min
θ∈∆

min
f∈HK(θ)

1

2
∥f∥2HK(θ)

+ C

T∑
t=1

ℓρ(f, (xt, yt)) (4)

where ∆ = {θ ∈ Rm
+ |θT1m = 1}, K(θ)(·, ·) =

T∑
i=1

θiκi(·, ·); HK(θ) is the Reproducible Kernel

Hilbert Space induced by the multiple kernel combination; and ℓρ(f, (xi, yi)) is a convex
loss function as defined in Eq. (2). The optimization can be solved by adapting existing
techniques (see section on Related Work). However, it is computationally challenging and
not suitable for large data streams, and data with temporal properties. Most of the tech-
niques suffer from extremely high retraining cost and expensive memory requirements. To
tackle this challenge, we propose online learning based CSOMKC algorithms.

3.3. CSOMKC Algorithms

We design Cost-Sensitive Online Multiple Kernel Classification (CSOMKC), which learns
the model in an online learning (hence scalable and adaptive to temporal patterns) setting.
Instances are sequentially processed, and in each iteration we aim to update the kernel
prediction model and the kernel combination. Doing both simultaneously in an online
manner is significantly challenging, and due to imbalanced data, traditional methods can
not be directly applied. We update the model via a 2-step approach: updating each kernel
predictor, and updating the kernel combination.

3.3.1. Cost-Sensitive online kernel classification

We first develop a single-kernel cost-sensitive online kernel classification method. In every
iteration of the online learning procedure, a kernel classifier with the prediction function
f(x) is updated by gradient descent (Kivinen et al., 2004; Wang et al., 2014) when the
classifier suffers a nonzero loss. Using the cost-sensitive loss from Eq. (2) we can obtain the
cost-sensitive gradient descent update by taking the derivative. The update rule for each
individual kernel-based model is given by:

ft+1(x) = ft(x)− η∇f ℓ
ρ
t (ft, (xt, yt))

= ft(x) + ηρtytκ(xt,x)

where ρt manages the cost-sensitivity, by setting ρt = I(yt=+1)+ρI(yt=−1), and η is the learn-
ing rate parameter. At the end of each online learning round, we can express the prediction
function as a kernel expansion (Schölkopf and Smola, 2002) ft+1(x) = Σt

i=1λiκ(xi,x) where
the λi coefficients are computed based on the update rule. For non-zero loss on the ith

instance, λi ̸= 0 (the instance becomes a support vector) otherwise λi = 0.

3.3.2. Online multi-kernel combination learning

All i = 1, . . . ,m kernel predictions (denoted by f i
t ) are combined to make a final weighted

prediction on each iteration:

ŷt = sign
( m∑

i=1

wi
t

(
f i
t (xt)

))
69
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We propose two new cost-sensitive weight combination learning schemes: 1) Based on
Exponentiated Gradient; and 2) Based on Online Gradient Descent.

EG Combination: We aim to learn the optimal cost-sensitive convex combination of
weights w = (w1, . . . , wm)⊤, where wi is set to 1/m at the beginning of the learning task.
In our approach, we modify and adapt the EG algorithm (Kivinen and Warmuth, 1997) to
update the cost-sensitive weights. We define

ft(xt) = (f1
t (xt), . . . , f

m
t (xt))

⊤,

and formulate the rule of updating w as follows:

wt+1 = arg min
w∈∆

DKL(w∥wt) + ηegℓ
ρ(w, (ft(xt), yt)),

where ∆ = {w ∈ Rm
+ |w⊤1m = 1}, DKL(u∥v) =

∑
i ui ln(

ui
vi
) is the KL-divergence.

This optimization trades off two major concerns: (i) minimizing weight distribution
between new weights and old weights (measured by KL-divergence); and (ii) new weights
should suffer a small loss on the instance in the current iteration. The trade-off parameter
is ηeg > 0. To obtain a closed-form solution for the above optimization, we approximate
the loss function by using its first-order Taylor expansion at wt, and we get:

wt+1 =arg min
w∈∆

DKL(w∥wt) + ηegℓ
ρ(wt, (ft(xt), yt))

+ ηeg∂wℓ
ρ(wt, (ft(xt), yt)) · (w −wt)

(5)

For this problem, we can derive a closed-form solution as:

wt+1 =
wt ⊙ exp(−ηeg∇wℓ

ρ(wt; (ft(xt), yt))

∥wt ⊙ exp(−ηeg∇wℓρ(wt; (ft(xt), yt))∥1
,

where⊙ is element-wise product. It is easy to check that∇wℓ
ρ(wt; (ft(xt), yt)) = −ρtytft(xt)

when ℓρ(w; (f(x), y)) > 0, and 0 otherwise, where ρt is set in the same manner as for learning
a single kernel predictor. We refer to this approach as CSOMKC(EG).

OGD combination: Since CSOMKC(EG) learns a convex combination, we aim to in-
crease the generality by learning the optimal cost-sensitive linear combination of multiple
kernel predictors. Similar with the EG update (5), this can be cast into the following
optimization:

wt+1 = argmin
w

1

2
∥w −wt∥22 + ηogdℓ

ρ(w, (ft(xt), yt))

where ft(xt) is the vector representing the predictions made by each individual kernel clas-
sifier. After replacing the loss function with its first order Taylor expansion, the update rule
based on Online Gradient Descent can be derived as (Zinkevich, 2003; Wang et al., 2014):

wt+1 = wt − ηogd∇wℓ
ρ(wt, (ft(xt), yt)),

where the weights are updated only when the combined prediction suffers a loss, i.e.,
ℓρ(wt, (ft(xt), yt)) > 0; ηogd represents the learning rate for the weight update of the combi-
nation; and ρt regulates the update to account for cost-sensitivity. This approach referred
to as CSOMKC(OGD).

Both approaches are similar in the problem being addressed. However, EG uses multi-
plicative updates, whereas OGD uses additive updates. As a result, while EG may converge
to a solution faster, in the long run OGD will outperform it. Both the approaches are out-
lined in Algorithm 1.
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Algorithm 1 Cost-Sensitive Online Multiple Kernel Classification

INPUTS: Kernels: ki(·, ·) : X × X → R, i = 1, . . . ,m; Learning rates: η > 0, ηeg > 0;
Cost Sensitive Parameter: ρ > 0
Initialization: f1 = 0,w1 = 1

m1
for t = 1, 2, . . . do

Receive an instance: xt

Predict ŷt = sign
(
wt · ft(xt)

)
Receive the class label: yt
Set ρt = ρ ∗ I(yt = 1) + I(yt = −1)
for i = 1, 2, . . . ,m do

Set ℓρ(f i
t ; (xt, yt)) = ρtmax(0, 1− ytf

i
t (xt))

if ℓρ(f i
t ; (xt, yt)) > 0 then

Update f i
t+1(x) = f i

t (x) + ηiρtytκi(xt,x)
end if

end for
Set ℓρ(wt; (ft(xt), yt)) = ρtmax(0, 1− ytwt · ft(xt))
if ℓρ(wt; (ft(xt), yt)) > 0 then

Update wt+1 =
wt⊙exp(ηegρtytft(xt))

∥wt⊙exp(ηegρtytft(xt))∥1 for update by EG OR

Update wt+1 = wt − ηogd∇wℓ
ρ(wt, (ft(xt), yt)) for update by OGD

end if
end for

3.4. Theoretical Analysis

In this section, we present the theoretical properties of the algorithm CSOMKC(EG). We
derive the loss bound for Algorithm 1 when the kernel combination is learnt by EG algo-
rithm. We assume κ(x,x) ≤ 1 for all κ and x. We define the optimal regularized objective
value for the kernel κi(·, ·) denoted by O(κi, ℓ

ρ,D) with respect to the dataset D as:

min
fi∈Hκi

(
T∑
t=1

ℓρ(fi, (xt, yt)) + ∥fi∥Hκi

√
ρ2Lp

i + Ln
i

)

where Lp
i =

∑
yt=1 I(ytfi(xt) ≤ 1), Ln

i =
∑

yt=−1 I(ytfi(xt) ≤ 1).

Lemma 1 Assume ∥ft(xt)∥∞ ≤ R, and the CSOMKC(EG) algorithm is run with learning

rate ηeg =
√

2 lnm
R2T

on a sequence of examples D = {(x1, y1), . . . , (xT , yT )}. Then for any

combination of function ft =
∑m

i=1w
if i

t , w ∈ ∆ we have

T∑
t=1

ℓρ(wt, (f(xt), yt)) ≤
T∑
t=1

ℓρ(ft, (xt, yt)) +R

√
T lnm

2
.

Moreover, we have

ρ|Mp|+ |Mn| ≤ min
1≤i≤m

O(κi, ℓ
ρ,D) +R

√
T lnm

2
.
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Proof The idea of this proof follows the principle of similar proof in Cesa-Bianchi and
Lugosi (2006). We denote lt(wt) = ℓρ(wt, (f(xt), yt)). Then, by convexity of lt, we get

lt(wt)− lt(w) ≤ −(w −wt) · ∇lt(wt). (6)

Next, we would bound the right hand side of the above inequality. To facilitate the analysis,
we denote z = ηeg∇lt(wt) and v = wt · z− z, then

−(w −wt) · z

= −w · z+wt · z− ln(

m∑
i=1

wi
te

vi) + ln(

m∑
i=1

wi
te

vi)

= −w · z− ln(

m∑
i=1

wi
te

−zi) + ln(

m∑
i=1

wi
te

vi)

=

m∑
j=1

wj ln e−zj − ln(

m∑
i=1

wi
te

−zi) + ln(

m∑
i=1

wi
te

vi)

=
m∑
j=1

wj ln(
1

wj
t

wj
t e

−zj∑m
i=1w

i
te

−zi
) + ln(

m∑
i=1

wi
te

vi)

=

m∑
j=1

wj ln
wj
t+1

wj
t

+ ln(

m∑
i=1

wi
te

vi)

= DKL(w∥wt)−DKL(w∥wt+1) + ln(
m∑
i=1

wi
te

vi).

Plugging the above equality into the inequality (6) and summing over t, we get

T∑
t=1

[lt(wt)− lt(w)] ≤ 1

ηeg
[DKL(w∥w1) +

T∑
t=1

ln(
m∑
i=1

wi
te

vi)],

by omitting −DKL(w∥wT+1). To bound the right hand side of the inequality, note that
DKL(w∥w1) ≤ lnm, since w1 = (1/m, . . . , 1/m). We need bound the second term in the
right hand side. Since ∥ft(xt)∥∞ ≤ R, then |zi| ≤ ηegR, and applying Hoeffding’s inequality:

ln(
m∑
i=1

wi
te

vi) ≤ η2egR
2/2.

As a result, we get the following inequality,

T∑
t=1

[lt(wt)− lt(w)] ≤ lnm

ηeg
+

ηegR
2T

2
= R

√
T lnm

2
.

Re-arranging this concludes the first part of the theorem. If we set wi = 1 and wj = 0, for
j ̸= i, using ℓρ(wt, (ft(xt), yt)) ≥ ρt when prediction is wrong, and combining with Lemma
1 of the paper (Wang et al., 2014), the above inequality will derive the second part.

Using this result, we now bound the sum incurred by CSOMKC.
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Theorem 1 After receiving a sequence of T training examples D = {(xt, yt), t = 1, . . . , T},
the weighted sum = α(Se) + (1 − α)(Sp) achieved by Algorithm 1 for kernel combination
update by EG, with ηi = ∥fi∥Hκi

/
√
ρ2Mp

i +Mn
i and ρ = αTn

(1−α)Tp
, is bounded as:

sum ≥ (1− α)

Tn

[
min

1≤i≤m
O(κi, ℓ

ρ,D) +R

√
T lnm

2

]
.

Proof We know that sum = 1 − 1−α
|Tn|

[
α|Tn|

(1−α)|Tp| |Mp| + |Mn|
]
. Using ρ = α|Tn|

(1−α)|Tp| , and

combining the above with Lemma 1 gives us the desired result.

We now derive a bound for the cost suffered, which unlike sum does not require the
estimates of ratio Tn

Tp
(which may be unknown in advance). We set ρ = 1−c

c , where c ∈ (0, 1).

Theorem 2 After receiving a sequence of T training examples D = {(xt, yt), t = 1, . . . , T},
the weighted cost = c(|Mp|)+ (1− c)(|Mn|) suffered by Algorithm 1 for kernel combiantion
update by EG, with ηi = ∥fi∥Hκi

/
√
ρ2Mp

i +Mn
i and ρ = c

1−c , is bounded as:

cost ≤ (1− c)

[
min

1≤i≤m
O(κi, ℓ

ρ,D) +R

√
T lnm

2

]
.

Proof From the definition of cost, we know that cost = (1 − c)( c
1−c |Mp| + |Mn|) =

(1− c)(ρ|Mp|+ |Mn|). Combining this with Lemma 1 proves this theorem.

Time Complexity: Traditional linear online algorithms execute in O(T ) where T is the
number of instances. For an online kernel algorithm, in the worst case scenario, where every
instance becomes a support vector, the algorithm would run in O(T 2). However, applying
budget techniques like the Randomized Budget Perceptron (Cavallanti et al., 2007) reduces
the running time to O(BT ) where B is the user-specified budget, and B << T . The
multiple kernel variants with m kernels require time complexity of running m online kernel
algorithms. Therefore, the time to run CSOMKC is in O(mBT ), i.e., the time complexity
with budget approximations is linear in number of instances.

4. Experimental Evaluation

We now present comprehensive empirical analysis of our proposed scheme, where we have
evaluated algorithms’ performance on imbalanced datasets, and anomaly detection tasks.

4.1. Datasets

We use a wide variety of datasets, across a wide spectrum of applications and varying
number of instances, features, and imbalance ratios. All the datasets are publicly available
and were retrieved from UCI repository, LIBSVM, and KDD Cup 2008. The datasets
can be categorized into 6 regular imbalanced datasets, and 2 anomaly detection datasets.
Among the imbalanced datasets we have: Spam and Webspam datasets which are self
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explanatory; Cod-rna is a bioinformatics dataset; Twitter dataset is about detecting buzz
in social media, and is temporal in nature; Internet Ads is about predicting whether images
in a given URL are ads or not; and Page-blocks attempts to classify page blocks into text or
not. The anomaly detection datasets are KDD08 (from KDD Cup 2008 dataset on breast
cancer); and Malware dataset built from Android Malware Genome Project which is about
classifying apps as malware or not. The other details are given in Table 1.

Table 1: Details of the datasets used
Data ID Name of Dataset Instances Features Tn : Tp

Regular Imbalanced Datasets
D1 Spam 4601 57 1.53
D2 Webspam 350000 254 1.54
D3 Cod-rna 59535 8 2.00
D4 Twitter 140707 77 4.07
D5 Internet Ads 3279 1556 6.14
D6 Page-blocks 21888 10 8.79

Highly Imbalanced Anomaly Detection Datasets
D7 KDD08 102294 117 163.20
D8 Malware 208243 122 549.91

4.2. Kernels

Different kernels are suitable for different types of data. For example polynomial kernels
which implicitly construct new polynomial features are more suited for NLP(among other
tasks). Gaussian kernels have been the most widely used kernels for a variety of tasks.
Additionally, depending on the data distribution, appropriate parameters need to be set,
which is often done by validation techniques. To automatically select from a rich pool of
kernels, we predefine a diverse set of 10 kernels which include three polynomial kernels

κ(x, y) = (xT y)p of degree parameter p = 1, 2, 3, 4, five RBF kernels (κ(x, y) = e(
−||x−y||2

2σ2 ))
of kernel width parameter σ = 2−2, 2−1, 20, 21, 22, and a sigmoid kernel(κ(x, y) = tanh(xy)).

4.3. Algorithms Compared

Online Learning with Kernels suffers from an unbounded growth of support vectors. For
large data, even with a good classifier, the number of support vectors keeps growing linearly.
To make the computation realistically possible, a budget on the number of support vectors
is required. We set a budget of 2000 support vectors per kernel classifier for all datasets with
number of instances greater than 50, 0000, and apply the Randomized Budget Perceptron
Cavallanti et al. (2007) by randomly discarding a support vector when the budget constraint
is violated, and hence approximating the kernel predictions. This approximation is done
for all algorithms that make kernel based predictions. In our experiments, OMKCSC-EG
and OMKCSC-OGD are compared the following algorithms:
Linear Algorithms: We compare with the following linear algorithms:

1. Simple Linear Online Gradient Descent (Zinkevich, 2003)

2. PAUM (Li et al., 2002) Perceptron based method for uneven margins
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3. CPAPB (Crammer et al., 2006) which is a cost-sensitive variant of the popular online
Passive Aggressive algorithms and

4. CSOL (Wang et al., 2014) that directly optimizes cost-sensitive measures.

Kernel Algorithms: We compare with the following online kernel methods:

1. Best Single Cost-Sensitive Kernel (CSC Kernel) determined by validation over first
few samples of the data

2. Online Multiple Kernel Classification with hedge combination OMKC(H) (Hoi et al.,
2013)

3. OMKC with linear combination OMKC(OGD) (Sahoo et al., 2014)

4. Finally, we also compare with OMKCSC(U), where a uniform combination of the mul-
tiple cost-sensitive kernel predictors is used, i.e., our strategies of combining multiple
kernels via EG or OGD are ignored.

All algorithms are evaluated on the basis of sum with α = 0.5 ( which is essentially the
balanced accuracy); and cost with c = 0.95. For a comprehensive study, we also evaluate
the results of sensitivity and specificity of each algorithm.

4.4. Parameters

There are 5 parameters required to be selected: Learning rate η for each kernel, cost-
sensitive parameter ρ, and the combination learning rate for EG ηeg and for OGD ηogd. For
a fair comparison with OMKC, we set η = 1 for all algorithms. We set the combination
parameters ηeg = 0.1, and ηogd = 0.1 for all cases, and also perform sensitivity analysis
for them. The cost-sensitive parameter ρ is set according to the objective being optimized.

While trying to maximize sum, we set α = 0.5, and accordingly ρ is set as ρ =
(1−α)Tp

αTn
.

While trying to minimize the cost, we set c = 0.95, and accordingly ρ is set as ρ = 1−c
c .

4.5. Results and Discussion

All results are reported as the average over multiple permutations, except the Twitter
dataset which is temporal in nature (random permutations are meaningless). The details
are in Table 2. Further, the sum and cost of all algorithms, as the number of instances
grows can be visualized in Figure 1.

From Table 2, we see that our proposed CSOMKC(EG) and CSOMKC(OGD) almost
always secure the highest sum (balanced accuracy), and the lowest cost. For sum, which in
our case is a measure of balanced accuracy, CSOMKC(EG) and CSOMKC(OGD) get su-
perior performances in all datasets with the exception CSOMKC(EG) in InternetAds. For
the anomaly detection datasets, the proposed algorithms achieve excellent results, beat-
ing the benchmarks by a significant margin. In cost performance, with the exception of
CSOMKC(EG) in InternetAds, we get a significant outperformance of the proposed tech-
niques in all cases. However, for all other cases, the performance is phenomenal. InternetAds
has a very high dimensionality, and with the usage of multiple kernels, suffers from a rela-
tively slow convergence for a small number of instances. An interesting insight can be drawn
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Table 2: Evaluation of all the algorithms on all datasets based on the sum and cost.
SUM performance of algorithms

Spam Webspam Cod-rna Twitter
Linear 0.879± 0.002 0.903± 0.000 0.835± 0.003 0.904± 0.000
CPAPB 0.809± 0.002 0.853± 0.000 0.801± 0.000 0.901± 0.000
PAUM 0.883± 0.002 0.902± 0.000 0.836± 0.002 0.904± 0.000
CSOL 0.870± 0.003 0.905± 0.000 0.854± 0.001 0.915± 0.000

CSC Kernel 0.846± 0.083 0.945 ± 0.001 0.910± 0.003 0.882± 0.000
OMKC(H) 0.866± 0.002 0.934± 0.000 0.885± 0.001 0.913± 0.000

OMKC(OGD) 0.825± 0.008 0.900± 0.000 0.863± 0.002 0.889± 0.000
CSOMKC(U) 0.850± 0.005 0.899± 0.000 0.874± 0.000 0.915± 0.000
CSOMKC(EG) 0.902 ± 0.004 0.945 ± 0.001 0.912 ± 0.000 0.935 ± 0.000
CSOMKC(OGD) 0.896 ± 0.005 0.944 ± 0.001 0.914 ± 0.001 0.932 ± 0.000

Internet-Ads Page-Blocks KDD08 Malware
Linear 0.970± 0.001 0.743± 0.003 0.564± 0.003 0.466± 0.007
CPAPB 0.971± 0.000 0.747± 0.003 0.625± 0.001 0.524± 0.005
PAUM 0.974± 0.002 0.780± 0.000 0.558± 0.006 0.472± 0.005
CSOL 0.976± 0.002 0.819± 0.001 0.684± 0.006 0.804± 0.001

CSC Kernel 0.967± 0.096 0.904± 0.014 0.649± 0.083 0.688± 0.000
OMKC(H) 0.972± 0.002 0.845± 0.002 0.612± 0.007 0.814± 0.000

OMKC(OGD) 0.975± 0.001 0.793± 0.001 0.616± 0.010 0.781± 0.003
CSOMKC(U) 0.979± 0.000 0.859± 0.002 0.696± 0.008 0.771± 0.004
CSOMKC(EG) 0.976± 0.000 0.913 ± 0.000 0.748 ± 0.001 0.836 ± 0.018
CSOMKC(OGD) 0.985 ± 0.002 0.912 ± 0.001 0.733± 0.007 0.84 ± 0.007

COST performance of algorithms
Spam Webspam Cod-rna Twitter

Linear 205.2± 11.172 17233.975± 88.282 4560.625± 86.373 4275.9± 0.000
CPAPB 367.625± 4.914 18856.15± 81.388 4002.85± 31.466 4112.05± 0.000
PAUM 113.175± 2.369 12611.25± 57.134 3669.075± 55.402 4177.05± 0.000
CSOL 109.35± 3.041 5601.2± 29.628 1349.675± 3.147 2449± 0.000

CSC Kernel 114.05± 1.131 9055.8± 3.041 2489.375± 63.534 3690± 0.000
OMKC(H) 282.725± 5.409 11183.925± 8.309 3055.125± 15.167 3872.65± 0.000

OMKC(OGD) 351.25± 17.607 16265.4± 7.637 3391.325± 71.17 4883.6± 0.000
CSOMKC(U) 116.45± 1.131 7805.025± 36.946 1950.975± 4.066 2889.25± 0.000
CSOMKC(EG) 95.725 ± 3.359 4407.325 ± 29.097 1157.225± 0.530 2141 ± 0.000
CSOMKC(OGD) 95.975 ± 4.207 4412.903 ± 30.618 1141.525 ± 0.813 2210.7± 0.000

Internet-ads Page-blocks KDD08 Malware
Linear 15.275± 0.672 1069.425± 12.127 535.9± 3.323 1973.6± 4.596
CPAPB 13.45± 0.849 940.525± 5.48 528.975± 6.116 1977.8± 6.223
PAUM 11.875± 1.591 848.525± 22.451 550.175± 5.551 1970.95± 5.091
CSOL 10.9± 1.344 645.85± 6.435 674.975± 11.208 1924.85± 4.525

CSC Kernel 14.125± 2.934 445.35± 260.569 607.175± 165.852 208.525± 3.076
OMKC(H) 22.075± 1.52 623.4± 9.546 480.575± 8.945 141.925± 0.247

OMKC(OGD) 18.85± 0.778 819.575± 5.48 483.775± 12.763 169.1± 2.546
CSOMKC(U) 7.75± 1.344 425.425± 11.49 444.05± 6.223 1725.525± 2.157
CSOMKC(EG) 12.5± 1.414 262.15 ± 0.919 419.6 ± 15.556 136.675± 4.137
CSOMKC(OGD) 6.000 ± 1.909 266.4± 2.192 421.625 ± 9.016 129.3 ± 4.313

from 1. Our proposed scheme usually picks up the best pattern, and achieves superior per-
formance right from the very beginning. It is also worth noting that in some cases, single
kernels give a good performance on the first few samples of the data, but eventually are
not able to match OMKCSC algorithms. This demonstrates difficulty in kernel selection by
validation, and hence it is imperative to have a dynamic technique that can automatically
choose a combination of multiple kernels.

Linear vs Kernel Methods: The empirical results show that the introduction of
kernels (and subsequently multiple kernels) have significantly increased the learning capacity
of our models. In many cases, the balanced accuracy has improved by over 5% by using

76



Cost-Sensitive Online Multiple Kernel Classification

kernel methods as compared to the state of the art linear models. In the optimization of
cost, have caused a great reduction of the cost e.g. in the Malware dataset, the cost suffered
by kernel methods is a mere 7% of the cost suffered by the best linear methods.

Comparisons between kernel methods: Among the kernel methods our proposed
techniques out performed the others, due to their ability to learn multiple cost-sensitive
kernel prediction models, followed by their cost-sensitive combination. Firstly, it should be
noted that the addition of multiple kernels has in fact helped increase the predictive power of
the model as compared to one single kernel. However, this raises a further question: which
of the algorithms CSOMKC(EG) and CSOMKC(OGD) is more suitable? CSOMKC(EG)
has a a more limited predictive power as it learns only a convex combination of multiple
kernels (as compared to CSOMKC(OGD). Further, if the data is described by a single
kernel function, CSOMKC(EG) is able to quickly converge to that kernel predictor via
multiplicative updates; but if the optimal prediction depends on a combination of several
kernel functions, CSOMKC(OGD) slowly approaches the best solution, and will probably
outperform CSOMKC(EG) in the long run. It should be noted that the results are very
robust, as indicated by a very small standard deviation in most cases. In fact, in several
cases, due to the low standard deviation, upon rounding up, it is reported as 0.

Sensitivity to learning rate parameters: We also analyzed the sensitivity of CSOMKC(EG)
and CSOMKC(OGD) to their learning rates ηeg and ηogd respectively. A sample of this
analysis on the KDD08 dataset can be seen in Figure 2. As expected, both converge to
the performance of OMKCSC(U) when the learning rates are set to 0. For a wide vari-
ety of other learning rates, CSOMKC(EG) and CSOMKC(OGD) substantially outperform
OMKCSC(U) which for the KDD08 dataset is the next best performer. CSOMKC(EG)
is more robust to the parameter choice and gives consistent results across a wide range,
whereas CSOMKC(OGD) gives a good performance for small values of ηogd, and when
the learning rate is very large, its performance degrades. In our experiments, we had set
ηogd = 0.1 which is a conservative choice. A carefully chosen learning rate would further
enhance the performance of CSOMKC(OGD).

5. Conclusion

In this paper, we motivated the need for scalable techniques that can learn complex non-
linear patterns in imbalanced data and proposed a novel scheme of Cost-Sensitive Online
Multiple Kernel Classification, which dynamically explores a diverse set of predefined kernel
functions, and simultaneously learns both the kernel predictions and their optimal combi-
nations. Both the kernel predictors and their combinations are learnt in a cost-sensitive
manner. The kernel predictors are learnt by gradient descent, and for the kernel combi-
nations, we demonstrated two approaches - first by exponentiated gradient, and second by
online gradient descent. We discussed the application of the proposed techniques to online
anomaly detection. We derived theoretical properties of the algorithms and have conducted
extensive empirical analysis on imbalanced datasets and anomaly detection datasets. Our
proposed techniques significantly outperformed several state of the art methods designed
for cost-sensitive classification.
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Figure 1: Sum and Cost of different algorithms as the number of instances increases
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