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Graph-Aided Directed Testing of Android Applications for
Checking Runtime Privacy Behaviours

Joseph Chan Joo Keng, Lingxiao Jiang, Tan Kiat Wee, and Rajesh Krishna Balan
School of Information Systems, Singapore Management University

joseph.chan.2012@phdis.smu.edu.sg, {lxjiang, williamtan, rajesh}@smu.edu.sg

ABSTRACT
While automated testing of mobile applications is very useful for
checking run-time behaviours and specifications, its capability in
discovering issues in apps is often limited in practice due to long
testing time. A common practice is to randomly and exhaustively
explore the whole app test space, which takes a lot of time and
resource to achieve good coverage and reach targeted parts of the
apps.

In this paper, we present MAMBA1, a directed testing system
for checking privacy in Android apps. MAMBA performs path
searches of user events in control-flow graphs of callbacks gen-
erated from static analysis of app bytecode. Based on the paths
found, it builds test cases comprised of user events that can trigger
the executions of the apps and quickly direct the apps’ activity tran-
sitions from the starting activity towards target activities of interest,
revealing potential accesses to privacy-sensitive data in the apps.
MAMBA’s backend testing engine then simulates the executions of
the apps following the generated test cases to check actual runtime
behavior of the apps that may leak users’ private data. We evaluated
MAMBA against another automated testing approach that exhaus-
tively searches for target activities in 24 apps, and found that our
graph-aided directed testing achieves the same coverage of target
activities 6.1 times faster on average, including the time required
for bytecode analysis and test case generation. By instrumenting
privacy access/leak detectors during testing, we were able to verify
from test logs that almost half of target activities accessed user pri-
vacy data, and 26.7% of target activities leaked privacy data to the
network.

CCS Concepts
•Security and privacy→ Privacy protections; •Software and its
engineering→ Automated static analysis; Dynamic analysis;

Keywords
Automated Mobile Application Testing, Mobile Privacy

1We name our system after the MAMBA, a fast-moving terrestrial
snake, in reference to similarities with the multiple path chains our
directed tester takes.
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1. INTRODUCTION
There has been significant interest in detecting and preventing

privacy violations in mobile applications. Presently, various leak
detectors exist in the research community that can flag privacy data
accesses [5, 6], block the sending of private data [4, 9] or leverage
crowdsourcing [1, 21] to provide guidance to users based on the
opinions of the crowd. Mobile platforms such as Apple iOS and
Android have also made privacy managers default tools on their
systems [8].

While these tools have various degrees of effectiveness, they pos-
sess some disadvantages such as CPU overheads on the users’ de-
vices (up to 35% over baseline [26]), improper behaviours in up to
40% of applications due to data starvation [9], as well as requiring
customized phone images or operating system modifications.

To avoid these disadvantages, detecting and preventing privacy
violation may be done separately by some trusted parties (e.g., the
app stores) before delivering the apps to users. Automated testing
of apps is a commonly used approach for such a purpose. Vari-
ous automated testing tools have been built for Android applica-
tions [2, 3, 7, 11, 14]. Without knowledge about potential locations
of issues in the apps, the testing tools are often designed to cover
as many portions of the apps as possible, including the application
code, runtime states, activities and windows, GUI widgets, etc., and
they need to ensure that certain hard-to-reach activities, states, or
conditions are reached as well. In order to ensure high coverage
for an app, a common practice is to produce more test cases and
increase testing resources (e.g., machines and/or testing instances),
trying to comprehensively test the app to completion [20]. Lee
et al. [11] found that app testing could take anywhere from a few
minutes to more than 10 hours to complete per application. Thus,
limited resources can significantly hinder the effectiveness of the
automated testing tools.

Scaling up automated app testing and improving its effective-
ness within limited resources are a challenging problem. A scal-
able and effective method for automated app testing can really help
app stores to protect users’ privacy, and can also have benefits
in other areas such as detection of bugs, security vulnerabilities,
malware [12], checking application design and runtime behaviours
with respect to specifications [11], and analysis of possible causes
of privacy leaks [10].

To address the challenge, we built the MAMBA system for al-
lowing fast and directed testing of Android applications towards
privacy violation detection, based on analyzing control-flow graphs
of Android callbacks obtained from static analysis of application
bytecode. The control-flow graphs of callbacks are used to build
test cases for Android application window transitions, consisting
of user actions on clickable application GUI views and widgets.
The test cases are then provided to MAMBA’s automated testing
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backend, which stimulates user actions to trigger the execution of
the app and direct its transition from its starting activity to the tar-
get activities of interest, which in this paper are the ones that call
Android APIs to access users’ private data, and we use privacy-
sensitive API calls to refer to such calls. The main contributions of
the paper are as follows:

• Present techniques to utilize the control-flow graphs of An-
droid callbacks for test case generation;

• Tailor test case generation to reveal privacy-sensitive API
calls in apps;

• Direct testing of apps to follow test cases that may potentially
reveal privacy-sensitive API calls;

• Evaluate our graph-aided directed testing and compare its
performance with another automated testing approach based
on exhaustive search, and verify actual privacy leaks revealed
through our approach.

2. GRAPH-AIDED DIRECTED TESTING
In this section, we describe how the MAMBA testing system

works (Please refer to Figure. 1 for the system diagram). An An-
droid app’s binary .apk file is decompiled into its intermediate rep-
resentations (smali/bytecode) of the virtual-machine code. To de-
termine which are the target activities of interest, the system first
analyzes which activities in the app are linked to privacy sensitive
API calls in a call-chain (Privacy Specifications). Next, a control-
flow graph of call-backs (CCFG) is generated from the bytecode
using the GATOR/SOOT tool [27]. The CCFG is then analyzed
and traversed to obtain test-cases of actionable user-actions that can
guide automated testing from the root activity to any of the other
activities within the app ( Automated Test Walks). These test cases
are then provided to an automated front-end tester, where only the
test-cases leading to target activities of interest are executed to re-
duce testing time. The run-time privacy behaviours of the apps are
logged and verified using leak/privacy-data reports generated from
privacy leak detectors TaintDroid and PMP [6, 19].

The proceeding sub-sections details the implementation and tech-
niques utilized in the directed testing system.
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Figure 1: System Diagram of MAMBA: Directed Testing of An-
droid Applications for Checking Privacy Specifications

2.1 Privacy Sensitive API Call Association with
App Activities

In order to determine where to direct the activity traversal and
testing towards, our tool performs a process of finding links from
sensitive API calls to available activities within the app. We ob-
tained the API method and class names under the Android API doc-
umentation [15] which are involved in the access of users’ privacy
data. Such data accesses included, For e.g. GPS Location (’get-
Latitude’/’getLongtitude’ etc.), MAC Address (’getMacAddress’),
Contacts List (’ContactsContract’) etc. We utilized analysis over
Smali Code, an intermediate representation of the DEX format de-
complied from Android apk files using APKTOOL [25].

Utilizing an analysis tool that we built using Java, we first checked
for developer written methods and classes that contained any of
the privacy sensitive Android API calls in its code body (Privacy
Specifications). Our tool then performed method call-chain linking
to build a control-flow from those initial methods with sensitive
API calls. Along the call-chains, we identified whether any of the
classes along the chain belonged to an Android activity class. If it
did, we recorded the activity as a target activity in which automated
directed testing should reach in Section 2.2.2.

2.2 Automated Testing of Mobile Applications
Automated testing involves exploring the app by effecting activ-

ity transitions and states, which is performed by stimulating user
click events on clickable mobile buttons/widgets. Achieving good
app coverage, reachability and efficiency are the main important
goals in automated testing. Testing has to ensure that all the avail-
able activities within the app are explored, and that certain hard-to-
reach states of activity windows are reached. It also has to do so
in a practical amount of time. A random fuzzing strategy (for ex-
ample Android Monkey [16]), might be able to provide sufficient
coverage and reachability for checking privacy specifications, but
only with a length of testing time that might not be practical.

We built our automated tester front-end over the Automated Model
Checker (AMC) [11]. AMC determines the state of the current ac-
tivity or window that an app is currently in by computing a hash
over the application’s DOM tree obtained from the Hierarchy Viewer
tool [17]. It then lists and selects one of the available clickable UI
component within the activity to send click-actions to using the
Android Monkey. After sending click-action, it determines if the
resulting newly arrived state is equivalent to the previous state by
equivalence heuristics. It keeps the hashes of all visited states to
track exploration, and ends testing when all states have been ex-
plored.

2.2.1 Problems with Testing of Applications
Like other automated testers, AMC in its basic form is still im-

practical for scaling up testing of privacy specifications. Based on
our experiences with testing for over a thousand apps, testing times
to reach completion of all activities can take up to 4-5 hours for
a single app. Model Checking suffers from the well known prob-
lem of ’State-Explosion’ [24], where some tests fails to terminate
altogether due to the huge number of states. While AMC imple-
ments heuristics in computing layout structure hashes instead of
content hashes, state-explosion problems could still invariably oc-
cur and cause testing to fail to terminate. In addition, AMC requires
a stabilization period of waiting time for each app state to stabilize
(typically 10-20 seconds) before computing the state hash, and this
contributes to prolonged testing times.

To help the problems that occur, utilizing the outputs of a call-
graph to build a transition model would greatly help in guiding
AMC and improve testing efficiency. The transition model can



prevent AMC from re-testing states that it has already visited, and
guide AMC on known paths to target activities. It also removes the
need for a stabilization wait time, and greatly reduces testing time
required.

2.2.2 Automated Walking Tool
We built an automated walking tool on top of AMC, which uti-

lizes a pre-computed transition model as inputs to guide its testing.
The transition model consists of sets of test-cases (separate and dis-
tinct paths) for each activity that exist in the app. Each test-case is
made up of the user-actions that are required to be sent to the UI
to cause activity transitions, which are executed in sequence one
after another. The testing thus proceeds by ’walking’ the appli-
cation from the initial root activity to a target activity obtained in
Section 2.1, before terminating and restarting from the root activ-
ity again for the next test-case. Testing now proceeds in a more
deterministic and guided fashion, which improves coverage and ef-
ficiency.

2.2.3 Test Monitors & Event Recorders
Automated testing was carried out on hardware Android devices

and Emulators. We implemented Event Recorders for test instances,
that automatically logged and saved the traces of user-interaction
with the UI-components with the test apps. Leak reports from 2 pri-
vacy leak detectors, TaintDroid [6] and ProtectMyPrivacy (PMP) [19]
were also recorded. These logs allowed us to mine privacy leak-
causing views and widgets/buttons, as well as determine privacy
leak characteristics using Frequent Item-set Mining [10].

We utilized parallelization with Android devices and emulators
and scaled up emulator testing over multiple test instances on the
Amazon EC2 cloud computing platforms. Problems with testing
speed and stability on the Android Emulator have previously been
highlighted [7], with some works specifically avoiding to run test-
ing on the Emulator due to these issues. To ensure smooth testing
and deal with instabilities, we implemented Test Monitors and fault
handling to coordinate multiple test instances and perform process
monitoring.

2.3 Generating Test-Cases from Callback
Control-Flow Graphs (CCFG)

In order to generate test cases for automated transitions from root
to target activities, we require an appropriate static representation
of Android apps. Activity/state changes on the Android app are
mostly enacted by event-driven callbacks [18], which are system
calls centrally coordinated by the Android platform. Callbacks are
defined for various user-driven and system defined events such as
user-clicks/touches, UI component creation/destruction, event lis-
teners, hardware/sensor state changes etc. Due to this event-drive
framework of Android’s, a normal control and data-flow analysis
would not work directly for our purposes.

We thus leveraged on the user-driven callback static control-flow
analysis framework in [27], which also includes the modelling of
Android GUI-related objects and their flow through the applica-
tion [22]. In this framework, Android program behaviour is mod-
elled using a representation referred to as a Callback Control-Flow
Graph (CCFG). The CCFG representation contains only interpro-
cedural edges to and from callback functions, where a node repre-
sents the execution of a GUI event-handler or component lifecycle
callback, and an edge represents the trigger sequence of callbacks.
In addition, artificial helper nodes (branch & join nodes) exist in the
CCFG to aid better in the representation of execution sequences of
the graph.

To form our activity transition model, we perform an abstraction

of the CCFG; In which the graph nodes in our model are activities
and graph edges are the widget identifiers of the GUI components
that will cause transitions between 2 activities. We utilized wid-
get identifiers for edges because Android’s Hierarchy Viewer [17]
provides visibility on clickable Android UI components from these
identifiers. By traversing the CCFG, we obtain all feasible paths
from root to target activities of interest and build test cases for in-
puts to the automated tester.

2.3.1 Traversal and Path Search of CCFG
Using the GATOR/SOOT tool [27], we generate the CCFG from

decompiled apps’ byte-code. In Android, all activities within the
app has to be declared within the app’s manifest resource. We ob-
tain a list of all activity names that the app contains. From the
CCFG, we identify all nodes that represent the creation (onCre-
ate event-handler) of these activities. Using these nodes as start-
ing points, we traverse backwards on the CCFG using a Depth-
First Search (DFS) algorithm until the root (Main) activity node is
reached. We thus recorded a resulting list of paths of all activities
within the app to the root (Main) activity. We then utilized these
paths to build test-cases for the automated tester (Section 2.3.2).
Multiple Paths & Path Feasibility: Our analysis encountered many
cases whereby there were multiple paths from an activity back to
the root activity. While our tool logged all possible paths, it does
not identify which paths are actually feasible or can be reached
during run-time. Infeasible paths might occur if some condition
is required before the next resulting activity can be started. For
example, an activity might only be accessible if the user is on WiFi.
Another example could be in a shopping app, in which a checkout
activity might only be accessible if the user had checked on certain
items in a list.

To increase accessibility and improve testing time, we ordered
multiple paths for each activity according to length of shortest to
longest, and executed shortest paths first before trying out longer
paths if the shorter paths were found to be infeasible. Our auto-
mated tester executes shorter paths before moving to try out the
longer paths if it is unable to reach the resulting activity. In the
future, it might be possible to consider modelling of the conditions
under which infeasible paths occur, so that automated testing can
identify and enable certain hard to reach conditions for accessibility
of app activities.
Search Time of CCFG: Observations on testing on a small set of 50
apps indicated that times required ranged from 10 seconds to over 3
minutes on a quad-core desktop machine running Linux, depending
on the size and branch structure of the CCFG. This indicated that
the approach was reasonably scalable. Given that we only utilized
a simple DFS, there are possibilities to further optimize the search
time by considering other searches (e.g. Tabu search). It would also
be possible to consider search strategies that consider the branching
structure of the CCFG and adaptively modify the search. We leave
such algorithmic designs of path search strategies for future work.

2.3.2 Test Case Generation
Based on the paths found from an app’s root activity to all other

activities contained within the app, we generate test cases of user-
events on UI components for automated directed testing. As men-
tioned in Section 2.3, nodes on the CCFG represent callback func-
tions of GUI event-handlers (e.g. onClick(), onTouch()) or compo-
nent lifecycles (e.g. onCreate(), onDestroy()). Figure. 2 illustrates
a node representing an ’onCreate’ callback of an activity with name
’com.bitsmedia.android.quitpro.activities.PremiumActivity’. This
activity is linked by an edge to an ’onClick’ callback function of
an app’s button UI component, which exists on a separate activity



called ’com.bitsmedia.android.quitpro.activities.InfoActivity’. The
widget identifier of the button UI component (’premiumUpgrade-
Button’) is visible within the ’onClick’ callback in the edge.

Node (Callback of Activity):
[START] Node 〈Activity[com.bitsmedia.android.quitpro.activities.PremiumActivity],
〈 com.bitsmedia.android.quitpro.activities.PremiumActivity: void onCreate(android.os
.Bundle) 〉 ,implicit_lifecycle_event,Activity[com.bitsmedia.android.quitpro.activities
.PremiumActivity] 〉

Edge (Callback of Button -> Callback of Activity):
Node 〈 Inflate_Node[android.widget.Button,WID[premiumUpgradeButton]], 〈 com
.bitsmedia.android.quitpro.activities.InfoActivity$1: void onClick (android.view.View)
〉 , click, ACT[com.bitsmedia.android.quitpro.activities.InfoActivity] 〉
->
[START] Node 〈 Activity[com.bitsmedia.android.quitpro
.activities.PremiumActivity], 〈 com.bitsmedia.android.quitpro.activities.PremiumActivity:
void onCreate (android.os.Bundle) 〉 ,implicit_lifecycle_event,Activity[com.bitsmedia
.android.quitpro.activities.PremiumActivity] 〈 [normal, start_activity, [window_
must_start]]

Figure 2: Node & Edge Representations in CCFG

Activity: com.bitsmedia.android.quitpro.activities.PremiumActivity
Test Case #1 : [action_premium]
Test Case #2 : [action_info, premiumUpgradeButton]

Activity: com.interestingcoolerfreegoimbh.app.koisettings
Test Case #1 : [settings, button1unlock]
Test Case #2 : [settings, RelativeLayout04, gridview]
Test Case #3 : [settings, RelativeLayout05, gridview2]
Test Case #4 : [settings, RelativeLayout03, gridviewback]

Figure 3: Example Sets of Test Cases Built For Automated Tester

On tracking along the discovered paths, we look out for edges
which indicate that an activity creation callback was due to a prior
GUI-component event-handling callback (Figure. 2 illustrates such
an edge). We obtained all the widget identifiers of the GUI-components
of these edges. To facilitate Directed Testing, the widget identi-
fiers are then relatable to DOM layout information provided by An-
droid’s Hierarchy Viewer, whereby determinations can be made on
screen coordinates in which to send clicks to using Android Mon-
key.

Figure 3 illustrates examples of resulting test-cases for 2 differ-
ent activities: 2 different paths were found for ’.PremiumActiv-
ity’, the 1st shorter path being a single user-action on the widget
with identifier ’action_premium’, and the 2nd longer path involv-
ing transition with 2 user-actions (’action_info’ and ’premiumUp-
gradeButton’). The other example for the activity ’.koisettings’
found 4 different possible paths from root to the activity, the 1st
path requiring 2 user-actions, and 2nd-4th paths requiring 3 user-
actions. As mentioned in Section 2.3.1, not all of the paths might
be feasible. As a heuristic to save testing time, we indicated to au-
tomated testers to test shorter paths first before moving to longer
paths if initial transition attempts were unsuccessful.

3. EXPERIMENTAL EVALUATION
In this section, we present evaluation results of MAMBA on a

set of 24 Android apps crawled from the Google Play Store. A
comparison with Exhaustive Testing was also perform for the time
required to reach and verify activities that involve the use of privacy
sensitive APIs (Target Activities).

3.1 Path Search & Test-Case Generation
From Table 1, the Privacy Sensitive API associator uncovered

that 21 apps accessed users’ GPS data, 2 of the apps accessed the
Contact List, 3 apps Device Identifiers, and 1 app each accessed
users’ Microphone and SMSes. 1 app (Arsenal Fan Club) did not
access any privacy data. The total no. of activities each app con-
tained as well as the no. of activities found to be accessing user
privacy data are illustrated in the table.

3.1.1 Target Activities of Interest
The apps were found to each contain between 2 to 18 activities

in total (Table 1). 10 of the 24 apps had 100% of their activities ac-
cessing privacy data, with varying numbers (0-100%) for the rest.
These privacy accessing activities were flagged out to be reached by
the directed tester. During automated testing, leak reports were ob-
tained from leak detectors, as mentioned in Section 2.2.3. Mining
of the test logs allowed us to infer data usage characteristics [10].

3.1.2 Generating Test-Cases for Directed Test
The processing times required for generating test cases for target

activities of each app are tabulated in Table 1 (seconds). Test Case
Generation time includes bytecode and CCFG generation, CCFG
traversal and search for paths as well, Privacy Sensitive API as-
sociation as the generation of user-action sequences for the auto-
mated tester. Test cases were generated on an AMD Opteron 4386,
3.1GHz CPU and running 64-bit Debian Linux.

Test Case Generation took between 26 to 94 seconds for each
app (Under column ’Graph-Directed Search- Test Case Generation
(s)’). The results indicated that generation times required were not
dependent on the total number of activities in the app or the number
of target activities, but were dependent on app size and complexity.
An example was the No. 12 app: ’Fat Burning Foods’, which had
15 activities in total and 15 target activities, but required 42 seconds
for processing. This is in comparison to No. 2 app: ’A+ Certifica-
tion Lite’ that required a longer generation time of 45 seconds but
had smaller number of only 4 activities and 1 target activity.

3.1.3 Automated App Testing
The testing times required for running the resulting test cases

on an automated tester are tabulated under the column ’Graph-
Directed Search-Test Case Running (s)’. Automated testing were
performed on 3 x hardware Galaxy Nexus devices running Android
OS 4.1.1, and connected to a testing program running on a Win-
dows 7 machine. Testing can be carried out on emulators as well,
but we only utilized hardware devices for the sake of consistency
in this evaluation.

Running a single test case took about over a minute on aver-
age. Because this step involved automated activity transitions on
the app, these timings required were significantly larger compared
to the times required for test case generation. Automated app test-
ing took between 69 seconds (1 minute 9 seconds) to 900 seconds
(15 minutes) for each app, and were dependent on the number of
target activities as well as the number of test cases.

3.1.4 Graph-Aided Directed Testing Times
As mentioned in Section 2.2.2, graph-aided directed testing in-

volved automated activity transition of apps from the root activity
to each of its target activities. The total testing time required for
graph-aided directed testing is a combination of the time required
for static test case generation as well as the automated running of
the test cases on the automated tester. Total times required for Di-
rected Testing times ranged from 2 mins 4 sec to 15 mins 40 sec
(Column: ’Graph-Directed Testing-Total [hh:mm:ss]’).



Exhaustive Testing
(Testing Time)

Graph-Directed Testing
(Testing Time)

No. App Name Package Privacy
Data

Total No. of
Activities

No. of Target
Activities

Total
[hh:mm:ss]

Test Case
Generation [s]

Test Case
Running [s]

Total
[hh:mm:ss]

1 Album Cover Finder com.ftpcafe.coverart
.trial

GPS 8 6 1:18:25 59 337 0:06:36

2 A+ Certification Lite com.mhazzm.APlus
Certification702Lite

GPS 4 1 0:03:10 45 101 0:02:26

3 Advanced Task Killer com.rechild.advan
cedtaskkiller

GPS 6 1 1:04:11 47 140 0:03:07

4 African American
Quotes

com.hmobile.african
americanquote

GPS 11 11 1:18:18 37 610 0:10:47

5 Android Book App com.appmk.book.main GPS 5 3 0:19:41 56 146 0:03:22
6 Arsenal Fan Club com.arsenalfanclub Nil 9 0 0:46:55 57 N.A. Nil
7 Blood Alcohol Tracker com.promille GPS 7 7 0:27:00 32 411 0:07:23
8 Call and SMS

Easy Blocker
com.ekaisar.android.eb GPS, Contact

-List ,SMSes
9 2 0:17:17 94 168 0:04:22

9 Car Performance Free com.unnull.apps
.carperformancefree

GPS 7 2 0:12:51 26 224 0:04:10

10 CLT vs. PJ com.neocode.cltxpj GPS 3 3 0:03:35 30 185 0:03:35
11 Driving Skill Monitor com.drismo GPS 14 3 0:34:09 50 216 0:04:26
12 Fat Burning Foods com.v1_4.fatburning

foods.com
GPS, IMEI 15 15 0:11:27 42 535 0:09:37

13 Font for Galaxy com.hongik
.fontomizerSP

GPS 2 2 0:03:09 38 114 0:02:32

14 Interesting Cooler com.interestingcooler
freegoimbh.app

GPS 10 1 0:17:56 55 69 0:02:04

15 Interpret Your Dream com.dreamforth.iyd GPS 6 6 0:06:01 34 296 0:05:30
16 JaquecApp com.terranology

.jaquecapp
GPS 18 1 0:37:35 49 109 0:02:38

17 My Display Check com.jensu
.screenchecker

GPS 7 7 0:15:40 30 357 0:06:27

18 Shikoku Railway com.appspot.norit
subushi.shikoku

GPS 6 6 0:20:49 38 422 0:07:40

19 Solar Battery Charger com.solar.charger
.battery

GPS 3 2 0:07:12 39 123 0:04:42

20 Space War APK com.space_war
_free_10

GPS, IMEI
Phone No.

13 10 0:19:26 40 900 0:15:40

21 Speak Mandarin Free com.chineseskill.lan
_tool.sc

Microphone,
Device IDs

3 2 3:23:10 61 148 0:03:29

22 Super Runner Boy com.pack.Super
-RunnerBoyTrial

GPS 4 1 0:02:32 68 80 0:02:28

23 TooLate Lateness afw.allforweb.toolate Contacts 6 1 0:08:34 42 95 0:02:17
24 Trios Labs Reader com.triosLabs

.hadithreader
GPS 8 8 0:26:47 47 313 0:06:00

Table 1: Results of Automated Testing - Exhaustive vs. Graph-Directed Test (MAMBA)

3.2 Comparison With Exhaustive Testing
We carried out automated testing on the same set of apps, but

with Exhaustive Testing as the approach instead using Automated
Model Checker (AMC). In Exhaustive Testing, no target activities
were specified, but available user-actions for each clickable wid-
get/button on each activity encountered were ordered sequentially
in a top-to-bottom fashion based on the layout and each tried in-
turn. On reaching a next activity state, the app was backtracked
to the previous activity before selection of another clickable wid-
get/button for tapping. In this fashion, the tester tries to reach all
activities in the app. The total time required for exhaustively test-
ing each of the apps are displayed in Table 1 under ’Exhaustive
Testing-Total [hh:mm:ss]’.

The total testing times required for Exhaustive testing ranged
from over 2 minutes (0:02:32) to more than 3 hours (3:23:10).
This is comparison to total testing times required for graph-directed
testing (’Graph-Directed Testing-Total [hh:mm:ss]’), which ranged
from 2 minutes (0:02:04) to just over 15 minutes (0:15:40). These

testing total times required for graph-directed testing were there-
fore significantly shorter than that required for Exhaustive Testing.
Graph-directed testing was 6.1 times faster across all the 24 apps
(Average 0:31:15 compared to 0:05:03), and was up to 58 times
faster (No. 21 app: ’Speak Mandarin Free’).
Why is Graph-Directed Testing Faster?: Testing was faster due to
the immediate and expedited transitions to target activities via app
buttons that were already known beforehand from test-cases built
from CCFGs. This was in contrast to Exhaustive Tests, which had
to spend time exploring all clickable UI components in each app
activity, many of which might cause state changes but not activity
transitions. Examples of such occurrences are Apps #1, #4 and #21,
which required over 1-3+ hours respectively.

The branching structure of activity transitions also played a part
to increase test times in Exhaustive Tests. From inspection, apps
with more highly cascaded activity transitions required more time
in Exhaustive Testing, due to the time required for back-tracking to



0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600

C
o

v
e

ra
g

e
 o

f 
T
a

r
g

e
t
 A

c
t
iv

it
ie

s
 (

%
)

Total Testing Time (Seconds)

App #1 (Exhaustive Test)

App #1 (Graph-Directed Test)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400

C
o

v
e

ra
g

e
 o

f 
T
a

r
g

e
t
 A

c
t
iv

it
ie

s
 (

%
)

Total Testing Time (Seconds)

App #4 (Exhaustive Test)

App #4 (Graph-Directed Test)

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

C
o

v
e

ra
g

e
 o

f 
T
a

rg
e

t 
A

c
ti

v
it

ie
s 

(%
)

Total Testing Time (Seconds)

App #20 (Exhaustive Test)

App #20 (Graph-Directed Test)

Figure 4: Coverage of Target Activities (%) over Total Testing Time (Seconds) for 3 Example Apps - (Left- App #1: "Album Cover Finder";
Middle- App #4: "African American Quotes" ; Right- App #20: "Space War APK")

previous activities, which graph-directed testing did not require.
Figure 4 displays the Coverage of Target Activities (%) over the

Total Testing Time (seconds) for 3 example apps (App #1, #4 and
#20). Although Exhaustive Testing was also able to cover target
activities, it required significantly higher testing times compared
to graph-directed testing. It can be seen that the Coverage of Tar-
get Activities in graph-directed testing converges faster compared
to Exhaustive Testing. Coverage of activities in directed testing
proceeded at a steady pace until completion, compared to the pro-
longed times required and stagnation at certain activity points for
Exhaustive Testing.

3.2.1 Coverage of Target Activities
Both graph-directed and Exhaustive Testing were each able to

cover 86 of the 101 target activities in Table 1 (85.1% coverage).
From inspection, the remaining activities were inaccessible by our
testers due to a few reasons. The first was that there were some de-
funct activities which were defined by developers and in app code,
but did not contain start intents. There were also a few which re-
quired some hard to fulfil conditions that normal user-events could
not meet. For example, App #11: Driving Skill Monitor had an
activity that required input from GPS sensors for a certain distance
before it could be accessed. App #20: Space War APK had 3 ac-
tivities that required completion of game levels before it could be
accessed. Allowing coverage for such activities falls outside the
scope of our paper.

3.3 Verification of Privacy Specifications
As described in Section 2.2.3, leak reports from 2 privacy detec-

tors, PMP and TaintDroid were logged during the automated test
runs. PMP detected run-time privacy data accesses, while Taint-
Droid was able to detect privacy leaks over the network. Based on
the logs captured from graph-directed testing, we verified that 45
of the 101 target activities (44.6%, over 13 apps) had privacy data
accesses, and 27 of these activities (26.7%, over 8 apps) leaked pri-
vate data to the network. Such privacy behaviours can be recorded
in off-line databases for future notification to users [10]. The logs
from Exhaustive Testing also indicated the same findings, which
showed that MAMBA was able to perform verification of privacy
specifications in apps just as well as exhaustively testing the app,
but in a significantly reduced time.

4. DISCUSSION
Our evaluation demonstrated that graph-aided directed testing

has significant advantages compared to Exhaustive Testing, mainly

in much shorter testing times required to achieve coverage of target
activities. On average across the test apps, Directed Testing was 6.1
times faster than Exhaustive Testing. This demonstrates the impact
of building test-cases of activity transition models from CCFGs,
prior to automated testing.

We observed that there were situations where graph-aided testing
was only slightly faster than Exhaustive Testing. (For example for
App No. 15: ’Interpret Your Dream’ and App No. 22: ’Super Run-
ner Boy’.) From manual inspection of the apps, these arose in cir-
cumstances where activity transitions were only branched around
the root (main) activity, such that the automated tester only needed
to explore all buttons on the root activity page to transit to other
activities within the app.

We highlight that the CCFGs generated from GATOR tool only
contains explicit activity starting (’startActivity’) intents and do not
include implicit intents. Explicit intents consists of activity type
classes that have been defined within developer code of the app,
while implicit intents consists of transitions to external window
states (e.g. Transit from app to a web browser or email client).

5. FUTURE WORK
In the future, graph-aided directed testing can be applied to dy-

namically verify other types of run-time behavioural specifications.
Examples of such specifications are software bugs, power testing &
energy profiling of phone sensor behaviours and performance. The
specifications might first be identified via static analysis, followed
by fast and directed app activity transitions to reach the specific app
activities.

There are also possibilities for improving strategies in app ex-
ploration, such as for example, analysis of an app’s transitional
branching structure in the CCFG prior to automated testing. Cur-
rently, every directed test path re-starts from the root activity. There
are cases where 2 or more test cases might follow some common
paths. We might consider some backtracking strategies to further
reduce the time required for directed testing.

Work is also available in modeling the conditions in which in-
feasible paths of app transitions might occur. Currently, automated
testing prioritizes transition of shorter paths, only trying longer
paths if a shorter path is found to be infeasible or inaccessible.
Future work might consist of modelling and uncovering the con-
ditions under which infeasible paths might occur (For e.g. paths
that require WiFi, specific geographic conditions, login status etc.).
There are also possibilities in cataloging and modeling of implicit
intents, such as for example, transition to external browser, email
client or other app activities etc.



6. RELATED WORK
Automated App Testing. Automated testing of Android apps

has received quite a bit of attention in recent years. The earliest
and most frequently used Monkey [16] performs black-box test-
ing by generating random UI events. Intent Fuzzer [23] randomly
generates intents for fuzz testing Android apps for crash fault de-
tection. Dynodroid [14] and VanarSena [20] are both also based
on random exploration, but have improved techniques in event se-
lection and mapping to increase testing efficiency. AMC [11] and
DECAF [13] both utilize similar concepts in terms of extracting the
DOM trees from the apps at run-time, and performing systematic
exploration along running UI state information.

While these testers are effective for automated app testing, they
do not perform guided and directed explorations to specific app ac-
tivities or states. This is because they do not have access to path in-
formation obtained from static analysis of CCFGs, prior to testing.
MAMBA is unique in this aspect. Our work leverages on recent
work and advances in static control-flow analysis of user-driven
callbacks and the flow of Android GUI-related objects, which pro-
vides a through and more accurate model for guiding app explo-
ration. Perhaps most related to our work is A3E [3], that has a
targeted exploration strategy based on following a Static Activity
Transition Graph (SATG). While this concept is similar, the SATG
is based on a coarser-level analysis of sources and sinks in start-
activity intents, and does not utilize static modelling of GUI-objects
and flows in the app. It is also unclear how event handlers are
mapped to the GUI-objects in their targeted exploration mode.

Privacy Protection Platforms. Various tools, such as Taint-
Droid, PiOS and PMP [1, 5, 6], have been developed for privacy
leak detection in mobile apps. These tools are useful in detecting
leaked private data, but are less useful in providing users with a
summarized analysis of app privacy behaviours. The users usually
have to undergo a certain period of app usage before app privacy be-
haviours can be uncovered. Our prior work [10] advocates a frame-
work of utilizing dynamic analysis of apps for pre-deployment dis-
covery of app privacy behaviours and characteristics, as well as
discovering culprit leak widgets/buttons. This is the motivation for
our work on efficient and accurate directed app exploration.

7. CONCLUSION
In this paper, we present MAMBA, a graph-aided directed test-

ing system for automated checking of privacy behaviours in An-
droid apps. MAMBA utilizes static analysis of control-flow graph
of callbacks and path searches from starting activities to target ac-
tivities of interest, so that test cases of transitions can be build for
automated testing. Evaluating MAMBA with the Exhaustive Test
approach showed that directed testing can achieve coverage of tar-
get activities 6.1 times faster on average, while still allowing proper
verification of activities that access private data.
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