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ABSTRACT
More and more mobile applications run on multiple mobile
operating systems to attract more users of different plat-
forms. Although versions on different platforms are imple-
mented in different programming languages (e.g., Java and
Objective-C), there must be many code snippets that im-
plement the similar business logic on different platforms.
Such code snippets are called cross-platform clones. It is
challenging but essential to detect such clones for software
maintenance. Due to the practice that developers usually
use some common identifiers when implementing the same
business logic on different platforms, in this paper, we inves-
tigate the identifier similarity of the same mobile application
on different platforms and provide insights about the feasi-
bility of cross-platform clone detection via identifier similar-
ity. In our experiment, we have analyzed the source code of
18 open-source cross-platform applications which are imple-
mented on Android, iOS and Windows Phone, and find that
the smaller KL-Divergence the application has, the more ac-
curate the clones detected by identifiers will be.

CCS Concepts
•Software and its engineering → Software libraries and
repositories;
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1. INTRODUCTION
Nowadays, mobile phones play a more and more impor-

tant role in our daily life. To meet our increasing demands,
almost all the mobile operating systems (e.g., Android, iOS,
and Windows Phone) provide similar built-in features such
as Global Positioning System (GPS), Camera, Music, mak-
ing calls and sending short messages. Due to the uniqueness
of mobile operating systems together with the preference
of users, intensive competition among them has been going

on, ever since they were released. In order to attract more
different users, one application is usually implemented on
different mobile operating systems.

The application (app), which runs on multiple mobile op-
erating systems, is called a cross-platform application [4].
For example, the Google Map app has both an Android and
an iOS version with almost identical functionalities. To im-
plement similar functionalities, there must be many code
snippets that implement the identical or similar function-
ality. We call such code snippets as cross-platform clones.
In order to maintain the same functionality, programmers
have to locate and synchronize clones. For example, when
developers modify a code snippet on a platform (e.g., An-
droid), all the clone instances in the other platforms (e.g.,
iOS, and Windows Phone) may require the similar modifi-
cations to maintain the identical functionality. Due to the
differences of architectures and programming languages, the
maintenance is tedious and error-prone.

In literature, various clone detection approaches [6, 7, 8,
9, 10, 14, 2] have been proposed, which include the ones for
the desktop project and the ones for Android app, but they
only target at one mobile platform and focus on code clones
in one programming language. Recently, researchers [11, 1]
have proposed approaches to detecting cross-language clones
for the .NET language family, which share a common in-
termediate language. However, Android apps which are
implemented in Java, iOS apps which are implemented in
Objective-C and Windows Phone apps which are imple-
mented in C# do not share any common intermediate lan-
guage or representation. It is challenging to detect such kind
of cross-platform clones.

As functionalities on one platform can be used as a refer-
ence for implementation on another platform, we hypothe-
size that developers may use common identifiers when they
implement similar functionalities on different platforms. In-
deed, Zhong et al. [13] show that the similarity is adequate
to detect many code mappings between Java and C#. How-
ever, it is still largely unknown whether the hypothesis holds
in mobile apps since mobile platforms are more different
than Java and C#. To fully explore the hypothesis, in this
paper, we analyzed the source files of 18 mobile apps and
5 desktop projects. The mobile apps are implemented in
Java, Objective-C, and C#. The desktop projects are im-
plemented in Java and C#. Our research questions are as
follows:

• RQ1. What are the distributions of identifier fre-
quency in cross-platform apps?



Table 1: Subject Mobile Applications

Application
Android iOS WinPhone

#Files LOC #Files LOC #Files LOC
BlueSenseNetworks 27 1,543 57 3,956 - -

Cordova 60 5,350 41 3,576 - -
CycleStreets 187 18,676 332 47,459 - -

Digipost 104 11,198 74 9,597 - -
DuckDuckGo 219 14,091 87 10,782 - -

Facebook 305 42,665 252 32,008 - -
IRCCloud 130 35,319 89 40,319 - -
OwnTracks 92 10,674 74 13,949 - -

RioBus 13 675 14 1,400 - -
Adsota 4 349 3 93 16 708
BlinkID 43 4,306 18 963 13 815

LowaCodeCamp 18 725 22 1,355 23 705
OneSignal 89 7,491 11 1,613 22 1,235
OpenPKW 48 3,125 49 1,344 88 5,853
OwnCloud 223 33,764 199 42,349 95 7,114

VK 114 10,175 60 5,388 85 5,941
Wit 11 661 15 1,715 9 554

WordPress 590 89,642 362 62,567 137 21,769

• RQ2. How similar are the identifiers in cross-platform
apps?

• RQ3. Is it feasibility to detect cross-platform clones
via identifier similarity?

2. METHODOLOGY
To investigate our research questions, we normalize the

source code of versions on different platforms and calculate
the similarity between normalized code. To obtain an intu-
itive estimation of the similarity, we compare the similarity
with desktop cross-platform projects, in which the similarity
between identifiers is effective to detect code clones.

2.1 Normalizing
Normalizing is a process to remove uninteresting content

(e.g., comments) from the source code, and to transform
the remaining content into normalized comparison units. In
particular, the source code of each version is tokenized to a
token stream, with the following steps:

• In order to relieve the impact of the difference between
the comments which written in natural language, the
comments are removed.
• The remaining code is tokenized as a token stream.
• Punctuations and numbers are removed from the token

streams since they seldom indicate semantics.
• Camel case tokens are split by uppercase letters and

tokens with underscores are split by the underscore.
All tokens are then transformed to lowercase.

After normalization, the source code of the app on each
platform will be transformed into a token stream.

2.2 Calculating Similarity
Bag of Words (BOW) [5] is a text representation tech-

nique widely used in Natural Language Processing. A text
is represented as a bag of its words, disregarding the gram-
mar and even the order of words. We adopt the BOW model
to represent each token stream. For each bag of tokens, a
characteristic vector V (v1, v2, . . . , vn) is built, whose each
dimension denotes the number of each token in the token
stream.

Based on the characteristic vector, we calculate the distri-
bution of the tokens D(d1, d2, . . . , dn), where di = vi∑n

j=1 vj
.

We utilize the similarity of the token distributions to re-
flect the identifier similarity of the source code. Kullback-
Leibler divergence (KL-Divergence) [12] is a measure of the

Table 2: Subject Desktop Projects
Project #Files LOC Distance

ANTLR3
Java 276 49,503

0.252
C# 623 109,058

FpML
Java 130 17,810

0.581
C# 130 16,548

Log4j/Log4net
Java 309 30,278

0.917
C# 335 30,884

Lucence
Java 6,098 862,288

0.489
C# 2,929 434,306

Spring
Java 6,308 548,782

0.725
C# 2,717 223,894

difference between probability distributions P and Q. For
discrete probability distributions P and Q, the KL-Divergence
of Q from P is defined as:

KLD(P || Q) =

n∑
i=1

P (i) log
P (i)

Q(i)
(1)

We use KL-Divergence of the token distributions to mea-
sure the distance between the source code for two platforms
(e.g., Android and iOS). The larger the distance is, the less
similar the identifiers are. Since the two distributions are
symmetrical, for two distributions Di(di1, di2, . . . , din) and
Dj(dj1, dj2, . . . , djn), the distance is defined as:

Distance(Di, Dj) = KLD(Di || Dj) +KLD(Dj || Di) (2)

In order to avoid the appearance of value zero in the dis-
tribution vectors, which can trigger math error, for each pair
of characteristic vectors, we replace zeros with ones.

2.3 Comparison
The distance between the token distribution of apps on

different platforms can reflect the identifier similarity. How-
ever, it is still not enough to answer RQ3. In order to find
the relationship between identifier similarity and code clones
to obtain intuitive results, we compare the token distribution
distances of mobile apps with the distribution distances of
desktop projects. In our previous work [3], we have detected
cross-language clones through comparing revision histories
that are recorded in repository logs, which is an identifier-
similarity-based approach. This approach is mainly for desk-
top apps developed in more similar programming languages
(i.e. Java and C#). It needs assessment whether similar
techniques can be applied to mobile apps. Since it is time-
consuming to apply the technique to mobile apps, in this
paper, we compare the token distribution distance of mobile
apps, which implemented in more different languages, with
that of the desktop one, which implemented in more simi-
lar languages. Through this comparison, we estimate how
clones can be detected from the cross-platform apps based
on identifier similarity.

3. EMPIRICAL STUDY RESULTS
We collected 18 open-source cross-platform mobile apps

from GitHub1, 9 of which have Android and iOS versions
and the other 9 of which have Android, iOS, and Win-
dows Phone versions. Table 1 lists the basic statistics of
our subjects. Columns “#Files” of Android, iOS, and Win-
dows Phone platform denote the number of source code files.
Columns “LOC” denotes the lines of code in these files. We
collected 5 open source desktop cross-language projects as
the control group. Table 2 lists the basic statistics of them.

1http://www.github.com
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Figure 1: Token Distribution (Android vs. iOS)

3.1 RQ1: Identifier Frequency Distribution
We plotted the token distribution of cross-platform apps.

Since all the apps in our experiment appear similarly, we
use one of them (e.g., WordPress) to illustrate the prob-
lems. Figure 1 shows the token distribution of WordPress’s
Android and iOS versions. In a similar way, we plotted the
token distribution of desktop cross-language apps as a con-
trol. Figure 2 shows the token distribution of ANTLR3’s
Java and C# versions.

Figure 1(a) shows the original token distribution. Its hori-
zontal axis denotes the tokens with the lexicographical order,
and its vertical axis denotes the frequency of the token. The
distribution indicates that tokens that appear frequently in
Android versions often do not appear frequently in iOS ver-
sions, since that the programming languages and frameworks
of the two platforms are quite different. Figure 2(a) shows
the original token distribution of ANTLR3’s two language
versions. This distribution indicates that some tokens which
appear frequently in Java versions also appear frequently in
C# ones, as far as desktop projects are concerned. The
token distribution distance of WordPress is 1.367 (see Ta-
ble 4), while the token distribution distance of ANTLR3 is
0.252 (see Table 2). This reconfirms that the difference be-
tween the two token distributions of mobile apps is larger
than desktop projects.

Figure 1(b) shows the token distribution sorted by the
value of frequency. The horizontal axis denotes the tokens
that can be different for two versions. It is inspiring that
the curves in this figure coincide with each other as those
in Figure 2(b). Therefore, we speculate that there may ex-
ist a certain mapping between the high-frequency tokens of
each version. These mapped tokens may take over the same
task in each platform versions. Towards cross-platform clone
detection, we plan to mine the mappings based on the dis-
tribution in future work.

A similar result is found, when we plotted the token dis-
tributions for other apps and desktop projects. Due to space
limitation, we omit those figures.

3.2 RQ2: Identifier Similarity
For the nine mobile apps on Android and iOS, we calcu-
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Figure 2: Token Distribution (Java vs. C#)

lated their token distribution distance. In Table 3, the token
distribution distance of Facebook is quite larger than those
of the other apps, while Cordova has the smallest token dis-
tribution distance.

Furthermore, we calculated the token distribution of the
other nine cross-platform apps on Android, iOS and Win-
dows Phone by the pairwise comparison. Table 4 lists the
pairwise token distribution distances for the three platforms
of the other nine apps. We can see that for the same app,
the distance between iOS and Windows Phone is the largest.
For six out of nine apps, the distances between Android and
Windows Phone are shorter than those between Android and
iOS, while two out of nine apps lead to the opposite results.
For one out of nine apps, the distances between Android
and Windows Phone are almost the same as that between
Android and iOS. Through the pairwise comparison, we find
that identifiers of apps on Android and on Windows Phone
are relatively more similar.

We notice that compared with the distances of the cross-
language desktop projects in column “Distance” in Table 2,
the distances of cross-platform mobile apps are quite large.

3.3 RQ3: The Feasibility for Clone Detection.
As listed in Table 2, ANTLR3 has the smallest distance,

while Log4j/Log4net has the largest distance. Figure 3 [3]
shows the accumulated clone ratio distribution, w.r.t., the
diff distance. This is a result of our previous work. The high
the clone ratio is, the more accurate the clones detected by
diff identifier similarity are. For the same diff distance, the
order of the five projects, whose accumulated clone ratios
are from high to low, is ANTLR3, Lucene, FpML, Spring
and Log4j/Log4net. The order coincides with the one or-
dered by distance from low to high. Therefore, the smaller
token distribution distance is, the more accurate the clones
detected by diff identifier similarity are.

For the 18 cross-platform apps, the token distribution dis-
tances are relatively larger than the desktop ones. We manu-
ally investigate the code of small-size apps (i.e., RioBus, and
Adsota), and we find that these apps do not have code that
implements the same functionalities. In summary, based on
our results, due to the difference of programming languages



Table 3: Distance Between Android and iOS Apps
Application Distance

BlueSenseNetworks 1.514
Cordova 1.063

CycleStreets 1.621
Digipost 1.832

DuckDuckGo 1.757
Facebook 2.662
IRCCloud 1.256
OwnTracks 1.693

RioBus 1.386

Table 4: Pairwise Distance
Application

Distance
Andr vs. iOS iOS vs. WP WP vs. Andr

Adsota 0.940 1.170 1.469
BlinkID 1.499 1.790 1.285

LowaCodeCamp 1.128 1.231 0.923
OneSignal 1.079 1.299 1.283
OpenPKW 1.738 1.860 1.541
OwnCloud 1.425 1.657 1.439

VK 1.314 1.401 1.059
Wit 1.169 1.182 0.701

WordPress 1.367 1.563 1.170

and frameworks, an identifier-based approach is unlikely to
obtain the accurate results for mobile apps.

As we referred in Section 3.1, tokens may not be so simi-
lar directly, based on the token frequency in the app, there
may exist a certain mapping between the tokens whose fre-
quencies are close to each other. If the identifier similarity
is redefined by taking the mapping into consideration, the
high accuracy the clones detection can be achieved.

4. RELATED WORK
Kraft et al. [11] conduct the first study on cross-language

code clones. They implemented a tool called C2D2 based
on the CodeDOM library in the Microsoft .NET frame-
work, which uses NRefactory Library to generate the Unified
CodeDOM graph for both C# and VB.NET. Al-omari et
al. [1] also propose a clone detection approach for the .NET
language family as well, based on the Common Intermedi-
ate Language (CIL). It can detect cross-language clone pairs
in C#, J#, and VB.NET. This work focuses on desktop
projects and is based on the fact that different programming
languages share a common intermediate language. Zhou et
al. [14] and Chen et al. [2] perform Android application clone
detections based on static code analysis, but they just focus
on one platform.

5. CONCLUSION AND FUTURE WORK
This paper presents an empirical study on identifier sim-

ilarity in cross-platform mobile apps. Through comparing
the identifier similarity, we target at providing insights about
whether it is feasible to detect cross-platform clones based
on identifier similarity. Our experimental results show that
it is unlikely to obtain the accurate results if detecting cross-
platform clones based on only identifier similarity. However,
if the identifier similarity is redefined by taking into consider-
ation the identifier mapping (e.g., keyword this in Java will
be mapped to self in Objective-C), which are related to fre-
quency, more high accuracy it will achieve. Therefore, in fu-
ture work, we will mine the identifier mapping based on their
frequency, and go towards detecting cross-platform clones.
Since there exist many kinds of techniques to detect clones,
we also consider function-based or input/output-based clone
detection as our future work.
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