
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2017

Discovering historic traffic-tolerant paths in road networks Discovering historic traffic-tolerant paths in road networks

Pui Hang LI
Hong Kong Polytechnic University

Man Lung YIU
Hong Kong Polytechnic University

Kyriakos MOURATIDIS
Singapore Management University, kyriakos@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Theory and Algorithms Commons, and the

Transportation Commons

Citation Citation
LI, Pui Hang; YIU, Man Lung; and MOURATIDIS, Kyriakos. Discovering historic traffic-tolerant paths in road
networks. (2017). GeoInformatica. 21, (1), 1-32.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3430

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1068?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Geoinformatica manuscript No.
(will be inserted by the editor)

Discovering Historic Traffic-tolerant Paths in Road Networks

Pui Hang Li · Man Lung Yiu ·
Kyriakos Mouratidis

Received: date / Accepted: date

Abstract Historic traffic information is valuable in transportation analysis and planning,
e.g., evaluating the reliability of routes for representative source-destination pairs. Also,
it can be utilized to provide efficient and effective route-search services. In view of these
applications, we propose the k traffic-tolerant paths (TTP) problem on road networks, which
takes a source-destination pair and historic traffic information as input, and returns k paths
that minimize the aggregate (historic) travel time. Unlike the shortest path problem, the TTP
problem has a combinatorial search space that renders the optimal solution expensive to find.
First, we propose an exact algorithm with effective pruning rules to reduce the search time.
Second, we develop an anytime heuristic algorithm that makes ‘best-effort’ to find a low-
cost solution within a given time limit. Extensive experiments on real and synthetic traffic
data demonstrate the effectiveness of TTP and the efficiency of our proposed algorithms.

Keywords Road Networks · Road Traffic

1 Introduction

Nowadays, historic traffic information is extensively collected from roadside sensors [2]
and crowdsourcing techniques [4]. It is valuable in transportation reliability analysis [7,20],
e.g., evaluating the reliability of routes for representative source-destination pairs, and online
route services [4]. In order to support these applications, we propose a novel problem called
k traffic-tolerant paths (TTP). The idea of TTP is to extract a set of k paths P ks,d from
a road network such that it best approximates the shortest travel time for a given source-
destination (SD) pair (vs, vd) at any time. Specifically, this problem requires a road network

Man Lung Yiu was supported by ICRG grant G-YN38 from the Hong Kong Polytechnic University. Kyriakos
Mouratidis was supported by research grant 14-C220-SMU-004 from the Singapore Management University
Office of Research under the Singapore Ministry of Education Academic Research Funding Tier 1 Grant.

P. H. Li (�) ·M. L. Yiu
Department of Computing, The Hong Kong Polytechnic University
E-mail: {csphli, csmlyiu}@comp.polyu.edu.hk

K. Mouratidis
School of Information Systems, Singapore Management University
E-mail: kyriakos@smu.edu.sg

2 Pui Hang Li et al.

G(V,E,Wm) where Wm maps an edge to its travel time at m time instants. Given an
integer k and a SD pair (vs, vd), the TTP problem is to find a set of k paths from vs to vd,
denoted by P ks,d, that minimizes the following error:

ξ(P ks,d) =
1

m
·
m∑
j=1

((
min
p∈Pk

s,d

τj(p)

)
− τj(spj)

)
(1)

where τj(p) is the travel time of path p at time instant j and spj denotes the shortest path
from vs to vd at time instant j.

The rationale behind Equation 1 can be explained with the aid of Figure 1. The figure
shows the travel time along a UK highway road segment on weekdays of two weeks, demon-
strating that major fluctuations occur in the morning and in the evening. Due to this similar
and recurrent traffic pattern, fastest paths computed from historic traffic data are likely to
be the fastest paths in the future and this can be further leveraged to answer and accelerate
route queries. Inspired by this, we aim to extract a set of paths with the minimum travel
time discrepancy from the historic fastest paths at any time. Equation 1 captures exactly that
discrepancy. We present TTP applications in detail in Section 1.1.

 5

 10

 15

 20

 25

 30

 35

 0 4 8 12 16 20 24

Tr
av

el
 ti

m
e

(s
ec

)

Time period of a day

Mar 4
Mar 5
Mar 6
Mar 7
Mar 8

 5

 10

 15

 20

 25

 30

 35

 0 4 8 12 16 20 24

Tr
av

el
 ti

m
e

(s
ec

)

Time period of a day

Mar 18
Mar 19
Mar 20
Mar 21
Mar 22

(a) Mar 4-8, 2013 (b) Mar 18-22, 2013

Fig. 1 Travel time of a road segment on A417 Road in UK [5]

Observe that the minimization of ξ(P ks,d) in Equation 1 is equivalent to the minimization
of the following measure:

Ψ(P ks,d) =
m∑
j=1

min
p∈Pk

s,d

τj(p) (2)

because spj is independent of P ks,d and the summation function is distributive.
We illustrate TTP by the sample road network in Figure 2(a). Each edge is labeled with

m = 5 weights that represent the travel time of edges at 5 time instants (e.g., 8:00am on
July 1 – 5 and i.e., m = 5). Suppose that the source-destination pair is (vs, vd) = (v1, v7).
There are 6 possible paths from vs and vd, and their travel time at different time instants
are shown in Figure 2(b). For clarity, we indicate the intermediate nodes in a path in the
subscript, e.g., the path p5.4.3 passes through v5, v4, v3. Assume that k = 2. The optimal
path set is P k = {p4, p5.6} because it has the minimum Ψ(P k) value of 56.

Discovering Historic Traffic-tolerant Paths in Road Networks 3

1

2

s t
4

5 6

7

3

<8,3,7,2,3>
<6,9,9,5,2>

<6,2,5,5,6>

<3,8,9,6,1>

<5,8,4,9,9>

<10,8,1,11,8>

<6,9,3,4,4>

<2,4,2,6,2>

<8,2,7,7,2>

<8,6,4,8,5>

 0

 5

 10

 15

 20

 25

 30

July 1 July 2 July 3 July 4 July 5

tra
ve

l t
im

e
(m

in
)

time instant at 08:00

p2.3
p4.3

p4
p5.6

p5.4.3
p5.4

(a) A road network (b) Travel time of paths

Fig. 2 Running example

1.1 Applications

TTP can be applied in transportation planning analysis. Transportation planners evaluate
the reliability of transportation systems by analyzing the reliability of routes for represen-
tative SD pairs, which are chosen by their expertise. For example, representative source-
destination pairs could be: city center to airport, port to the industrial area, etc. Their current
practice [7,20] is to select only one route per SD pair and calculate the travel time reliability
of each route. Our proposed TTP can provide k paths instead of a single path per SD pair
to transport planners for reliability analysis. Since the k paths minimize historic aggregate
travel time, they can be regarded as the alternatives from which planners can obtain a more
comprehensive insight of the reliability of transportation systems. For example, four traffic-
tolerant paths for a SD pair (shown in Figure 3) can be adopted by transport planners for
reliability analysis.

Fig. 3 Traffic-tolerant paths in UK highway network, k = 4

4 Pui Hang Li et al.

Besides, with the advancement and wide deployment of mobile devices and car naviga-
tion systems, online route services have access to real-time traffic information1 and provide
users with shortest path(s) according to up-to-date traffic. In fact, the majority of queries are
recurrent queries issued by users daily, e.g., finding the fastest route from home to office at
8:00am every day. Such regular patterns appear in human trajectories, as revealed in current
scientific studies [14, 25].

Although an online route service may apply shortest path indices [8,9,12,15,22–24,27]
to answer queries efficiently, such indices incur substantial maintenance costs2 to deal with
frequent traffic updates (e.g., every 30 seconds [2]), making it hard to answer shortest path
queries with the latest traffic.

A promising method [21] is to pre-compute candidate paths (a solution pool) for users’
recurrent queries (in an offline phase) and then update their travel time by live traffic infor-
mation (during online operations). The candidate path with the shortest travel time is used to
answer queries. This approach eliminates the index maintenance cost and bounds the online
computation cost by the number of candidate paths. It scales better than existing methods
based on shortest path indices.

In the above candidate path approach, it is desirable to find a set of k candidate paths
per query (vs, vd) such that at least one of such paths is fast for (vs, vd) at any time. This
problem is challenging due to ever-changing traffic conditions. Although traffic conditions
change continuously, they exhibit some patterns which can be exploited for candidate path
selection. For example, Figure 1 shows the travel time along a road segment on weekdays
of two weeks. There are two obvious spikes during 8:00am – 9am and 6:00pm – 7:00pm in
these two weeks.

With traffic time patterns of road segments, by minimizing the travel time error Ψ(P ks,d),
we can obtain a set of traffic-tolerant paths (in Figure 3) and it is most likely that at least one
of them equals to or is comparably fast to the actual fastest path at current time. Although
Malviya et al. [21] have proposed some heuristics for finding these candidate paths, they do
not necessarily minimize the historic travel time error between those heuristic paths and the
fastest path in the road network.

1.2 Challenges and Contributions

Unlike the shortest path problem, the TTP problem has a combinatorial search space that
renders the optimal solution expensive to compute; it needs to find the k paths that minimize
the aggregate travel time in history among all possible paths for a SD pair. First, we pro-
pose an exact algorithm with effective pruning rules to reduce the search time. Second, we
develop an anytime heuristic algorithm that makes ‘best-effort’ to find a low-cost solution
within a given time limit. This paper is a substantial extension of our previous work [19].
In this paper, we elaborate our solutions in detail with examples, and give a proof on the
hardness of TTP. In summary, our contributions are as follows.

– We propose a novel problem called k traffic-tolerant paths query (TTP), which finds
application in transportation planning and online route services.

– We prove that the TTP problem is NP-hard.

1 Collected from roadside sensors [2], crowdsourcing [4], or traffic information providers [6].
2 The state-of-the-art shortest path index, AH [27], takes hundreds of seconds for index pre-computation

on a road network with a million nodes.

Discovering Historic Traffic-tolerant Paths in Road Networks 5

– We present an exact algorithm with effective pruning rules that computes the optimal
solution for TTP.

– We devise two heuristic algorithms for TTP. One of them offers an anytime feature
which returns a reasonably good solution within a given time budget.

The rest of this paper is organized as follows. We first discuss the related work in Sec-
tion 2. Subsequently, we formally define TTP in Section 3. We prove that the TTP problem
is NP-hard in Section 4. Then, we present an exact algorithm in Section 5 and two heuristics
in Section 6. Next, we elaborate on how to utilize TTP in applications in Section 7. We
evaluate our TTP algorithms in Section 8 and finally conclude our work in Section 9.

2 Related Work

As we mentioned in the introduction, Malviya et al. [21] propose some heuristics to generate
candidate paths for online route services with bounded cost. The heuristics do not necessar-
ily minimize the travel time error between those candidate paths and the fastest paths in the
historic data. In contrast, our TTP problem aims to minimize the historic travel time error
in order to produce a set of candidate paths robust to the real-time traffic. Their work cannot
be used for transportation reliability analysis as the heuristics may return some convoluted
paths, which are not considered by transport planners.

Historic traffic data have already been used for route planning. Kanoulas et al. [17] and
Demiryurek et al. [11] associate the traveling times of road segments with time-varying
functions which are established based on historic data. The functions capture the traffic
patterns of road segments and are used to compute the optimal path for a given day and
time. Gonzalez et al. [13] exploit the driving and road traffic patterns from historic data
in order to consider some non-trivial factors in route planning, such as the experience of
local expert drivers. When answering shortest paths queries, their work needs to traverse the
road network and hence the query cost is not bounded. Also, their routing algorithms only
consider the time-varying functions but ignore real-time traffic updates. Our TTP enjoys
bounded query cost and responds to live traffic information.

Probabilistic path queries proposed in [16] take traveling time samples for each edge
from historic traffic data and construct probability mass distributions for each segment. They
leverage the basic conditional probability principle to compute the paths that satisfy a weight
(traveling time) requirement l guaranteed by a certain probability τ . The queries require
users to specify l or τ . In transportation analysis, it is reasonable for planners to specify τ
and find highly reliable paths. However, in online route services, l and τ vary with different
SD pairs in practice and the selection of τ is not discussed in [16]. On the contrary, TTP
only requires a parameter of k and can be used for both applications.

Another main difference of TTP from time-dependent networks and probabilistic path
computation is the way to model historic traffic data. Time-dependent networks model the
historic data of each road segment as a time-varying function while probabilistic networks
represent the historic traffic of roads by different probability distributions. TTP regards the
traffic data as high-dimensional cost vectors and directly exploits them for path computation.

We notice the work of finding route skylines in road networks [18], which is to solve
multi-preference path queries and is similar to our Phase I discussed in Section 5.1. However,
our problem setting, which is to extract k paths that minimize aggregate travel time error, is
totally different.

6 Pui Hang Li et al.

3 Problem Setting

In this section, we present preliminaries and formulate the TTP problem. The following
table summarizes the notation used in our formulation and in the rest of the paper.

Table 1 Notation

Symbol Meaning
G(V,E,Wm) A directed and multi-weighted network

vs(vd) Source (Destination)
(vi, vj) An edge in E
wj(e) Travel time of e ∈ E at time instant j
E(p) The set of edges on path p
τj(p) Travel time of p at time instant j
Pks,d A k-combination

Ψ(Pks,d) Aggregate value of Pks,d

3.1 Definitions

Definition 1 (Road Network with Historic Traffic) A road network is modeled as a di-
rected and multi-weighted graph G(V,E,Wm), where V is the set of road junctions, E is
the set of road segments, and Wm : E → Rm+ is a mapping from edges to m-dimensional
cost vectors. Given an edge e ∈ E, we denote its weight vector by w(e) and its travel time
at the j-th time instant by wj(e).

In real world, wj(e) may correspond to the travel time of a road segment within the
j-th time frame, where the length of each time frame could be, e.g., 30 seconds [2] or 15
minutes [5]. We regard this real-world time frame as time instant and each of them is indexed
by an integer j. In practice, Wm is usually a subset of the entire historic traffic data and is
determined by users according to their needs.

Definition 2 (Loop-Free Path) A loop-free path p = 〈va1 , va2 , ..., van〉 is a sequence of
distinct nodes such that for 1 ≤ i < n, (vai , vai+1) ∈ E. The start and end nodes on p are
denoted by S(p) and T (p) respectively. They are also called the source (vs) and destination
(vd) of p.

For simplicity, we refer to a loop-free path as a path in this paper. The travel time of a path
p at time instant j is defined as:

τj(p) =

n−1∑
i=1

wj((vai , vai+1)) =
∑

e∈E(p)

wj(e) (3)

where E(p) denotes the set of edges on path p.
In this paper, we do not consider loops as they incur extra travel time. Our algorithms

are designed to avoid loops.

Discovering Historic Traffic-tolerant Paths in Road Networks 7

Definition 3 (k-Combination and Aggregate Score) Given a positive integer k, a k-
combination P ks,d = {p1, p2, ..., pk} is a set of k paths such that all of them have the
same start node vs and the same end node vd. The aggregate score of P ks,d is defined as

Ψ(P ks,d) =
m∑
j=1

min
p∈Pk

s,d

τj(p) (4)

We illustrate the above concepts on the road network in Figure 2. Each edge is la-
beled with a cost vector that represents its travel time at 5 (historic) time instants. Ta-
ble 2 displays all possible paths on the road network and their travel time. For the path
p1 = 〈v1, v2, v3, v7〉, its travel time at time instant 3 is: τ3(p1) = (7 + 4 + 3) = 14. As-
sume that k = 3, and consider a 3-combination P 3

1,7 = {p4, p5, p6} for instance. At time
instant 1, we have: minp∈P 3

1,7
τ1(p) = min{19, 17, 15} = 15. By summing up the scores

over all time instants, we obtain the aggregate score Ψ(P 3
1,7) is (15+16+12+21+8) = 72.

Definition 4 (k Traffic-tolerant Paths Query) Given a road network G(V,E,Wm),
vs, vd ∈ V , and a positive integer k, Traffic-tolerant Paths Query TTP(vs, vd, k) returns
a k-combination P ks,d such that for any possible P ′ks,t, Ψ(P ks,d) ≤ Ψ(P ′ks,t).

Let us use the road network in Figure 2 for illustration. Table 3 lists all possible 3-
combinations and their corresponding aggregates with v1 as source and v7 as destination.
There are

(
6
3

)
= 20 3-combinations in total. The optimal solution of TTP(v1, v7, 3) is

Popt = {p2, p3, p4} since its aggregate score Ψ(Popt) = (16 + 10 + 6 + 14 + 8) = 54 is
the minimum among all combinations.

Table 2 All possible paths from v1 to v7, with historic travel time

Path τ1 τ2 τ3 τ4 τ5

p1〈v1, v2, v3, v7〉 19 20 14 15 16
p2〈v1, v4, v3, v7〉 18 20 17 14 12
p3〈v1, v4, v7〉 16 10 6 16 14

p4〈v1, v5, v6, v7〉 19 16 20 21 8
p5〈v1, v5, v4, v3, v7〉 17 30 23 21 9
p6〈v1, v5, v4, v7〉 15 20 12 23 11

Table 3 All possible 3-combinations P 3
1,7 and their aggregate scores

{p1, p2, p3}: 58 {p1, p4, p5}: 70 {p2, p4, p6}: 65
{p1, p2, p4}: 70 {p1, p4, p6}: 66 {p2, p5, p6}: 70
{p1, p2, p5}: 74 {p1, p5, p6}: 71 {p3, p4, p5}: 56
{p1, p2, p6}: 72 {p2, p3, p4}: 54 {p3, p4, p6}: 55
{p1, p3, p4}: 55 {p2, p3, p5}: 55 {p3, p5, p6}: 56
{p1, p3, p5}: 56 {p2, p3, p6}: 56 {p4, p5, p6}: 72
{p1, p3, p6}: 57 {p2, p4, p5}: 72

8 Pui Hang Li et al.

4 Problem Hardness

In this section, we prove TTP is NP-hard by reduction from the Set-Cover problem, paving
the way of devising heuristics in Section 6.

Theorem 1 The TTP problem is NP-hard.

Proof We can express an instance of the TTP problem in two equivalent forms:
(i) a graph-based instance 〈G(V,E,Wm), vs, vd, k〉, or (ii) a matrix-based instance
〈k,m, n, {(i, j, τj(pi))}〉, like Table 2. In the latter representation, m represents the num-
ber of time instants, n represents the number of possible paths from vs to vd in the graph
G, and the set {(i, j, τj(pi))} records the travel time of each path pi at each time instant j,
for 1 ≤ i ≤ n and 1 ≤ j ≤ m. To facilitate our proof, we consider the decision version
of the TTP problem, asking whether there exists a set of k paths P = {px1 , px2 , · · · , pxk},
among those n possible paths, such that the score

∑m
j=1 minp∈P τj(p) equals to 0.

Next, we present a reduction scheme that converts any given instance of the Set-Cover
problem [10] into a matrix-based instance of the TTP problem. Let 〈k, CS = {Si}, U〉 be
an instance of Set-Cover, where k is an integer,U is a domain set of items,CS is a collection
of subsets Si ⊆ U . This problem asks whether there exists a size-k collection CS′ ⊆ CS
such that they cover all items in U , i.e.,

⋃
Si∈CS′ Si = U . The reduction scheme is as

follows:

– We set m = |U | and n = |CS|. The value of k is the same in both problems.
– Without loss of generality, we rename the items in U as 1, 2, · · · ,m (in the Set-Cover

instance).
– For each subset Si ∈ CS and each item j ∈ U , we set τj(pi) = 0 if j ∈ Si, or set
τj(pi) = 1 otherwise.

There exists a graph-based instance 〈G(V,E,Wm), vs, vd, k〉withO(n) vertices, as shown
in Figure 4, that corresponds to the matrix-based instance 〈k,m, n, {(i, j, τj(pi))}〉 con-
structed above. In this graph, the paths connecting vs and vd are disjoint.

s t

b b b b b b

b b b b b b

b b b b b b

p1

p2

pn

b b b b b b

Fig. 4 A graph-based instance corresponding to any given instance of the Set-Cover problem

In the subsequent discussion, we focus on the matrix-based instance of TTP only. Note
that the size of the constructed TTP instance 〈k,m, n, {(i, j, τj(pi))}〉 is polynomial to the
size of the given Set-Cover instance 〈k, CS = {Si}, U〉. Also, the construction process
takes polynomial time.

Now, we show that a solution CS′ of Set-Cover instance corresponds to a solution P of
the corresponding TTP instance with aggregate score

∑m
j=1 minp∈P τj(p) equal to 0.

Discovering Historic Traffic-tolerant Paths in Road Networks 9

We first convert a given CS′ = {Sx1 , Sx2 , · · · , Sxk} to a corresponding P =
{px1 , px2 , · · · , pxk} and then derive its aggregate score. By checking the occurrences of
items 1, 2, · · · ,m in each Sxi , we derive:

|
⋃

Sxi
∈CS′

Sxi | =
m∑
j=1

B(
k∨
i=1

(j ∈ Sxi))

where B(·) is an indicator function that maps true to 1 and maps false to 0. Since CS′

is a solution of Set-Cover, each item j ∈ U must appear in some Sxi . According to our
reduction scheme, the corresponding τj(pxi) in our constructed instance must be 0. Thus,
we obtain:

∑m
j=1 minki=1 τj(pxi) = 0.

We then convert a given P = {px1 , px2 , · · · , pxk} to a corresponding CS′ =
{Sx1 , Sx2 , · · · , Sxk}. Since P is a solution, for each time instant j, there exists some path
pxi such that τj(pxi) = 0. According to our reduction scheme, for each item j, there is a
corresponding Sxi (in Set-Cover solution) that contains j. Therefore, CS′ covers all items
in U , and it is a solution of Set-Cover.

Since the Set-Cover problem is NP-hard [10], this proof implies that the TTP problem
is also NP-hard. ut

It is tempting to adapt existing heuristics for the Set-Cover problem to solve our TTP
problem since they are both NP-hard problems. However, in certain cases this does not
work. Observe that, the above reduction converts a given Set-Cover instance into to a TTP
instance with τj(pi) as binary values (i.e., either 0 or 1). Existing heuristics for the Set-
Cover problem can only be used to solve those TTP instances with binary τj(pi), but not
general TTP instances with τj(pi) as non-negative real values.

5 Exact Method

In this section, we present an exact method for TTP. Our exact method for TTP (Algo-
rithm 1) consists of two phases: (Phase I) generating a set C of candidate paths and (Phase
II) finding the optimal combination of k paths from the set C.

A simple implementation is to enumerate all possible paths from vs to vd and then
examine all size-k combinations of the paths. As an example, we assume k = 3 and consider
the SD pair (v1, v7) in the road network in Figure 2. Since there are |C| = 6 possible
paths (from v1 to v7) in the road network, we would enumerate

(|C|
k

)
=
(
6
3

)
= 20 size-3

combinations in total. However, this implementation does not scale well with a large road
network.

In the light of this, we optimize the algorithms for both phases to reduce the search space(|C|
k

)
. For Phase I, we develop pruning rules to eliminate unpromising paths that cannot

contribute to the optimal solution (effectively, to reduce value |C|). For Phase II, we adopt
the branch-and-bound paradigm and design pruning rules to discard partial combinations
that cannot lead to the optimal solution.

5.1 Phase I: Generating Candidates

We face two challenges in generating candidate paths. First, the number of all possible paths
from source to destination is incredibly large on a sizable road network. Exploring all of

10 Pui Hang Li et al.

Algorithm 1 Exact (Node vs, Node vd, Integer k)
1: C ← GenerateCandidates (vs, vd, k) . Phase I
2: Pkopt ← FindOptimal (k, C) . Phase II
3: return Pkopt

them is impractical. Second, many paths lead to long travel time; such paths could not be
included in the optimal solution.

To overcome both challenges, we prune unpromising paths by leveraging the dominance
property. Since every edge in the road network has a cost vector w(e) with size m, all
possible paths p connecting a SD pair have a m-dimensional cost vector −→p also. As p
corresponds to a vector, we can define and exploit dominance of paths.

Definition 5 (Vector and Path dominance) Let−→v and −→u be two m-dimensional vectors.
−→v is said to dominate −→u if and only if ∀1 ≤ j ≤ m,−→v .j ≤ −→u .j. We denote this as
−→v � −→u .

Let p and p′ be two paths from vs to vd. p′ is said to dominate p if and only if
−→
p′ � −→p .

Vector dominance implies the following property, which we will use later.

Lemma 1 (Dominance property) Given two vectors −→v and −→u , if −→v � −→u , then∑m
j=1
−→v .j ≤

∑m
j=1
−→u .j.

The concept of path dominance is visualized in Figure 5. A dimension is the travel time
of a path at a particular time instant and a point represents a path from vs and vd. Every
point corresponds to a dominance region. For example, p3 with −→p3 = 〈3, 4〉 dominates the
points in the blue area , and p4 with −→p4 = 〈4, 2〉 dominates the paths in the red area.

Recall that TTP minimizes the aggregate value derived by the paths in a k-combination.
Thus, we aim to retain those paths with short travel time over m time slots. By the concept
of path dominance, if a path p′ dominates another path p, this implies p′ has smaller travel
time than p at all time instants, so p should be pruned in Phase I. This dominance concept
leads to the following pruning rule.

Table 4 Cost vector representations of paths and combinations

Type Cost Vector −→v = 〈−→v .1,−→v .2, · · · ,−→v .m〉
Path p −→p = 〈· · · , τj(p), · · · 〉

Combination P
−→
P = 〈· · · ,minp∈P τj(p), · · · 〉

Prefix path p̂
−→
p̂ = 〈· · · , LBj(p̂), · · · 〉

Pruning Rule 1 (Path Dominance Pruning) Given a path p, if there is a path p′ such that
−→
p′ � −→p , then p can be pruned.

Proof For the sake of discussion, we let p1 = p and p′1 = p′. Consider a k-combination
that contains p1, say P = {p1, p2, ..., pk}. Suppose there is a path p′1 such that

−→
p′ � −→p1

and another k-combination is formed P ′ = {p′1, p2, ..., pk}.
Consider the j-dimension of the cost vectors and

−→
P and

−→
P ′. Observe that

−→
P .j =

min{τj(p1), τj(p2), · · · , τj(pm)} and
−→
P ′.j = min{τj(p′1), τj(p2), · · · , τj(pm)}. Since

Discovering Historic Traffic-tolerant Paths in Road Networks 11

0 2 8 4 6 10

2

4

6

8

Fig. 5 Concept of path dominance (τ1 and τ2 are historic travel time of paths)

p′1 � p1, we have
−→
P ′.j ≤

−→
P .j. By Lemma 1, we derive

∑m
j=1

−→
P ′.j ≤

∑m
j=1

−→
P .j. Thus,

Ψ(P ′) ≤ Ψ(P) and the pruning rule is proven. ut

This pruning rule is applicable only when all possible paths between vs and vd are
known. However, enumerating all possible paths is expensive even on a medium-sized road
network. Consequently, we aim to avoid exploring the entire search space during enumera-
tion.

Observe that many paths share a common prefix among all possible paths from vs to vd.
During path enumeration, we can safely disqualify a prefix path (before it reaches vd) by
computing the minimum possible travel time of the paths originating from a common prefix
at each time instant j, denoted by LBj(p̂). It is a sum of two terms: (i) the exact travel time
of a prefix at time instant j, i.e., τj(p̂) and, (ii) the minimum travel time from the end node
of the prefix to vd. A prefix path p̂ and LBj(p̂) are defined as follows.

Definition 6 (Prefix Path) Given a path p = 〈va1 , va2 , ..., van〉, p̂ = 〈vâ1
, vâ2

, ..., vâm
〉 is

a prefix path of p if and only if m ≤ n and for 1 ≤ i ≤ m, vai = vâi
.

Definition 7 (Travel Time and Cost Vector of Prefix Path) Given a prefix path p̂, for
1 ≤ j ≤ m, LBj(p̂) is calculated as

LBj(p̂) = τj(p̂) + τj(sp
last
j)

where τj(p̂) =
∑
e∈E(p̂) wj(e) denotes the exact travel time of a prefix at time instant j

and splastj denotes the shortest path from the last node of p̂ to vd at time instant j.

The lower-bound cost vector of p̂, denoted by
−→
p̂ , is defined as

−→
p̂ =

〈LB1(p̂), LB2(p̂), ..., LBm(p̂)〉.

For example, let us consider p̂ = 〈v1, v5〉 and LB2(p̂) in our sample network. We have
τ2(p̂) = 8 and τ2(splast2) = 8, where splast2 = 〈v5, v6, v7〉. Hence, LB2(p̂) = (8 + 8) =

16. By computing LBj(p̂) for 1 ≤ j ≤ m, we obtain a cost vector
−→
p̂ that lower bounds the

cost vector of any path sharing the common prefix p̂. Similarly, we can apply the dominance
concept and the pruning rule for

−→
p̂ .

12 Pui Hang Li et al.

Pruning Rule 2 (Prefix Path Pruning) Given a set of paths D and a prefix path p̂, if there

is a p′ ∈ D such that
−→
p′ �

−→
p̂ , then every path p with the prefix p̂ can be pruned.

Algorithm 2 DepthFirstSearch implements GenerateCandidates
Algorithm DepthFirstSearch (Node vs, Node vd)

1: Initialize p̂← 〈vs〉
2: Initialize C ← ∅
3: Compute τj(v, vd) for each v ∈ V and each time instant j . by Reverse Dijkstra’s algorithm
4: D ← compute a set of paths by heuristics . Section 5.1.1
5: RecurDFS (vs, vd, p̂, D, C) . candidates stored in C
6: Add D into C . for correctness
7: return C

Algorithm RecurDFS (Node vs, Node vd, Path p̂, Path set D, Path set C)
1: ulast ← T (p̂)
2: if ulast 6= vd then
3: if ∀p ∈ D,

−→
p̂ is not dominated by −→p then . pruning rule

4: for each node v adjacent to ulast do
5: if v /∈ p̂ then
6: append v to p̂
7: RecurDFS (vs, vd, p̂, D, C)
8: remove v from p̂

9: else
10: C ← C ∪ {p̂}

We present the implementation of Phase I in Algorithm 2. First, we initialize an empty
prefix path and an empty candidate set C. The former is to store the currently expanded prefix
path while the latter aims to maintain the candidates found. Next, we compute the shortest
path distances from v ∈ V to vd for each time instant j and apply a heuristic to find a set
of pruning paths D. All of them will be used to support our pruning rules. We will discuss
how to select the setD shortly (Section 5.1.1). Then, we apply a DFS-like procedure to find
all qualified candidates. The procedure recursively constructs different prefixes stemming
from vs and compares them againstD. If a prefix is dominated by a path inD, the algorithm
discards and stops expanding the prefix. Otherwise, the recursion keeps expanding the prefix
by visiting the neighbors of its end node until reaching vd. Each completely expanded path
(from vs to vd) becomes a candidate for the next phase. Finally, D is added to the candidate
set D for correctness. Notice that it is possible that Algorithm 2 could produce only one
candidate, implying that the candidate has been the shortest path in the entire traffic history.

5.1.1 Selection of the Pruning Path Set D

In the previous section, we mentioned that every path p corresponds to distinct dominance
regions. The selection of D is critical for pruning efficiency. Including too many paths in
D may actually cripple performance because pruning becomes too slow (we need to check
every element against a prefix path one by one). We have empirically found thatD yields the
best performance in most cases when it includes the k + 1 paths described below. Note that
this does not affect correctness, but only determines the trade-off between the effectiveness
of pruning and its processing overhead.

We first introduce a new notation of edges, ws(e). It represents the weight of an edge
dedicated to shortest path search and is used to find D. ws(e) is introduced in order not to

Discovering Historic Traffic-tolerant Paths in Road Networks 13

mix with wj(e). Initially, for every edge, we add up the travel time of the edge of all m
time instants, i.e., ws(e) =

∑m
j=1 wj(e)/m. Then, we compute the shortest path between

vs and vd using ws(e) and insert it into D. The intuition is that a path is not bad at all time
instants.

Next, in the road network, we set the weight of each edge e to ws(e) = minmj=1 wj(e).
We then execute the following steps for k iterations. In each iteration, we perform a shortest
path search from vs to vd, obtain a shortest path spi, and insert it into D. Then, we update
ws(e) = maxmj=1 wj(e) for each edge e on spi. We hope that this would force the shortest
path search in subsequent iterations to find other paths that are significantly different from
spi.

5.2 Phase II: Finding Optimal Combination

In this section, we present the implementation for Phase II, i.e., enumerating k-combinations
of paths from the candidate set C in order to find the optimal k-combination. Since we have
obtained the cost vectors of candidate paths in Phase I, the road network is no longer required
in this phase.

The number of k-combinations of paths is
(|C|
k

)
, so it is expensive to generate them, es-

pecially when |C| is large. Thus, we develop pruning rules to prevent exploring unnecessary
k-combinations. The key idea of the pruning rules is to early stop extending any partial com-
bination P̂ (which contain fewer than k candidates) by computing its lower bound aggregate
value.

Continuing with our running example, Table 3 lists out all 3-combinations and their ag-
gregate travel time errors. Observe that some of the combinations share common paths. For
example, {p1, p2, p3}, {p1, p2, p4}, {p1, p2, p5} and {p1, p2, p6} have {p1, p2} as com-
mon paths. Suppose that Pbest = {p1, p2, p3} is the best combination found so far and
Ψ(Pbest) is 58. Let us consider a partial combination P̂ = {p1, p2, p∗}, where {p1, p2}
are fixed paths P̂f and p∗ is a variable path selected from P̂v = {p4, p5, p6}. We can de-
rive the lower bound aggregate value of P̂ , denoted by Ψlb(P̂), using Definition 8. Ψlb(P̂)
is calculated as

∑m
j=1 min{minp∈{p1,p2} τj(p),minp∗∈{p4,p5,p6} τj(p∗)} = 15 + 16 +

12 + 14 + 8 = 65 according to Table 3. Since Ψlb(P̂) > Ψ(Pbest), we can safely discard
three combinations derived from P̂ , namely {p1, p2, p4}, {p1, p2, p5} and {p1, p2, p6}, by
Pruning Rule 3.

Definition 8 (Lower Bound Aggregate Value of Partial k-combination) Given a partial
k-combination P̂ with its fixed path set P̂f and variable path set P̂v , Ψlb(P̂) is defined as

m∑
j=1

min{min
p∈P̂f

τj(p), min
p∗∈P̂v

τj(p∗)} (5)

With the above lower bound cost equation, we derive the following pruning rule.

Pruning Rule 3 (Partial k-combination Pruning) Let Pbest be a known k-combination.
Given a partial combination P̂ , if Ψlb(P̂) > Ψ(Pbest), then the derived combinations of P̂
can be pruned.

14 Pui Hang Li et al.

5.2.1 Efficient computation of Ψlb(P̂) by T C matrix

It is expensive to compute Ψ(P̂) by Definition 8 directly because the term minp∗∈P̂v
τj(p∗)

takesO(|P̂v|) computation time. We propose a structure called T C matrix to support retriev-
ing term minp∗∈P̂v

τj(p∗) in constant time.
The T C matrix is a n × m matrix, where m is the number of time instants and n is

the size of C. Its entries are used to store the lower bound travel time of some variable path
sets, i.e., minp∗∈P̂v

τj(p∗) in Equation 5. Let C = {c1, c2, ..., cn} and the entry T C[i, j]
be defined as the lower bound travel time of ci, ..., cn at the j-th time instant:

T C[i, j] =
n

min
x=i

τj(cx) (6)

Table 5 illustrates the T C matrix for the paths in Table 2. Intuitively, the i-th row of
T C, denoted by T C[i, ·], is the lower bound cost vector of the candidates ci, ..., cn and
supports our partial k-combination pruning. By constructing the T C matrix incrementally
in descending order of i, we can achieve O(n ·m) construction time.

Next, by using T C matrix in Table 5, we illustrate how to compute the lower bound
cost of a partial combination P̂ . Suppose k = 3 and consider P̂ with P̂f = {p4, p5}
and P̂v = {p6, p2, p1}. To calculate Ψlb(P̂), we first fetch the cost vectors of p4, p5 from
Table 2, which are 〈19, 16, 20, 21, 8〉 and 〈17, 30, 23, 21, 9〉. Next, we fetch the lower bound
cost vector 〈15, 20, 12, 14, 11〉 of P̂v , i.e., T C[3, ·], from Table 5. Note that we need to
compute this lower bound cost vector from scratch if we do not maintain T C matrix. Then,
we combine these three cost vectors by taking the minimum value in each dimension to
obtain 〈15, 16, 12, 14, 8〉, and calculate the lower bound cost as: Ψlb(P̂) = (15 + 16 +
12 + 14 + 8) = 65. If Pbest = {p2, p3, p4} with Ψ(Pbest) = 54, we do not examine
all 3-combinations derived from P̂ (i.e., {p4, p5, p6}, {p4, p5, p2} and {p4, p5, p1}) since
Ψ(Pbest) < Ψlb(P̂).

Table 5 T C matrix for paths in Table 2, ordered by τmin(p)

Content of C Path τ1 τ2 τ3 τ4 τ5

c1 p3 15 10 6 14 8
c2 p4 15 16 12 14 8
c3 p5 15 20 12 14 9
c4 p6 15 20 12 14 11
c5 p2 18 20 14 14 12
c6 p1 19 20 14 15 16

5.2.2 Enumeration Algorithm

We adopt the branch-and-bound paradigm together with partial k-combination pruning to
enumerate the optimal solutions efficiently. Algorithm 3 shows the pseudocode for enumer-
ating path combinations and finding the optimal k-combination Popt with the aid of T C
matrix. First, we compute the T C matrix of C. Next, we execute RecurBranch recursively
to insert the i-th candidate ci into P̂ . If P̂ contains fewer than k paths, then we compare its
lower bound cost (Ψlb(P̂)) with that of the best combination found so far (stored in Popt).
If P̂ has a smaller cost, then we call RecurBranch to further expand it. When P̂ contains k
paths, we can compute its exact cost and check whether it is better than the current Popt.

Discovering Historic Traffic-tolerant Paths in Road Networks 15

The effectiveness of partial combination pruning depends on how early we can obtain
a complete k-combination with a high pruning power, i.e., close to the optimal solution. In
order to achieve early discovery, we insert the candidates in ascending order of τmin(p) =
minmj=1 τj(p) to P̂ as shown in Table 5 and Algorithm 3 since this order intuitively allows
early discovery of a good k-combination.

Theorem 2 The time and space complexities of Algorithm 3 areO(m·
(|C|
k

)
) andO(|C|·m)

respectively.

Proof In the worst case, if the pruning rules do not work, Algorithm 3 enumerates all
(|C|
k

)
combinations and takesO(m) time to compute Ψ per combination. Therefore, it takesO(m·(|C|
k

)
) time. We need to maintain the cost vectors of the candidates (e.g., Table 2) and their

corresponding T C matrix. Both of them require O(|C| · m) space and hence Algorithm 3
requires O(|C| ·m) space too. ut

Theorem 3 The exact algorithm yields the optimal solution of TTP.

Lemma 2 Phase I of exact algorithm preserves all non-dominated paths.

Proof We prove this lemma by contradiction. Assume Phase I of exact algorithm does not
preserve all non-dominated paths, i.e., a non-dominated path p′ ∈ D̄ is pruned. By Pruning
Rule 1, if p′ is pruned, there exists another path p′′ such that p′′ � p′. This contradicts
p′ ∈ D̄. Thus, the proof is completed. ut

Lemma 3 Phase II of exact algorithm yields the optimal solution of TTP.

Proof In the worst case, Phase II computes all path combinations formed by the candidates
C in Phase I. By Pruning Rule 3, all disqualified combinations can be discarded by the best
combination found so far Pbest and Pbest will be the optimal solution finally. Hence, the
exact algorithm yields the optimal solution of TTP and the proof is completed. ut

6 Heuristic Methods

Since our problem is NP-hard, our proposed exact algorithm may incur high running time in
the worst case. In this section, we present two heuristics to bound the number of candidates
|C| and thus reduce the computation cost. First, we propose a method (TP) that reduces the
cost of candidate generation by a heuristic (Phase I). Second, we develop a method (ATP)
that makes ‘best-effort’ to find a low-cost solution within a given time limit.

6.1 Top-Picker Algorithm

In our exact algorithm, the candidate set C is large even if we apply pruning rules in Phase
I. This leads to a huge number of path combinations in Phase II. In order to reduce the total
computation cost, Top-Picker Algorithm (TP) generates a bounded number of candidates
by a heuristic (Phase I) and reuses the combination enumeration of the exact method (Phase
II).

The idea of TP is to limit the size of the candidate set C, say, to at most m. It computes
the shortest path spj (from vs to vd) at each time instant, and then inserts these paths into
the candidate set C.

16 Pui Hang Li et al.

Algorithm 3 BranchEnumerate implements FindOptimal
Algorithm BranchEnumerate (Integer k, Paths C)

1: Initialize Popt ← ∅ . optimal solution in Popt
2: Cs ← sort C in ascending order of τmin
3: Compute the matrix T C by using Cs
4: for i← 1 to |Cs| − k + 1 do
5: P̂ ← {csi }
6: RecurBranch (k, P̂ , Cs, T C, Popt)
7: return Popt

Algorithm RecurBranch (Integer k, Path set P̂ , Path set Cs, Matrix T C, k-combination Popt)
1: if |P̂ | < k then
2: z ← largest index of candidates in P̂
3: for i← z + 1 to |Cs| − (k − |P̂ |) + 1 do
4: P̂ ← P̂ ∪ {csi }
5: if Ψlb(P̂) < Ψ(Popt) then . by using T C
6: RecurBranch (k, P̂ , Cs, T C, Popt)
7: P̂ ← P̂ \ {csi }
8: else
9: P ← P̂ . becomes a k-combination

10: if Ψ(P) < Ψ(Popt) then
11: Popt ← P

Let us use Table 2 as an example with k = 3. First, we find the shortest paths at each
time instant, which are p6, p3, p3, p2, p4, respectively. Then, we insert these paths into the
candidate set C = {p2, p3, p4, p6}. In Phase II, we apply Algorithm 3 to enumerate all
3-combinations of C, such as {p2, p3, p4}, {p2, p3, p6}, {p2, p4, p6}, {p3, p4, p6}. Finally,
we compute their costs and return Popt = {p2, p3, p4}.

Theorem 4 The time complexity of Top-Picker Algorithm is O(m · (D +
(
m
k

)
)) where D

is the time complexity of the shortest path algorithm. Its space complexity is O(max{|V |+
|E|,m2}).

Proof In Phase I, TP executes shortest path search m times to find the candidate set C,
resulting in time complexity O(m · D), where D is the time complexity of the shortest
path algorithm. Since the size of C is at most m, Phase II may examine at most

(
m
k

)
path

combinations and take O(m) to derive Ψ . As a result, the time complexity of Top-Picker
Algorithm is O(m · (D +

(
m
k

)
)).

We need to maintain the road network for shortest path search in Phase I, which requires
O(|V |+|E|) space. In Phase II, we can solely maintain the cost vectors of all candidates and
T C matrix, which requires O(m2) space. Therefore, its space complexity is O(max{|V |+
|E|,m2}). ut

6.2 Anytime Top-Picker Algorithm

In some applications, the query user (e.g., transportation planner) is fine with an approx-
imate solution and specifies a time limit Tlimit for finding the solution. To support this
requirement, we propose the Anytime Top-Picker Algorithm (ATP), which attempts to find
a good approximate solution for TTP within a given time limit.

Discovering Historic Traffic-tolerant Paths in Road Networks 17

Algorithm 4 GeneratePaths-TP (Node vs, Node vd)
1: Initialize C ← ∅
2: for j ← 1 to m do
3: spj ← the shortest path from vs to vd at instant j
4: if spj is not in C then
5: C ← C ∪ {spj}
6: return C

In order to allocate the time fairly on (i) finding candidates and (ii) enumerating path
combinations, we interleave phases I and II in this algorithm. For this purpose, we imple-
ment an incremental function for Phase I, called GetNextSP(), as shown in Algorithm 5. It
iteratively returns distinct shortest paths across the given m time instants until exhausting
all of them. Algorithm 6 shows the pseudocode of ATP. Initially, ATP fetches k distinct
shortest paths overm instants and stores them into a candidate set C. These k paths are used
to initialize the best combination found so far Popt. If there is time left, then it retrieves
another shortest path sp. Subsequently, a new k-combination P is formed by combining sp
with each (k − 1)-combinations of C, and replaces the current optimal solution if it has a
better score. Upon reaching the time limit or exhausting all shortest paths, the algorithm
returns the best combination found so far Popt as the result.

Algorithm 5 GetNextSP (Node vs, Node vd, Hash TableH)
1: for each unscanned instant j do
2: sp← the shortest path from vs to vd at instant j
3: if sp is not inH then
4: Insert sp toH
5: return sp
6: return ∅

Algorithm 6 AnytimeTP (Node vs, Node vd, Integer k, Time Tlimit)
1: C ← ∅, Popt ← ∅
2: Initialize a hash tableH
3: for i← 1 to k do
4: sp← GetNextSP (vs, vd,H)
5: C ← C ∪ {sp}
6: Popt ← C
7: while sp← GetNextSP (vs, vd,H) do
8: for each (k − 1)-combination Pk−1 of C do
9: if Tlimit is used up then

10: return Popt
11: Pcur ← Pk−1 ∪ {sp}
12: if Ψ(Pcur) < Ψ(Popt) then
13: Popt ← Pcur

14: C ← C ∪ {sp}
15: return Popt

We illustrate how ATP works in the example in Table 2. Assume k = 3 again. Table 6
shows the detailed execution steps of ATP. First, we fetch k = 3 paths (i.e., p6, p3, p2) and

18 Pui Hang Li et al.

insert them into the candidate set C. Next, we initialize Popt = C = {p6, p3, p2}, whose
score is Ψ(Popt) = 55. If there is time left, then we fetch the next distinct shortest path
(p4). Then, we enumerate all 2-combinations of C, such as {p6, p3}, {p3, p2} and {p6, p2},
and combine each of them with p4 to form a new 3-combination. If a new combination has
a smaller score, then it becomes the current optimal result. Finally, the algorithm reports
{p2, p3, p4} with Ψ = 54 as the answer.

Table 6 Execution steps of ATP on the example in Table 2

Procedure Checked P 3
1,7 Ψ(P 3

1,7) Current Popt
Initialize {p6, p3, p2} 55 {p6, p3, p2}

GetNextSP : p4 {p4} ∪ {p6, p3} 55 {p6, p3, p2}
{p4} ∪ {p6, p2} 65 {p6, p3, p2}
{p4} ∪ {p3, p2} 54 {p2, p3, p4}

7 TTP in Practice

7.1 Selection Policy

Up to the previous section, we implicitly assume that we are given a set of traffic data to
compute TTPs. In practice, the set of traffic data may be extracted from a large traffic data
repository. For example, users (e.g., transportation planners and analysts) are interested in
only a small portion of the data (e.g., the most recent) since the volume of the entire traffic
data is huge.

Therefore, in this section, we discuss some guidelines for selecting a subset of traffic
data. We call the set of guidelines a selection policy which is suited to the application sce-
narios we discussed in Section 1.1. It contains two parameters, namely the number of days
(D) and the number of time instants per day (L). The following discussion on selection pol-
icy is in the context of online route services. However, the selection policy for transportation
analysis can be defined similarly.

Intuitively, D determines how many historic traffic records are used for pre-
computation. Including all traffic recorded several years ago from the time of recurrent route
queries may not be useful since the traffic patterns may change over time. In contrast, only
considering the traffic data collected few weeks or months ago from the time of the queries
may be more meaningful as they reflect the recent traffic of the road network.

Besides, the collection period of historic traffic data is equally important. If the journey
starts in the morning, it is not reasonable to include the traffic data recorded at midnight since
the traffic conditions during these two periods are expected to be different. Additionally, we
expect that there is a periodicity in traffic and the traffic at the same ‘hours’ on different dates
has similar patterns. For example, the traffic between 8:00am and 9:00am on weekdays in
a month is expected to be similar since the majority of citizens go for work in these peak
hours and the traffic in this period may be useful to a route which starts, say, at 8:00am. We
consider this daily time window for path pre-computation as another selection parameter
(L) - the number of time instants per day.

Using our approach for short periods is more suitable for online route services since
historic traffic data over short periods reveal limited short-term fluctuation in travel time of
road segments. In contrast, using historic traffic data with too many time frames introduces

Discovering Historic Traffic-tolerant Paths in Road Networks 19

much fluctuation and may weaken the robustness of TTPs as they need to take them into
account while the number of paths remains unchanged.

The policy we recommend is a simple but intuitive policy to extract a subset of historic
traffic data. It can be further extended to take weekday patterns into account. This can be
realized by introducing an additional parameter (W) which determines if the traffic of a
particular weekday is considered. For instance, if users are interested specifically in Friday
traffic at 18:00-19:00, they can extract the historic traffic that matches the criteria in the
past few months and apply it to TTP. With rich knowledge on the road network and traffic
of their cities, system administrators or transportation analysts can highly customize the
selection policy and hence exploit meaningful historic traffic data for traffic-tolerant paths
computation.

To sum up, the selection policy determines a subset of historic traffic data for pre-
computation. We are going to evaluate the effect of the two parameters on the accuracy
of TTPs in our experiments (Chapter 8). However, the art of designing and customizing an
appropriate selection policy is orthogonal to our approach.

7.2 TTP in Online Route Services

In this paper, we emphasize on recurrent queries (e.g., finding the fastest route from home
to office at 8:00am every day). The source and destination can be identified from users’
query history or it can be pre-defined by users. For example, Google Now allows users to
specify home and workplace, and reports the fastest route to the users every morning. It is
also able to discover users’ frequently visited places and provide corresponding navigation
suggestions. In the context of recurrent queries, TTPs act as candidate paths. We recommend
to update TTPs offline periodically (e.g., weekly) in order to reflect the recent traffic patterns
of road networks. The update frequency can be determined by system administrators. As the
source and destination of recurrent queries are given, it is not necessary to decide how to
select the pairs of query locations and how many such pairs should be selected.

However, our TTP framework can be extended in order to answer online ad-hoc route
queries. A straightforward adaption of TTP to cope with situations like sudden changes in
traffic conditions (e.g., traffic accidents, protests, and congestions) is that we check whether
there are any segments on TTPs suffering serious congestions and then we replace those
congested segments with other segments offering shorter travel time in an online phase.

For instance, we have a traffic-tolerant path p = 〈vs, ..., vu, ..., vw, ..., vt〉 and find that
the segment sold = 〈vu, ..., vw〉 is undergoing a traffic jam. We search for the fastest path
between vu and vw (sp) based on the current traffic and replace sold with sp. Since vu and
vw are close to each other, the cost of fastest path search is small. This adaption not only
preserves the quality of traffic-tolerant paths but also maintains reasonable query time.

Another possible extension can also be used to answer ad-hoc route queries. This ex-
tension is divided into 2 phases, namely offline and online phases. In offline phase, we di-
vide the road network into partitions. Each partition has border nodes (i.e., nodes that are
adjacent to some node in another partition); any path between two different partitions must
pass through border nodes of the partitions. Therefore, we can pre-compute k traffic-tolerant
paths between all pairs of border nodes. In online phase, when an ad-hoc route query comes,
we execute forward and backward Dijkstra from source and destination respectively to their
nearest borders based on live travel time. Then, we fetch the k pre-computed traffic-tolerant
paths between those two border nodes and hence form k candidate paths from source to

20 Pui Hang Li et al.

destination. The path with the minimum travel time is reported to users. Note that the two
adaptations can be combined to answer route queries in case there is a serious traffic jam.

8 Experimental Evaluation

8.1 Road Network and Traffic Data

Table 7 lists the information of road networks used in our experiments. They are United
Kingdom (UK) and Colorado (COL), which are available at [3] and [1] respectively.

For UK, we downloaded real and historic traffic data from [5] from January to March of
2013. Each traffic record is linked to a road segment in UK based on the unique identifiers of
roads. The traffic data were recorded every 15 minutes and hence there are 96 traffic records
per day for each road segment.

Since the historic traffic data of COL are not available, we synthetically generate traffic
data in the following way. We generate the travel time for m time instants. At each time
instant j, we pick a random number from {−1, 1} as signj to determine whether to increase
or decrease the travel time of all edges. Then, for each edge, we select a random number
from [0..X] and wj(e) is calculated as l(e)

s × (1 + signj · X%), where l(e) is the road
segment length and s is the vehicle speed. We set s as 60km/h in our experiments. The
values of X are shown in Table 8.

8.2 Experimental Setup

In the introduction, we suggest two applications of our TTP problem, namely transportation
planning and online route services. The former requires fast computation time, whereas the
latter focuses on the travel time error of the pre-computed paths against real-time traffic.
Thus, in our experiments, we measure the computation time and travel time error.

Training and testing sets of traffic data: In order to evaluate the travel time error of
the methods, we divide the traffic data into training and testing sets. We take the training set
for computing TTP solutions, and take the testing set for testing the travel time error of such
solutions.

For UK, training and testing sets of traffic data are governed by the equationm = D×L,
where D is the number of training (testing) days and L is the number of training (testing)
time instants per day. Testing sets contain traffic data collected after the data in the training
set. L specifies the granularity of time periods, (e.g., in UK, a time period 08:00-09:00
implies L = 4 since the traffic data of UK are recorded every 15 minutes).

In our experiments, we vary D and L of training sets. We fix D of the testing set as
traffic data collected during 16 - 31 March, 2013 (i.e., D = 16) but vary L according to L of
the training sets. For instance, we take the traffic data during 08:00-08:30 (rush hour) and 15
days before the testing period for training. Then, we use the traffic data during 08:00-08:30
in the testing period for testing.

For COL, we simply generate two sets of synthetic traffic data for each network accord-
ing to Section 8.1. One set is for training while another set is for testing. The number of time
instants (m) for training and testing is shown in Table 8.

Average travel time error: Let P be the path combination, computed by a method,
by using the training set. We measure the travel time error of P by using the testing set Q

Discovering Historic Traffic-tolerant Paths in Road Networks 21

as follows. The error of P , for a given pair of query qi ∈ Q and testing timestamp j, is
measured as:

εqij =

(
min
p∈P

τj(p)

)
− τj(spj)

where τj(p) is the travel time of path p at timestamp j and spj is the shortest path for qi at
timestamp j. In our experiments, we report the average travel time error εQavg of P as:

εQavg(P) = AVG{εqij : i = 1..|Q|, j = 1..m}

where m is the number of (distinct) time instances in Q. Note that this equation resembles
Equation 1.

Alternative error measures: We also report alternative error measures in some repre-
sentative experiments. To generalize the above travel error, we replace the average function
with a statistical function G to obtain:

εQG (P) = G{εqij : i = 1..|Q|, j = 1..m}

Examples of G include: (i) the minimum, (ii) the 25-th percentile, (iii) the median, (iv) the
75-th percentile, (v) the maximum. We denote their corresponding travel time errors as:
εQmin, εQ25%, εQ50%, εQ75%, εQmax, respectively.

In addition, we calculate the frequency of real fastest path(s) appearing in P as:

SPfreq(P) =

∑|Q|
i=1

∑m
j=1 B

qi
j

m|Q| · 100%

where Bqij returns 1 if P contains the fastest path for query qi at timestamp j, and Bqij
returns 0 otherwise.

Query generation: We adopt two query generation methods in our experiments, namely
(1) uniformly random query and (2) distance threshold query. The former picks 100 source-
destination pairs uniformly at random and the average time errors of these pairs are reported
in the figures in the subsequent sections.

The latter is used to evaluate the effect of distance on travel time error. It picks a source
at random and runs Dijkstra’s algorithm until reaching a distance threshold (δt). We choose
the first node whose shortest distance from the source exceeds δt as the destination. For
each road network, we select N thresholds and N groups of queries as follows. We pick a
random source and compute its largest shortest path distance by Dijkstra’s algorithm (i.e.,
maxv∈V δ(s, v) where δ(·, ·) denotes the shortest path distance between two nodes). Then,
we compute the average largest shortest path distance, denoted by δmaxt , of 100 random
sources. For the i-th group (where 1 ≤ i ≤ N), we define its distance threshold as δit =

i · δmax
t

(N+1) , and generate 100 source-destination pairs for the group. Then, we report the
average travel time error of each group. We set N = 5 in our experiments.

For the value of k, we test k from 1 to 10 and choose k = 5 by default, which is the
same as [21].

Methods and competitors: Our proposed methods are: the exact method (which is
shown as TTP in figures) and two heuristic methods (TP and ATP). Our competitors are
two representative heuristic methods proposed in [21]: K-variance (K-VAR) and Y-moderate
(Y-MOD).

The idea of K-VAR is to maintain a Gaussian distribution N ∼ (µ, σ2) for the historic
traffic data for each edge. To find a candidate path, it samples the travel time from the dis-
tribution for each edge and computes a shortest path from vs to vd. It repeats the travel time

22 Pui Hang Li et al.

sampling and the shortest path search after a fixed number of iterations in order to find k
candidate paths. Y-MOD is a variant of Yen’s algorithm [26] which computes k loop-free
shortest paths. Its idea is to guarantee that the resulting k candidate paths have a fixed frac-
tion f of overlapping edges. Any additional parameters in these two methods are configured
according to [21].

We implement all methods in C++ and evaluate them in subsequent experiments. All
the experiments were run on a PC with 3.4 GHz Intel R© CoreTM i7 CPU and 8 GB RAM in
Linux environment.

Table 7 Road network size

Network #Nodes #Edges Traffic
United Kingdom (UK) 2,321 4,996 Real [5]

Colorado (COL) 435,666 1,042,400 Synthetic

Table 8 Experiment parameters

Parameters Values Default
k 1,2,...,10 5

No. of days (D) 15,30,45,60 15
No. of time instants per day (L) 1,2,3,4 1

m for synthetic traffic 15,30,45,60 30
X% for synthetic traffic 5,10,15,20 10

8.3 Real Traffic Data

In this section, we present the travel time error and the efficiency of TTP in various perspec-
tives including (i) different hours of a day, (ii) different days of a month, (iii) increasing the
number of paths (k), (iv) increasing the number of time instants (m), and (v) increasing dis-
tance from sources. Uniformly random queries are used in (i) to (iv) while distance threshold
queries are used in (v). In this section, TTP in the figure refers to the results generated by
the exact algorithm.

Different hours of a day: First, we evaluate how the average time error varies with
different time of a day since this reveals some traffic patterns of UK. Figure 6(a) shows the
average time errors of TTP and two competitors at different hours of a day. TTP achieves
a smaller time error throughout the day and outperforms the others especially at the rush
hours (i.e., 08:00 and 17:00) by at least 3 times. Although there is a spike at 13:00-14:00 for
TTP its time error is still smaller than that of others. The figure also reveals that the traffic
of UK fluctuates in three periods, namely 08:00-09:00, 13:00-14:00 and 17:00-18:00. The
default time period in the subsequent experiments is 08:00-09:00.

Different days of a month: Figure 6(b) shows the average time errors of three algo-
rithms across different testing days of March, at 08:00-09:00. TTP has consistently smaller
errors than the others. Although all of them suffer from a sudden rise in time error on 18
March, 2013, TTP can still obtain a much lower average time error of about 2 minutes, while
K-VAR and Y-MOD have average time errors of about 3 minutes and 4 minutes respectively.

Varying k: As shown in Figure 7(a), the average time errors of all algorithms diminish
with increasing k and start to converge when k > 5 . This is because including more paths

Discovering Historic Traffic-tolerant Paths in Road Networks 23

 0

 10

 20

 30

 40

 50

 60

 70

 0 4 8 12 16 20 24

av
er

ag
e

tim
e

er
ro

r (
se

c)

hour of a day, March 2013

TTP
Y-MOD
K-VAR

 0

 50

 100

 150

 200

 250

 16 20 24 28
av

er
ag

e
tim

e
er

ro
r (

se
c)

day of a month, March 2013

TTP
Y-MOD
K-VAR

(a) Varying time of a day (b) Varying day of a month

Fig. 6 k = 5, March 2013, UK

implies that it is more probable to have a path, out of k paths, with a smaller travel time
error at a particular time instant. Obviously, the average time error of TTP decreases more
rapidly than the others. We also measure the computation time of TTP as shown in Figure
7(b). It increases with k because the number of k-combinations enumerated also increases.
Figure 7(c) measures the frequency of real fastest path(s) appearing in the result path set,
denoted as SPfreq(P), for every method. When k ≥ 5, our proposed solutions (TTP and
TP) achieve over 95% frequency, whereas the competitors have at most 80% frequency.

Varying D: In this experiment, we set the number of time instants per day to one (L = 1)
but increase the number of training days (D) from 15 to 60 in order to examine its effect
on TTPand TP. The time error and computation time of TTP and TP are shown in Figure
8. In general, the time error of both TTP and TP drops with increasing D. However, the
trade-off of TTP is the drastic increase in computation cost. The reason is that dominance
loses selectivity when increasing the number of dimensions. An apparent advantage of TP
over TTP is that its computation cost rises slightly with increasing m.

Varying L: Conversely, we fix the number of training days to 15 but vary the number of
time instants per day (L) from 1 to 4. The same measurements are made and also presented
in Figure 8. The time error of both TTP and TP rises when including more time instants.
This may be because more time instants introduce higher traffic variability. Same as before,
their computation costs increase proportionally to the number of dimensions but TP enjoys
a much gentler rate of increase in computation time. To sum up, one time instant per day
(e.g., 08:00 - 08:15) with 15 to 30 training days may be a feasible choice for TTP in UK
road network, and TP could be considered as a close approximation of TTP by slightly
sacrificing accuracy in travel time.

Varying distance from source: We evaluate the effect of the distance from source,
keeping all other parameters as default. Figure 9 shows the results. The x-axis represents
the query groups as described in Section 8.2; the distance threshold increases from the left
to the right. The travel time errors of all four methods grows when the distance between
query locations increases. However, the errors of Y-MOD and K-VAR rise drastically (about
four times higher than TTP and TP). This implies that the paths returned by Y-MOD and
K-VAR accumulate travel time delay more rapidly (about four times quicker) and are hence

24 Pui Hang Li et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

tim
e

er
ro

r (
se

c)

number of paths - k

TTP
Y-MOD
K-VAR
TP

 0

 0.2

 0.4

 0.6

 1 2 3 4 5 6 7 8 9 10
co

m
pu

ta
tio

n
tim

e
(s

)
number of paths - k

TTP
Y-MOD
K-VAR
TP

(a) Average time error (b) Computation time

 0

 25

 50

 75

 100

 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 (%

)

number of paths - k

TP
Y-MOD
K-VAR
TTP

(c) Frequency of real fastest path(s) appearing in the result path set

Fig. 7 Varying k, 08:00-08:15 in March 2013, UK

less resilient to live traffic. This experiment further justifies that TP could be a reasonable
alternative to TTP (albeit heuristic) as it exhibits small errors.

8.4 Synthetic Traffic Data

Since the exact solution is not scalable to large road networks, we developed two heuristics
- TP and ATP. In this section, we evaluate mainly the error and efficiency of our proposed
heuristics by varying the following parameters - (i) the percentage change of traffic time
(X%), (ii) the number of paths (k), (iii) the number of time instants (m), and (iv) increasing
distance from sources. Note that uniformly random queries are used in (i) to (iii) while
distance threshold queries are used in (iv).

Varying allowed time of ATP: Before showing the results of varying the mentioned
parameters, we first show that the average time error of ATP drops initially and converges as
allowed running time increases. This finding justifies the reason of proposing ATP. We only
show the case of k = 8, 9, 10 because the computation times of TP in these cases are more

Discovering Historic Traffic-tolerant Paths in Road Networks 25

 0

 5

 10

 15

 15 30 45 60

av
er

ag
e

tim
e

er
ro

r (
se

c)

number of m

TTP(Increase D)
TTP(Increase L)
TP(Increase D)
TP(Increase L)

 0

 5

 10

 15

 20

 25

 30

 35

 15 30 45 60
co

m
pu

ta
tio

n
tim

e
(s

ec
)

number of m

TTP(Increase D)
TTP(Increase L)
TP(Increase D)
TP(Increase L)

(a) Average time error (b) Computation time

Fig. 8 Varying m, fix k = 5, UK

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

Gp 1 Gp 2 Gp 3 Gp 4 Gp 5

av
er

ag
e

tim
e

er
ro

r (
se

c)

groups

TTP
Y-MOD
K-VAR
TP

Average time error

Fig. 9 Varying distance from source, N = 5, fix other parameters as default, UK

than 30 seconds according to Figure 10. In the following discussions, we set the default time
limit of ATP to 5 seconds and this is denoted by ATP-5 in the figures.

Varying X: In this experiment, we increase the traffic fluctuation and measure the
changes of average time errors. The results are shown in Figure 11. The average time er-
rors of the three methods rise when increasing the percentage change of travel time. Nev-
ertheless, the errors of TP and ATP are still smaller than the others, implying that they are
more resistant to the traffic fluctuation. We also show their computation times, which are
insensitive to the traffic changes.

Varying k: Figure 12 shows the average time errors and computation times of all meth-
ods, and reveals important properties. The computation cost of K-VAR stabilizes after k
becomes larger than 1 because it is controlled by a maximum number of iterations, which
is fixed throughout the experiment and configured according to [21]. Its time error remains
unchanged with k because, as we found out, it can retrieve only one path throughout its
iterations. The computation time of Y-MOD increases linearly with k since it is a variant of

26 Pui Hang Li et al.

 75

 80

 85

 90

 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

er
ro

r (
se

c)

allowed time (s)

k=8
k=9
k=10

Average time error

Fig. 10 Varying allowed time of ATP, fix X% = 10 and m = 30, COL

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5 10 15 20

av
er

ag
e

tim
e

er
ro

r (
se

c)

percentage change - X

TP
Y-MOD
K-VAR
ATP-5

 0

 5

 10

 15

 20

 25

 5 10 15 20

co
m

pu
ta

tio
n

tim
e

(s
)

percentage change - X

TP
Y-MOD
K-VAR
ATP-5

(a) Average time error (b) Computation time

Fig. 11 Varying X%, fix k = 5 and m = 30, COL

Yen’s K shortest path algorithm [26] whose complexity is linearly dependent on k. However,
its time error drops slightly with increasing k. This may be because of the inherent property
of Yen’s algorithm, which generates a set of K paths with a large portion of overlapping. As
for TP, its computation time rises rapidly when k is larger than 5. The running times for
k = 9 and 10 are 75 and 148 seconds respectively. The rise in computation cost is due to the
exponential number of enumerated combinations. Despite this, the error of TP diminishes
with k continuously and outperforms the others. ATP exhibits a similar diminishing trend to
TP but it offers constant computation cost. To summarize, TP and ATP both strike a better
trade-off between error and computation cost.

In addition to the average travel time error, we also report alternative error measures
in Figure 12(c), Tables 9 and 10. First, we present the frequency of real fastest path(s)
appearing in the result set, SPfreq(P), in Figure 12(c). These frequencies are much lower
than those on the UK network (cf. Figure 7(c)). This is probably attributed to the fact that

Discovering Historic Traffic-tolerant Paths in Road Networks 27

 0

 50

 100

 150

 1 2 3 4 5 6 7 8 9 10

av
er

ag
e

tim
e

er
ro

r (
se

c)

number of paths - k

TP
Y-MOD
K-VAR
ATP-5

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10
co

m
pu

ta
tio

n
tim

e
(s

)
number of paths - k

TP
Y-MOD
K-VAR
ATP-5

(a) Average time error (b) Computation time

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

pe
rc

en
ta

ge
 (%

)

number of paths - k

TP
Y-MOD
K-VAR
ATP-5

(c) Frequency of real fastest path(s) appearing in the result path set

Fig. 12 Varying k, fix X% = 10 and m = 30, COL

the COL network is larger and contains much more feasible paths per query. Nevertheless,
our methods TP and ATP-5 beat the competitors Y-MOD and K-VAR consistently.

To investigate further, we focus on the case k = 5 and report in Table 9 the statistical
error measures of the methods, namely εQmin, εQ25%, εQ50%, εQ75%, εQmax. Regardless of the
error measure used, our methods consistently produce better result paths than our competi-
tors. We observe similar trends for other values of k, e.g., the case for k = 10 in Table 10.
Our methods TP and ATP-5 yield less than 1 minute of error for the majority of cases, and
the error decreases fast as k increases.

Table 9 Statistics of travel time errors (in seconds), k = 5, COL

Methods εQmin εQ
25%

εQ
50%

εQ
75%

εQmax
TTP 0 10 43 115 1,062

ATP-5 0 10 43 115 1,062
Y-MOD 0 19 70 168 1,344
K-VAR 0 21 73 172 1,434

28 Pui Hang Li et al.

Table 10 Statistics of travel time errors (in seconds), k = 10, COL

Methods εQmin εQ
25%

εQ
50%

εQ
75%

εQmax
TTP 0 7 36 104 857

ATP-5 0 7 37 107 937
Y-MOD 0 19 69 167 1,344
K-VAR 0 21 73 172 1,434

 0

 50

 100

 150

 15 30 45 60

av
er

ag
e

tim
e

er
ro

r (
se

c)

number of time instants - m

TP
Y-MOD
K-VAR
ATP-5

 0

 5

 10

 15

 20

 25

 30

 35

 15 30 45 60

co
m

pu
ta

tio
n

tim
e

(s
)

number of time instants - m

TP
Y-MOD
K-VAR
ATP-5

(a) Average time error (b) Computation time

Fig. 13 Varying m, fix X% = 10 and k = 5, COL

Varying m: Figure 13 shows the average time errors and computation times of the meth-
ods versus the number of time instants. The average time errors and computation times of
Y-MOD and K-VAR are insensitive tom since they simply aggregate (i.e., average) the travel
time of all time instants to a single travel time for candidate generation. When m increases,
the average time error of TP drops slightly while its computation cost increases exponen-
tially due to enumeration of combinations. As for ATP, its average time error decreases
initially but increases afterwards. This is because it cannot further explore more paths upon
reaching the time limit, i.e., 5 seconds.

Varying distance from source: Finally, we look into the change in travel time error
with increasing distance from source. Figure 14 shows a generally growing trend of travel
time error which matches the findings in UK road network. Our proposed heuristics still
outperform the competitors and ATP achieves small errors, despite having a computation
time limit.

8.5 Discussion

By comparing the experimental results of real and synthetic traffic data on two road net-
works, it is intriguing to induce that they are coherent and match each other. First of all,
TTP and TP yield smaller average travel time errors than both competitors when we vary
the number of paths returned (k), the number of time instants (m), and the distance between
source and destination. Besides, the performance of our traffic-tolerant paths on real traffic
data is apparently more preferable, proving that they are suitable and feasible in practice for
answering route queries and assisting traffic analysis. Both sets of experiments also demon-

Discovering Historic Traffic-tolerant Paths in Road Networks 29

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Gp 1 Gp 2 Gp 3 Gp 4 Gp 5

av
er

ag
e

tim
e

er
ro

r (
se

c)

groups

TP
Y-MOD
K-VAR
ATP-5

Average time error

Fig. 14 Varying distance from source, N = 5, fix other parameters as default, COL

strate that our proposed heuristics can closely approximate the exact solution, striking a
balance between travel time error and computation time.

9 Conclusions

This paper proposes and studies a novel problem called the k traffic-tolerant paths problem
(TTP) in road networks, which takes a source-destination pair and historic traffic infor-
mation as input and returns k paths that minimize the aggregate historic travel time. Its
applications include transportation analysis and efficient route-search services. We imple-
ment an exact enumeration algorithm for TTP. Since our TTP problem is NP-hard, we also
devise two heuristics to solve it. Finally, the experiments show that we achieve much higher
accuracy than existing approaches.

References

1. 9th DIMACS Implementation Challenge - Shortest Paths. http://www.dis.uniroma1.it/challenge9/
2. Caltrans Pems. http://pems.dot.ca.gov/
3. GB Road Traffic Counts. http://data.gov.uk/dataset/gb-road-traffic-counts/
4. Google Maps. http://maps.google.com/
5. Highways Agency Network Journey Time and Traffic Flow Data. http://data.gov.uk/dataset/dft-eng-srn-

routes-journey-times/
6. TomTom - At the Heart of the Journey. http://www.tomtom.com/
7. Travel Time Reliability: Making It There On Time, All The Time.

http://ops.fhwa.dot.gov/publications/tt reliability/index.htm (2006)
8. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.F.: Hierarchical Hub Labelings for Shortest

Paths. In: ESA, pp. 24–35 (2012)
9. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Time Shortest-path

Queries in Road Networks. In: ALENEX (2007)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third Edition, 3rd

edn. The MIT Press (2009)
11. Demiryurek, U., Kashani, F.B., Shahabi, C., Ranganathan, A.: Online Computation of Fastest Path in

Time-dependent Spatial Networks. In: SSTD, pp. 92–111 (2011)

30 Pui Hang Li et al.

12. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hier-
archical Routing in Road Networks. In: Proceedings of the 7th International Conference on Experimental
Algorithms, WEA’08, pp. 319–333 (2008)

13. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive Fastest Path Computation on a Road
Network: A Traffic Mining Approach. In: VLDB, pp. 794–805 (2007)

14. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Na-
ture 453(7196), 779–782 (2008)

15. Gutman, R.: Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road
Networks. In: ALENEX, pp. 100–111 (2004)

16. Hua, M., Pei, J.: Probabilistic Path Queries in Road Networks: Traffic Uncertainty Aware Path Selection.
In: EDBT, pp. 347–358 (2010)

17. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding Fastest Paths on a Road Network with Speed Patterns.
In: ICDE, pp. 10–10 (2006)

18. Kriegel, H.P., Renz, M., Schubert, M.: Route Skyline Queries: A Multi-Preference Path Planning Ap-
proach. In: ICDE, pp. 261–272 (2010)

19. Li, P.H., Yiu, M.L., Mouratidis, K.: Historical Traffic-tolerant Paths in Road Networks. In: ACM GIS,
to appear (2014)

20. Lomax, T., Schrank, D., Turner, S., Margiotta, R.: Selecting travel reliability measures. Texas Trans-
portation Institute monograph (May 2003) (2003)

21. Malviya, N., Madden, S., Bhattacharya, A.: A Continuous Query System for Dynamic Route Planning.
In: ICDE, pp. 792–803 (2011)

22. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries. In: ESA, pp. 568–
579 (2005)

23. Sankaranarayanan, J., Samet, H.: Query Processing Using Distance Oracles for Spatial Networks. IEEE
Trans. Knowl. Data Eng. 22(8), 1158–1175 (2010)

24. Sankaranarayanan, J., Samet, H., Alborzi, H.: Path Oracles for Spatial Networks. PVLDB 2(1), 1210–
1221 (2009)

25. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science
327(5968), 1018–1021 (2010)

26. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management Science 17(11), 712–716
(1971)

27. Zhu, A.D., Ma, H., Xiao, X., Luo, S., Tang, Y., Zhou, S.: Shortest Path and Distance Queries on Road
Networks: Towards Bridging Theory and Practice. In: SIGMOD, pp. 857–868 (2013)

	Discovering historic traffic-tolerant paths in road networks
	Citation

	tmp.1485416210.pdf.DthYM

