
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

9-2016 

Control flow integrity enforcement with dynamic code Control flow integrity enforcement with dynamic code 

optimization optimization 

Yan LIN 
Singapore Management University, yanlin.2016@phdis.smu.edu.sg 

Xiaoxiao TANG 
Singapore Management University, xxtang.2013@phdis.smu.edu.sg 

Debin GAO 
Singapore Management University, dbgao@smu.edu.sg 

Jianming FU 
Wuhan University 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons 

Citation Citation 
LIN, Yan; TANG, Xiaoxiao; GAO, Debin; and FU, Jianming. Control flow integrity enforcement with dynamic 
code optimization. (2016). Information Security: 19th International Conference, ISC 2016, Honolulu, HI, 
September 3-6, 2016: Proceedings. 9866, 366-385. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3419 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3419&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3419&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Control Flow Integrity Enforcement with

Dynamic Code Optimization

Yan Lin1, Xiaoxiao Tang1, Debin Gao1, and Jianming Fu2

1 School of Information Systems, Singapore Management University, Singapore
2 Computer School, Wuhan University, China

Abstract. Control Flow Integrity (CFI) is an attractive security prop-
erty with which most injected and code reuse attacks can be defeated,
including advanced attacking techniques like Return-Oriented Program-
ming (ROP). However, comprehensive enforcement of CFI is expensive
due to additional supports needed (e.g., compiler support and presence
of relocation or debug information) and performance overhead. Recent
research has been trying to strike the balance among reasonable approx-
imation of the CFI properties, minimal additional supports needed, and
acceptable performance. We investigate existing dynamic code optimiza-
tion techniques and find that they provide an architecture on which CFI
can be enforced effectively and efficiently. In this paper, we propose and
implement DynCFI that enforces security policies on a well established
dynamic optimizer and show that it provides comparable CFI proper-
ties with existing CFI implementations while lowering the overall perfor-
mance overhead from 28.6% to 14.8%. We further perform comprehensive
evaluations and shed light on the exact amount of savings contributed by
the various components of the dynamic optimizer including basic block
cache, trace cache, branch prediction, and indirect branch lookup.

Keywords: Control flow integrity, return-oriented programming, dy-
namic code optimization

1 Introduction

Control Flow Integrity (CFI) introduced by Abadi et al. [2] provides attractive
security features because of its effectiveness in defending against most injected
and code reuse attacks, including the recent and advanced attacking techniques
like Return-Oriented Programming (ROP) [22]. Its basic idea is to enforce a
control-flow graph (usually built from static analysis) so that the program only
makes control transfers to intended target locations.

However, having an accurate and practical enforcement of CFI is known
to be hard [2, 13, 18, 25]. First, it is generally difficult to accurately identify
the target locations for all control transfers. Existing solutions typically apply
a coarse-grained policy (e.g., to allow indirect calls to any functions [24]) or
require compiler support or presence of relocation or debug information [4,19,25],
which may not be applicable to Commercial Off-The-Shelf (COTS) software.



Second, intercepting control transfers and doing the necessary checking typically
result in large performance overhead [7,10]. Many have proposed ways of striking
the balance among reasonable approximation of the CFI properties, minimizing
additional supports needed, and acceptable performance [20,26]. Therefore, any
noticeable reduction in the performance overhead would likely lead to more
practical implementation and potentially better security properties.

An interesting observation is that prior to the introduction of CFI in 2005,
there have already been a lot of research on dynamic code optimization to im-
prove performance of dynamic program interpreters, e.g., Wiggins/Redstone [11],
Dynamo [3], Mojo [8], and DynamoRIO [5]. Dynamo and DynamoRIO are among
the more popular and mature ones. Dynamo targets a PA-RISC machine and
uses a speculative scheme MRET (Most Recently Executed Tail) to pick hot
traces without doing any path or branch profiling. DynamoRIO uses the same
scheme to pick hot traces, except that it targets the x86-64 system. Although
most of these were not proposed by the security community, there is at least one
noticeable work called program shepherding [15] which makes use of a general
purpose dynamic optimizer RIO [5] to enforce security policies. DynamoRIO
and program shepherding provide nice interfaces for enforcing security policies
on control transfers, which makes us believe that they can be good candidate
architectures for CFI enforcement. Since these well established and mature dy-
namic code optimizers are proven to introduce minimal overhead, we believe that
they could result in a system that outperforms existing CFI implementations.

In this paper, we propose DynCFI that enforces a set of security policies on
top of DynamoRIO for CFI properties. We show that DynCFI achieves similar
security properties when compared to a number of existing CFI implementations
while experiencing a much lower performance overhead of 14.8% as opposed to
28.6% of BinCFI . We stress that DynCFI is not necessarily a CFI enforcement
implementation that has the lowest performance overhead. Instead, our contri-
bution lies on the utilization of the dynamic code optimization system which is
a matured system proposed and well studied before CFI was even introduced.
To the best of our knowledge, DynCFI is the first implementation of CFI en-
forcement on top of a dynamic code optimizer.

In the second half of this paper, we further investigate the exact contribution
to this performance improvement. We propose a three-dimensional design space
and perform comprehensive experiments to evaluate the contribution of each axis
in the design space in terms of performance overhead. Among many interesting
findings, we show that traces in the dynamic optimizer, which consist of cached
basic blocks stitched together, had contributed the most performance improve-
ment. Results show that traces have decreased the performance overhead from
22.7% to 14.8%. We also evaluate how branch prediction and indirect branch
lookup have changed the performance. To the best of our knowledge, this is the
first comprehensive evaluation on the performance overhead contributed by var-
ious components of the system, and we believe that this detailed understanding
would aid future research and development of efficient CFI enforcement systems.



The remainder of this paper is structured as follows. Section 2 summarizes
related work and outlines our motivation of using a dynamic optimizer. Section 3
introduces the security policies of DynCFI we enforce on top of DynamoRIO and
compares them with a number of existing CFI enforcement implementations. In
Section 4, we propose a three-dimensional design space for DynCFI and present
a set of experiments to evaluate the contributing factors of various components of
the dynamic optimizer. We present our security evaluation and some discussion
in Section 5. In the end, we conclude in Section 6.

2 Related Work and Motivation

In this section, we first cover some important related work on CFI and dynamic
code optimization, and then motivate our idea of enforcing CFI on top of one of
the most well-established dynamic optimizers.

2.1 Control flow integrity

Control-flow Integrity (CFI) was first introduced by Abadi et al. [2]. The basic
idea of CFI is to mark the valid targets of indirect branches with unique iden-
tifiers and then insert ID-checks into the program before each indirect branch
transfer. Since its introduction in 2005, there have been a large body of CFI
variants introduced [4, 10, 12, 20, 24–26].

Some of these proposals focus on extracting accurate targets of indirect trans-
fers. For example, CFL [4] requires recompilation of the target application to
obtain such target information, and performs a “lock” operation before each
indirect control flow transfer with a corresponding “unlock” operation at valid
destinations only. ROPdefender [10] makes use of the dynamic binary instru-
mentation tool Pin [16] to implement a shadow stack where the return addresses
are recorded and later compared with the return target address executed. It
suffers from performance issues due to its checking for every return instruction
executed. CFIMon [24] makes use of BTS [14] supported by hardware to col-
lect in-flight branch transfers. Once the BTS buffer is full, a monitor process
will start to detect whether these branch transfers are valid. However, BTS is a
debugging mechanism that records all branches in a user-defined memory area,
and there will be high overhead because of the large number of memory accesses.
In BinCFI [26], potential candidates of indirect branch targets are recorded and
all indirect branches are instrumented to be a jump to a CFI validation routine.
BinCFI will cause high performance overhead as it has to translate all indirect
branch targets executed, especially for programs which have a large percentage of
indirect branches. Lockdown [17] is implemented in a dynamic binary translation
platform called libdetox, which also uses shadow stack similar to ROPdefender
to restrict the targets of return branches. However, its security policy for indirect
jumps is relatively weak in allowing the target of a jump instruction to be any
function entry points or any addresses inside the current function. This gives a
lot of flexibility to attackers in using various gadgets.



Others focus on efficient ways of enforcing the CFI property for lower perfor-
mance overhead. For example, in CCFIR [25], all control flow targets for indirect
branches are allocated on a so-called springboard section, and indirect branches
are only allowed to use control flow targets contained in the springboard section.
The main restriction is that it requires relocation information to be included in
the binaries. kBouncer [20] uses LBR [14] on Intel to record branch transfers. It
checks whether the target of a return instruction is call-proceeded when a sys-
tem call is invoked. It can be bypassed because the LBR mechanism only records
limited number of branch transfers. ROPGuard [12] also performs CFI valida-
tion on Windows API calls. Like kBouncer, it requires that return addresses
are call-preceded and the memory word before each return address is the start
address of the API function.

In general, all existing proposals of CFI implementation enforce an approx-
imation of the original and strict security policies due to the lack of accurate
indirect transfer target information and performance considerations. Many have
to trade security for better performance of the resulting system. Research has
shown that some of these approximated CFI implementation are vulnerable to
various attacks [6,13,21]. Therefore, any noticeable reduction in the performance
overhead not only would lead to better user acceptance, but might translate into
a better approximation of the CFI security policy.

2.2 Dynamic code optimization

We notice that another body of work called dynamic code optimization, mostly
done by the software engineering community, could potentially be useful for im-
proving the performance overhead. Most of them build hot traces for blocks
frequently executed to boost execution. Dynamo [3], a dynamic optimizer for
a PA-RISC machine, acts as a native interpreter which allows it to observe
runtime behavior without instrumentation. Wiggins/Redstone [11] uses perfor-
mance counters on the Alpha to build traces. Mojo [8] uses the same mechanism
in Dynamo to pick hot traces and targets Windows NT running on IA-32. Dy-
namoRIO [5] is an x86 system based on Dynamo. Some of these platforms provide
nice interfaces of intercepting control flow transfers of the target program with
very low overhead, e.g., DynamoRIO [5], to the extent that the overhead could be
negative (performance improvement) for some situations. Such platforms could
be perfect candidates on top of which CFI properties are enforced.

We are not the first to make use of such systems for security purposes. Pro-
gram Shepherding [15] successfully makes use of DynamoRIO to restrict code
origins and control transfers. DynamoRIO provides a suitable platform for secu-
rity enforcement because the sandboxing checks added cannot be bypassed [15].
Due to this reason and the fact that it provides efficient interfaces of intercepting
control flow transfers, we choose it for our CFI enforcement, too.



2.3 DynamoRIO

Figure 1 shows an overview of DynamoRIO [5], with darker shading indicating
the application code to be monitored.

Fig. 1: Overview of DynamoRIO

DynamoRIO first copies basic blocks into the basic block cache. If a target
basic block is present in the code cache and is targeted via a direct branch,
DynamoRIO links the two blocks together with a direct jump. If the basic block
is targeted via an indirect branch, DynamoRIO goes to the indirect branch
lookup routine to translate its target address to the code cache address. Basic
blocks that are frequently executed in a sequence are stitched together into the
trace cache. When connecting beyond a basic block that ends in an indirect
branch, a check is inserted to ensure that the actual target of the branch will
stay on the trace. If the check fails, it will go to the indirect branch lookup
routine to find the translated address.

To make itself a secure platform on which programs are executed, DynamoRIO

splits the user-space address into two modes: the untrusted application mode and
the trusted and protected RIO mode. This design protects DynamoRIO against
memory corruption attacks. Meanwhile, the beauty of DynamoRIO (and the
corresponding good performance) come mainly from the indirect branch lookup
which is very efficient in determining control transfer targets with a hashtable.
This hashtable maps the original target addresses with addresses in the basic
block cache and trace cache so that most control transfers require minimal pro-
cessing. We delay further details of DynamoRIO to Section 3 and Section 4
when we explain policies to be enforced on top of it and when we evaluate the
improved performance achieved by individual components of DynamoRIO.

3 Design, Implementation, and Security Comparison

As discussed in Section 1, our motivation is to use DynamoRIO to enforce CFI
properties in anticipation for improved performance. Our objective is to design
a practical and efficient CFI enforcement without the extra requirement of re-
compilation or dependency on debug information. In this section, we first present
the design of DynCFI that can be effectively enforced on DynamoRIO and the



implementation of it, and then compare the security property it achieves with
some existing CFI (and related defense) approaches.

3.1 Returns

The most frequently executed indirect control transfer instructions are returns.
DynCFI maintains a shadow call stack for each thread to remember caller in-
formation and the corresponding return address. The whole process is shown
in Figure 2. For a call instruction, we store the return address on our shadow
stack. For a return instruction, we check whether the address on the shadow
stack equals to the address stored at the stack memory specified by %esp. Such
a shadow stack enables DynCFI to apply a strict policy that only returning to
the caller is allowed, although a relaxed version could also be applied to reduce
overhead (see Section 3.4 for more discussion). DynCFI also takes care of the
following exceptions in special cases.

Fig. 2: Shadow stack operations

– Signals A signal comes with a return address but not a call instruction.
Fortunately, DynamoRIO records all necessary signal information for us to
maintain a correct shadow stack.

– Lazy binding The procedure dl_runtime_resolve() in lazy binding uses
ret (without a corresponding call) to perform a jmp operation. The pattern
of the code is fairly easy to identify though.

– setjmp and longjmp setjmp and longjmp allow bypassing of multiple
stack frames. We pop out return addresses continuously until a match is
found or when the shadow stack is empty.

– C++ exception handling We use the second argument of Unwind_SetIP
as the return address for proper enforcement of our policy.

3.2 Indirect jumps and indirect calls

We further classify indirect jumps into normal indirect jumps and PLT jumps,
such as jmp offset (base_register), which are used to call functions in other
modules, target of which can only be exported from other modules. To obtain
target information for every indirect branch, we use the static analysis engine
provided by another well-known CFI enforcement BinCFI [26], which combines



linear and recursive disassembling techniques and uses static analysis results to
ensure correct disassembling. Targets of indirect calls are function entry points
and targets of indirect jumps are function entry points and targets of returns.
Meanwhile, targets of PLT jumps are exported symbol addresses. These valid
jump and call targets are organized into three different hashtables to improve
performance — one for indirect jumps, one for indirect calls, and one for PLT
jumps. Most importantly, the shadow stack and hashtables readable only in the
user mode; so attackers cannot modify them.

3.3 Implementation

As discussed in Section 2, DynamoRIO maintains a hashtable that maps original
control transfer target addresses with addresses of code caches. The hashtable
has to be built when the control transfer occurs the first time though. This
process, together with the dispatcher which is invoked when matches are not
found in the hashtable (see Figure 1), become the natural place of our CFI
enforcement, since CFI mainly concerns control transfer targets.

We obtained the source code of DynamoRIO version 5.0.0 from the devel-
oper’s website [1], and added more than 700 lines of code (in C) to implement
DynCFI . Most of the additional code is added to the dispatcher where checks
of control flow transfers are performed. Some code is also added to basic block
cache building to implement our shadow call stack and to initialize DynamoRIO

to load the valid jump/call target addresses into our own hashtables.
DynCFI does not implement the full sets of CFI properties originally pro-

posed by Abadi et al. [2]. We only perform checks on indirect control transfers at
the first time when the target of an indirect branch occurs. However, it does not
really impact security, and it is exactly the reason why DynamoRIO is widely
accepted as an efficient dynamic optimizer — original code is cached in short
sequences and security policies, if any, need only be checked the first time the
code cache is executed [5]. Subsequent executions of the same code cache will
be allowed (without checking) as long as the control transfer targets remain un-
changed. Any violations to our policy will miss the (very efficient) indirect branch
hashtable lookup and go back to the dynamic interpreter which will consider the
control transfer a first timer and perform all the checks (inefficient).

3.4 Security comparison

Table 1 shows the security policy of DynCFI when compared with some existing
CFI implementations and ROP defense solutions. A caveat here is that we make
use of the shadow call stack information only when a new target is added to the
hashtable. This will make the policy effectively call-proceeded only. Since call-
proceeded policy is widely considered as adequate by many other approaches,
we apply this performance improvement in our subsequent evaluation. This re-
laxed policy also enables a fair comparison between DynCFI and other CFI
enforcement schemes since many others also use a call-proceeded policy.



Table 1: Security comparison with other CFI and ROP defenses
Policy

Approach Return Indirect jump Indirect call PLT jump

BinCFI [26] Call-preceded
Function

entry,return
address

Function entry
Exported symbol

address

CCFIR [25] Corresponding springboard section Nil

CFIMon [24] Call-preceded
Any address in
the training set

Any function
entry

Nil

ROPdefender [10] Caller Nil Nil Nil
kBouncer [20] Call-preceded Nil Nil Nil

LockDown [17] Caller
Function entry,

instruction in the
current function

Function entry Nil

DynCFI

First execution:
Caller, Others:
Call-preceded

Function
entry,return

address
Function entry

Exported symbol
address

DynCFI achieves similar security when compared with these existing ap-
proaches. In particular, DynCFI is mostly comparable to BinCFI in that both
maintain a list of valid target addresses to be checked at runtime, with one no-
ticeable difference in the enforcement mechanism: BinCFI enforces the policies
with static instrumentation to translate indirect target address while DynCFI

uses DynamoRIO as the interpreter platform. This makes BinCFI the perfect
candidate for performance overhead comparison with DynCFI , which is the topic
of our next Section.

4 Detailed Performance Profiling

In this section, we conduct a comprehensive set of experiments on the perfor-
mance overhead of DynCFI . Besides the overall performance overhead, we run
some detailed performance profiling to find out the contribution to such overhead
by various components of the dynamic optimizer. We wish that such a detailed
profiling could shed light on the part that contributes most to the performance
overhead, and give guidance to future research in further improvement.

To better understand our evaluation strategy, we present our first attempt
in the profiling, show the results, and explain the limitation of this attempt.
We then choose an existing CFI implementation for the detailed comparison
with DynCFI . We analyze the design space of CFI enforcement implementation
and organize it along three axes on which the two systems under comparison
could be clearly identified. Lastly, we perform a sequence of experiments by
modifying individual components of DynCFI so that the contribution of each to
performance overhead can be evaluated.

4.1 Target applications

To evaluate the performance overhead, we need to subject DynCFI (and another
CFI implementation for comparison purposes) to some applications. To enable



fair comparison with existing work, we used twelve pure C/C++ programs we
can find in SPEC CPU2006, which are also used in the evaluation of the original
work of BinCFI [26], as our benchmarking suite.

Experiments were executed on a desktop computer with an i7 4510u CPU
and 8GB of memory running x86 version of Ubuntu 12.04. Each individual ex-
periment was conducted 10 times, average of which is reported in this paper.

4.2 First attempt in performance profiling

As an initial attempt to understanding the performance overhead contributed by
various components of DynCFI , we use program counter sampling to record the
amount of time spent in various components ofDynCFI . We use the ITIMER_VIRTUAL
timer which counts down only when the process is executing and delivers a signal
when it expires. The handler used for this signal records the program counter of
the process at the time the signal is delivered. We sample the program counter
every ten milliseconds.

Table 2: Percentage of time spent on various components

Application
Application IBL IBL Basic block Trace Dispatch Others

code inlined not inlined building building

bzip2 97.99 0.60 0.00 0.20 1.20 0.00 0.00
gcc 86.78 7.46 0.26 0.91 3.42 1.10 0.07
mcf 97.48 0.42 1.26 0.14 0.07 0.14 0.49

gobmk 80.00 1.08 0.00 2.70 11.35 4.86 0.00
sjeng 94.10 5.67 0.11 0.02 0.09 0.02 0.00

libquantum 99.51 0.49 0.00 0.00 0.00 0.00 0.00
omnetpp 84.88 14.50 0.38 0.06 0.15 0.03 0.01
astar 94.36 4.79 0.78 0.00 0.01 0.04 0.01
namd 99.89 0.69 0.00 0.00 0.02 0.00 0.00

soplex 74.21 25.42 0.03 0.10 0.10 0.10 0.02
povray 89.71 6.88 0.82 0.76 1.01 0.76 0.06
lbm 99.99 0.00 0.00 0.00 0.01 0.00 0.00

Average 91.57 5.62 0.30 0.41 1.45 0.59 0.06

Table 2 shows the percentage of time each application spends in various
steps in DynCFI . It suggests that more than 90% of the time is spent on the
application’s code on average. Other non-negligible processes include Indirect
Branch Lookup (IBL) inlined with the application’s code and that not inlined,
basic block and trace cache building, as well as the dispatcher.

In an attempt to explain why some applications, e.g., gcc, omnetpp, soplex,
and povray, incur larger overhead, we count the number of different control
transfers in each application (runtime) and present statistics in Table 3. The
correlation between the two tables suggests that larger number of control trans-
fers could lead to the higher overhead.

Although it sounds like we have obtained detailed understanding of the per-
formance overhead, there is one important factor that we have overlooked so
far — the overhead contribution of the dynamic optimizer on executing the ap-
plication’s code (second column of Table 2). In other words, Table 2 does not
tell us if the dynamic optimizer had sped up or slowed down the execution of



Table 3: Statistics of different types of control transfers
Application %Indirect call %Indirect jump %Return %Direct branch Total

bzip2 0.002 0.002 0.774 99.222 2813437750
gcc 0.434 1.958 7.767 89.841 40789466606
mcf 0.001 0.029 5.402 94.568 5000155956

gobmk 0.001 0.027 4.811 95.161 687830197
sjeng 1.072 2.289 4.718 91.921 122978889385

libquantum 0.000 0.000 0.242 99.758 706839248554
omnetpp 1.609 1.763 33.998 62.630 87535408451
astar 1.698 0.049 19.738 78.515 30621019276
namd 0.000 0.008 3.292 96.700 115933566091

soplex 0.002 0.018 23.239 76.741 73160950993
povray 2.776 0.154 26.279 70.791 8195937460
lbm 0.000 0.017 0.035 99.948 15270883768

the application’s code, and what had contributed to that speedup or slowdown.
Our further comparison verifies this suspicion, see Table 4, as there is noticeable
difference in the amount of time spent.

Table 4: Time spent in application code

Application
in DynCFI Natively Overhead

(sec) (sec) (%)

bzip2 4.88 4.86 0.41
gcc 60.73 56.25 7.96
mcf 13.91 14.19 -1.97

gobmk 1.48 1.35 9.62
sjeng 158.93 150.01 5.95

libquantum 813.12 821.63 -1.04
omnetpp 138.54 122.23 13.34
astar 76.16 75.44 0.95
namd 735.51 733.73 0.24

soplex 64.81 61.15 5.98
povray 14.21 14.12 0.64
lbm 375.45 388.14 -3.27

Therefore, we want to further investigate the contribution of various compo-
nents of the dynamic optimizer in speeding up or slowing down the application’s
code. We present our second attempt in the rest of this section. With the ob-
jective of finding out contributions to the performance overhead by individual
components of the dynamic optimizer, our strategy is to

1. Find an existing CFI implementation X for comparison.
2. Continuously disable or modify individual components of DynCFI so that

the modified system eventually becomes similar to the implementation of X .
3. In every step of disabling or modifying the components, perform experiments

to find the corresponding (difference in) performance overhead.

4.3 Picking BinCFI for detailed comparison

With this strategy, it is important that we choose an X that

– Is an independent, state-of-the-art implementation of CFI enforcement;



– Shares the same high-level idea with DynCFI while validating control trans-
fers with a different approach (e.g., by binary instrumentation) from that of
the dynamic optimizer/interpreter as in DynCFI .

so that our evaluation could attribute the difference in performance overhead to
the dynamic optimizer.

As discussed at the end of Section 3, BinCFI and DynCFI are similar in
that both maintain a set of valid control transfer targets and use a centralized
validation routine for CFI enforcement. In both cases, the validation routine
maintains a hashtable for the valid control transfer targets. Figure 3 shows the
work-flow of BinCFI .

Fig. 3: Overview of BinCFI

The difference between BinCFI andDynCFI is that BinCFI obtains the valid
target addresses of indirect branches statically and records their corresponding
instrumented target addresses into the hashtable, and then replaces the indirect
instructions with a direct jump to the CFI validation routine. BinCFI satisfies
our requirements for the performance comparison, and is therefore chosen for
our subsequent detailed evaluation.

4.4 Overall comparison and the design space

The overall performance overhead of executing the benchmarking applications
under (original, unmodified) DynamoRIO, DynCFI , and (original, unmodified)
BinCFI is shown in Figure 4. Results are shown in terms of percentage over-
head beyond natively executing the applications on an unmodified Linux Ubuntu
system. We obtained the source code implementation of BinCFI [26] from its
authors.

An interesting observation is that the original DynamoRIO and DynCFI do
not differ much in terms of overhead (a relatively small 1.3% difference). This
shows that the interfaces provided by DynamoRIO are convenient and effective
for CFI enforcement, which confirms our intuition since DynamoRIO intercepts
all control transfers and no additional intercepting is needed in our modification
to DynamoRIO.

DynCFI experiences a significantly smaller overhead of 14.8% compared to
BinCFI at 28.6%. This suggests that the dynamic optimizer provides a more
efficient platform for CFI enforcement compared to existing approaches like bi-
nary instrumentation as in BinCFI . That said, the two systems differ in other



bz
ip
2

gc
c

m
cf

go
bm
k
sje
ng

lib
qu
an
tu
m

om
ne
tp
p
as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynamoRIO

DynCFI

BinCFI

Fig. 4: Overall performance overhead

aspects and therefore this overall evaluation result is insufficient in attributing
the majority of the performance gain to mechanisms of the dynamic optimizer.

As discussed in Section 4.3, our strategy to this difficulty is to continuously
disable or modify individual components of DynCFI so that eventually it be-
comes similar to BinCFI , in terms of their operating mechanism as well as the
performance overhead. By doing so, we would likely observe degradation of per-
formance (increase in overhead) of the modified system which is definitely due
to the corresponding feature disabled or modified. The question is – which indi-
vidual component or feature to disable or modified?

To answer this question, we analyze the internal validation mechanisms of the
two approaches and identify three main factors that could significantly contribute
to the different performance overhead.

1. Trace Trace is the most important mechanism in DynamoRIO to speed
up indirect transfers. Traces are formed by stitching together basic blocks
that are frequently executed in a sequence. Benefits include avoiding indirect
branch lookups by inlining a popular target of an indirect branch into a trace
(with a check to ensure that the target stays on the trace and otherwise fall
back to the full security check), eliminating inter-block branches, and helping
branch prediction. Trace is unique in DynamoRIO and is not in BinCFI .

2. Branch prediction Modern processors maintain buffers for branch pre-
diction, e.g., Branch Target Buffer (BTB) and Return Stack Buffer (RSB).
The effectiveness of these predictors could get seriously affected due to the
modifications to the control transfers. For example, turning a return instruc-
tion into a indirect jump would make RSB useless in the branch prediction,
potentially leading to an increase in the performance overhead.

3. Indirect branch lookup routine Besides implementation details that are
not necessarily due to the architectural design (to be discussed more in
Section 4.5), a dynamic optimizer could use a single lookup routine for the
entire application including the dynamically loaded libraries, while systems
that apply static analysis and binary instrumentation would likely have to
use a dedicated lookup routine for each module because some dynamically
loaded libraries might not have been statically analyzed or instrumented.
This could contribute to noticeable differences in performance overhead.



We want to explore details into these three axes to see how each of them
affects the performance overhead. Other factors that might contribute to the
overhead in DynCFI which we do not further investigate include

– Building basic block caches;
– Building trace caches;
– Inserting new entries into hashtables;
– Context switches between DynamoRIO and code caches.

4.5 Profiling along the three axes

With identification of the three axes, we make our second attempt in detailed
understanding of the performance overhead of the two systems. Since executing
on DynCFI and executing on the original unmodified DynamoRIO experience
about the same overhead (see Figure 4), our subsequent experiments will only
focus on comparing DynCFI and BinCFI . Also recall that our strategy is to
disable or modify one component of DynCFI at a time and observe the corre-
sponding change in performance overhead.

4.5.1 Traces Traces are unique in dynamic optimizers like DynamoRIO and
DynCFI . There are potentially two ways in which traces impact the performance
overhead. First, the stitching of basic blocks together eliminates some inter-block
branches. Second, each trace has inlined code to check if the control transfer
target is still on the trace (we call this InT). If the target is still on the trace,
execution will just carry on without further checking; otherwise, a second inlined
code (we call this InH) is executed to perform hashtable lookup without collisions.
If collision happens, execution will go to the full indirect branch lookup routine
(denoted as R). We examine contribution of InT and InH by disabling them
individually. We also examine the effect of traces overall and present the results
in Figure 5.

bz
ip
2

gc
c

m
cf

go
bm
k

sje
ng

lib
qu
an
tu
m

om
ne
tp
p

as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI

DynCFI with InT disabled

DynCFI with InH disabled

DynCFI with trace disabled

BinCFI

Fig. 5: Impact of trace on overhead

Figure 5 shows that the contribution due to InT is big, averaging to 5.5%.
Exceptions go to bzip2 and soplex which do not gain much with InT mainly
because the fall-back of InH is very effective on them (which can be verified from
the next-to-zero time spent in IBL not inlined in Table 2).



Although performance overhead increases when disabling InT (see Figure 5),
DynCFI is still better than BinCFI . When disabling traces altogether, the over-
head of DynCFI increases from 14.8% to 22.7% on average, with some going over
the overhead in BinCFI . This shows that traces are contributing significantly in
the low overhead of DynCFI . For applications with a large percentage of indirect
branches (see Table 3), DynCFI with traces disabled still outperforms BinCFI .
This suggests that there are other contributing factors in DynCFI which we have
not evaluated.

4.5.2 Branch Prediction The way in which DynCFI and BinCFI inter-
cept and deliver control flow transfers has an implicit effect on branch predic-
tion. Branch prediction is typically achieved by remembering a history of con-
trol transfer targets by the same instruction. Both DynCFI and BinCFI could
weaken branch prediction due to R using the same instruction (an indirect jump)
to execute control transfers originally executed by different instructions in the
application [5,26]. Table 5 summaries how indirect control transfers in an appli-
cation are executed in DynCFI and BinCFI .

Table 5: Execution of indirect control transfers
Original transfer Return Indirect call/jump

DynCFI
Basic block cache Jump to R, indirect jump to target

Trace cache InT or InH or jump to R, indirect jump to target
BinCFI Return jump to R, indirect jump to target

In summary, DynCFI leads BinCFI in retaining branch prediction for indi-
rect calls and jumps when trace caches are used due to InT and InH; however,
BinCFI would perform better than DynCFI for returns. That said, note that
there are typically far more return instructions than indirect calls and jumps
executed for all the applications in our benchmarking suite, see Table 3.

To better understand the effect of various components ofDynCFI and BinCFI

on branch prediction, we count the number of mispredictions when executing the
benchmarking applications on a number of different settings – DynCFI , DynCFI

with InT disabled, DynCFI with InH disabled, DynCFI with traces disabled,
BinCFI , BinCFI with returns being replaced by jumps to R, and present the
results in Figure 6.

We observe that disabling InH has a larger impact on branch prediction than
disabling InT in general. This shows that the inlined hashtable lookup has its
fair share of its contribution on lower overhead. It also indirectly shows that the
hashtable implementation in DynCFI is good in that collisions do not happen
often (since R not inlined is not executed often as shown in Table 2). Another
interesting finding is that replacing returns with indirect jumps on BinCFI adds
a large number of mispredictions for some programs. In terms of overhead, this
translates to about 2% more in the overhead as shown in Figure 7.

4.5.3 Indirect branch lookup routine R The indirect branch lookup rou-
tine in DynCFI and BinCFI very much shares the same strategy. Both use an



bzip
2

gcc m
cf

gobm
k

sje
ng

lib
quantu

m

om
netp

p
ast

ar

nam
d

so
ple

x

povra
y

lb
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
ra

n
ch

 M
is

P
re

d
ic

ti
o

n
 N

u
m

b
e

r/
1

e
+

9

1e9

DynCFI

DynCFI with InT disabled

DynCFI with InH disabled

DynCFI with trace disabled

BinCFI

BinCFI with return being
replaced by indirect jump

Fig. 6: Impact of traces on the number of branch mispredictions

bz
ip
2

gc
c

m
cf

go
bm
k

sje
ng

lib
qu
an
tu
m

om
ne
tp
p

as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI

DynCFI with
trace disabled

BinCFI

BinCFI with return
being repalced
by indirect jump

Fig. 7: Impact of branch prediction on overhead

efficient implementation of a hashtable to record valid control transfer targets.
One noticeable difference, though, is that BinCFI requires an extra step to check
if the target resides within the same software module before directing control
to the corresponding R. Each software module has to implement its own copy
of R because some dynamically loaded libraries might not have been statically
analyzed or instrumented and BinCFI cannot use a centralized R for all modules.

On the other hand, DynCFI executes the application on top of a dynamic
interpreter without static analysis or binary instrumentation, and therefore has
three centralized R (one for returns, one for indirect jumps, and one for indirect
calls) for all software modules. This architectural difference contributes to some
additional performance overhead to BinCFI .

Besides the difference due to the architectural design, there are also lower
level differences in implementing R between DynCFI (inheriting the same R

from DynamoRIO) and BinCFI . In particular, they differ in the indirect jump
instructions used (DynCFI uses a register to specify the target while BinCFI

uses a memory), the number of registers used throughout the algorithm (and as



a result the number of registers to be saved and restored), and efficiency of the
hashtable lookup algorithm.

bz
ip
2

gc
c

m
cf

go
bm
k
sje
ng

lib
qu
an
tu
m

om
ne
tp
p
as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI with R'

BinCFI with R'

Fig. 8: Performance Overhead with unified R
′

To evaluate the contribution of R in the overall performance overhead, we
replace R in both DynCFI (with traces disabled) and BinCFI (with returned
replaced with indirect jumps) with R

′, our (supposedly more efficient) imple-
mentation of the algorithm, and show the resulting performance overhead in
Figure 8.

Comparing these results with those shown in Figure 7, we find that such low-
level details in the implementation of R translates to significant differences in
the overhead. In particular, the difference between DynCFI and BinCFI shrinks
with R

′ replacing R, indicating that the original R used in DynCFI is more
efficient than that in BinCFI .

4.5.4 Summary Recall that our strategy in the second attempt of detailed
profiling of DynCFI is to continuously disable or modify various components to
find the contribution of them in terms of performance overhead. Figure 8 shows
the comparison between DynCFI with traces disabled (bringing both systems to
the same configuration on the first axis) and BinCFI with returns replaced by
indirect jumps (bringing both systems to the same configuration on the second
axis) while they use the same R′ (bringing both systems to the same configuration
on the third axis). They are fairly close to each other in their performance,
confirming that we manage to attribute their originally large difference being
successfully attributed to the three axes.

We therefore believe that this second attempt provides a successful and accu-
rate detailed profiling for DynCFI and BinCFI . With the detailed understanding
of the contribution of each components on the three axes, we hope that future
research could improve the performance further by, e.g., designing an indirect
branch lookup routine that results in better branch prediction.



5 Security evaluation and discussions

5.1 Real world exploits

We use a publicly available intrusion prevention evaluator RIPE [23] to verify
that DynCFI offers comparable security properties with existing CFI proposals
(as analysis presented in Section 3.4). In particular, we check if DynCFI can
detect exploits that employ the advanced Return-Oriented Programming (ROP)
techniques.

RIPE contains 140 return-to-libc exploits out of which 60 exploit return
instructions and 80 exploit indirect call instructions. For the 60 exploits on
return instructions, our experiments confirm that DynCFI manages to detect
all of them because they violate the call-preceded policy we enforced on return
instructions. RIPE also contains 10 ROP attacks using return instructions, which
are all successfully detected by DynCFI as the targets of these gadgets are not
call-preceded.

DynCFI and BinCFI share the weakness in detecting exploits that change
the value of a function pointer to a valid entry point of a function. Such attacks
cannot be detected by most other CFI implementations either [24].

5.2 Average indirect target reduction

Zhang and Sekar [26] propose a metric for measuring the strength of CFI called
Average Indirect target Reduction (AIR). As DynCFI uses different policy on
return branches, we apply the same metric to test DynCFI when applied to
the SPEC benchmarking suite. Table 6 compares the AIR metrics for DynCFI

and BinCFI . We can find that average AIR for DynCFI is 98.80% which is
comparable to 98.86% for the case of BinCFI .

Table 6: AIR metrics for SPEC CPU 2006
Name DynCFI(%) BinCFI(%)

bzip2 99.95 99.37
gcc 97.60 98.34
mcf 98.58 99.25

gobmk 98.18 99.20
sjeng 99.60 99.10

libquantum 98.10 98.89
omnetpp 99.61 97.68
astar 96.70 98.95
namd 99.99 99.59

soplex 99.49 98.86
povray 99.19 98.67
lbm 98.56 99.46

Average 98.80 98.86

5.3 Shadow stack in full enforcement

As described in Section 3, in order to improve the performance, we do not check
the shadow call stack if the target address is found in our hashtable (in which



all addresses have already been fully checked when they were first added to the
hashtable).

We understand that a full enforcement of the shadow call stack is more secure
as it ensures that every return jumps to its caller; however, its high performance
overhead is also well documented in previous research [9,10]. To verify such high
performance overhead, we modify DynCFI to check the shadow call stack for
every return instruction, and show the results in Figure 9.

bz
ip
2

gc
c

m
cf

go
bm
k
sje
ng

lib
qu
an
tu
m

om
ne
tp
p
as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI

DynCFI with
shadow stack

BinCFI

Fig. 9: Performance overhead with shadow stack

Figure 9 shows that DynCFI with full enforcement of the shadow stack runs
with an average performance overhead of 29.8%, a big jump from our optimized
implementation at 14.8%. Although such a full enforcement of the shadow stack
takes away the performance advantage ofDynCFI compared to BinCFI ,DynCFI

now offers much better security. We check the AIR metric and find that AIR
for DynCFI with full enforcement of the shadow stack increases from 98.80%
to 99.66% for SPEC CPU2006, which is better than that of BinCFI at 98.86%.
Our experiments also show that DynCFI can now detect some more advanced
ROP attacks, e.g., the ROP attack constructed by Goktas et al. [13] using call-
preceded gadgets. A call-proceeded-only policy, e.g., that used in BinCFI , would
miss such advanced attacks.

6 Conclusion

In this paper, we propose DynCFI , a new implementation of CFI properties
on top of a well-studied dynamic code optimization platform. We show that
DynCFI achieves comparable CFI security properties with many existing CFI
proposals while enjoying much lower performance overhead of 14.8% on average
compared to that of a state-of-the-art CFI implementation BinCFI at 28.6%. Our
detailed profiling ofDynCFI shows that traces, a mechanism in the dynamic code
optimization platform, contribute the most to such performance improvement.



Acknowledgment This work was supported by Research on attack contain-
ment using randomization for Cloud Computing No. 61373168 and Research on
software behavior model based on user intention No. 20120141110002.

References

1. DynamoRIO. http://www.dynamorio.org/.

2. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity. In Pro-
ceedings of the 12th ACM conference on Computer and communications security,
pages 340–353. ACM, 2005.

3. V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Op-
timization System. In ACM SIGPLAN Notices, volume 35, pages 1–12. ACM,
2000.

4. T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-Reuse Attacks with Control-
Flow Locking. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 353–362. ACM, 2011.

5. D. Bruening. Efficient,Transparent,and Comprehensive Runtime Code Manipula-
tion. PhD thesis, Massachusetts Institute of Technology, 2004.

6. N. Carlini and D. Wagner. Rop is Still Dangerous: Breaking Modern Defenses. In
USENIX Security Symposium, 2014.

7. P. Chen, X. Xing, H. Han, B. Mao, and L. Xie. Efficient Detection of The Return-
Oriented Programming Malicious Code. In Information Systems Security, pages
140–155. Springer, 2010.

8. W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo: A Dynamic Op-
timization System. In 3rd ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-3), pages 81–90, 2000.

9. T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks
and stack canaries. In ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS, volume 15, 2015.

10. L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A Detection Tool to
Defend Against Return-Oriented Programming Attacks. In Proceedings of the 6th
ACM Symposium on Information, Computer and Communications Security, pages
40–51. ACM, 2011.

11. D. Deaver, R. Gorton, and N. Rubin. Wiggins/Redstone: An On-line Program
Specializer. In Proceedings of the IEEE Hot Chips XI Conference, 1999.

12. I. Fratric. Runtime Prevention of Return-Oriented Programming Attacks. Univer-
sity of Zagreb, 2012.

13. E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of Control: Over-
coming Control-Flow Integrity. In Security and Privacy (SP), 2014 IEEE Sympo-
sium on, pages 575–589. IEEE, 2014.

14. Intel Corporation. Intell R©64 and IA-32 Architectures Software Developer’s Man-
ual, 2015.

15. V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure Execution via Program
Shepherding. In USENIX Security Symposium, volume 92, 2002.

16. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In Acm Sigplan Notices, volume 40, pages 190–200.
ACM, 2005.

http://www.dynamorio.org/


17. P. Mathias, B. Antonio, and R. Thomas. Fine-grained control-flow integrity
through binary hardening, 2015.

18. V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz. Opaque Control-
Flow Integrity. In Symposium on Network and Distributed System Security
(NDSS), 2015.

19. B. Niu and G. Tan. Modular Control-Flow Integrity. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, page 58. ACM, 2014.

20. V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent ROP Exploit
Mitigation using Indirect Branch Tracing. In USENIX Security, pages 447–462,
2013.

21. F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and
T. Holz. Evaluating the Effectiveness of Current Anti-ROP Defenses. In Research
in Attacks, Intrusions and Defenses, pages 88–108. Springer, 2014.

22. H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc with-
out Function Calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and communications security, pages 552–561. ACM, 2007.

23. J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen. RIPE: Run-
time Intrusion Prevention Evaluator. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 41–50. ACM, 2011.

24. Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting Violation of Control
Flow Integrity using Performance Counters. In Dependable Systems and Networks
(DSN), 2012 42nd Annual IEEE/IFIP International Conference on, pages 1–12.
IEEE, 2012.

25. C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou. Practical Control Flow Integrity and Randomization for Binary Executa-
bles. In 2013 IEEE Symposium on Security and Privacy (SP), pages 559–573,
2013.

26. M. Zhang and L. Sekar. Control Flow Integrity for COTS Binaries. In Proceedings
of the 22th USENIX Security Symposium, pages 337–352, 2013.


	Control flow integrity enforcement with dynamic code optimization
	Citation

	Control Flow Integrity Enforcement withDynamic Code Optimization
	Introduction
	Related Work and Motivation
	Control flow integrity
	Dynamic code optimization
	DynamoRIO

	Design, Implementation, and Security Comparison
	Returns
	Indirect jumps and indirect calls
	Implementation
	Security comparison

	Detailed Performance Profiling
	Target applications
	First attempt in performance profiling
	Picking BinCFI for detailed comparison
	Overall comparison and the design space
	Profiling along the three axes
	Traces
	Branch Prediction
	Indirect branch lookup routine R
	Summary


	Security evaluation and discussions
	Real world exploits
	Average indirect target reduction
	Shadow stack in full enforcement

	Conclusion


