
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2016

Online sparse passive aggressive learning with kernels Online sparse passive aggressive learning with kernels

Jing LU
Singapore Management University, jing.lu.2014@phdis.smu.edu.sg

Peilin ZHAO
Institute for InfoComm Research

HOI, Steven C. H.
Singapore Management University, chhoi@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
LU, Jing; ZHAO, Peilin; and HOI, Steven C. H.. Online sparse passive aggressive learning with kernels.
(2016). 2016 SIAM International Conference on Data Mining: Miami, Florida, May 5-7, 2016: Proceedings.
675-683.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3416

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3416&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3416&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Online Sparse Passive Aggressive Learning with Kernels

Jing Lu∗ Peilin Zhao† Steven C.H. Hoi‡

Abstract

Conventional online kernel methods often yield an unbound-

ed large number of support vectors, making them inefficient

and non-scalable for large-scale applications. Recent studies

on bounded kernel-based online learning have attempted to

overcome this shortcoming. Although they can bound the

number of support vectors at each iteration, most of them

fail to bound the number of support vectors for the final out-

put solution which is often obtained by averaging the series

of solutions over all the iterations. In this paper, we propose

a novel kernel-based online learning method, Sparse Passive

Aggressive learning (SPA), which can output a final solution

with a bounded number of support vectors. The key idea of

our method is to explore an efficient stochastic sampling s-

trategy, which turns an example into a new support vector

with some probability that depends on the loss suffered by

the example. We theoretically prove that the proposed SPA

algorithm achieves an optimal regret bound in expectation,

and empirically show that the new algorithm outperforms

various bounded kernel-based online learning algorithms.

1 Introduction

Online learning with kernels represents an important
family of machine learning algorithms for learning non-
linear predictive models in large-scale machine learn-
ing tasks [10, 8, 13]. Due to the curse of kernelization,
a major limitation of many kernel-based online learn-
ing techniques is that the number of support vectors
is unbounded and potentially large for large-scale ap-
plications. This has raised a huge challenge for apply-
ing them in practical applications since computational
complexity (of both time and space) for a kernel-based
online learning algorithm is often proportional to the
support vector size.

Recent years have witnessed a variety of emerging s-
tudies for bounded kernel-based online learning. Exam-
ples include Budget Perceptron [4], Randomized Bud-
get Perceptron (RBP) [1], Forgetron [6], Projectron [12],
Budget Passive Aggressive learning [19], Bounded On-

∗School of Information Systems, Singapore Management Uni-
versity, Singapore 178902. jing.lu.2014@phdis.smu.edu.sg
†Institute for Infocomm Research (I2R), A*STAR, Singapore.

zhaop@i2r.a-star.edu.sg
‡School of Information Systems, Singapore Management Uni-

versity, Singapore 178902. chhoi@smu.edu.sg

line Gradient Descent (BOGD) [22, 17], Twin Support
Vector Machine (TVM) [18], among others.

Although bounded kernel-based online learning has
been actively studied, most existing algorithms suffer
from a key drawback when applying them in online-to-
batch conversion, a process that aims to convert online
classifiers for batch classification purposes [7, 5]. Specifi-
cally, one of most commonly used approaches in online-
to-batch conversion is to take the averaging classifier,
that is the mean of all the online classifiers at every
online iteration, as the final classifier for batch classifi-
cation. This simple technique is not only computation-
ally efficient, but also enjoys theoretical superiority in
generalization performance compared with the classifier
obtained in the last online iteration [15]. Unfortunately,
most existing budget online kernel learning algorithms
only guarantee the support vector size at each online
iteration is bounded, but fail to yield a sparse averaging
classifier in online-to-batch conversion.

Our work is closely related to two sparse kernel
methods for online logistic regression [20, 21]. The
main limitation of the existing work is that they only
considered the problem settings with several smooth
loss functions. This is a relatively strict setting since
there are lots of situations (eg. SVM) where unsmooth
loss functions , hinge loss for example, are adopted.
Our paper studied the unsmooth loss setting where
the loss function is not limited by assumptions in [21].
The second improvement of our paper compared to the
previous work is the better theoretical analysis, which
follows the standard analysis of online learning and
thus is simpler and easier to follow. Our analysis also
suggests an approach to fix a subtle mistake in the proof
of bound in [20].

In this paper, we present a new method for bounded
kernel-based online learning method, named “Sparse
Passive Aggressive” (SPA) learning, which extends the
online Passive Aggressive (PA) learning method [3]
to ensure the final output averaging classifier has the
bounded number of support vectors in online-to-batch
conversion. Specifically, the basic idea of our method
is to explore a simple stochastic sampling rule, which
assigns an incoming training example to be a support
vector with a higher probability when it suffers a
higher loss. We theoretically prove that the proposed

Published in 2016 SIAM International Conference on Data Mining: May 5-7, 2016, Miami, Florida, USA. pp. 675-683.
http://doi.org/10.1137/1.9781611974348.76

algorithm not only bounds the number of support
vectors but also achieves an optimal regret bound in
expectation. Finally, we conduct an extensive set
of empirical studies which show that the proposed
algorithm outperforms a variety of bounded kernel-
based online learning algorithms.

The rest of this paper is organized as follows.
Section 2 formally formulates the problem and then
presents the proposed SPA algorithm. Section 3 gives
theoretical analysis. Section 4 presents our experimen-
tal studies and empirical observations, and finally Sec-
tion 5 concludes this paper.

2 Sparse PA Learning with Kernels

In this section, we first formulate the problem setting for
online learning with kernels, then review online Passive
Aggressive (PA) algorithm [3], and finally present the
details of the proposed Sparse PA learning with kernels
(SPA) algorithm.

2.1 Problem Setting and Preliminaries We con-
sider the problem of online learning by following online
convex optimization settings. Our goal is to learn a
function f : Rd → R from a sequence of training ex-
amples {(x1, y1), . . . , (xT , yT)}, where instance xt ∈ Rd
and class label yt ∈ Y. We refer to the output f of
the learning algorithm as a hypothesis and denote the
set of all possible hypotheses by H = {f |f : Rd → R}.
We will use `(f ; (x, y)) : H× (Rd × Y)→ R as the loss
function that penalizes the deviation of estimating f(x)
from observed labels y. Further, we considerH a Repro-
ducing Kernel Hilbert Space (RKHS) endowed with a
kernel function κ(·, ·) : Rd × Rd → R [16] implementing
the inner product〈·, ·〉 such that: 1) κ has the reproduc-
ing property 〈f, κ(x, ·)〉 = f(x) for x ∈ Rd; 2) H is the
closure of the span of all κ(x, ·) with x ∈ Rd, that is,
κ(x, ·) ∈ H ∀x ∈ X . The inner product 〈·, ·〉 induces a

norm on f ∈ H in the usual way: ‖f‖H := 〈f, f〉 12 . To
make it clear, we denote by Hκ an RKHS with explicit
dependence on kernel κ. Throughout the analysis, we
assume κ(x,x) ≤ X2 ∀x ∈ Rd.

Passive Aggressive (PA) algorithms [3] are a family
of margin based online learning algorithms, which can
achieve a bound on the cumulative loss comparable with
the smallest loss that can be attained by any fixed
hypothesis.

Specifically, consider a classification problem, an
online PA algorithm sequentially updates the online
classifier. At the t-step, the online hypothesis will be
updated by the following strategy

ft+1 = min
f∈Hκ

1

2
‖f − ft‖2Hκ + η`(f ; (xt, yt))

where η > 0. This optimization involves two objectives:
the first is to keep the new function close to the old
one, while the second is to minimize the loss of the
new function on the current example. To simplify the
discussion, we denote `t(f) = `(f ; (xt, yt)) throughout
the paper.

2.2 Sparse Passive Aggressive Algorithm Simi-
lar to conventional kernel-based online learning method-
s, the critical limitation of PA is that it does not bound
the number of support vectors, making it very expensive
in both computational time and memory cost for large-
scale applications. Some existing work has attempted
to propose budget PA [19] for learning a bounded kernel
classifier at each step using some budget maintenance
strategy (e.g., discarding an old SV and replacing it by
a new one). Although the kernel classifier is bounded
at each step, their approach cannot bound the num-
ber of support vectors for the average of classifiers over
all learning iterations. This drawback of the existing
budgeted kernel algorithms limits their application to
online-to-batch conversion tasks where the output final
classifier is typically obtained by averaging classifiers at
every learning steps. Furthermore, even in pure online
setting, the prediction of the new coming instance xt
using 1

t

∑t
i=1 fi often outperforms the result using a s-

ingle classifier ft. In this paper, we aim to overcome
the above limitation by proposing a novel Sparse Pas-
sive Aggressive (SPA) learning algorithm for learning
a sparse kernel classifier which guarantees not only the
ratio of support vectors to total received examples is
always bounded in expectation, but also the support
vector size of the final average classifier is bounded.

Unlike the conventional budget maintenance idea,
we propose a stochastic support vector sampling strate-
gy which sequentially constructs the set of support vec-
tors by sampling from the sequence of instances in which
an instance whenever is added into the support vector
set will never be discarded. This ensures that the sup-
port vector set of any intermediate classifier is always a
subset of the final average classifier. The rest challenge
then is how to design an appropriate sampling strategy
so that we ensure that the support vector size of ker-
nel classifiers is always bounded while maximizing the
learning accuracy of the classifier. To tackle this chal-
lenge, we propose a simple yet effective sampling rule
which decides if an incoming instance should be a sup-
port vector by performing a Bernoulli trial as follows:

Pr(Zt = 1) = ρt, ρt =
min(α, `t(ft))

β

where Zt ∈ {0, 1} is a random variable such that Zt = 1
indicates a new support vector should be added to

update the classifier at the t-th step, and β ≥ α > 0
are parameters to adjust the ratio of support vectors
with some given budget. The above sampling rule has
two key concerns:

(i) The probability of making the t-th step update is
always less than α/β, which avoids assigning too
high probability on a noisy instance.

(ii) An example suffering higher loss has a higher
probability of being assigned to the support vector
set.

In the above, the first is to guarantee that the ratio
of support vectors to total received instances is always
bounded in expectation, and the second is to maximize
the learning accuracy by adding informative support
vectors or equivalently avoid making unnecessary up-
dates. For example, for the extreme case of `t(ft) = 0,
we always have Pr(Zt = 1) = 0, which means we never
makes an update if an instance does not suffer loss. Dif-
ferent from the existing work where the sampling prob-
ability is related to the derivative of classification loss,
our probability is directly based on the scale of hinge
loss.

After obtaining the random variable Zt, we will
need to develop an effective strategy for updating the
classifier. Following the PA learning principle, we
propose the following updating method:

ft+1 = min
f∈Hκ

Pt(f) :=
1

2
‖f − ft‖2Hκ +

Zt
ρt
η`t(f)(2.1)

Note when ρt = 0, then Zt = 0 and we set Zt/ρt = 0.
We adopt the above update because its objective is an
unbiased estimation of that of PA update, that is,

E(Pt(f)) =
1

2
‖f − ft‖2Hκ + η`t(f)

Passive Aggressive based algorithms enjoy lots of advan-
tages compared to gradient based ones. For instance,
PA updating strategy is more effective because of the
adaptive step size. And PA is less sensitive to the vari-
ance of parameter setting. Finally, we summarize the
proposed Sparse Passive Aggressive algorithm in Algo-
rithm 1.

2.3 Application to Binary Classification The
proposed SPA method is a generic online learning frame-
work that can be applied to various online learning
tasks. Examples include online classification, regression,
and uniclass prediction tasks. Without loss of generali-
ty, we focus on the discussion on the application of the
proposed algorithm for online binary classification task.

Algorithm 1 Sparse PA learning with kernels (SPA)

Input: aggressiveness parameter η > 0, and param-
eters β ≥ α > 0
Initialize: f1(x) = 0
for t = 1, 2, . . . , T do

Receive example: (xt, yt)
Suffer loss: `t(ft) = `(ft; (xt, yt))

Compute ρt = min(α,`t(ft))
β

Sample a Bernoulli random variable Zt ∈ {0, 1} by:
Pr(Zt = 1) = ρt
Update the classifier:
ft+1 = minf∈Hκ

1
2‖f − ft‖

2
Hκ + Zt

ρt
η`t(f)

end for
Output:f̄T (x) = 1

T

∑T
t=1 ft(x)

Specifically, we consider an online classification task
with label set Y = {−1,+1}, and adopt the widely used
hinge loss function:

`(f ; (x, y)) = [1− yf(x)]+

where [z]+ = max(0, z). The hinge loss function is
κ(x,x)-Lipschitz with respect to f :

|`(f ; (x, y))− `(g; (x, y))|
= |[1− yf(x)]+ − [1− yg(x)]+|
≤ |yf(x)− yg(x)| ≤

√
κ(x,x)‖f − g‖Hκ ,

where we used the fact [1 − z]+ is 1-Lipschitz with
respect to z. This further implies the corresponding
`t(f)s are X-Lipschitz, since κ(xt,xt) ≤ X2. This
fact will be used in the theoretical analysis in the next
section.

After choosing the hinge loss, the rest is how
to solve the optimization (2.1). Fortunately, we can
derive a closed-form solution, as shown in the following
proposition.

Proposition 1. When `t(f) = [1−ytf(xt)]+, the opti-
mization (2.1) enjoys the following closed-form solution

ft+1(·) = ft(·) + τtytκ(xt, ·), τt = min(
ηZt
ρt

,
`t(ft)

κ(xt,xt)
)

This proposition is easy to prove, so we omit its proof.

3 Theoretical Analysis

SPA algorithm will be analyzed for binary classification
case. To facilitate the discussion, we denote

f∗ = arg min
f

T∑
t=1

`t(f)

The following theorem analyzes the regret of SPA, i.e.,∑T
t=1 `t(ft)−

∑T
t=1 `t(f∗), which is a main performance

measure of online algorithms.

Theorem 3.1. Let (x1, y1), . . . , (xT , yT) be a sequence
of examples where xt ∈ Rd, yt ∈ Y = {−1,+1} for
all t. If we assume κ(x,x) = 1 and the hinge loss
function `t(·) is 1-Lipschitz, then for any β ≥ α > 0,
and η > 0, the proposed SPA algorithm satisfies the
following inequality

E[

T∑
t=1

(`t(ft)− `t(f∗))] <
1

2η
‖f∗‖2Hκ +

ηβ

min(α,
√
βη)

T

where η is the aggressiveness parameter. When setting

η = ‖f∗‖Hκ
√

α
2βT

and α3 ≤ β
2T
‖f∗‖2Hκ , we will have

E[

T∑
t=1

(`t(ft)− `t(f∗))] < ‖f∗‖Hκ
√

2βT/α

The detailed proof can be found in Appendix A.
Remark 1. The theorem indicates that the expected
regret of the proposed SPA algorithm can be bounded
by ‖f∗‖Hκ

√
2βT/α in expectation. In practice, β/α

is usually a small constance. Thus, we can conclude
that the proposed algorithm can achieve a strong regret
bound in expectation.
Remark 2. The expected regret has a close relation-
ship with the two parameters α and β. As indicated
above, to avoid assigning too high probability on a noisy
instance, the parameter α can not be too large. Assum-
ing α ≤

√
βη (which is accessible in the practical pa-

rameter setting), the expected regret bound is propor-
tion to the ratio β/α. This consists with the intuition
that larger chances of adding SVs leads to smaller loss.
Further more, for α >

√
βη, the expected regret bound

is less tight than the above case, which consists with the
analysis before that too large α involves large number
of noisy instances and might be harmful.

Next, we would give a bound on the number of
support vectors of the final classifier f̄T in expectation.
Since we never delete an existing support vector, it
should be the same with the number of support vectors
of the final intermediate classifier fT , which equals to
the random number

∑T
t=1 Zt.

Theorem 3.2. Let (x1, y1), . . . , (xT , yT) be a sequence
of examples where xt ∈ Rd, yt ∈ Y = {−1,+1} for
all t. If we assume κ(x,x) = 1 and the hinge loss
function `t(·) is 1-Lipschitz, then for any β ≥ α > 0,
and η > 0, the proposed SPA algorithm satisfies the
following inequality

E[

T∑
t=1

Zt]≤

min

{
α

β
T,

1

β
[
T∑
t=1

`t(f∗) +
1

2η
‖f∗‖2Hκ +

ηβ

min(α,
√
βη)

T]

}

Especially, when η = ‖f∗‖Hκ
√

α
2βT and α3 ≤

β
2T ‖f∗‖

2
Hκ , we have

E[

T∑
t=1

Zt] ≤ min

{
α

β
T,

1

β
[

T∑
t=1

`t(f∗) + ‖f∗‖Hκ
√

2βT/α]

}

The detailed proof can be found in Appendix B.
Remark. First, this theorem indicates the expected
number of support vectors is less than αT/β. Thus,
by setting β ≥ αT/n (1 < n ≤ T), we guarantee
the expected number of support vectors of the final
classifier is bounded by a budget n. Second, this
theorem also implies that, by setting β ≥ [

∑T
t=1 `t(f∗)+

‖f∗‖Hκ
√

2βT/α]/n (1 < n ≤ T), the expected number
of support vectors is always less than n, no matter how
is the value of α.

4 Experiments

In this section, we conduct extensive experiments to
evaluate the empirical performance of the proposed SPA
algorithm for online binary classification tasks.

4.1 Experimental Testbed Table 1 summarizes
details of some binary classification datasets in our
experiments. The first five can be downloaded from
LIBSVM1or KDDCUP competition site 2. The last
“Gaussian” is a synthetic dataset for large-scale eval-
uation, which was generated based on a mixture of
two 2-dimensional Gaussians: N ((0, 0), I) (40%) and
N ((2, 0), 4I) (60%).

Table 1: Summary of binary classification datasets.

Data set # instances #features

KDD08 102,294 117
A9a 48,842 123
W7a 49,749 300
Codrna 59,535 8
Covtype 581,012 54
Gaussian 1,000,000 2

4.2 Compared Algorithms and Setup We eval-
uate the proposed SPA algorithm by comparing with
many state-of-the-art online kernel learning algorithm-
s. First, we implement the following non-budget kernel
learning algorithms as a yardstick for evaluation:

• “Perceptron”: the kernelized Perceptron [9];
• “OGD”: the kernelized OGD algorithm [11];
• “PA-I”: the kernelized passive aggressive algorithm

with soft margin [3].

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://www.sigkdd.org/kddcup/

Further, we compare our SPA algorithm with a variety
of budget online kernel learning algorithms:

• “RBP”: the Randomized Budget Perceptron by
random removal [1];

• “Forgetron”: the Forgetron by discarding oldest
support vectors [6];

• “Projectron”: the Projectron algorithm using the
projection strategy [12];

• “Projectron++”: the aggressive version of Projec-
tron algorithm [12];

• “BPA-S”: the Budget Passive-Aggressive algorith-
m [19], we only adopt the BPA-Simple algorithm
since the other two variants are too computational
expensive to scale to large datasets;

• “BOGD”: the Bounded Online Gradient Descent
algorithm [22, 17];

• “OSKL”:the Online Sparse Kernel Learning algo-
rithm [21].

To make a fair comparison, we adopt the same
experimental setup for all the algorithms. We use
the hinge loss for gradient-based algorithms (OGD and
BOGD). For all the algorithms, we adopt a gaussian
kernel exp(−γ||x1 − x2||2) with parameter γ set to 0.4
for all the datasets. The learning rate parameter η
for OGD, BOGD, OSKL and SPA is automatically
chosen by searching from {103, ..., 10−3} based on a
random permutation of each dataset. We adopt the
PA-I algorithm for comparison since it was proved to be
robust to noise and achieved better performance than
PA without soft margin. The soft margin parameter
C is optimized by searching from range {0.25, 0.5, 1,
2}. To decide the support vector size of the proposed
SPA algorithm, it requires to choose parameters α
and β. The parameter α is chosen according to the
distribution of the loss function scale, for which we
set α = 0.5 for Gaussian and α = 1 for all other
datasets. We choose a proper β parameter so that
the resulting support vector size is roughly a proper
fraction of that of the non-budget OGD algorithm
(specifically, we set β = 20 for three small datasets,
and β = 200 for three large datasets). Note that
the OSKL algorithm also adopts a stochastic approach
to sample the support vectors, which indicates that
there is no ideal method for setting the same number
of support vectors and thus absolutely fair comparison
between OSKL and our proposed algorithm. We tune
the sampling probability parameter G in the OSKL
algorithm so that the averaged number of support
vectors is close to that of the proposed algorithm.
Finally, to ensure that all budget algorithms adopt the
same budget size, we choose the budget size B of all
the other compared algorithms according to the average

number of support vectors generated by the proposed
SPA algorithm.

For each dataset, all the experiments were repeated
20 times on different random permutations of instances
in the dataset and all the results were obtained by aver-
aging over these 20 runs. For performance metrics, we
evaluate the online classification performance by mis-
take rates and running time. Finally, all the algorithms
were implemented in C++, and all experiments were
conducted in a Windows machine with 3.2 GHz CPU.

4.3 Evaluation of Online Learning Performance
The first experiment is to evaluate the performance
of kernel-based online learning algorithms for online
classification tasks. Table 2 shows the experimental
results. To demonstrate the superiority of averaging
classifier in pure online setting, the reported accuracy
of the proposed SPA algorithm and OSKL is obtained
by the averaged classifier 1

t

∑t
i=1 fi. We can draw some

observations as follows.
We first examine the time cost comparisons. First

of all, all the budget algorithms are significantly more
efficient than the non-budget algorithms (Perceptron,
OGD, and PA-I) for most cases, especially on large-
scale datasets. This validates the importance of study-
ing bounded kernel-based online learning algorithms.
Second, by comparing different budget algorithms, Pro-
jectron++ is the least efficient due to its expensive pro-
jection strategy, and the proposed SPA algorithm is the
most efficient. The other budget algorithms (RBP, For-
getron, BPAS, BOGD) are in general quite efficient as
they all are based on simple SV removal strategy for
budget maintenance. The reason that our SPA algo-
rithm is even more efficient than these algorithms is
because our algorithm adds the support vectors incre-
mentally while the other algorithms perform the budget
maintenance only when the support vector size reach-
es the budget. This encouraging result validates the
high efficiency advantage of our stochastic support vec-
tor sampling strategy.

We then compare online classification accuracy of
different algorithms. First, the non-budget algorithms
have better accuracy than their budget variants. This is
not surprising as the non-budget algorithms use a larger
SV size. Second, comparing different budget algorithms,
we found that PA and OGD based algorithms (BPAS,
BOGD, and SPA) generally outperform Perceptron-
based algorithms (RBP, Forgetron, Projectron, and
Projectron++). Finally, our SPA algorithm achieves
the best accuracy among all the budget algorithms most
of the cases and is comparable to the OSKL algorithm.
These results again validate the effectiveness of the
proposed budget learning strategy.

Table 2: Evaluation of Online Kernel Classification on Six Datasets. Time in seconds

KDD08, β = 20 a9a, β = 20 codrna, β = 20

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs Accuracy (%) Time #SVs

Perceptron 99.04±0.01 11.58 0.9k 79.40± 0.11 19.93 9.9k 90.79 ±0.09 6.21 5.4k
OGD 99.44±0.01 14.54 1.2k 83.41 ± 0.05 54.20 23.5k 93.31±0.05 10.41 8.8k
PA-I 99.45±0.01 39.53 3.2k 84.07±0.08 57.91 22.8k 93.65±0.05 15.82 12.4k

RBP 98.96±0.03 3.24 149 78.83±0.38 5.34 1,350 86.59±0.22 1.68 822
Forgetron 98.93±0.03 3.28 149 78.08±0.22 6.45 1,350 86.62±0.15 1.91 822
Projectron 99.02±0.01 4.19 149 79.25±0.13 32.47 1,350 83.35±0.23 19.38 822
Projcetron++ 99.32±0.01 4.86 149 79.35±0.13 150.63 1,350 84.71±0.19 32.99 822
BPAS 99.41±0.01 3.93 149 80.44±0.14 7.75 1,350 91.23±0.05 2.21 822
BOGD 99.39±0.01 3.40 149 80.97±0.04 6.17 1,350 85.62±0.06 1.92 822
OSKL 99.41±0.01 2.63 149 82.01±0.32 4.08 1,344 92.07±0.37 1.37 825
SPA 99.41±0.01 2.60 149 82.04± 0.25 3.84 1,350 91.59±0.35 1.31 822

w7a, β = 200 covtype, β = 200 gaussian, β = 200

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs Accuracy (%) Time #SVs

Perceptron 97.64 ±0.04 2.50 1.1k 73.08±0.03 2861 156.0k 73.22±0.04 3507 268.5k
OGD 98.06±0.02 38.16 10.1k 78.34±0.03 5113 296.7k 80.36±0.01 5237 456.2k
PA-I 98.16±0.02 63.47 19.6k 78.18±0.05 4402 298.2k 78.95±0.02 5164 473.4k

RBP 96.78±0.16 0.68 175 65.63±0.23 50.27 1,510 72.87±0.52 19.42 1,100
Forgetron 96.36±0.06 0.72 175 65.33±0.22 67.60 1,510 72.94±0.03 25.08 1,100
Projectron 95.19±0.39 0.87 175 57.82±6.09 316.05 1,510 61.24±4.37 29.22 1,100
Projcetron++ 95.90±0.38 3.01 175 59.33±5.85 470.35 1,510 60.03±7.93 30.36 1,100
BPAS 96.83±0.23 1.77 175 72.37±0.13 73.48 1,510 76.09±0.04 34.90 1,100
BOGD 96.75±0.03 1.05 175 68.75±0.03 54.44 1,510 79.21±0.01 23.27 1,100
OSKL 96.98±0.43 0.71 177 72.11±0.67 29.77 1,508 79.56±0.24 16.00 1,112
SPA 97.05±0.13 0.56 175 71.34±0.59 27.53 1,510 79.82±0.15 15.51 1,100

Table 3: Evaluation of Final Classifiers for Test Data (Time in Seconds).

a9a codrna KDD08 w7a

Algorithm Acc. (%) Time #SV Acc. (%) Time #SV Acc. (%) Time #SV Acc. (%) Time #SV

LIBSVM 85.04 97.8 11.5k 96.67 80.2 8.0k 99.39 577.3 14.6k 98.31 92.61 8.0k

Pegasos 84.66±0.21 15.8 11.0k 95.63±0.43 14.9 12.2k 99.50±0.01 976.8 81.8k 97.56±0.01 29.21 24.7k

BOGD 82.49±1.22 5.85 2,079 92.10±1.32 5.34 2,386 99.37±0.01 31.84 1,760 97.05±0.01 8.33 3,710
BPAS 82.11±0.83 7.59 2,079 93.12±2.01 6.98 2,386 99.22±0.29 37.48 1,760 97.75±0.40 13.95 3,710

OSKL-last 80.17±3.91 3.19 2,073 94.15±1.66 3.42 2,410 99.20±0.01 22.79 1,752 97.92±0.20 5.08 3,726

OSKL-avg 84.91±0.13 3.19 2,073 95.67±0.13 3.42 2,410 99.20±0.01 22.79 1,752 97.94±0.07 5.08 3,726
SPA-last 82.97±2.59 3.16 2,079 91.23±3.40 3.03 2,386 99.41±0.07 19.42 1,760 97.49±2.05 5.04 3,710
SPA-avg 84.88±0.10 3.16 2,079 96.05±0.09 3.03 2,386 99.46±0.01 19.42 1,760 97.97±0.04 5.04 3,710

4.4 Parameter Sensitivity of α and β The pro-
posed SPA algorithm has two critical parameters α and
β which could considerably affect the accuracy, support
vector size, and time cost. Our second experiment is
to examine how different parameters of α and β affect
the learning performance so as to give insights for how
to choose them in practice. Figure 1 evaluate the per-
formance (support vector size, time, accuracy) of the
SPA algorithm on the “a9a” dataset with varied α val-
ues ranging from 0.1 to 3, and varied β in the range of
{2.5, 5, 10, 20, 40}. Several observations can be drawn
from the experimental results.

First of all, when β is fixed, increasing α generally
results in (i) larger support vector size, (ii) higher time
cost, but (iii) better classification accuracy, especially

when α is small. However, when α is large enough (e.g.,
α > 1.5), increasing α has very minor impact to the
performance. This is because the number of instances
whose hinge loss above α is relatively small. We also
note that the accuracy decreases slightly when α is
too large, e.g., α >= 3. This might be because some
(potentially noisy) instances with large loss are given a
high chance of being assigned as SVs, which may harm
the classifier due to noise. Thus, on this dataset (“a9a”),
it is easy to find a good α in the range of [1,2].

Second, when α is fixed, increasing β will result in
(i) smaller support vector size, (ii) smaller time cost,
but (iii) worse classification accuracy. On one hand,
β cannot be too small as it will lead to too many
support vectors and thus suffer very high time cost.

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

α

#S
V

β=2.5
β=5
β=10
β=20
β=40

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

α

T
im

e
(s

)

β=2.5
β=5
β=10
β=20
β=40

0 0.5 1 1.5 2 2.5 3
77

78

79

80

81

82

83

84

α

A
cc

ur
ac

y
(%

)

β=2.5

β=5

β=10

β=20

β=40

(a) Number of support vectors (b) Time Cost (seconds) (c) Accuracy (%)

Figure 1: The impact of α and β for #SV, time cost and accuracy by the proposed SPA algorithm on “a9a”.

On the other than, β cannot be too large as it will
considerably decrease the classification accuracy. We
shall choose β that yields a sufficiently accurate classifier
while minimizing the support vector size and training
time cost. For example, for this particular dataset,
choosing β in the range of [5,10] achieves a good trade-
off between accuracy and efficiency/sparsity.

4.5 Evaluation of Output Classifiers on Test
Data A key advantage of SPA is that it assures the
final output averaged classifier is sparse, which is very
important when applying the output classifier in real
applications. Our last experiment thus is to examine
if the final output classifier of SPA is effective for
batch classification. We evaluate two SPA classifiers:
“SPA-last” that simply outputs the classifier at the
last iteration as the final classifier, and “SPA-avg” that
outputs the average of classifiers at every iteration.

We compare our algorithms with two state-of-the-
art batch algorithms for SVM classifications: (1) LIB-
SVM: a widely used and the most accurate solution of
kernel SVM for batch classification [2]; (2) Pegasos3[14]:
an efficient stochastic gradient descent solver for SVM,
for which we adapt it for kernel learning. Moreover, we
compare our solutions with the output classifiers by two
bounded kernel-based online online algorithms: BOGD
and BPAS, as they achieve the best among all the exist-
ing algorithms in previous experiments. For these two
algorithms, as their average classifier is not sparse, we
compare with their last classifiers.

To enable fair comparisons, all the algorithms follow
the same setup for batch classification. We conduct
the experiments on 4 median-scale datasets as used in
previous online experiments: “a9a”, “codrna”, “w7a”
and “KDDCUP08” (the other two large datasets were
excluded due to too long training time by LIBSVM).
We use the original splits of training and test sets on the
LIBSVM website. We adopt the same Gaussian kernel

3http://www.cs.huji.ac.il/ shais/code/

with the same kernel parameter γ for all the algorithms.
We perform cross validation on the training set to search
for the best parameters of different algorithms. In
particular, we search for the best kernel parameter γ
in the range of {25, 24, . . . , 2−5}, the parameter C of
SVM in the range of {25, ...2−5}, both the regularization
parameter λ in Pegasos and BOGD and the learning
rate parameter η in BOGD and SPA in the range of
{103, 102, . . . , 10−3}. For the proposed SPA-last and
SPA-avg, we set α = 1 and β = 5 for all the datasets.

Table 3 shows the results, where we only report the
test set accuracy and training time (we exclude the test
time as it is proportional to SV sizes). We can draw
some observations. First of all, in terms of training time,
the budget algorithms run much faster than LIBSVM
and Pegasos, in which our SPA algorithm achieves the
lowest training time among all. Specifically, compared
with batch algorithms, SPA achieves the speedup of
training time for about 20 to 30 times over LIBSVM,
and about 5 times over Pegasos.

Second, by examining the test set accuracy, we
found that LIBSVM always achieves the best. The
proposed SPA-avg algorithm achieves the best accuracy
among all the budget algorithms, which is slightly lower
but fairly comparable to LIBSVM, and even beats the
accuracy of Pegasos that has almost 4 times more SVs
than our SPA algorithm. This promising result validates
the efficacy of our SPA algorithm for producing sparse
and effective average classifier.

Third, we notice that BOGD, BPAS and SPA-last
achieve similar test set accuracy, but their standard
deviations are in general much larger than that of SPA-
avg for most cases. This shows that employing the
averaged classifier with SPA for test data classification
leads to more accurate and more stable performance
than many budget learning algorithms that output the
last classifier, which again validates the advantage of
our technique.

5 Conclusions

To overcome the curse of kernelization in large-scale ker-
nel methods, this paper proposed a novel framework of
Sparse Passive Aggressive algorithm for bounded kernel-
based online learning. In contrast to traditional budget
kernel algorithms that only bound the number of sup-
port vectors at each iteration, our algorithm can out-
put a sparse final averaged classifier with bounded sup-
port vector size, making it not only suitable for online
learning tasks but also applicable to batch classifica-
tion tasks. The experimental results from both online
and batch classification tasks showed that the proposed
method achieved a significant speedup over LIBSVM
and yielded sparse and more accurate classifiers than
existing online kernel methods, validating the efficacy,
efficiency and scalability of the proposed technique.

Appendix A: Proof for Theorem 3.1

Proof. Firstly, the Pt(f) defined in the equality

ft+1 = min
f∈Hκ

Pt(f) :=
1

2
‖f − ft‖2Hκ +

Zt
ρt
η`t(f)

is 1-strongly convex. Further, ft+1 is the optimal
solution of minf Pt(f), we thus have the following
inequality according the definition of strongly convex

1

2
‖f − ft‖2Hκ +

1

ρt
Ztη`t(f)

≥ 1

2
‖ft+1 − ft‖2Hκ +

1

ρt
Ztη`t(ft+1) +

1

2
‖f − ft+1‖2Hκ

where the inequality used ∇Pt(ft+1) = 0. After
rearranging the above inequality, we get

1

ρt
Ztη`t(ft+1)− 1

ρt
Ztη`t(f)

≤ 1

2
‖f − ft‖2Hκ −

1

2
‖f − ft+1‖2Hκ −

1

2
‖ft+1 − ft‖2Hκ

Secondly, since `t(f) is 1-Lipshitz with respect to f

`t(ft)− `t(ft+1) ≤ ‖ft − ft+1‖Hκ .

Combining the above two inequalities, we get

1

ρt
Ztη[`t(ft)− `t(f)] ≤ 1

2
‖f − ft‖2Hκ −

1

2
‖f − ft+1‖2Hκ

−1

2
‖ft+1 − ft‖2Hκ +

1

ρt
Ztη‖ft − ft+1‖Hκ

Summing the above inequalities over all t leads to

T∑
t=1

1

ρt
Ztη [`t(ft)− `t(f)] ≤ 1

2
‖f − f1‖2Hκ(5.2)

+

T∑
t=1

[
−1

2
‖ft+1 − ft‖2Hκ +

1

ρt
Ztη‖ft − ft+1‖Hκ

]

We now take expectation on the left side. Note, by
definition of the algorithm, EtZt = ρt, where we used Et
to indicate conditional expectation give all the random
variables Z1, . . . , Zt−1. Assuming ρt > 0, we have

E
[1

ρt
Ztη [`t(ft)− `t(f)]

]
= E

[1

ρt
EtZtη [`t(ft)− `t(f)]

]
= ηE [`t(ft)− `t(f)](5.3)

Note that in some iterations, ρt = 0, in that case, we
have `t(ft) = 0, thus:

η[`t(ft)− `t(f)] ≤ 0(5.4)

As mentioned before, ρt = 0 indicates Zt = 0 and
Zt/ρt = 0, we get

1

ρt
Ztη[`t(ft)− `t(f)] = 0(5.5)

Combining (5.3), (5.4) and (5.5) and summarizing over
all t leads to

ηE
T∑
t=1

[`t(ft)− `t(f)] ≤ E
T∑
t=1

1

ρt
Ztη [`t(ft)− `t(f)]

We now take expectation on the right side of (5.2)

E
[

1

2
‖f − f1‖2Hκ

]
+ E

[
T∑
t=1

[
−1

2
‖ft+1 − ft‖2Hκ +

1

ρt
Ztη‖ft − ft+1‖Hκ

]]

≤ 1

2
‖f‖2Hκ +

T∑
t=1

E
[
−1

2
τ2t +

1

ρt
Ztητt

]

Given all the random variables Z1, . . . , Zt−1, we now
calculate the conditional expectation of the variable
Mt = − 1

2τ
2
t + 1

ρt
Ztητt: In probability ρt, Zt = 1

and τt = τ ′t = min(ηρt , `t(ft)). We have Mt (Zt=1) =

− 1
2τ
′2
t + 1

ρt
ητ ′t . And in probability 1 − ρt, Zt = 0 and

τt = 0. We have Mt (Zt=0) = 0. Considering the two
cases, the conditional expectation is:

Et[Mt] = ρtMt (Zt=1) + (1− ρt)Mt (Zt=0)

= ρt

[
−1

2
τ ′2t +

1

ρt
ητ ′t

]
< ητ ′t

In the case when α ≤ `t and ρt = α
β , τ ′t =

min(ηβα , `t(ft)) ≤
ηβ
α , thus ητ ′t ≤

η2β
α .

And in the case α > `t and ρt = `t
β , τ ′t =

min(ηβ
`t(ft)

, `t(ft)) ≤
√
ηβ. Thus, ητ ′t ≤

η2β√
βη

.

Considering both of the cases leads to

Et[Mt] <
η2β

min(α,
√
βη)

Summing the above inequality over all t and combining
with (5.6), we get

ηE
T∑
t=1

[`t(ft)− `t(f)] <
1

2
‖f‖2Hκ +

η2β

min(α,
√
βη)

T

Setting f = f∗, and multiplying the above inequality
with 1/η will conclude the theorem.

Note that ft+1 is also a random variable depending on
Zt. Thus, when taking the expectation on both sides
of (5), special attention should be taken. Our approach
suggests a proper way to fix some mistake in [20].

Appendix B: Proof for Theorem 3.2

Proof. Since Et[Zt] = ρt, where Et is the conditional
expectation, we have

E[

T∑
t=1

Zt] = E[

T∑
t=1

EtZt] = E[

T∑
t=1

ρt] =

E[

T∑
t=1

min(
α

β
,
`t(ft)

β
)] ≤ min(

α

β
T,

1

β
E

T∑
t=1

`t(ft)) ≤

min

{
α

β
T,

1

β
[

T∑
t=1

`t(f∗) +
1

2η
‖f∗‖2Hκ +

ηβ

min(α,
√
βη)

T]

}
which concludes the first part of the theorem. The
second part of the theorem is trivial to be derived.

References

[1] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio
Gentile. Tracking the best hyperplane with a simple
budget perceptron. Machine Learning, 69(2-3):143–
167, 2007.

[2] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a li-
brary for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[3] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. Online passive-
aggressive algorithms. The Journal of Machine Learn-
ing Research, 7:551–585, 2006.

[4] Koby Crammer, Jaz S Kandola, and Yoram Singer.
Online classification on a budget. In NIPS, volume 2,
page 5, 2003.

[5] Ofer Dekel. From online to batch learning with
cutoff-averaging. In Advances in Neural Information
Processing Systems, pages 377–384, 2009.

[6] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer.
The forgetron: A kernel-based perceptron on a budget.
SIAM J. Comput., 37(5):1342–1372, 2008.

[7] Ofer Dekel and Yoram Singer. Data-driven online to
batch conversions. In Advances in Neural Information
Processing Systems, pages 267–274, 2005.

[8] Yoav Freund and Robert E. Schapire. Large margin
classification using the perceptron algorithm. Mach.
Learn., 37(3):277–296, 1999.

[9] Yoav Freund and Robert E Schapire. Large margin
classification using the perceptron algorithm. Machine
learning, 37(3):277–296, 1999.

[10] Jyrki Kivinen, Alex J. Smola, and Robert C.
Williamson. Online learning with kernels. In NIPS,
pages 785–792, 2001.

[11] Jyrki Kivinen, Alex J Smola, and Robert C
Williamson. Online learning with kernels. In NIPS,
pages 785–792, 2001.

[12] Francesco Orabona, Joseph Keshet, and Barbara Ca-
puto. Bounded kernel-based online learning. The Jour-
nal of Machine Learning Research, 10:2643–2666, 2009.

[13] Bernhard Scholkopf and Alexander J Smola. Learning
with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, 2001.

[14] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro,
and Andrew Cotter. Pegasos: Primal estimated sub-
gradient solver for svm. Mathematical Programming,
127(1):3–30, 2011.

[15] Ohad Shamir and Tong Zhang. Stochastic gradient
descent for non-smooth optimization: Convergence
results and optimal averaging schemes. arXiv preprint
arXiv:1212.1824, 2012.

[16] Vladimir N Vapnik. Statistical learning theory. 1998.
[17] Zhuang Wang, Koby Crammer, and Slobodan Vucetic.

Breaking the curse of kernelization: Budgeted stochas-
tic gradient descent for large-scale svm training. Jour-
nal of Machine Learning Research, 13:3103–3131, 2012.

[18] Zhuang Wang and Slobodan Vucetic. Twin vector
machines for online learning on a budget. In SDM,
pages 906–917. SIAM, 2009.

[19] Zhuang Wang and Slobodan Vucetic. Online passive-
aggressive algorithms on a budget. In International
Conference on Artificial Intelligence and Statistics,
pages 908–915, 2010.

[20] Lijun Zhang, Rong Jin, Chun Chen, Jiajun Bu, and
Xiaofei He. Efficient online learning for large-scale
sparse kernel logistic regression. In AAAI, 2012.

[21] Lijun Zhang, Jinfeng Yi, Rong Jin, Ming Lin, and X-
iaofei He. Online kernel learning with a near optimal
sparsity bound. In Proceedings of the 30th Internation-
al Conference on Machine Learning (ICML-13), pages
621–629, 2013.

[22] Peilin Zhao, Jialei Wang, Pengcheng Wu, Rong Jin,
and Steven CH Hoi. Fast bounded online gradient
descent algorithms for scalable kernel-based online
learning. In ICML, 2012.

	Online sparse passive aggressive learning with kernels
	Citation

	Introduction
	Sparse PA Learning with Kernels
	Problem Setting and Preliminaries
	Sparse Passive Aggressive Algorithm
	Application to Binary Classification

	Theoretical Analysis
	Experiments
	Experimental Testbed
	Compared Algorithms and Setup
	Evaluation of Online Learning Performance
	Parameter Sensitivity of and
	Evaluation of Output Classifiers on Test Data

	Conclusions

