
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2016

HYDRA: Massively compositional model for cross-project defect HYDRA: Massively compositional model for cross-project defect

prediction prediction

Xin XIA
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Sinno Jialin PAN
Nanyang Technological University

Nachiappan NAGAPPAN
Microsoft Research

Xinyu WANG
Zhejiang University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Citation Citation
XIA, Xin; David LO; PAN, Sinno Jialin; NAGAPPAN, Nachiappan; and WANG, Xinyu. HYDRA: Massively
compositional model for cross-project defect prediction. (2016). IEEE Transactions on Software
Engineering. 42, (10), 977-998.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/3415

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

HYDRA: Massively Compositional Model
for Cross-Project Defect Prediction

Xin Xia,Member, IEEE, David Lo,Member, IEEE, Sinno Jialin Pan,

Nachiappan Nagappan, and Xinyu Wang

Abstract—Most software defect prediction approaches are trained and applied on data from the same project. However, often a new

project does not have enough training data. Cross-project defect prediction, which uses data from other projects to predict defects in a

particular project, provides a new perspective to defect prediction. In this work, we propose a HYbrid moDel Reconstruction Approach

(HYDRA) for cross-project defect prediction, which includes two phases: genetic algorithm (GA) phase and ensemble learning (EL)

phase. These two phases create a massive composition of classifiers. To examine the benefits of HYDRA, we perform experiments on

29 datasets from the PROMISE repository which contains a total of 11,196 instances (i.e., Java classes) labeled as defective or clean.

We experiment with logistic regression as the underlying classification algorithm of HYDRA. We compare our approach with the most

recently proposed cross-project defect prediction approaches: TCA+ by Nam et al., Peters filter by Peters et al., GP by Liu et al., MO by

Canfora et al., and CODEP by Panichella et al. Our results show that HYDRA achieves an average F1-score of 0.544. On average,

across the 29 datasets, these results correspond to an improvement in the F1-scores of 26.22 , 34.99, 47.43, 28.61, and 30.14 percent

over TCA+, Peters filter, GP, MO, and CODEP, respectively. In addition, HYDRA on average can discover 33 percent of all bugs if

developers inspect the top 20 percent lines of code, which improves the best baseline approach (TCA+) by 44.41 percent. We also find

that HYDRA improves the F1-score of Zero-R which predict all the instances to be defective by 5.42 percent, but improves Zero-R by

58.65 percent when inspecting the top 20 percent lines of code. In practice, Zero-R can be hard to use since it simply predicts all of the

instances to be defective, and thus developers have to inspect all of the instances to find the defective ones. Moreover, we notice the

improvement of HYDRA over other baseline approaches in terms of F1-score and when inspecting the top 20 percent lines of code are

substantial, and in most cases the improvements are significant and have large effect sizes across the 29 datasets.

Index Terms—Cross-project defect prediction, transfer learning, genetic algorithm, ensemble learning

Ç

1 INTRODUCTION

SOFTWARE defect prediction can help in allocating test
resources by predicting defect-prone classes, files, or

modules prior to the testing phase [52]. A number of defect
prediction approaches have been proposed which leverage
machine learning techniques to build a prediction model
from historical data stored in software repositories [10],
[20], [25], [34], [35], [57]. These approaches typically use var-
ious features, e.g., process metrics, previous-defect metrics,
source code metrics, etc., to characterize a class/file/mod-
ule and employ a classification algorithm to predict if a
class/file/module is defective or not. Most defect prediction
approaches are trained and applied on classes/files/mod-
ules from the same project. These within-project defect pre-
diction approaches require sufficient training (historical)
data from a project.

However, in practice, it is rare that sufficient training
data is available for a new project, but there is plenty of
data from other projects. For example, the PROMISE reposi-
tory [33] provides many publicly released defect prediction
datasets. Cross-project defect prediction, which uses train-
ing data from other projects (aka. source projects) to predict
defective instances (i.e., classes/files/ modules) in a partic-
ular project of interest (aka. target project), provides a new
perspective to defect prediction [9], [28], [36], [41], [42], [58].
In this paper, we refer to defect prediction approaches that
are trained and applied on instances from the same project
as within-project defect prediction approaches. On the other
hand, we refer to approaches that also use training data
from other projects as cross-project defect prediction approaches.

Cross-project defect prediction is a challenging task
since a prediction model that is trained on one or a set of
projects might not generalize well to other projects [58].
The challenge is how to create a model to better capture
generalizable properties of defective instances that will
work for the target project, and (fully or partly) ignore non-
generalizable properties that do not hold for the target proj-
ect. In the machine learning literature, to overcome the dif-
ference in data distributions between domains, transfer
learning [13], [15], [39], [40] which extracts common knowl-
edge from the one domain and transfers it to another
domain, has been proposed. Cross-project defect prediction
can be viewed as a specific case of transfer learning, which
extracts knowledge from a set of source projects and trans-
fers it to a target project.

� X. Xia and X. Wang are with the College of Computer Science and Tech-
nology, Zhejiang University Hangzhou, Zhejiang 310000, China.
E-mail: {xxkidd, wangxinyu}@zju.edu.cn.

� D. Lo is with the School of Information Systems, Singapore Management
University, Singapore 17890. E-mail: davidlo@smu.edu.sg.

� S. Jialin Pan is with the School of Computer Engineering, Nanyang Tech-
nological University, Singapore. E-mail: sinnopan@ntu.edu.sg.

� N. Nagappan is with the Testing, Verification and Measurement Research,
Microsoft Research, Redmond, WA 98052. E-mail: nachin@microsoft.com.

Manuscript received 12 Feb. 2015; revised 1 Mar. 2016; accepted 6 Mar. 2016.
Date of publication 16 Mar. 2016; date of current version 21 Oct. 2016.
Recommended for acceptance by T. Menzies.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2016.2543218

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016 977

0098-5589� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Software Engineering, October 2016, Volume 42, Issue 10, Pages 977-998.
http://doi.org/10.1109/TSE.2016.2543218

mailto:
mailto:
mailto:
mailto:

In this paper, we propose our HYbrid moDel Reconstruc-
tion Approach (HYDRA) which addresses the above chal-
lenge by iteratively learning new classifiers and compositions
of classifiers to collectively better capture generalizable prop-
erties in every new iteration. Rather than learning only one or
a few classifiers, HYDRA tunes a two-layer hierarchical com-
position of a massive number of classifiers. The tuning pro-
cess is done in many iterations, with the help of Genetic
Algorithm (GA) and Ensemble Learning (EL), which gradu-
ally steers the composite model to better capture generalizable
properties; this is done by learning new classifiers and new
compositions of classifiers, and by assigning weights to these
classifiers, compositions of classifiers, and training instances.
Our approach is different from the existing studies on cross-
defect prediction which only build one classifier [9], [28], [36],
[42] or unify a few classifiers [41].

HYDRA considers the setting where there are numerous
labeled data from multiple source projects, however there is
only a limited amount of labeled data (e.g., 5 percent of the
data are labeled) from a target project. This limited amount
of labeled data from a target project is referred to as training
target data. HYDRA includes two phases: genetic algorithm
(GA) phase and ensemble learning (EL) phase. In the GA
phase, we first build a classifier for each source project data
merged with the training target data, and another classifier
for the training target data alone. Next, we build a GA clas-
sifier by assigning different weights to the multiple classi-
fiers using genetic algorithm. Genetic algorithm will search
for the best weights which optimize F1-score [19] on the
training target data. The goal is to reduce training error to
approximate the generalization error since there are not suf-
ficient instances in training target data to be divided into
training and validation sets [46]. In the EL phase, we iterate
the GA phase many times. For each iteration, we build a GA
classifier, and assign a weight to the GA classifier according
to its prediction error rate on the training target data; also,
we increase the weights of instances in source projects and
the training target data if they are wrongly classified by the
GA classifier built in the previous iteration. At the end of
the GA and EL phases, we have a massive composition of
classifiers and we use it to predict defective instances in the
target project.

We evaluate our approach against seven existing
approaches [9], [15], [28], [36], [41], [42], [58] using 29 data-
sets from the PROMISE data repository which contains a
total of 11,196 instances. Our results show that HYDRA
achieves the best performance. HYDRA achieves an average
F1-scores of 0.544. On average, across the 29 datasets, our
approach improves the F1-scores of Zimmermann et al.’s
approach [58] by 40.21 percent, of TCA+ [36] by 26.22 per-
cent, of Peters filter [42] by 34.99 percent, of GP [28] by
47.43 percent, of MO [9] by 28.61 percent, and of CODEP [41]
by 30.14 percent, respectively. We also compare our
approach with TransferBoost [15] which is recently proposed
in the machine learning literature by Eaton and desJardins,
and the results show that our approach improves Transfer-
Boost by 39.49 percent. In addition, HYDRA on average can
discover 33 percent of all bugs if developers only inspect
the top 20 percent lines of code, which improves the best
baseline approach (TCA+) by 44.41 percent. We address the
following research questions:

RQ1: How effective is HYDRA? How much improvement can
it achieve over the baseline approaches?

On average across the 29 projects, the average F1 and
PofB20 scores for HYDRA are 0.544 and 33.0 percent, which
improves the baseline approaches by a substantial margin.

RQ2: Can HYDRA outperform conventional within-project
defect prediction?

On average across the 29 datasets, HYDRA outperforms
the within-project defect prediction with 5 percent labeled
data in terms of F1-score and PofB20 by 19.46, and 62.40 per-
cent, respectively. Moreover, HYDRA achieves similar
results as within-project defect prediction with 90 percent
labeled data.

RQ3: Do different percentages of labeled instances from a tar-
get project affect the performance of HYDRA?

We notice that for small number of instances, such as 1-
3 percent of the total number of instances, the F1-score is
low. With more labeled instances from the target projects,
the performance is improved. Also the average percentages
of bugs detected when inspecting 20% of code is relatively
stable, and it varies from 31.5-35.5 percent.

RQ4: How much time does it take for HYDRA to run?
We find that the model building and prediction time for

HYDRA are reasonable. On average, HYDRA needs
1.5 minutes to train a model, and 1.7 seconds to predict the
labels of instances in the testing set using the model.

The main contributions of this paper are:

1) We propose a novel cross-project defect prediction
approach named HYDRA, which utilizes the advan-
tages of genetic algorithm (GA) and ensemble learn-
ing (EL) to build and iteratively tune a massively
compositional model.

2) We evaluate our approach and those proposed by
Zimmermann et al., Nam et al., Peters et al., Liu
et al., Canfora et al., Panichella et al., and Eaton and
desJardins on 29 datasets containing a total of 11,196
instances. The experiment results show that our
approach can achieve a substantial improvement
over these baseline approaches.

The remainder of the paper is organized as follows. We
describe the motivation of building a compositional model
and the high-level architecture of HYDRA in Section 2. We
elaborate HYDRA in Section 3. We present our experiments
in Section 4. We discuss the other settings of HYDRA, and
threats to validity in Section 5. We briefly review related
work in Section 6. We conclude this work and point out
potential future directions in Section 7.

2 MOTIVATION AND ARCHITECTURE

In this section, we present the motivation of building a com-
positional model, followed by the architecture of HYDRA.

2.1 Why Compositional Model?

If a single model built from one source project, using a state-
of-the-art defect prediction approach, can perform very well
across a wide-variety of target projects, there is no need for
a compositional model. To validate the need for a composi-
tional model, we investigate how models learned from dif-
ferent source projects affect the performance of a state-of-
the-art cross-project defect prediction approach.

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

To do this, we evaluate the performance of TCA+ [36] on
five projects from the PROMISE repository: ant-1.4 (ant),
log4j-1.0 (log4j), lucene-2.0 (lucene), poi-1.5 (poi), and syn-
apse-1.0 (synapse). The details of the five projects can be
found in Table 3.1We first identify all combinations of source-
target project pairs. For example, if we choose the target proj-
ect as ant,we select the remaining 4 projects as the source proj-
ects, i.e., log4j)ant, lucene)ant, poi)ant, and synapse)ant.
We choose logistic regression [7] implemented in WEKA [18]
as the underlying machine learning classifier, and we mea-
sure the performance of TCA+ using F1-score.2 F1-score is a
harmonic mean of precision and recall. Table 1 presents the
F1-scores for the five datasets by using TCA+ with logistic
regression as the underlyingmachine learning classifier.

We notice that for a specific target project, if we choose
different source projects to perform transfer learning (using
TCA+), the performance would be different. This phenome-
non is referred to as source component shift in the litera-
ture [51]. For example, for the target project synapse, if we
choose log4j as the source project, the F1-score is 0.301 using
TCA+ with logistic regression. However, if we choose
lucene as the source project, the F1-score is 0.202.

Due to the phenomenon of source component shift, if we
poorly choose a source project, then this source project may
inhibit learning (aka. negative transfer [15], [40]) resulting in
poor prediction performance. Fortunately, for cross-project
defect prediction, we have many source projects which are
well labeled. Thus, it would be interesting to investigate a
technique that can use all source projects to do cross-project
defect prediction, and reduce the effect of source component
shift. To achieve this goal, we build a massively composi-
tional model using our proposed approach HYDRA.

2.2 Overall Architecture

Fig. 1 presents the overall architecture of HYDRA. HYDRA
contains two steps: model building step and prediction
step. In the model building step, our goal is to build a cross-
project prediction model learned from instances in multiple
source projects and the training target data (i.e., 5 percent
instances from the target project that are labeled as defective
or clean). In the prediction step, we apply this model to pre-
dict if a new class/file/module in the target project has
defects or not.

Our framework takes as inputs instances from various
source projects with known labels (i.e., defective or clean),
and a small number of labeled instances from the target
project (i.e., 5 percent of the instances). Next, it uses various
metrics from instances in the various source projects and
the training target data (Step 1). Various types of metrics
can be used, e.g., process metrics, previous-defect metrics,
source code metrics, and entropy-of-change metrics [14],
[26], [38], [43]. Table 2 shows the metrics that were used by
Jureczko and Madeyski in their defect prediction work [24]
and are also used in this work. Notice that we use the same
metrics from the source projects and the target project.
Next, our framework builds a cross-project prediction
model based on the metrics from the various source projects
and the training target data (Step 2). The model is a machine
learning classifier which assigns labels (in our case: defective
or clean) to an instance (in our case: a class/file/module)
based on its metrics.

Fig. 2 illustrates the model built in the model building
step of HYDRA, which contains two phases: genetic algo-
rithm (GA) phase and ensemble learning (EL) phase. In the
GA phase, for each source project Si and training target
data Tt, we build a classifier Mi, and in total we build
ðN þ 1Þ classifiers. Next, HYDRA uses genetic algorithm
(GA) to search for the best composition of these classifiers;
we refer to the composite classifier as a GA classifier. In the
EL phase, we build multiple GA classifiers, by running the
GA phase multiple times, and compose these GA classifiers
according to their training error rate.

After the model is constructed, in the prediction step, it is
then used to predict whether an unlabeled instance in the
target project would have defects or not. For each of such
instances, we first extract the same metrics as those
extracted in the model building step (Step 3). We then input
the values of these metrics into the model (Step 4). The
model will output the prediction result which is one of the
following labels: defective or clean (Step 5).

3 PROPOSED APPROACH

We have N source projects fS1; S2; . . . ; SNg and a target
project T . Each source project contains many instances, and
an instance corresponds to a class/file/module (depending
on the granularity considered). Each instance has two parts:
a set of metrics x and a label y which corresponds to the
defect information (y ¼ 1 represents defective, y ¼ 0

TABLE 1
Experiment Results Using TCA+

Source)Target F1 Source)Target F1

log4j)ant 0.300 ant)lucene 0.536
lucene)ant 0.359 log4j)lucene 0.503
poi)ant 0.275 poi)lucene 0.547
synapse)ant 0.256 synapse)lucene 0.556

ant)log4j 0.372 ant)poi 0.563
lucene)log4j 0.378 log4j)poi 0.578
poi)log4j 0.339 lucene)poi 0.541
synapse)log4j 0.343 synapse)poi 0.594
ant)synapse 0.208 lucene)synapse 0.202
log4j)synapse 0.301 poi)synapse 0.215

The best F1-scores for each target project are in bold. Fig. 1. Overall architecture of HYDRA.

1. The details of Table 3 is on Page 8 to just before Section 3.3.
2. For the details of F1-score, please see Section 4.2.1.

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 979

represents clean)3. An instance is defective if it has one or
more bugs. For unlabeled instances in the target project T ,
the goal of HYDRA is to predict their defect information by
using the model trained using instances in the source proj-
ects fS1; S2; . . . ; SNg and a small number of instances from
the target project whose labels are known (aka. training tar-
get data) Tt. In the following paragraphs, we present the
GA phase and EL phase, respectively.

3.1 The GA Phase

In the GA phase, we build a total of ðN þ 1Þ classifiers: for a
source project Si; f1 � i � Ng, we merge it with Tt (follow-
ing the approach in [15]), i.e., Si

S
Tt, and build a classifier

Mi on the merged data; for the training target data Tt, we
build the ðN þ 1Þth classifier MNþ1 by training on Tt. We
measure the performance of Mi by computing its F1-score
on the training target data Tt. By default, we use logistic
regression as the underlying classifier to build the ðN þ 1Þ
classifiers. In the defect prediction literature, F1-score is one
of the most important metrics which measures how good a
defect prediction approach is [29], [36], [42], [58]. Due to the
phenomenon of source component shift, some classifiers have
better performance (i.e., F1-score) than the others. Intui-
tively, those classifiers who obtain better performance are
supposed to be associated with a higher weight.

The output of the GA phase is a heuristically near opti-
mal composite model (i.e., a GA classifier) which assigns
different weights to the ðN þ 1Þ classifiers. In the following
paragraphs, we first define the GA classifier and the search
space of the potential composition of the ðN þ 1Þ classifiers:
M1;M2; . . . ;MNþ1. Next, we present a detailed procedure to
learn the GA classifier.

3.1.1 GA Classifier

A GA classifier is a weighted composition of ðN þ 1Þ classi-
fiers. Given an instance j, a classifierMi will output the like-
lihood of the instance j to be defective, denoted as ScoreiðjÞ,
whose value ranges from 0 to 1.A GA classifier will predict
whether the instance j is defective or not by comparing the
weighted sum of the ðN þ 1Þ classifiers with their likelihood
scores on the instance j as weights against a user-predefined
threshold score. Definition 1 provides a mathematical defi-
nition of the GA classifier.

Definition 1. (GA Classifier) Consider N source projects
fS1; S2;. . . ; SNg, and a training target data Tt. We build
ðN þ 1Þ classifiers from the source projects and the training
target data. A GA classifier composes these ðN þ 1Þ classifiers
and assigns a label to an instance j as follows:

LabelðjÞ ¼ 1 (i.e., defective);

0 (i.e., clean);

if CompðjÞ � threshold

Otherwise;

�

where,

CompðjÞ ¼
PNþ1

i¼1 ai � ScoreiðjÞ
LOCðjÞ : (1)

In the above equation, ScoreiðjÞ is the likelihood score output-
ted by the ith classifier for instance j, a1 to aNþ1 are the
weights of the ðN þ 1Þ classifiers, threshold is the boundary

TABLE 2
Metrics for Defect Prediction Used by Jureczko

and Madeyski [24]

Metrics Description

wmc the number of methods used in a given class [11]
dit the maximum distance from a given class to the root

of an inheritance tree [11]
noc the number of children of a given class in an inheri-

tance tree [11]
cbo the number of classes that are coupled to a given

class [11]
rfc the number of distinct methods invoked by code in a

given class [11]
lcom the number of method pairs in a class that do not

share access to any class attributes [11]
lcom3 another type of lcom metric proposed by Hender-

son-Sellers [21]
npm the number of public methods in a given class [5]
loc the number of lines of code in a given class [5]
dam the ratio of the number of private/protected attrib-

utes to the total number of attributes in a given
class [5]

moa the number of attributes in a given class which are of
user-defined types [5]

mfa the number of methods inherited by a given class
divided by the total number of methods that can be
accessed by the member methods of the given
class [5]

cam the ratio of the sum of the number of different
parameter types of every method in a given class to
the product of the number of methods in the given
class and the number of different method parameter
types in the whole class [5]

ic the number of parent classes that a given class is
coupled to [49]

cbm the total number of new or overwritten methods that
all inherited methods in a given class are coupled
to [49]

amc the average size of methods in a given class [49]
ca afferent coupling, which measures the number of

classes that depends upon a given class [30]
ce efferent coupling, which measures the number of

classes that a given class depends upon [30]
max_cc the maximumMcCabe’s cyclomatic complexity (CC)

score [31] of methods in a given class
avg_cc the arithmetic mean of the McCabe’s cyclomatic

complexity (CC) scores [31] of methods in a given
class

Fig. 2. Model built using HYDRA.

3. Note the datasets provided by Jureczko and Madeyski [24] con-
tain the bug count information, in this paper, we remove the bug count
information. For each instance, if its bug count is more than 1, we set
the label of the instances as y = 1 (defective); else we set y = 0 (clean). In
this paper, we use the defective/clean labels instead of absolute bug
counts since all of the papers that present the baseline approaches (i.e.,
[9], [15], [28], [36], [41], [42], [58]) use the same setting, and we follow
them.

980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

used to decide whether an instance is defective or not, and
LOCðjÞ is the number of lines of codes for instance j. Instance
j would be classified as defective (i.e., y ¼ 1) if its composite
score CompðjÞ is larger than or equal to threshold; otherwise
it is classified as clean. Note that a1 to aNþ1 and threshold are
the parameters of a GA classifier. Thus, We denote a GA classi-

fier as (
PNþ1

i¼1 aiMi, threshold) where each Mi is a classifier,
ai is the weight ofMi, and threshold is the defect boundary.

The search space of all possible compositions corre-
sponds to the various assignments of values to the weights
fa1;a2; . . . ;aNþ1g, and the defect boundary threshold. Each
weight is a real number from zero to one and threshold is a
real number from zero to N þ 1.

We include LOC in Equation (1) to maximize the number
of buggy instances found given a budget (e.g., inspecting
only 20 percent of the number of LOC). If two instances
have equal likelihood to be buggy and one of them has a
higher LOC, to find as many bugs as possible within the
budget, we need to pick the instance with the lower LOC.

Notice in the GA phase, we use training target data Tt to
build a classifierMNþ1. Since the number of instances in Tt is
small, and we do not have a separate validation set, we eval-
uate the error rate ofMNþ1 by using the same set Tt. We find
that MNþ1 does not yield the best error rate on Tt, since the
number of instances in Tt is small and MNþ1 does not get
enough training. Thus, during the GA phase, the weights of
the other classifiers fa1;a2; . . . ;aNg are not zeroes.

3.1.2 Detailed Procedure

To learn the weights and the threshold, we employ genetic
algorithm. Genetic algorithm is a well-known search algo-
rithm which models solutions in a search space as chromo-
somes. In our setting, a solution is a set of values for the
weights and the threshold of a GA classifier. A chromosome
contains a set of genes where a gene corresponds to a part of
a solution (e.g., a value of a weight, in our setting). Genetic
algorithm starts with a random selection of chromosomes,
referred to as the initial population. It then evolves the popu-
lation by generating subsequent generations, where each
generation is a population of chromosomes. GA evolves the
population by three operations: (1) selection operator,
which selects parent chromosomes according to their fitness
scores; (2) crossover operator, where the selected parents
exchange their genes with a given probability; (3) mutation
operator, where the genes of new chromosomes would be
modified according to a given probability. More details
about GA can be found in [17], [48].

We use a simple GA [17], [48] implemented in jgap [32]
in this paper. Chromosomes are represented as an array of
ðN þ 2Þ doubles whose values—the first ðN þ 1Þ doubles
represent the weights fa1;a2; . . . ;aNþ1g, and the last double
represents the threshold whose value ranges from zero to
N þ 1. We use the Roulette wheel selection procedure [17],
[48] as the selection operator. It assigns a higher probability
to a chromosome with a higher fitness score to be selected.
Fitness score measures the quality of a solution in a search
space. We set the fitness score as the F1-score of the GA clas-
sifier on the training target data Tt, i.e., after we choose the
weights and the threshold, we use the composite model
(i.e., GA classifier) to predict the label of instances in Tt and

compute the resulting F1-score. For the crossover operator,
we use the single point crossover operator. It processes
pairs of chromosomes and for each pair, with a certain prob-
ability, it randomly picks a gene (i.e., a double value) from a
parent chromosome and swaps that gene and the subse-
quent ones with corresponding genes from the other parent
chromosome. For the mutation operator, we use random
mutation. For each gene in the first N genes, with a certain
probability, it randomly swaps the gene with another dou-
ble value in the range of zero to one. And for the ðN þ 1Þth
gene, with a certain probability, it randomly swaps the gene
with another double value in the range of zero to ðN þ 1Þ.

Algorithm 1. The GA Phase of HYDRA

1: GAPhase(fS1; S2; . . . ; SNg, Tt, PopSize,MaxGen)
2: Input:
3: fS1; S2; . . . ; SNg: Source Projects
4: Tt: Training target data
5: PopSize: Number of chromosomes in a population. One

chromosome is represented by an array of ðN þ 2Þ
doubles.

6: MaxGen: Maximum number of generations
7: Output: Composite GA Classifier (

PNþ1
i¼1 aiMi, threshold).

8: Method:
9: for all Si � fS1; S2; . . . ; SNg do
10: Build a classifierMi by using Si

S
Tt;

11: end for
12: Build a classifierMNþ1 by using Tt;
13: Let P = Initial population with PopSizemembers;
14: Evaluate P and record the best solution (i.e., the solution

with the maximum F1-score on Tt) found so far;
15: Let curGen = 0, and set P

0 ¼ P ;
16: while curGen < MaxGen do
17: Let P

0 ¼ selectðP 0 Þ;
18: P

0 ¼ crossoverðP 0 Þ;
19: P

0 ¼ mutationðP 0 Þ;
20: Evaluate P

0
and record the best solution so far;

21: curGen = curGen + 1;
22: end while
23: Output (

PNþ1
i¼1 aiMi, threshold) which achieves the highest

F1-score.

Algorithm 1 presents the detailed steps to train a GA
classifier. For each source project Si, we first build a classi-
fier Mi based on instances in Si and Tt (Lines 9-11). Simi-
larly, we build a classifier MNþ1 using the training target
data Tt alone (Line 12). Then, we create an initial population
(i.e., P) containing PopSize chromosomes (i.e., solutions)
that are created in a random manner. That is, for each chro-
mosome, the first ðN þ 1Þ doubles (i.e., fa1;a2; . . . ;aNþ1g)
are initialized by randomly selecting a double from 0 to 1,
and the ðN þ 2Þth double (i.e., the threshold) is initialized
by randomly selecting a double from 0 to N þ 1 (Line 13).
And we record the best solution (i.e., the solution with the
maximum F1-score on Tt) among the solutions in P (Line
14). Remember that each solution in P is a set of weights
fa1;a2; . . . ;aNþ1g and a threshold. Next, we evolve the pop-
ulation in MaxGen iterations; for each iteration, we perform
the selection, crossover, and mutation operations on the cur-
rent population, and record the best solution found so far
(Lines 16 to 22). The algorithm returns the a1;a2; . . . ;aN and

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 981

threshold values which maximize the F1-score on Tt (i.e., the
best solution among solutions in the initial population and
the populations generated in theMaxGen generations).

3.2 The EL Phase

In the EL phase, we iterate the GA phase a number of times
to learn a composition of GA classifiers. To do this, we
adapt AdaBoost [16], which is one of the most famous and
widely used ensemble learning algorithms. AdaBoost pro-
ceeds in a number of iterations and generates one classifier
in each iteration. In each iteration, the classifier built is
tweaked such that instances that get misclassified by previ-
ous classifiers get a higher weight and thus are deemed to
be more important to be classified correctly. AdaBoost can
be used with any underlying/base classification algorithms.
In the EL phase, we follow the principle of AdaBoost to gen-
erate multiple GA classifiers. However, there are several
differences between our EL phase and AdaBoost: (1) Ada-
Boost is not for transfer learning—it is designed for tradi-
tional supervised learning, while our approach is for
transfer learning. (2) To adapt AdaBoost for transfer learn-
ing, we modify the way in which Adaboost [16] assigns
weights to instances and evaluates the effectiveness of a
classifier. Different from AdaBoost, where instances comes
from one domain, for our setting, we have instances from
source projects and those from training target data. Our EL
phase adjusts the weights of instances from source projects
differently from those from training target data. During the
iterations, the focus of our EL phase is to minimize errors
on the prediction of instances in the training target data,
while AdaBoost tries to minimize prediction errors of all
training instances.

The details of the EL phase is as follows. For each iteration
k, we build a composite GA classifier GAk using instances in
fS1; S2; . . . ; SNg and Tt. Next, we assign different weights to
the data instances in fS1; S2; . . . ; SNg and Tt. For data instan-
ces that GAk predicts correctly, we assign lower weights to
them, and for data instances whichGAk predicts wrongly, we
assign higher weights to them. Also, we assign weights to
instances in training target data differently from those in
source projects since our goal is to minimize errors on instan-
ces in the training target data.4 In the next iteration kþ 1, since
different data instances have different weights, GAkþ1 will
prioritize data instances with higher weights. The underlying
classifiers (i.e., logistic regression), which are parts of the GA
classifier, are able to process weighted instances in the train-
ing data andwill prioritize thosewith higherweights.

Notice that in the EL phase, we create an ensemble of
multiple GA classifiers. We choose this design rather than
using only the best performing GA classifier to prevent
overfitting [19], i.e., the model that fits best on the training
data may not show good performance when it is applied to
the testing data.

Fig. 3 presents an example of the EL phase ofHYDRA. We
have instances from two source projects (circles) and the train-
ing target data (squares). The size of the circles and squares
represents their weights.We show 2 iterations of the EL phase
in the figure. For each iteration, we train a classifier (the solid
line) according to the instances in these projects. In iteration 1,

the classifier wrongly predicts the “-” instance in the training
target data, and wrongly predicts one of the “+” instances in
one of the source projects. Thus, higher weights are assigned
to these two wrongly predicted instances in the next iteration.
In iteration 2, since theweights for the “-” instance in the train-
ing target data and “+” instance in the source project are
increased, the classifier is biased to predicting the right labels
of these two instances. However, the classifier in iteration 2
still predicts the wrong label for the “+” instance. Thus in the
next iterations, the EL phase will further increase the weight
of the “+” instancewhose label iswrongly predicted.

After we reassign weights to the data instances, we also
assign a weight to GAk according to its prediction results
(i.e., error rate �k) on instances in the training target data Tt.
The error rate of GAk, i.e., �k, is computed based on instan-
ces in Tt which are wrongly labeled by GAk. Considering

that each instance in Tt has a weight wi
Tt
, the cost of misclas-

sification on different instances are different. We thus com-
pute the error rate as follows:

�k ¼
PjTtj

i¼1 w
i
Tt
jGAkðxi

Tt
Þ � yiTt jPjTtj

j¼1 w
j
Tt

: (2)

In the above equation, fxi
Tt
; yiTtg denotes the ith instance

in the training target data Tt. Recall that, an instance consists

of a set of metrics (e.g., xi
Tt
) and a defect information label

(e.g., yiTt). GAkðxÞ denotes the predicted label for an unla-

beled instance, with a set of metrics x using the classifier
GAk. For example, consider three instances with weights
0.4, 0.5, and 0.6, and labels 1, 1, and 0. After we run the GAk

classifier, the predicted labels are 1, 0, and 1. Then, the error
rate for GAk would be:

�ðkÞ ¼ 0:4 � j1� 1j þ 0:5 � j0� 1j þ 0:6 � j1� 0j
0:4þ 0:5þ 0:6

¼ 0:73:

Notice that we use a different optimization criteria in the
EL phase (i.e., error rate) and GA phase (F1-score). In the EL
phase, we follow the principle of AdaBoost [16], and Ada-
Boost also uses error rate as the optimization criteria. In the
GA phase, since our GA classifier combines a number of
classifiers, if we set the fitness function as the error rate (i.e.,
minimize the error rate), due to the imbalance distribution
of defective and clean instances in the source projects, the

Fig. 3. An example of the EL phase of HYDRA. We have instances from
two source projects (the blue and red circles), and instances from a train-
ing target data (the squares). “+” and “-” represent clean and defective
labels respectively. The solid lines in the figures represent how the clas-
sifiers predict clean and defective instances.

4. More details on this are presented later in Algorithm 2.

982 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

GA classifier is likely to be prone to predict all of the instan-
ces to be of the majority class.

At the end of the K iterations, we have a total of K GA
classifiers, and each GA classifier has a weight. We refer to
the combination of the K classifiers as an ensemble classifier.
For a new instance in the target project, we input it into the
ensemble classifier, and the ensemble classifier will output
a predicted label.

Algorithm 2 presents the detailed steps of the EL phase
of HYDRA. In the algorithm, the ith source project is
denoted as Si and the jth instance of Si is denoted as

fxj
Si
; yjSig where xj

Si
is the set of metrics of the jth instance

and yjSi is its defect information (i.e., defective or clean).

Moreover, we denote the weight of the jth instance in the

ith source project as wj
Si
, and the weight of the jth instance

in the training target data Tt as w
j
Tt
. We use the instances in

the source projects and training target data as proxies to the
unlabeled data in the target project. The EL phase builds
multiple models that can predict the labels of these proxies
in varying amount of accuracies, and then ensemble these
strong and weak classifiers together.

Algorithm 2. The EL Phase of HYDRA

1: ELPhase(fS1; S2; . . . ; SNg, Tt,K)
2: Input:
3: fS1; S2; . . . ; SNg: Source projects
4: Tt: Training target data
5: K: Maximum number of iterations
6: Output: Ensemble Classifier

PK
k¼1 bk 	GAk.

7: Method:
8: Compute the number of instances: ns ¼

PN
i¼1 jSij, and

n ¼ ns þ jTtj;
9: Set bs ¼ 1

2 lnð1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln ns

K

p
);

10: Initialize the weights of instances in fS1; S2; . . . ; SNg, and
Tt. We set the weights equally, i.e., wj

Si
¼ 1

n, and wj
Tt

¼ 1
n;

11: for all iteration k from 1 toK do
12: Normalize the weights in fS1; S2; . . . ; SNg, and Tt such

that the summation of all the weight equals to 1;
13: Input fS1; S2; . . . ; SNg, and Tt into the GA phase (i.e.,

Algorithm 1) to get a GA classifier GAk;
14: Let �k denote the error rate of GAk on Tt according to

Equation (2):
15: If �k > 1

2, Break;
16: Set bk ¼ �k

1��k
, with �k � 1

2;
17: Reassign the weights in fS1; S2; . . . ; SNg, and Tt:

wj
Si

¼ wj
Si
exp

�bsjGAkðxjSi Þ�y
j
Si
j
; 1 � i � N; 1 � j � jSij

wj
Tt

¼ wj
Tt
exp

�bkjGAkðxjTt Þ�y
j
Tt
j
; 1 � j � jTtj

18: end for
19: Output Ensemble Classifier

PK
k¼1 bkGAk.

The approach first computes the number of instances in
source projects (ns) and the total number of labeled instan-
ces (n) (Line 8). Then, it initializes the bs which will be used
to reassign weights of instances in source projects (Line 9).
Our approach initializes the bs following the approach
in [13]. bs (often referred to as the learning rate in the litera-
ture [13]) is set to be inversely proportional to K and

proportional to ns. It is set inversely proportional to K such
that the values of the weights are adjusted less abruptly if
more iterations are available. With more iterations, we can
learn to optimize the weights at a slower pace and this may
increase accuracy. bs is proportional to ns since the lower is
the number of instances in the source projects (ns), the less
able is the algorithm in learning a good model, and thus the
learning should be set at a slower pace.

Next, it initializes the weights of the instances in
fS1; S2; . . . ; SNg, and Tt (Line 10). After these initializations,
we iterate the GA phase up to K times to get the ensemble
classifier. For each iteration k, we first normalize the weights
of all instances following AdaBoost [16] (Line 12), and then
input the instances in source projects and training target
data into the GA phase presented in Algorithm 1 to get the
GA classifier GAk (Line 13). For iteration k, we compute the
error rate by running GAk on instances in Tt (Line 14). The
value of the error rate is from 0 to 1, where 0 means that all
the instances are correctly classified, and 1 means that all
the instances are wrongly classified. If the error rate is more
than 0.5, it means that the performance of GAk is even lower
than random guess; when this happen, we terminate the EL
phase, discard classifier GAk, and use all of the previous
GA classifiers (i.e., all GAi, where i < k) to form the ensem-
ble classifier (Line 15). If the error rate is less than or equal
to 0.5, our approach calculates weight bk for GAk and it also
reassigns the weights of instances in the source projects and
training target data, respectively (Lines 16 and 17). Notice
that the reassignments of weights of instances in the source
projects and training target data are done differently.

Note that the formula in Line 17 follows the weight reas-
signment strategy of AdaBoost [16] and Dai et al.’s
work [13]. In Line 17, the value in the “ jj ” denotes the dif-
ference in the predicted and actual value. The larger the dif-
ference is, the more the weight should be adjusted.
Different from prior approaches, we use a different learning
rate for instances in source projects and instances in training
target data. Thus, the weight of instances in the source proj-
ects are changed at a different rate than instances in the tar-
get project. We do this to put more importance to instances
in the training target data than those in the source projects.
At the end of the EL phase, we get the final ensemble classi-

fier
PK

k¼1 bkGAk. To help make the error rate �k closer to the
minimum error rate, we set a large value to the maximum
number of iterations K. In this paper, by default, we set K
as 100.

Notice that in the EL phase, if the error rate �k is larger
than or equal to 1/2 in the first iteration, our HYDRA effec-
tively only runs the GA phase, and returns one GA classi-
fier. Notice that it does not necessarily mean our HYDRA
fails to perform well in this case, and there are various rea-
sons that �k is larger than or equal to 1/2 in the first itera-
tion. For example, the class distributions on the training
target data could be severely imbalance, or the number of
instances in the training target data could be too small.
Moreover from our empirical evaluation, we find even if we
only use one GA classifier, the performance of HYDRA is
much better than the baseline approaches.5

5. For more details, please refer to Section 5.1.

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 983

3.3 Complexity Analysis

Notice our HYDRA can employ different underlying classi-
fiers, and we denote the time complexity for the underlying
classifier as U . In the GA phase, we denote the population
size as P , number of generations as G, the number of classi-
fiers as ðN þ 1Þ (N refers to the number of source projects),
and the length of the chromosomes is ðN þ 2Þ. Then the
time complexity for the GA phase is OðGAÞ ¼ OðN � U þ
P �G�NÞ. In the EL phase, if we denote the number of
iteration as T , then the time complexity for the EL phase is
OðT �GAÞ. Thus, the time complexity for HYDRA is
OðT � ðN � U þ P �G�NÞÞ.

4 EXPERIMENTS

In this section, we evaluate the performance of HYDRA. The
experimental environment is a Windows 7, 64-bit, Intel
Xeon 2.53 GHz server with 24 GB RAM.

4.1 Experiment Setup

We evaluate HYDRA using defect datasets originally col-
lected by Jureczko and Madeyski [24] from the PROMISE
data repository [8] which consists of 29 releases from 10 dif-
ferent open-source projects. Each instance in the 29 datasets
corresponds to a Java class and consists of two parts: 20
static code metrics and a label (defective or clean). Table 3
presents the statistics of the 29 datasets.

By default, we randomly select 5 percent of the instances
in a target project to construct a training target data (i.e., Tt).
For the EL phase, we iterate 100 times (i.e., K ¼ 100) to
reduce overfitting [16], [56]. Since our approach involves a
degree of randomness (i.e., we randomly select 5% of the
target instances), following past studies, e.g., [3], we run
HYDRA multiple times (i.e., 50 times) and record the aver-
age F1-score across the multiple runs.

We compare HYDRA with prior cross-project defect pre-
diction approaches including: BASIC [58]6, TCA+ [36], Peters
filter [42], GP [28], MO [9], and CODEP [41]. For TCA+ and

TransferBoost, we use the source code provided by the
authors. We re-implement GP on top of Leyan,7 which is a
java implementation of genetic programming algorithm. We
re-implement MO on top of MOEA framework,8 which is an
open source Java library for multi-objective evolutionary
algorithms. Notice in multi-objective learning, there would
be a set of solutionswhich satisfy Pareto optimal [9], we eval-
uate each of the solution on the testing set, and record the
best F1-score and cost effectiveness (PofB20) scores. For
BASIC, TCA+, Peters filter, and CODEP, these approaches
do not involve any randomness, i.e., the results would be the
same no matter how many times they are run. For GP [28]
and MO [9], since they use evolutionary algorithms, we run
the algorithms 10 times. Aside from the above approaches,
we also compare our approach with a state-of-the-art trans-
fer learning approach named TransferBoost [15]. Since Trans-
ferBoost also involves randomization (i.e., it needs some
labeled instances from the target project), we also run it 50
times, and compute its average performance. The above
approaches use an underlying standard classifier. In this
paper, we choose logistic regression as this underlying clas-
sifier. We use the same logistic regression implementation
(i.e., LIBLINEAR) and parameters settings as those used by
Nam et al. [36],—i.e., we use the options “-S 0 (use logistic
regression) and “-B -1 (use no bias term) of LIBLINEAR.

The parameters of the genetic algorithm used by HYDRA
and MO are as follows:

� Population size: we set a moderate population size
with PopSize ¼ 500.

� Number of generations: we set the maximum number
of generationsMaxGen ¼ 200.

� Crossover Operator: we use a single point crossover
operator with probability pc ¼ 0:35.

� Mutation Operator: we use a random mutation opera-
tor with probability pm ¼ 0:08.

To simulate the practical usage of our approach and fol-
low the setting used in previous studies [36], [42], [43], [45],

TABLE 3
Statistics of the Datasets

Dataset LOC #I/#D/%D Dataset LOC #I/#D/%D

ant-1.3 37,699 125/20/16% redaktor 59,280 176/27/15.3%
ant-1.4 54,195 178/40/22.5% synapse-1.0 28,806 157/16/10.2%
ant-1.5 87,047 293/32/10.9% synapse-1.1 42,302 222/60/27.0%
ant-1.6 113,246 351/92/26.2% synapse-1.2 53,500 256/86/33.6%
ant-1.7 208,653 745/166/22.3% tomcat 300,674 858/77/9.0%
log4j-1.0 21,549 135/34/25.2% velocity-1.4 51,713 196/147/75.0%
log4j-1.1 19,938 109/37/33.9% velocity-1.6 57,012 229/78/34.1%
log4j-1.2 38,191 205/189/92.2% xalan-2.4 225,088 723/110/15.2%
lucene-2.0 50,596 195/91/46.7% xalan-2.5 304,860 803/387/48.2%
lucene-2.2 63,571 247/144/58.3% xalan-2.6 411,737 885/411/46.4%
lucene-2.4 102,859 340/203/59.7% xalan-2.7 428,555 909/898/98.8%
poi-1.5 55,428 237/141/59.5% xerces-1.2 159,254 440/71/16.1%
poi-2.0 93,171 314/37/11.8% xerces-1.3 167,095 453/69/15.2%
poi-2.5 119,731 385/248/64.4% xerces-1.4 141,180 588/437/74.3%
poi-3.0 129,327 442/281/63.6% Total 3,626,257 11,196/4,629/41.3%

LOC denotes the total number of LOC. #I denotes the number of instances. #D denotes the number of defective instances. %D denotes the
proportion of defective instances.

6. We refer to Zimmermann et al.’s approach as BASIC in this
section

7. http://www.leyan.org/Genetic+Programming
8. http://www.moeaframework.org/

984 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

http://www.leyan.org/Genetic
http://www.moeaframework.org/

[52], when we consider a release of a project as a target proj-
ect, we choose releases of other projects as the source proj-
ects. For example, if we choose ant-1.5 as the target project,
we use all releases of other projects (i.e., log4j, lucene, poi,
redaktor, synapse, tomcat, velocity, xalan, and xerces) as
the source projects, and exclude other releases from the
same project (i.e., ant). For HYDRA and TransferBoost, we
take all instances from the source projects and 5 percent of
the instances in the target project (with their labels), to pre-
dict the labels of the remaining 95 percent of the instances
in the target project. For the other approaches, to ensure
that we use the same test set to evaluate all approaches for a
fair comparison, we remove the same 5 percent of the
instances in the target project, and predict the labels of the
same remaining 95 percent of the instances in the target
project. Also, for some baseline approaches, such as BASIC
and TCA+, we adapt them so that they can benefit from all
datasets (rather than only one dataset, which is the setting
used in the original paper) so that the setting is similar to
that of our approach and other baselines.

4.2 Evaluation Metrics

We use two evaluation metrics: F1-score and cost effective-
ness. F1-score is useful when there are sufficient resources
to inspect all of the predicted buggy changes. Cost effective-
ness is useful when there are limited resources to inspect a
limited amount of code due to a hectic schedule of
development.

4.2.1 F1-Score

There are four possible outcomes for an instance in a target
project: An instance can be classified as defective when it is
truly defective (true positive, TP); it can be classified as
defective when it is actually clean (false positive, FP); it can
be classified as clean when it is actually defective (false neg-
ative, FN); or it can be classified as clean and it is truly clean
(true negative, TN). Based on these possible outcomes, pre-
cision, recall and F1-score are defined as:

Precision: the proportion of instances that are correctly
labeled as defective among those labeled as defective,

P ¼ TP=ðTP þ FP Þ: (3)

Recall: the proportion of defective instances that are cor-
rectly labeled,

R ¼ TP=ðTP þ FNÞ: (4)

F1-Score: a summary measure that combines both precision
and recall—it evaluates if an increase in precision (recall)
outweighs a reduction in recall (precision),

F ¼ ð2� P �RÞ=ðP þRÞ: (5)

There is a trade-off between precision and recall. The
trade-off causes difficulties to compare the performance of
several prediction models by using only precision or
recall [19]. For this reason, we compare the prediction
results using F1-score, which is a harmonic mean of preci-
sion and recall. This follows the setting used in many defect
prediction studies [25], [36] and other software analytics
studies [37], [50], [55].

4.2.2 Cost Effectiveness

Cost effectiveness is a widely used evaluation metric for
defect prediction [4], [23], [43], [44], [45], which evaluates
prediction performance given a cost limit. In our setting, the
cost is the lines of code to inspect, and the benefit is the
number of bugs detected. We use the same cost effective-
ness setup as the one used by Jiang et al. [23]. They measure
the percentage of bugs that a developer can identify by
inspecting the top 20 percent lines of code. They refer to this
number as PofB20.

To compute PofB20 we sort instances in the test data
based on the confidence levels that a defect prediction tech-
nique outputs for each of them. An instance with a higher
confidence level is deemed to be more likely to be buggy by
the defect prediction technique. We then simulate a devel-
oper that inspects these potentially buggy instances one at a
time. As the instances are inspected one at a time, we accu-
mulate the number of lines of code that are inspected and
the number of bugs identified. We stop the process when
20 percent of the lines of code have been inspected and out-
put the percentage of bugs that are identified. This number
is the PofB20 score. A higher cost effectiveness score repre-
sents that a developer can detect more bugs when inspect-
ing a limited number of LOC.

In our HYDRA, suppose we have n GA classifier. For a
new instance new, each GA classifier GAk will compute a
composite score that indicates the likelihood that new is
buggy, i.e., CompkðnewÞ. Then, the final confidence score
that HYDRA outputs for new can be computed asPn

k¼1 bk � CompkðnewÞ. In this paper, for each instance in
the test set, we get its confidence score. Next, we rank the
instances based on their confidence scores to compute the
PofB20 score.

4.3 Research Questions

RQ1 How effective is HYDRA? How much improvement can it
achieve over the baseline approaches?

In this RQ, we investigate the extent HYDRA advances
the state-of-the-art approaches. To answer this research
question, we compare HYDRA with BASIC, TCA+, Peters
filter, GP, MO, CODEP, and TransferBoost. We compute F1-
scores and cost effectiveness (NofB20) to evaluate the per-
formance of these five approaches on the 29 datasets from
the PROMISE repository. For each dataset, by default, we
run HYDRA and the baseline approaches 50 times. To check
if the differences in the performance of HYDRA and the
baseline approaches are statistically significant, for the each
dataset, we apply the Wilcoxon signed-rank test [54] at
95 percent significance level on two 50 paired data which
corresponds to the F1-scores and PofB20 scores of two com-
peting approaches respectively. Since we run the test many
times (twice for each dataset), we also use Bonferroni cor-
rection [1] to counteract the results of multiple comparisons.

We also use Cliff’s delta (d) [12], which is a non-paramet-
ric effect size measure that quantifies the amount of differ-
ence between two approaches. In our context, we use Cliff’s
delta to compare HYDRA with the baseline approaches.
The delta values range from -1 to 1, where d ¼ �1 or 1 indi-
cates the absence of overlap between two approaches (i.e.,
all values of one group are higher than the values of the

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 985

other group, and vice versa), while d ¼ 0 indicates the two
approaches are completely overlapping. Table 4 describes
the meaning of different Cliff’s delta values and their corre-
sponding interpretation [12].

RQ2 Can HYDRA outperform conventional within-project
defect prediction?

As we use some labeled training data from a target proj-
ect (i.e., training target data), we also investigate whether
HYDRA could achieve better performance than conven-
tional within-project prediction using some data from the
target project. In within-project prediction, some labeled
training data from a target project are input to a base classi-
fier and the resultant model is used to label the other data
from the target project. Moreover, previous studies show
that the performance of these within-project defect prediction
approaches would be improved if there are sufficient train-
ing data from a project [58]. Thus, we are also interested in
whether our approach, which leverages defect data from
other projects, could achieve similar result as within-project
prediction when a sufficient number of within-project train-
ing data is available.

Considering the above goals, we investigate two settings.
First, since by default HYDRA requires 5 percent of the
instances from the target project to be labeled, we investigate
the performance of conventional within-project prediction
using the same 5 percent data. In this setting, we use the
same test set as the one we use to evaluate HYDRA. Second,
we randomly select 90 percent of the instances from the tar-
get project, and build a classifier to predict the label of the
remaining 10 percent of the instances. With 90 percent of the
instances labeled, it is likely that conventional within-project
prediction can learn a good model to predict the remaining
10 percent of the instances. Notice that for within-project set-
ting, the class distributions in the training set and test set are
the same as the class distribution in the original dataset, i.e.,
we keep the ratio of defective and clean instances in the train-
ing set and test set the same as the original dataset.

RQ3 Do different percentages of labeled instances from a target
project affect the performance of HYDRA?

HYDRA requires a small number of labeled data from the
target project (i.e., training target data). We investigate
whether different numbers of instances in the training target
data affect the performance ofHYDRA. By default, the num-
ber of instances in the training target data is set to be 5 per-
cent of the total number of instances in the target project. To
answer this question, we vary the number of instances from
1-15 percent of the total number of instances in the target
project. Notice our HYDRA cannot work if we do not
include any data from the target project, since HYDRA
adjusts its parameters according to the prediction results
from the small number of instances in the target project.
Additionally, we also investigate the effectiveness of

HYDRA when a fixed budget is specified, i.e., an absolute
number of instances are selected from a target project.

RQ4 How much time does it take for HYDRA to run?
HYDRA builds a GA classifier by composing many off-

the-shelf classifiers. In the EL phase, multiple GA classifiers
are combined. Building these many classifiers requires sub-
stantial computational time. Thus, in this research question,
we investigate the time efficiency of HYDRA. We run
HYDRA 10 times and report the average model training and
application time. Model training time refers to the time to
convert a training data into HYDRA ensemble learner.
Model application time refers to the time for HYDRA
ensemble learner to predict the label of an instance. We
compare the model training and application time ofHYDRA
with those of other approaches.9

4.4 RQ1: HYDRA versus Other Algorithms

Tables 5 and 6 presents the F1-scores and cost effectiveness
(PofB20) of HYDRA compared with those of BASIC, TCA+,
Peters filter, GP, MO, CODEP and TransferBoost. The F1-
scores of HYDRA vary from 0.190�0.991. Across the 29
datasets, the average F1-scores of HYDRA is 0.544. From
Table 5, the improvements of our approach over the base-
lines are substantial. On average across the 29 datasets,
HYDRA outperforms BASIC, TCA+, Peters filter, GP, MO,
CODEP, and TransferBoost by 40.21, 26.22, 34.99, 47,43,
28.61, 30.14, and 39.49 percent, respectively.

The PofB20 scores of HYDRA vary from 12.9-67.5 percent.
Across the 29 datasets, the average PofB20 score ofHYDRA is
33.0 percent. From Tables 6, the improvements of our
approach over the baselines are substantial. On average
across the 29 datasets, HYDRA outperforms BASIC, TCA+,
Peters filter, GP, MO, CODEP, and TransferBoost by 54.75,
44.41, 49.40, 71.25, 72.98, 77.80, and 62.34 percent, respectively.

Among the seven baseline approaches, TCA+ achieves the
best performance; here, we compare HYDRA with TCA+
with different percentages of LOC that are inspected. We
record the average cost effectiveness scores across the 29 data-
sets. Fig. 4 presents the cost effectiveness graphs for HYDRA
compared with TCA+. We notice that HYDRA is better than
TCA+ for awide range of percentages of LOC to inspect.

Tables 7 and 8 present the p-values and Cliff’s delta when
we compare HYDRA with the baseline approaches in terms
of F1 and PofB20 scores. Notice in our study, we use Bonfer-
roni correction to counteract the results of multiple compar-
isons, thus the p-values are adjusted. And we consider that
HYDRA statistically significantly improves a baseline
approach at the confidence level of 95 percent if the adjusted
p-value is less than 0.05. We notice in most of the cases,
HYDRA shows significant improvement over the baseline
approaches with large effect size.

Tables 9 and 10 present the number of datasets where
HYDRA performs statistically significantly better than the
baseline approaches (+), performs more or less equally well
with the best performing baseline approaches (=), and

TABLE 4
Cliff’s Delta and the Effectiveness Level [12]

Cliff’s Delta (jdj) Effectiveness Level

jdj < 0:147 Negligible
0:147 � jdj < 0:33 Small
0:33 � jdj < 0:474 Medium
jdj � 0:474 Large

9. Notice for TCA+ and Peters filter, there would be a preprocessing
of the data; we record the training time as the sum of the preprocessing
time and the underlying machine learning classifier training time. For
the approaches that involve randomization, we run the approaches 10
times.

986 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

performs statistically significantly worse than the baseline
approaches (-) in terms of F1 and PofB20 scores. We use Bon-
ferroni correction to adjust the multiple p-values computed
by Wilcoxon signed-rank test. All the significance is at the
confidence level of 95 percent. From these tables, our HYDRA
improves the baselines statistically significantly inmost of the
time. For example, when compared HYDRA with TCA+, we
noticeHYDRA statistically significantly improves TCA+ in 27
and 20 datasets in terms of F1 and PofB20 scores, while TCA+
statistically significantly improves HYDRA only on one and
seven datasets in terms of F1 and PofB20 scores.

4.5 RQ2: HYDRA versus within-Project

Table 12 presents the F1-scores and cost effectiveness
(PofB20) of HYDRA compared with those of within-project
prediction under two settings. From Table 12, the improve-
ment of our approach over within-project prediction with
5 percent labeled data is substantial. On average across the
29 datasets, HYDRA outperforms the within-project classi-
fier with 5 percent labeled data in terms of F1-socre and
PofB20 by 19.46, and 62.40 percent, respectively. Moreover,
HYDRA achieves similar results as the within-project pre-
diction with 90 percent labeled data. The average F1-scores
of within-project prediction with 90 percent data is 0.557; it
is 0.544 for HYDRA. Note that HYDRA only requires 5 per-
cent labeled data from the target project. Also, we notice
HYDRA outperforms the PofB20 of within-project predic-
tion with 90 percent labeled data by 25.74 percent.

To investigate whether the improvement of HYDRA over
within-project predictionwith 5 percent labeled data is signif-
icant. For each dataset, we apply the Wilcoxon signed-rank
test on the paired data which correspond to the F1-scores and
PofB20 to test whether the improvement of HYDRA over the
baseline approaches are significant. We also use Bonferroni
correction to counteract the results of multiple comparisons.
Table 11 presents the number of datasets where HYDRA per-
forms statistically significantly better than within-project pre-
diction with 5 percent labeled data (+), performs more or less
equally well with within-project prediction with 5 percent
labeled data (=), and performs statistically significantly worse
than within-project prediction with 5% labeled data (-) in
terms of F1 and PofB20. We notice in most of the cases,
HYDRA improves the within-project prediction with 5 per-
cent labeled data statistically significantly.

We also notice that including the instances from the
source project is better than a prediction model built on lim-
ited data. By analyzing themodels constructed in our experi-
ments, we find that typically the best weights for models
learned from source project fa1; . . . ;aNg are not all zeroes.

4.6 RQ3: Effect of Varying the Number of Instances
in the Training Target Project

Fig. 5 presents the average F1-scores across the 29 datasets
with various number of instances from the target projects.
We notice that for small number of instances, such as 1-
3 percent of the total number of instances, the F1-score is

TABLE 5
F1-Scores Our Approach HYDRA Compared with BASIC, TCA+, Peters Filter, GP, MO, CODEP, and TransferBoost, Respectively

Datasets HYDRA Basic TCA+ Peters Filter GP MO CODEP TransferBoost.

ant-1.3 0.396
 0.010 0.507
 0.021 0.276
 0.022 0.365
 0.030 0.438
 0.011 0.255
 0.014 0.458
 0.009 0.522
 0.018
ant-1.4 0.329
 0.012 0.318
 0.016 0.345
 0.023 0.379
 0.016 0.349
 0.013 0.380
 0.015 0.372
 0.010 0.324
 0.012
ant-1.5 0.347
 0.014 0.435
 0.016 0.213
 0.012 0.296
 0.011 0.380
 0.021 0.202
 0.013 0.345
 0.012 0.416
 0.013
ant-1.6 0.602
 0.015 0.612
 0.017 0.389
 0.011 0.526
 0.010 0.609
 0.015 0.374
 0.013 0.614
 0.009 0.618
 0.016
ant-1.7 0.468
 0.010 0.565
 0.016 0.325
 0.011 0.486
 0.012 0.557
 0.015 0.333
 0.012 0.516
 0.010 0.563
 0.021
log4j-1.0 0.413
 0.002 0.526
 0.015 0.342
 0.010 0.442
 0.016 0.444
 0.016 0.353
 0.011 0.536
 0.011 0.507
 0.026
log4j-1.1 0.538
 0.008 0.551
 0.009 0.493
 0.014 0.604
 0.015 0.449
 0.010 0.413
 0.010 0.625
 0.011 0.547
 0.021
log4j-1.2 0.914
 0.014 0.319
 0.011 0.695
 0.010 0.412
 0.016 0.183
 0.012 0.757
 0.009 0.286
 0.011 0.333
 0.020
lucene-2.0 0.648
 0.010 0.366
 0.012 0.535
 0.016 0.446
 0.016 0.365
 0.014 0.574
 0.012 0.441
 0.010 0.377
 0.012
lucene-2.2 0.657
 0.010 0.299
 0.013 0.555
 0.017 0.288
 0.011 0.319
 0.016 0.526
 0.015 0.436
 0.015 0.283
 0.015
lucene-2.4 0.691
 0.012 0.366
 0.015 0.582
 0.019 0.327
 0.011 0.410
 0.010 0.602
 0.023 0.428
 0.018 0.358
 0.016
poi-1.5 0.742
 0.003 0.318
 0.015 0.550
 0.011 0.518
 0.017 0.279
 0.012 0.606
 0.031 0.572
 0.011 0.322
 0.012
poi-2.0 0.283
 0.003 0.265
 0.016 0.224
 0.012 0.162
 0.015 0.282
 0.013 0.196
 0.010 0.213
 0.018 0.262
 0.014
poi-2.5 0.780
 0.002 0.326
 0.011 0.601
 0.014 0.720
 0.008 0.311
 0.010 0.333
 0.019 0.586
 0.023 0.332
 0.011
poi-3.0 0.807
 0.005 0.314
 0.016 0.608
 0.009 0.684
 0.006 0.393
 0.014 0.495
 0.010 0.475
 0.031 0.315
 0.010
redaktor 0.295
 0.006 0.490
 0.011 0.287
 0.004 0.300
 0.002 0.256
 0.019 0.296
 0.010 0.336
 0.024 0.510
 0.010
synapse-1.0 0.252
 0.012 0.438
 0.012 0.212
 0.014 0.275
 0.003 0.413
 0.023 0.190
 0.011 0.255
 0.026 0.426
 0.009
synapse-1.1 0.494
 0.011 0.341
 0.014 0.416
 0.011 0.539
 0.005 0.444
 0.025 0.400
 0.012 0.393
 0.020 0.347
 0.008
synapse-1.2 0.529
 0.011 0.448
 0.013 0.435
 0.009 0.495
 0.012 0.507
 0.010 0.399
 0.011 0.500
 0.018 0.445
 0.006
tomcat 0.190
 0.012 0.372
 0.014 0.162
 0.006 0.263
 0.015 0.406
 0.019 0.000
 0.015 0.368
 0.012 0.387
 0.004
velocity-1.4 0.793
 0.014 0.133
 0.015 0.655
 0.015 0.314
 0.016 0.198
 0.008 0.807
 0.016 0.185
 0.011 0.149
 0.008
velocity-1.6 0.503
 0.011 0.303
 0.016 0.444
 0.011 0.297
 0.017 0.257
 0.007 0.357
 0.011 0.354
 0.011 0.321
 0.012
xalan-2.4 0.315
 0.010 0.353
 0.023 0.245
 0.018 0.356
 0.011 0.371
 0.014 0.242
 0.017 0.399
 0.010 0.354
 0.011
xalan-2.5 0.593
 0.012 0.433
 0.015 0.546
 0.010 0.394
 0.011 0.400
 0.016 0.518
 0.011 0.455
 0.010 0.434
 0.011
xalan-2.6 0.656
 0.010 0.458
 0.016 0.514
 0.010 0.446
 0.010 0.377
 0.016 0.388
 0.011 0.482
 0.009 0.457
 0.014
xalan-2.7 0.991
 0.007 0.458
 0.011 0.693
 0.023 0.445
 0.012 0.360
 0.014 0.980
 0.017 0.484
 0.008 0.467
 0.015
xerces-1.2 0.240
 0.012 0.248
 0.016 0.232
 0.011 0.186
 0.013 0.254
 0.010 0.263
 0.008 0.241
 0.010 0.237
 0.011
xerces-1.3 0.417
 0.014 0.421
 0.010 0.255
 0.010 0.487
 0.016 0.400
 0.011 0.254
 0.019 0.342
 0.011 0.424
 0.013
xerces-1.4 0.903
 0.012 0.267
 0.014 0.666
 0.012 0.269
 0.005 0.294
 0.012 0.765
 0.011 0.402
 0.012 0.267
 0.011

Average. 0.544
 0.223 0.388
 0.110 0.431
 0.166 0.403
 0.136 0.369
 0.099 0.423
 0.215 0.417
 0.116 0.390
 0.108

The results are in the form of mean
 standard deviation. The last column show the average F1-scores. The best F1-scores are in bold.

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 987

low. The average F1-scores vary from 0.484-0.558. With
more instances selected from the target projects, the perfor-
mance is improved. For example, when we choose 15 per-
cent of the total number of instances, the average F1-score is
0.557. Moreover, we notice that the F1-scores increase,
when the size of the training target data increases from 1 to
5 percent, is substantially larger than the F1-scores increase,
when the size of the training target data increases from 5 to
15 percent. We also notice that the F1-scores of HYDRA are

stable when the size of the training target data increases
from 10 to 15 percent. This indicates that at 10 percent,
HYDRA already has sufficient training data from the target
project. Adding more training data from the target project
has little impact on the performance of HYDRA.

Fig. 6 presents the average percentages of bugs detected
when inspecting 20 percent of the lines of code across 29 data-
sets with various number of instances from the target projects.
We notice that the average percentages of bugs detected is rel-
atively stable, and it varies from 31.5-35.5 percent.

Also, the average percentages of bugs detected do not
increase with the size of the training target data increases.
For example, the average percentages of bugs detected is
32.7 percent when 5 percent data are selected from the tar-
get project, while the number is 31.8 percent when 6 percent
data are from the target project.

When considering both Figs. 5 and 6, we find that the F1-
scores will increase when the size of the training target data
is increased from 1 to 15 percent, while the PofB20 scores
are relatively stable. The results seem to indicate that much
training data is needed for precise classification of instances
as buggy or not. The more training data is available, the
more precise is the classification. On the other hand, the
results seem to indicate that even a small amount of training
data suffices to rank instances such that many of the buggy
ones are listed in the first 20 percent of the code. Additional
training data does not improve this ranking further when
the top 20 percent of the code is inspected.Fig. 4. Cost effectiveness graph for HYDRA and TCA+.

TABLE 6
Cost Effectiveness (PofB20) of Our Approach HYDRA Compared with BASIC, TCA+,

Peters Filter, GP, MO, CODEP, and TransferBoost, Respectively

Datasets HYDRA Basic TCA+ Peters Filter GP MO CODEP TransferBoost.

ant-1.3 20.0%
 1.0% 35.1%
 1.1% 20.1%
 2.2% 25.2%
 1.3% 20.0%
 1.0% 35.0%
 2.2% 25.5%
 1.6% 31.6%
 2.5%
ant-1.4 46.8%
 1.2% 17.2%
 1.5% 32.2%
 1.5% 21.5%
 1.4% 14.9%
 1.6% 19.1%
 1.2% 6.5%
 1.2% 25.5%
 1.0%
ant-1.5 28.6%
 1.0% 14.5%
 2.2% 17.6%
 1.6% 20.1%
 1.6% 22.9%
 1.6% 14.3%
 1.4% 22.6%
 1.0% 14.3%
 1.0%
ant-1.6 14.4%
 1.0% 23.6%
 1.5% 20.5%
 1.0% 25.4%
 2.2% 25.5%
 1.8% 9.2%
 1.5% 30.4%
 1.0% 22.5%
 1.2%
ant-1.7 24.8%
 0.8% 29.1%
 1.6% 24.3%
 1.0% 30.0%
 1.6% 27.8%
 1.9% 32.8%
 2.4% 27.6%
 1.2% 27.3%
 1.0%
log4j-1.0 19.7%
 1.1% 36.0%
 2.3% 37.7%
 1.2% 42.4%
 1.8% 27.9%
 1.2% 29.5%
 0.8% 31.2%
 1.1% 28.3%
 1.3%
log4j-1.1 16.5%
 1.2% 34.5%
 1.2% 31.4%
 1.0% 30.4%
 1.8% 24.4%
 1.1% 33.7%
 1.6% 33.6%
 1.1% 16.7%
 1.6%
log4j-1.2 54.8%
 1.4% 11.6%
 1.4% 17.1%
 1.2% 15.8%
 1.5% 6.4%
 1.0% 19.7%
 1.1% 6.7%
 1.7% 14.2%
 0.6%
lucene-2.0 35.4%
 1.0% 29.9%
 2.2% 19.4%
 1.8% 34.3%
 1.3% 34.0%
 1.6% 3.4%
 1.1% 20.8%
 2.5% 25.7%
 1.2%
lucene-2.2 38.5%
 1.0% 26.6%
 2.6% 16.0%
 1.5% 19.9%
 1.6% 25.2%
 2.3% 33.7%
 1.0% 24.5%
 1.4% 27.8%
 1.6%
lucene-2.4 39.5%
 1.0% 17.6%
 1.0% 17.5%
 2.3% 15.8%
 1.1% 20.6%
 1.2% 13.8%
 1.0% 12.5%
 1.6% 13.7%
 1.6%
poi-1.5 35.6%
 1.0% 20.4%
 1.2% 23.2%
 1.6% 22.3%
 1.1% 20.2%
 1.1% 15.2%
 1.0% 14.9%
 1.6% 13.1%
 1.7%
poi-2.0 15.8%
 1.2% 20.6%
 1.4% 30.9%
 1.4% 23.3%
 1.6% 17.9%
 1.8% 38.5%
 1.2% 15.4%
 1.3% 11.1%
 1.2%
poi-2.5 49.6%
 0.4% 11.5%
 1.6% 12.9%
 1.3% 22.5%
 1.0% 7.4%
 1.5% 9.9%
 1.4% 6.2%
 1.2% 10.7%
 1.4%
poi-3.0 42.4%
 0.3% 10.6%
 1.9% 24.5%
 1.0% 16.6%
 1.0% 13.8%
 1.2% 12.4%
 2.4% 12.8%
 2.1% 17.7%
 1.6%
redaktor 50.0%
 0.2% 17.9%
 0.3% 17.8%
 1.2% 17.9%
 1.3% 17.9%
 1.4% 14.3%
 1.5% 17.6%
 1.2% 48.1%
 1.7%
synapse-1.0 23.8%
 1.1% 28.8%
 1.3% 0.2%
 1.4% 9.6%
 1.5% 33.3%
 1.5% 4.8%
 1.6% 38.2%
 1.3% 35.0%
 0.4%
synapse-1.1 33.0%
 0.8% 27.3%
 1.3% 25.5%
 2.1% 24.2%
 2.1% 27.3%
 1.6% 18.2%
 2.5% 26.1%
 1.3% 24.7%
 0.4%
synapse-1.2 24.8%
 1.3% 19.5%
 1.4% 18.6%
 1.0% 19.3%
 3.2% 14.5%
 1.6% 13.8%
 1.0% 24.9%
 1.0% 21.6%
 0.2%
tomcat 21.9%
 1.5% 26.3%
 1.0% 22.8%
 0.8% 21.1%
 1.2% 21.9%
 1.4% 15.8%
 0.6% 26.4%
 0.5% 25.7%
 0.7%
velocity-1.4 67.5%
 0.5% 5.4%
 1.4% 36.7%
 0.6% 21.9%
 1.0% 3.3%
 1.5% 29.5%
 0.4% 0.2%
 1.4% 8.0%
 1.5%
velocity-1.6 46.3%
 0.3% 17.4%
 2.1% 35.8%
 0.5% 23.6%
 0.5% 17.4%
 2.6% 7.9%
 0.5% 14.7%
 0.2% 13.0%
 2.6%
xalan-2.4 12.9%
 0.2% 28.2%
 1.5% 21.8%
 1.3% 26.9%
 1.2% 25.6%
 1.1% 36.5%
 1.4% 17.9%
 0.6% 17.3%
 2.5%
xalan-2.5 38.5%
 0.4% 20.3%
 1.6% 26.4%
 1.4% 16.6%
 0.5% 14.3%
 1.1% 27.9%
 1.5% 16.5%
 2.4% 16.0%
 1.0%
xalan-2.6 31.5%
 1.2% 23.7%
 1.5% 18.6%
 1.1% 20.3%
 1.5% 20.6%
 1.0% 25.1%
 1.1% 20.6%
 1.5% 28.1%
 1.2%
xalan-2.7 51.4%
 1.0% 18.3%
 1.0% 15.4%
 1.0% 15.4%
 1.6% 12.4%
 1.0% 18.2%
 1.5% 13.8%
 1.6% 19.9%
 1.1%
xerces-1.2 15.8%
 1.0% 12.5%
 0.5% 18.3%
 1.0% 10.1%
 1.4% 10.3%
 1.0% 5.2%
 1.6% 6.0%
 1.3% 7.5%
 1.1%
xerces-1.3 13.0%
 1.4% 22.8%
 1.0% 34.2%
 1.5% 32.1%
 1.0% 14.0%
 1.6% 2.1%
 1.2% 12.4%
 2.4% 10.2%
 3.0%
xerces-1.4 44.7%
 1.3% 13.4%
 1.1% 26.5%
 1.0% 17.5%
 1.1% 17.1%
 1.4% 14.1%
 1.1% 12.6%
 1.5% 14.2%
 1.1%

Average. 33.0%
 14.4% 21.4%
 7.9% 22.9%
 8.3% 22.1%
 7.1% 19.3%
 7.6% 19.1%
 10.9% 18.6%
 9.3% 20.3%
 9.2%

The results are in the form of mean
 standard deviation. The last column show the average PofB20 scores. The best PofB20 scores are in bold.

988 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

Table 13 presents the F1-scores and cost effectiveness
(PofB20) of HYDRA when there are only 10, 20, 30, 40, 50,
and 60 instances in the training target project. We randomly
select these 10, 20, 30, 40, 50, and 60 instances, and repeat the
process 10 times and record the average F1 and cost effective-
ness scores. The F1-scores and PofB20 vary from 0.529-0.580,
and 30.6-35.1 percent, respectively. We notice the perfor-
mance of HYDRA increases when the number of instances in
the training target project increases from 10 to 50, and
decreases when the number of instances from 50 to 60. Even
with a smaller number of instances in the training target proj-
ect, the performance of HYDRA is better than the other base-
line approaches. For example, when we label only 20
instances in the target project, HYDRA could achieve F1-
score and PofB20 up to 0.559, and 35.1 percent, respectively.

4.7 RQ4: Time Efficiency of HYDRA

Table 14 presents the averagemodel training and application
time across the 29 datasets. Due to the space limitation,we do
not list the time for each individual datasets. From Table 14,
we notice that the model training and application time of
HYDRA is reasonable, e.g., on average, we need about
1.5 minutes to train a model, and 1.7 seconds to predict the
labels of instances in the testing set using the model. Note
that themodel does not need to be updated all the time and it
can be used to label many instances. HYDRAmodel training
time is longer than those of BASIC, Peters filter, and

TransferBoost but shorter than that of TCA+, GP, andCODEP.
The training time for TCA+ is long (i.e., nearly 1 hour to train
amodel) because TCA+ needs to performmanymatrix oper-
ations. HYDRA model application time is longer than those
of the other approaches but we believe it is still acceptable (it
can label thousands of instances in seconds).

5 DISCUSSIONS

5.1 Impact of the Number of Iterations in the EL
Phase

By default, we set the number of iterations of HYDRA as
100. Here, we also investigate other numbers of itera-
tions, i.e., we increase the number of iterations from 1,
10, 20, 30, . . . , 200. Fig. 7 presents the average F1 and
PofB20 scores of HYDRA with different number of itera-
tions. We notice that the performance of HYDRA
increases when we increase the number of iterations
from 1 to 100, and it is stable when we increase the
number of iterations from 100 to 200. Thus, in practice,
we suggest users to set the number of iteration as 100,
since more iterations translates to higher runtime cost.
Moreover, when we set the number of iterations as 1, it
means we only have the GA phase, and the F1 and
PofB20 scores of HYDRA are 0.501 and 0.28, respectively.
These scores are much less than those of HYDRA with
enough iterations. Thus, combining the GA and EL
phases improves the performance of HYDRA.

TABLE 7
P-Value and Cliff’s Delta (d) for HYDRA Compared with the Baseline Approaches in Terms of F1-Score

Datasets
H. vs. Basic H. vs. TCA+ H. vs. Peters

Filter
H. vs. GP H. vs. MO H. vs. CODEP H. vs. Tr.Bo.

p-value d p-value d p-value d p-value d p-value d p-value d p-value d

ant-1.3 1.2e�9 -0.65 6.2e�12 0.52 0.0014 0.43 0.0003 -0.31 5.3e�15 0.87 1.1e�9 -0.56 5.8e�13 -0.86
ant-1.4 0.02 0.08 0.0004 -0.15 0.0005 -0.46 0.072 -0.11 1.5e�9 -0.84 2.4e�7 -0.76 0.123 0.04
ant-1.5 1.9e�15 0.83 4.3e�11 0.66 1.4e�6 0.55 0.0001 -0.35 1.5e�6 0.86 0.234 0.04 1.8e�15 -0.91
ant-1.6 0.014 -0.10 5.5e�15 0.94 1.3e�7 0.66 0.234 -0.02 2.2e�15 0.96 0.224 -0.03 0.0012 -0.12
ant-1.7 1.4e�14 -0.62 4.6e�13 0.73 0.055 -0.12 3.6e�8 -0.66 1.8e�15 0.78 1.3e�13 -0.78 2.4e�14 -0.77
log4j-1.0 5.8e�13 -0.69 3.4e�9 0.68 1.2e�12 -0.44 2.4e�13 0.45 1.8e�9 0.56 2.4e�14 -0.82 2.3e�13 -0.71
log4j-1.1 0.05 -0.14 0.0014 0.45 1.1e�13 -0.65 1.2e�9 0.87 4.3e�11 0.68 5.4e�13 -0.78 0.128 -0.04
log4j-1.2 2.2e�13 1.00 3.4e�15 0.96 2.2e�13 1.00 3.5e�16 1.00 1.1e�13 0.91 2.2e�13 1.00 2.8e�13 1.00
lucene-2.0 3.3e�11 1.00 3.2e�13 0.77 2.6e�13 0.93 4.5e�15 1.00 1.2e�6 0.81 2.4e�10 0.88 2.1e�10 0.98
lucene-2.2 2.2e�16 1.00 4.2e�13 0.86 2.2e�16 1.00 2.2e�16 1.00 5.4e�10 0.78 2.4e�11 0.89 2.2e�16 1.00
lucene-2.4 2.2e�16 1.00 3.2e�15 0.92 2.2e�16 1.00 5.4e�13 0.92 2.3e�6 0.68 2.9e�13 0.92 2.2e�16 1.00
poi-1.5 2.2e�16 1.00 5.6e�13 0.89 3.4e�14 0.91 2.2e�16 1.00 3.6e�8 0.74 3.4e�14 0.95 2.2e�16 1.00
poi-2.0 1.4e�6 0.51 4.8e�13 0.61 2.2e�16 1.00 0.346 0.00 5.5e�8 0.84 4.5e�10 0.75 0.045 0.12
poi-2.5 2.2e�16 1.00 5.4e�13 0.91 4.3e�10 0.72 5.1e�13 1.00 3.8e�16 1.00 3.4e�13 0.95 2.2e�16 1.00
poi-3.0 2.2e�16 1.00 2.4e�15 0.95 1.3e�9 0.71 2.2e�16 1.00 2.2e�16 1.00 2.5e�15 1.00 2.2e�16 1.00
redaktor 2.2e�16 -1.00 0.432 0.08 0.312 -0.01 1.4e�10 0.65 0.112 0.02 0.0003 -0.55 2.2e�16 -1.00
synapse-1.0 2.5e�11 -0.98 1.5e�13 0.51 0.0003 -0.35 1.4e�13 -0.64 6.6e�10 0.65 0.129 -0.01 1.8e�13 -0.86
synapse-1.1 2.4e�13 0.65 3.2e�12 0.68 2.1e�7 -0.54 1.8e�13 0.58 2.5e�15 0.72 3.5e�12 0.78 3.2e�14 0.81
synapse-1.2 3.9e�15 0.85 5.4e�15 0.82 0.0001 0.55 0.0001 0.52 3.2e�12 1.00 0.0004 0.42 2.4e�8 0.65
tomcat 2.2e�15 -0.97 1.9e�7 0.53 1.8e�15 -0.76 2.2e�16 -1.00 2.2e�16 1.00 1.8e�15 -1.00 2.2e�16 -1.00
velocity-1.4 2.2e�16 1.00 6.9e�12 0.90 2.2e�16 1.00 2.2e�16 1.00 0.0001 -0.14 2.2e�16 1.00 2.2e�16 1.00
velocity-1.6 2.2e�16 1.00 3.5e�16 0.98 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xalan-2.4 0.0001 -0.45 1.8e�12 0.56 1.2e�5 -0.32 1.7e�12 -0.54 1.8e�13 0.67 2.4e�12 -0.72 0.0001 -0.45
xalan-2.5 2.4e�12 0.95 1.8e�10 0.82 2.2e�15 1.00 2.4e�11 1.00 1.9e�12 0.95 6.4e�12 0.91 2.9e�15 0.90
xalan-2.6 2.2e�13 1.00 3.5e�13 0.98 2.2e�16 1.00 2.2e�16 1.00 2.8e�15 1.00 3.2e�15 0.96 2.5e�15 0.96
xalan-2.7 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xerces-1.2 0.2490 -0.02 0.123 0.05 1.8e�12 0.62 0.112 0.12 0.0001 -0.31 0.4561 0.00 0.3210 -0.01
xerces-1.3 0.1345 -0.03 9.2e�12 0.78 1.8e�12 -0.82 0.1720 0.13 3.5e�13 0.92 1.2e�5 0.91 0.1023 -0.04
xerces-1.4 2.2e�16 1.00 5.4e�12 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�12 1.00 2.2e�16 1.00 2.2e�16 1.00

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 989

5.2 Longitudinal Data Setup

In the default setting, we randomly select 5 percent of the
target instances for training (we refer to it as HYDRA with
random selection setup). This default setup may use future
data to build a model. This setting may overestimate the
performance of HYDRA since in practice one will have no
access to future data. To assess the severity of this issue, in
this section, we evaluate the performance of HYDRA fol-
lowing a longitudinal data setup. In the longitudinal data
setup, we sort the instances in the dataset in temporal order,
i.e., the instances are sorted according to the time they are
added into project with older instances being listed first. We
then select the first 5 percent instances to construct the

training target data. Since only 15 datasets provide the tem-
poral order information, we only evaluate HYDRA follow-
ing the longitudinal data setup with these 15 datasets.

Table 15 presents the F1 and PofB20 scores for HYDRA fol-
lowing the longitudinal data setup. On average across the 15
datasets, HYDRA with longitudinal data setup achieves an
average F1 and PofB20 score of 0.571 and 31.8 percent, respec-
tively. Notice the average F1 and PofB20 scores of HYDRA
with the random selection setup for the 15 datasets are 0.570
and 31.5 percent respectively, and the difference is small.
Moreover, for each dataset, we also apply Wilcoxon signed-
rank test with Bonferroni correctionto evaluate whether there
is a significant difference in the performance of HYDRA

TABLE 9
Number of Datasets Where HYDRA Statistically Significantly

Improves over a Baseline Approach (+), Performs More or Less
Equally Well with a Baseline Approach (=), and Statistically Sig-
nificantly Loses with a Baseline Approach (-) in Terms of F1

HYDRA versus Baselines + = -

HYDRA versus Basic 17 4 8
HYDRA versus TCA+ 27 1 1
HYDRA versus Peters Filter 19 2 8
HYDRA versus GP 19 4 6
HYDRA versus MO 25 1 3
HYDRA versus CODEP 17 4 8
HYDRA versus TransferBoost 15 5 9

TABLE 10
Number of Datasets Where HYDRA Statistically Significantly

Improves over a Baseline Approach (+), Performs More or Less
Equally Well with a Baseline Approach (=), and Statistically Sig-
nificantly Loses with a Baseline Approach (-) in Terms of PofB20

HYDRA versus Baselines + = -

HYDRA versus Basic 18 0 11
HYDRA versus TCA+ 20 2 7
HYDRA versus Peters Filter 22 0 7
HYDRA versus GP 18 4 7
HYDRA versus MO 25 0 4
HYDRA versus CODEP 18 3 8
HYDRA versus TransferBoost 21 1 7

TABLE 8
P-Value and Cliff’s Delta (d) for HYDRA Compared with the Baseline Approaches in Terms of PofB20

Datasets
H. versus
Basic

H. versus
TCA+

H. versus
Peters Filter

H. versus GP H. versus MO
H. versus
CODEP

H. versus Tr.
Bo.

p-value d p-value d p-value d p-value d p-value d p-value d p-value d

ant-1.3 2.5e�12 -1.00 0.3122 0.00 1.8e�11 -0.61 0.5033 0.00 5.6e�13 -1.00 1.8e�11 -0.62 2.2e�16 -1.00
ant-1.4 2.8e�16 1.00 2.2e�16 1.00 3.9e�12 0.92 2.2e�16 1.00 5.8e�16 1.00 2.2e�16 1.00 2.8e�16 1.00
ant-1.5 2.2e�16 1.00 2.2e�16 1.00 3.3e�13 0.99 4.2e�16 0.90 2.2e�16 1.00 2.8e�10 0.88 2.2e�16 1.00
ant-1.6 8.1e�12 -0.92 5.1e�12 -0.72 2.3e�15 -0.99 2.4e�12 -1.00 5.4e�11 0.82 2.2e�16 -1.00 1.7e�12 -0.81
ant-1.7 1.4e�14 -0.62 4.6e�13 0.73 0.055 -0.12 3.6e�8 -0.66 1.8e�15 0.78 1.3e�13 -0.78 2.4e�14 -0.77
log4j-1.0 2.4e�14 -1.00 2.2e�16 -1.00 2.2e�16 -1.00 3.2e�12 -0.82 2.4e�15 0.84 1.8e�15 -0.92 0.0001 -0.65
log4j-1.1 2.2e�16 -1.00 2.2e�16 -1.00 2.2e�16 -1.00 2.9e�15 -1.00 2.2e�16 -1.00 2.2e�16 -1.00 0.114 0.00
log4j-1.2 2.2e�16 1.00 3.8e�15 1.00 2.2e�16 1.00 5.1e�16 1.00 1.9e�16 1.00 2.2e�16 1.00 2.8e�16 1.00
lucene-2.0 5.4e�15 0.72 2.2e�16 1.00 0.2104 0.04 0.0089 0.07 2.2e�16 1.00 2.2e�16 1.00 1.9e�12 1.00
lucene-2.2 3.6e�13 0.87 2.2e�16 1.00 2.2e�16 1.00 2.8e�12 0.91 1.3e�6 0.72 2.9e�11 0.98 3.6e�12 0.92
lucene-2.4 2.2e�16 1.00 2.5e�15 1.00 2.2e�16 1.00 5.9e�16 1.00 1.9e�16 1.00 2.2e�16 1.00 2.8e�16 1.00
poi-1.5 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
poi-2.0 2.5e�8 -0.51 2.2e�16 -1.00 1.8e�8 -0.82 0.0011 -0.12 2.2e�16 -1.00 0.6012 0.00 1.5e�11 0.52
poi-2.5 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
poi-3.0 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
redaktor 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
synapse-1.0 1.4e�6 -0.62 2.2e�16 1.00 2.2e�16 1.00 1.2e�10 -0.73 6.4e�14 1.00 2.2e�16 -1.00 2.5e�15 -0.92
synapse-1.1 5.6e�13 0.58 2.4e�12 0.68 2.2e�11 0.72 1.4e�13 0.65 2.2e�15 1.00 3.1e�12 0.72 4.4e�14 0.85
synapse-1.2 3.1e�15 0.56 6.2e�14 0.58 4.3e�12 0.55 2.4e�13 1.00 2.2e�16 1.00 0.431 -0.01 2.6e�8 0.35
tomcat 2.5e�8 -0.62 0.031 -0.08 0.2031 0.02 0.6012 0.00 2.4e�12 0.92 1.8e�12 -0.92 3.4e�16 -0.82
velocity-1.4 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
velocity-1.6 2.2e�16 1.00 6.5e�14 0.99 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xalan-2.4 2.2e�16 -1.00 1.8e�12 -0.98 2.2e�16 -1.00 2.2e�16 -1.00 2.2e�16 -1.00 1.6e�15 -0.82 2.5e�10 -0.78
xalan-2.5 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xalan-2.6 6.4e�13 0.82 2.2e�16 1.00 2.6e�12 0.91 2.4e�15 1.00 8.2e�9 0.72 2.2e�16 1.00 0.0002 0.55
xalan-2.7 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xerces-1.2 0.0002 -0.21 1.4e�7 -0.66 1.6e�12 0.65 8.1e�12 0.69 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00
xerces-1.3 2.2e�16 -1.00 2.2e�16 -1.00 2.2e�16 -1.00 0.301 -0.08 2.2e�16 1.00 0.112 0.03 0.0001 0.32
xerces-1.4 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00 2.2e�16 1.00

990 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

following the longitudinal data setup and the random selec-
tion setup. We find that for all of the 15 datasets, there is no
significant difference at the confidence level of 95 percent.
Thus, the threat to validity caused by the random selection
setup is not-significant; the performance of HYDRA when it
is evaluated following the longitudinal data setup or random
selection setup ismore or less the same.

5.3 Impact of Different Number of Repeated Runs

Notice that in our experiment setup, to deal with random-
ness in the approaches, by default, we run all approaches
many times, and report the average F1 and PofB20 scores
across the multiple runs. Here, we would like to investigate
whether the performance of these approaches will be sub-
stantially varied if we run HYDRA with different number

of repeated runs. We run HYDRA and the baseline
approaches 10-100 times, and Figs. 8 and 9 present average
F1 and PofB20 scores for HYDRA compared with the base-
line approaches with different numbers of repeated runs.
We notice that the performance of HYDRA is stable for dif-
ferent numbers of repeated runs, and the F1 and PofB20
scores vary from 0.539–0.549, and 0.328-0.335, respectively.
Thus, different numbers of repeated runs have limited
impact on the performance HYDRA. Also, compared with
the baseline approaches, we notice that HYDRA outper-
forms them for every number of repeated runs.

5.4 Fixed Inspection Budget

We use PofB20 as the default cost effectiveness evaluation
metric following [4], [23], [43], [44], [45]. Unfortunately, for
a project with a large number of LOC, inspecting 20 percent
of the LOC is impractical. For example, suppose a system
has 1M LOC, inspecting 20 percent of the LOC means that
developers need to inspect 200K LOC, which will take a lot
of time and resources. In this section, rather than using
PofB20, we investigate the cost effectiveness of HYDRA and
TCA+ given a fixed inspection budget, i.e., an absolute
number of LOC to inspect. We experiment with the follow-
ing fixed budget: 500, 1,000, 2,000, and 5,000 LOC. We com-
pare HYDRA with TCA+ since we find TCA+ achieves the
best performance among the baseline approaches.

TABLE 11
Number of Datasets Where HYDRA Shows Statistical Improve-

ment over Within-Project Defect Prediction with 5 Percent
Labeled Data (+), Indifferent with the Within-Project Defect

Prediction with 5 Percent Labeled Data (=), and Within-Project
Defect Prediction with 5 Percent Labeled Data Shows Statistical

Improvement over HYDRA (-) in Terms of F1 and PofB20

Evaluation Metrics + = -

F1 27 2 0
PofB20 22 3 4

TABLE 12
F1-Scores and PofB20 of Our Approach (HYDRA) Compared with Those of Within-Project Prediction (5, 90 Percent)

Datasets
F1-Score PofB20

HYDRA 5% 90% HYDRA 5% 90%

ant-1.3 0.396
 0.010 0.204
 0.013 0.254
 0.010 20.0%
 1.0% 10.5%
 1.1% 0.0%
 1.4%
ant-1.4 0.329
 0.012 0.191
 0.011 0.181
 0.006 46.8%
 1.2% 21.3%
 1.2% 0.0%
 1.5%
ant-1.5 0.347
 0.014 0.208
 0.010 0.199
 0.017 28.6%
 1.0% 14.3%
 1.0% 99.0%
 1.0%
ant-1.6 0.602
 0.015 0.469
 0.014 0.569
 0.010 14.4%
 1.0% 15.2%
 1.0% 30.6%
 1.2%
ant-1.7 0.468
 0.010 0.393
 0.010 0.441
 0.010 24.8%
 0.8% 24.4%
 1.0% 27.3%
 1.3%
log4j-1.0 0.413
 0.002 0.322
 0.014 0.424
 0.003 19.7%
 1.1% 10.0%
 1.0% 98.0%
 1.2%
log4j-1.1 0.538
 0.008 0.265
 0.021 0.534
 0.005 16.5%
 1.2% 17.9%
 0.6% 3.0%
 1.0%
log4j-1.2 0.914
 0.014 0.901
 0.014 0.944
 0.012 54.8%
 1.4% 20.2%
 0.7% 16.7%
 1.0%
lucene-2.0 0.648
 0.010 0.434
 0.010 0.661
 0.012 35.4%
 1.0% 13.8%
 1.2% 27.3%
 1.1%
lucene-2.2 0.657
 0.010 0.540
 0.016 0.678
 0.013 38.5%
 1.0% 16.1%
 1.3% 43.5%
 1.4%
lucene-2.4 0.691
 0.012 0.663
 0.019 0.759
 0.011 39.5%
 1.0% 23.0%
 1.1% 3.6%
 1.4%
poi-1.5 0.742
 0.003 0.660
 0.012 0.774
 0.016 35.6%
 1.0% 29.7%
 1.7% 53.6%
 2.4%
poi-2.0 0.283
 0.003 0.163
 0.004 0.141
 0.017 15.8%
 1.2% 27.8%
 1.4% 0.0%
 0.0%
poi-2.5 0.780
 0.002 0.736
 0.006 0.847
 0.015 49.6%
 0.4% 22.0%
 0.2% 37.8%
 1.2%
poi-3.0 0.807
 0.005 0.781
 0.005 0.805
 0.014 42.4%
 0.3% 23.2%
 1.1% 19.6%
 1.3%
redaktor 0.295
 0.006 0.174
 0.012 0.457
 0.011 50.0%
 0.2% 63.0%
 0.6% 0.0%
 0.0%
synapse-1.0 0.252
 0.012 0.110
 0.011 0.537
 0.013 23.8%
 1.1% 25.0%
 1.1% 50.0%
 2.2%
synapse-1.1 0.494
 0.011 0.377
 0.011 0.511
 0.011 33.0%
 0.8% 19.4%
 1.0% 33.3%
 2.4%
synapse-1.2 0.529
 0.011 0.371
 0.012 0.551
 0.014 24.8%
 1.3% 15.8%
 1.4% 6.3%
 2.0%
tomcat 0.190
 0.012 0.200
 0.015 0.416
 0.015 21.9%
 1.5% 9.7%
 1.2% 18.2%
 1.5%
velocity-1.4 0.793
 0.014 0.822
 0.016 0.897
 0.021 67.5%
 0.5% 40.3%
 1.2% 29.0%
 1.5%
velocity-1.6 0.503
 0.011 0.387
 0.023 0.576
 0.014 46.3%
 0.3% 12.4%
 1.1% 26.3%
 1.2%
xalan-2.4 0.315
 0.010 0.216
 0.013 0.276
 0.004 12.9%
 0.2% 22.0%
 0.5% 10.5%
 0.4%
xalan-2.5 0.593
 0.012 0.562
 0.022 0.553
 0.015 38.5%
 0.4% 18.0%
 1.0% 24.6%
 1.1%
xalan-2.6 0.656
 0.010 0.641
 0.015 0.704
 0.015 31.5%
 1.2% 19.3%
 1.2% 22.4%
 1.2%
xalan-2.7 0.991
 0.007 0.981
 0.011 0.992
 0.013 51.4%
 1.0% 17.6%
 1.0% 24.8%
 1.5%
xerces-1.2 0.240
 0.012 0.191
 0.012 0.109
 0.014 15.8%
 1.0% 14.2%
 1.3% 0.0%
 1.5%
xerces-1.3 0.417
 0.014 0.369
 0.011 0.456
 0.015 13.0%
 1.4% 3.2%
 1.0% 40.7%
 1.1%
xerces-1.4 0.903
 0.012 0.883
 0.014 0.911
 0.013 44.7%
 1.3% 20.2%
 1.5% 15.3%
 1.3%
Average. 0.544
 0.223 0.456
 0.258 0.557
 0.250 33.0%
 14.6% 20.3%
 10.9% 26.2%
 25.7%

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 991

Table 16 presents the cost effectiveness of HYDRA com-
pared with TCA+ with different numbers of LOCs to
inspect. From the table, we notice that our HYDRA still
improves TCA+ by a substantial margin. On average across
29 datasets, HYDRA can detect 2.0 to 18.6 percent bugs

when developers inspect 500 to 5,000 LOC. Recall that the
average LOC in our collected 29 datasets is 125,043; thus
inspecting 500 and 5,000 LOC means we only investigate 0.4
and 4 percent LOC in a project. In practice, we believe
inspecting 4 percent LOC in a project is affordable for a proj-
ect team, and our approach can detect 18.6 percent of the

Fig. 5. Avg. F1 for different percentages of training target data instances.
The error bars indicate one standard deviation above and below the
average. The error bars are wide since we merge results from 29 differ-
ent datasets.

Fig. 6. Avg. PofB20 for different percentages of training target data
instances. The error bars indicate one standard deviation above and
below the average. The error bars are wide since we merge results from
29 different datasets.

TABLE 13
F1-Score and Cost Effectiveness (PofB20) of HYDRA with

Different Number of Instances in the Training Target
Project (10 Instances to 60 Instances)

Instances F1-score PofB20

10 0.529
 0.221 30.6%
 12.8%
20 0.559
 0.223 35.1%
 13.1%
30 0.540
 0.232 33.5%
 14.6%
40 0.565
 0.231 34.8%
 14.1%
50 0.580
 0.226 34.8%
 13.5%
60 0.551
 0.228 33.2%
 13.8%

TABLE 14
Avg. Model Training (Train) and Application (Appl.) Time

Algorithms Train Appl.

HYDRA 88.599 s 1.748 s
BASIC 0.543 s 0.007 s
TCA+ 3882.063 s 0.008 s
Peters 1.230 s 0.010 s
GP 139.697 s 4.203 s
MO 0.614 s 0.001 s
CODEP 850.764 s 0.016 s
TransferBoost 39.144 s 0.134 s

Fig. 7. Average F1 and PofB20 scores for HYDRA with different number
of iterations in the EL phase.

TABLE 15
F1 and PofB20 Scores for HYDRA Following the

Longitudinal Data Setup

Datasets F1 PofB20

ant-1.3 0.403
 0.012 21.0%
 1.0%
ant-1.4 0.317
 0.008 45.3%
 1.1%
ant-1.5 0.357
 0.010 29.3%
 1.3%
ant-1.6 0.593
 0.011 14.0%
 1.0%
ant-1.7 0.476
 0.015 26.8%
 1.0%
log4j-1.0 0.406
 0.018 20.1%
 0.6%
log4j-1.1 0.543
 0.003 17.1%
 1.0%
log4j-1.2 0.911
 0.004 55.0%
 1.2%
lucene-2.0 0.650
 0.012 35.7%
 1.0%
lucene-2.2 0.661
 0.011 38.7%
 1.1%
lucene-2.4 0.694
 0.013 39.6%
 1.3%
xalan-2.4 0.320
 0.012 13.1%
 1.0%
xalan-2.5 0.596
 0.010 38.7%
 1.1%
xalan-2.6 0.661
 0.010 32.0%
 1.0%
xalan-2.7 0.984
 0.010 50.8%
 1.5%

Average. 0.571
 0.201 31.8%
 13.1%

Fig. 8. Average F1-scores for HYDRA compared with the baseline
approaches with different number of repeated runs.

992 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

bugs after such inspection which shows the potential benefit
of our proposed approach.

We also compare our HYDRA with a model which simu-
lates developer intuition. We model the developer intuition
as follows. For each project, we have multiple versions, e.g.,
we have five versions of ant, which include ant-1.3, ant-1.4,
ant-1.5, ant-1.6, and ant-1.7. We analyze the older versions
of a project to find files which are defective in many older
versions, and use these to predict files that are most likely to

be defective in the latest version of the project in our dataset.
To do so, for each file in the latest version, we count the
number of older versions in which the file was defective C
denoted as DefectCount. This model then recommends the
top x% defective files according to theirDefectCount scores.
In practice, developers may follow this intuition to inspect
code and find bugs, i.e., if file A is defective many times in
the previous versions, it is likely to be defective in the latest
version too. In this paper, we vary x% from 1–5 percent,
and we choose ant-1.7, log4j-1.2, lucene-2.4, poi-3.0, syn-
apse-1.2, velocity-1.6, xalan-2.7, and xerces-1.4 as the latest
versions.

Table 17 presents the number of LOC (#LOC) to inspect
and percentage of defects (%Defect) detected when the
top 1–5 percent of the files recommended by the devel-
oper intuition model are inspected. Comparing the results
in Tables 16 and 17, we notice our HYDRA could detect
more defects than the developer intuition model by
inspecting less LOC. For example, for ant-1.7, the devel-
oper intuition model can detect 3.61 percent of the defects
by inspecting the top 1 percent defective files, but this
translates to 13,614 LOC. On the other hand, our Hydra
can detect 14.3 percent of the defects by inspecting 5,000
LOC. Our approach can thus detect many more defects
by inspecting much less LOC.

Fig. 9. Average PofB20 scores for HYDRA compared with the baseline
approaches with different number of repeated runs.

TABLE 16
Cost Effectiveness of HYDRA Compared with TCA+ with Different Numbers of LOCs to Inspect

(Number of LOC 2 f500; 1;000; 2;000; 5;000g)

LOC 500 1,000 2,000 5,000

HYDRA TCA+ HYDRA TCA+ HYDRA TCA+ HYDRA TCA+

ant-1-3 2.1% 1.3% 3.7% 3.7% 10.6% 9.5% 12.0% 11.4%
ant-1-4 3.5% 1.5% 6.0% 4.1% 17.3% 10.6% 39.7% 23.5%
ant-1-5 1.3% 0.5% 2.3% 1.4% 6.6% 3.5% 15.1% 7.9%
ant-1-6 0.5% 0.5% 0.9% 1.3% 2.5% 3.3% 5.8% 7.3%
ant-1-7 0.5% 0.3% 0.8% 0.8% 2.4% 2.1% 14.3% 13.1%
log4j-1-0 3.7% 4.4% 6.4% 12.2% 18.3% 31.5% 11.1% 25.0%
log4j-1-1 3.3% 3.9% 5.8% 11.0% 16.6% 28.3% 14.4% 15.0%
log4j-1-2 5.7% 1.1% 10.0% 3.1% 28.7% 8.1% 52.1% 11.2%
lucene-2-0 2.8% 1.0% 4.9% 2.7% 14.0% 6.9% 32.2% 15.3%
lucene-2-2 2.4% 0.6% 4.2% 1.8% 12.1% 4.5% 27.9% 10.1%
lucene-2-4 1.5% 0.4% 2.7% 1.2% 7.7% 3.1% 17.7% 6.8%
poi-1-5 2.6% 1.0% 4.5% 2.9% 12.8% 7.5% 29.5% 16.7%
poi-2-0 0.7% 0.8% 1.2% 2.3% 3.4% 6.0% 7.8% 13.2%
poi-2-5 1.7% 0.3% 2.9% 0.8% 8.3% 1.9% 19.1% 4.3%
poi-3-0 1.3% 0.5% 2.3% 1.3% 6.6% 3.4% 15.1% 7.6%
redaktor 3.4% 0.8% 5.9% 2.1% 16.9% 5.4% 38.8% 12.1%
synapse-1-0 3.3% 0.0% 5.8% 0.0% 16.5% 0.0% 15.8% 0.0%
synapse-1-1 3.1% 1.5% 5.5% 4.2% 15.6% 10.8% 18.3% 15.2%
synapse-1-2 1.9% 0.9% 3.2% 2.4% 9.3% 6.3% 21.3% 13.9%
tomcat 0.3% 0.2% 0.5% 0.5% 1.5% 1.4% 13.4% 13.3%
velocity-1-4 5.2% 1.8% 9.1% 5.0% 26.1% 12.8% 20.1% 28.4%
velocity-1-6 3.2% 1.6% 5.7% 4.4% 16.2% 11.3% 37.4% 25.1%
xalan-2-4 0.2% 0.2% 0.4% 0.7% 1.1% 1.7% 12.6% 13.9%
xalan-2-5 0.5% 0.2% 0.9% 0.6% 2.5% 1.6% 15.8% 13.4%
xalan-2-6 0.3% 0.1% 0.5% 0.3% 1.5% 0.8% 3.5% 12.8%
xalan-2-7 0.5% 0.1% 0.8% 0.2% 2.4% 0.6% 5.5% 3.4%
xerces-1-2 0.4% 0.3% 0.7% 0.8% 2.0% 2.0% 4.6% 4.5%
xerces-1-3 0.3% 0.5% 0.5% 1.5% 1.6% 3.7% 3.6% 8.3%
xerces-1-4 1.3% 0.5% 2.2% 1.3% 6.3% 3.4% 14.6% 7.5%

Average. 2.0% 0.9% 3.5% 2.6% 9.9% 6.6% 18.6% 12.4%

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 993

5.5 HYDRA versus Zero-R and Random Prediction

We also compare HYDRA with Zero-R and random predic-
tion. Zero-R is a constant classifier which simply predicts
every instance to be defective. In random prediction, we
randomly predict an instance to be defective or clean
according to the ratio of defective instances to total instan-
ces. The precision for random prediction is the percentage
of defective instances in the data set. Since random predic-
tion is a random classifier with two possible outcomes (e.g.,
defective or clean), its recall is 0.5. Table 18 presents the F1-
scores of HYDRA compared with Zero-R and random pre-
diction. On average across the 29 datasets, Zero-R and

random prediction achieve the F1-scores to 0.516 and 0.395.
HYDRA improves the average F1-scores of Zero-R and ran-
dom prediction by 5.42 and 38.23 percent.

Notice for Zero-R, all of the instances are classified to be
defective, i.e., all the instances have equal confidence scores.
To compute the PofB20 score for Zero-R, we randomly
select the instances until the total number of the selected
instances is less than 20 percent of the total number of LOC
in the project. We repeat the process 50 times, and compute
the average PofB20 scores. Table 19 presents the PofB20 of
our approach (HYDRA) compared with that of Zero-R.
From the table, we note that on average across the 29

TABLE 17
Number of LOC (#LOC) to Inspect and Percentage of Defects (%Defect) Detected the Top 1-5 Percent of Files

Recommended by the Developer Intuition Model Are Inspected

Projects 1% 2% 3% 4% 5%

#LOC %Defect #LOC %Defect #LOC %Defect #LOC %Defect #LOC %Defect

ant-1.7 13,614 3.61% 20,676 6.63% 27,622 11.45% 32,193 15.06% 38,970 19.28%
log4j-1.2 1,012 1.06% 1,924 2.12% 2,755 3.17% 4,101 4.23% 4,515 5.29%
lucene-2.4 11,745 1.48% 15,409 2.96% 20,802 4.93% 23,852 5.91% 27,288 7.88%
poi-3.0 10,379 1.42% 13,570 2.85% 16,948 4.63% 21,189 6.05% 24,733 6.76%
synapse-1.2 1,464 2.33% 2,491 3.49% 3,082 5.81% 5,846 8.14% 6,629 10.47%
velocity-1.6 752 2.56% 2,388 5.13% 2,822 7.69% 4,717 8.97% 5,298 8.97%
xalan-2.7 23,256 1.00% 35,295 2.00% 45,889 3.01% 50,317 4.01% 63,670 5.01%
xerces-1.4 4,444 0.46% 5,804 1.60% 6,089 2.29% 6,524 2.97% 7,673 3.43%

TABLE 18
F1-Scores of Our Approach (HYDRA) Compared with Zero-R,

and Random Prediction (Random)

Datasets HYDRA Zero-R Random.

ant-1.3 0.396
 0.010 0.276 0.242
ant-1.4 0.329
 0.012 0.367 0.310
ant-1.5 0.347
 0.014 0.197 0.179
ant-1.6 0.602
 0.015 0.415 0.344
ant-1.7 0.468
 0.010 0.364 0.308
log4j-1.0 0.413
 0.002 0.402 0.335
log4j-1.1 0.538
 0.008 0.507 0.404
log4j-1.2 0.914
 0.014 0.959 0.648
lucene-2.0 0.648
 0.010 0.636 0.483
lucene-2.2 0.657
 0.010 0.737 0.538
lucene-2.4 0.691
 0.012 0.748 0.544
poi-1.5 0.742
 0.003 0.746 0.543
poi-2.0 0.283
 0.003 0.211 0.191
poi-2.5 0.780
 0.002 0.784 0.563
poi-3.0 0.807
 0.005 0.777 0.560
redaktor 0.295
 0.006 0.266 0.235
synapse-1.0 0.252
 0.012 0.185 0.169
synapse-1.1 0.494
 0.011 0.426 0.351
synapse-1.2 0.529
 0.011 0.503 0.402
tomcat 0.190
 0.012 0.165 0.152
velocity-1.4 0.793
 0.014 0.857 0.600
velocity-1.6 0.503
 0.011 0.508 0.405
xalan-2.4 0.315
 0.010 0.264 0.233
xalan-2.5 0.593
 0.012 0.650 0.491
xalan-2.6 0.656
 0.010 0.634 0.482
xalan-2.7 0.991
 0.007 0.994 0.664
xerces-1.2 0.240
 0.012 0.278 0.244
xerces-1.3 0.417
 0.014 0.264 0.234
xerces-1.4 0.903
 0.012 0.853 0.598

Average. 0.544
 0.223 0.516 0.395

TABLE 19
PofB20 of Our Approach (HYDRA) Compared with Zero-R

Datasets HYDRA Zero-R

ant-1.3 20.0%
 1.0% 20.5%
 6.9%
ant-1.4 46.8%
 1.2% 21.5%
 3.7%
ant-1.5 28.6%
 1.0% 19.7%
 5.3%
ant-1.6 14.4%
 1.0% 20.3%
 2.7%
ant-1.7 24.8%
 0.8% 20.5%
 3.4%
log4j-1.0 19.7%
 1.1% 23.5%
 3.8%
log4j-1.1 16.5%
 1.2% 21.1%
 6.4%
log4j-1.2 54.8%
 1.4% 19.0%
 4.2%
lucene-2.0 35.4%
 1.0% 21.1%
 6.7%
lucene-2.2 38.5%
 1.0% 22.6%
 4.8%
lucene-2.4 39.5%
 1.0% 23.1%
 6.1%
poi-1.5 35.6%
 1.0% 22.1%
 3.3%
poi-2.0 15.8%
 1.2% 17.6%
 6.9%
poi-2.5 49.6%
 0.4% 22.6%
 4.1%
poi-3.0 42.4%
 0.3% 20.7%
 3.7%
redaktor 50.0%
 0.2% 23.0%
 6.1%
synapse-1.0 23.8%
 1.1% 20.6%
 8.9%
synapse-1.1 33.0%
 0.8% 18.0%
 2.3%
synapse-1.2 24.8%
 1.3% 19.3%
 3.4%
tomcat 21.9%
 1.5% 22.1%
 4.6%
velocity-1.4 67.5%
 0.5% 20.7%
 12.1%
velocity-1.6 46.3%
 0.3% 21.7%
 7.3%
xalan-2.4 12.9%
 0.2% 21.6%
 3.3%
xalan-2.5 38.5%
 0.4% 19.1%
 3.8%
xalan-2.6 31.5%
 1.2% 19.8%
 1.0%
xalan-2.7 51.4%
 1.0% 20.0%
 2:5%
xerces-1.2 15.8%
 1.0% 19.4%
 3.7%
xerces-1.3 13.0%
 1.4% 22.8%
 6.4%
xerces-1.4 44.7%
 1.3% 18.0%
 4.1%

Average. 33.0% 20.8%

994 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

datasets, Zero-R only achieves a PofB20 score to 20.8 percent,
and HYDRA improves it by 58.7 percent in terms of PofB20.

We apply theWilcoxon signed-rank test on the 29 datasets
to test whether the improvement of HYDRA over the Zero-R
and random prediction are significant. We also use Bonfer-
roni correction to counteract the results of multiple compari-
sons. Table 20 presents the number of datasets where
HYDRA statistically significantly improves over Zero-R and
random prediction (+), performs more or less equally well
with Zero-R and random prediction (=), and statistically sig-
nificantly loses with Zero-R and random prediction (-) in
terms of F1. We notice in most of the cases, HYDRA shows
statistically significantly improvement over Zero-R and ran-
dom prediction. For example, comparing HYDRA and Zero-
R, we notice HYDRA statistically significantly improves
over Zero-R in 14 datasets, while Zero-R statistically signifi-
cantly improves overHYDRA in 8 datasets.

Table 21 presents the number of datasets where HYDRA
statistically significantly improves over Zero-R (+), per-
forms more or less equally well with Zero-R (=), and statisti-
cally significantly loses from Zero-R (-) in terms of PofB20.
We notice in most of the datasets (i.e., 20 datasets), HYDRA
achieves statistically significant improvements over Zero-R,
while Zero-R statistically significantly improves over
HYDRA in seven datasets.

5.6 Incorporating Labeled Instances

HYDRA uses a limited number of labeled instances in the
target project. In the transfer learning literature, it and
TransferBoost belong to the family of inductive or supervised
transfer learning approaches [40]. Different from these two,
the other baselines use all of the unlabeled data from the
target project, and do not need any labeled data from the
target project. They belong to the family of feature-based
transductive or unsupervised transfer learning approaches [40].
For inductive transfer learning approaches, some effort is
needed to label a small number of data in the target proj-
ects. However, for many real projects, often there are a lim-
ited number of training instances from defects that testers
and users reported, c.f., [2].

To investigate whether the 5 percent labeled data in the
target projects affect the performance of the other baselines,
we separate instances belonging to each of the target proj-
ects into two sets: the same 5 percent labeled data that are
used by HYDRA, and the remaining 95 percent of the data.
We incorporate the 5 percent labeled data into the training
dataset of the other baselines, to confirm whether the perfor-
mance of these two approaches would be different. Table 22
presents the F1-scores and PofB20 of HYDRA compared
with those of BASIC, TCA+, Peters filter, GP, MO, and
CODEP with 5 percent labeled data from the target projects
(referred to as BASIC�, TCA+�, Peters�, GP�, MO�, and
CODEP� respectively). We notice that for BASIC�, its aver-
age F1-score is slightly decreased. For TCA+�, its average
F1-score is the same. For others (i.e., Peters�, GP�, MO�, and
CODEP�), their F1-scores are slightly increased. Still their
F1-scores are lower than those of HYDRA. Also, the PofB20
scores for the baseline approaches are slightly increased,
however still they are lower than those of HYDRA.

5.7 Threats to Validity

Threats to internal validity relates to errors and the replica-
tion of the baseline approaches. We have double checked
our experiments and datasets, still there could be errors that
we did not notice. Also, all of our datasets are from PROM-
ISE repository, still there can be some quality problems
among the datasets.

Threats to external validity relates to the generalizability
of our results. We have analyzed 29 defect datasets from 10
different open-source software projects, which contain a
total of 11,196 instances. In the future, we plan to reduce
this threat further by analyzing even more defect data. One
potential threat to validity is the quality of our defect data-
sets. All of our datasets are obtained from the PROMISE
repository, which were used in many past studies. Still,
there could be quality issues in these datasets. A related
threat to validity corresponds to the single source of data
(i.e., PROMISE repository). Furthermore, all of the 29 data-
sets are from open source projects. In the future, we plan to
reduce this threat by performing experiments on additional
datasets beyond those in the PROMISE repository especially
those that are extracted from commercial software projects.

Threats to construct validity refers to the suitability of
our evaluation measures. We use F1-score and PofB20, and
one or both of them have been used in past studies to evalu-
ate defect prediction tool’s effectiveness [23], [36], [42], [43].
Another threat to validity relates to our conclusion. In this
paper, we run Wilcoxon signed-rank test to investigate

TABLE 20
Number of Datasets Where HYDRA Statistically Significantly
Improves over Zero-R and Random Prediction (+), Performs

More or Less Equally Well with Zero-R and Random Prediction
(=), and Statistically Significantly Loses with Zero-R and

Random Prediction (-) in Terms of F1

HYDRA versus Baselines + = -

HYDRA versus Zero-R 14 7 8
HYDRA versus Random 28 0 1

TABLE 21
Number of Datasets Where HYDRA Statistically Significantly
Improves over Zero-R (+), Performs More or Less Equally Well
with Zero-R (=), and Statistically Significantly Loses with Zero-R

(-) in Terms of PofB20

HYDRA versus Baselines + = -

HYDRA versus Zero-R 20 2 7

TABLE 22
HYDRA Compared with Basic�, TCA+�, Peters�,

GP�, MO�, and CODEP�

Approaches F1-score PofB20

HYDRA 0.544
 0.223 33.0%
 14.6%
BASIC� 0.385
 0.114 20.7%
 7.2%
TCA+� 0.431
 0.163 24.1%
 8.5%
Peters� 0.421
 0.140 22.8%
 7.2%
GP� 0.379
 0.102 21.8%
 7.8%
MO� 0.433
 0.214 21.5%
 11.2%
CODEP� 0.419
 0.115 22.3%
 9.7%

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 995

whether the improvements of HYDRA over the baseline
approaches are significant. To counteract the bias due to
multiple comparisons, we employ Bonferroni correction.
Both Wilcoxon signed-rank test and Bonferroni correction
are classical statistical methods.

6 RELATED WORK

There have been a number of studies on defect predic-
tion [14], [23], [25], [29], [36], [38], [42], [47], [52], [52], [57],
[58]. Most of these studies predict defect by leveraging
machine learning techniques and are evaluated in within-
project defection prediction setting [14], [23], [25], [38], [47],
[57]. In this setting, defect prediction approaches are trained
and applied on classes/files/modules from the same proj-
ect. Koru et al. perform an empirical study on two commer-
cial systems, and find that smaller modules will be
proportionally more defect-prone compared to larger
ones [27]. Bettenburg et al. use an algorithm called MARS
which is a global model that has local consideration to
improve the performance of defect prediction [6]. Kim et al.
propose the change classification problem, and use support
vector machines (SVM) to classify a change to be buggy or
clean [25]. However, in practice, it is rare that sufficient
training data is available for a new project, but there are
plenty of data from other projects.

To address the limitation of within-project defect predic-
tion, recently, a number of cross-project defect prediction
approaches have been proposed. Turhan et al. employ a k-
nearest neighbor approach to select instances from source
projects to be used as training data; for every unlabeled
instance in a target project, they select 10 nearest instances
from source projects [52]. Ma et al. propose transfer naive
Bayes (TNB) which addresses the difference in the data
distribution between source and target projects by weight-
ing training instances [29]. Similar to the work by Turhan
et al., Peters et al. also use a nearest neighbor approach to
select instances from source projects; however, a different
instance selection mechanism is employed [42]. Nam et al.
extends TCA, which transforms data from source and tar-
get projects to a latent space where the two data sets are
close to each other [36]. They propose TCA+ which extends
TCA with some data pre-processing options and a heuris-
tic to decide the best pre-processing option to use. Liu
et al. propose a genetic programming based approach (GP)
which constructs a classification model in the form of a
tree considering defect data from multiple software reposi-
tories [28]. Canfora et al. construct a classification model
(MO) by using multi-objective genetic algorithm for cross-
project defect prediction [9]. Panichella et al. propose an
approach named CODEP that uses a classification model
to combine results of six classification algorithms (i.e.,
logistic regression, RBF network, multi-layer perceptron,
etc.) for cross-project defect prediction [41]. Turhan et al.
perform an empirical study on the effectiveness of the
combination of within and cross (i.e. mixed) project data
for binary defect prediction [53].

In the machine learning community, there have been a
number of studies on transfer learning [13], [15], [39], [40].
The previous studies on transfer learning can be classified
into two categories: (1) a small amount of labeled data are

available in the target task10 [13], [15], i.e., supervised trans-
fer learning; or (2) only some unlabeled data are available in
the target task [22], [39], i.e., unsupervised transfer learning.
TransferBoost [15] is one the state-of-the-art multi-source
supervised transfer learning algorithms, where multiple
source domains (i.e. source projects in our context) are avail-
able to learn an adaptive prediction model for a target
domain (i.e. target project). It also builds a model following
the AdaBoost framework, but our HYDRA is different from
TransferBoost in several aspects: (1) In each iteration,
HYDRA builds multiple classifiers for each source project
and training target data, and leverages GA to search for a
semi-optimal composition of these classifiers; on the other
hand, TransferBoost builds one classifier from all instances
in source projects and training target data; (2) The strategy
to assign weights to the instances in the source projects and
training target data is different. We have demonstrated that
HYDRA outperforms TransferBoost.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a new cross-project defect predic-
tion approach named HYDRA. HYDRA includes two
phases: genetic algorithm (GA) phase and ensemble learn-
ing (EL) phase. In the GA phase, HYDRA first builds a clas-
sifier for each source project and the target project. Next,
HYDRA builds a composite classifier, referred to as a GA
classifier, by assigning different weights, learned using
genetic algorithm, to each classifier. In the EL phase,
HYDRA iterates the GA phase many times to create many
GA classifiers. In each iteration, HYDRA builds a GA classi-
fier, and assigns a weight to the GA classifier according to
its prediction error rate in the training data. In the end, we
have a massive composition of classifiers which is used to
predict defective instances in the target project. We evaluate
our approach on 29 datasets from 10 different open-source
software projects. The results show that HYDRA achieves
an average F1-scores of 0.544. On average, across the 29
datasets, these results correspond to an improvement in the
F1-scores of 26.22, 34.99, 47.43, 28.61, 30.14, and 39.49 per-
cent over TCA+, Peters filter, GP, MO, and CODEP, and
TransferBoost, respectively. In addition, HYDRA, on aver-
age, can discover 33 percent of all bugs if developers inspect
the top 20 percent lines of code, which improves the best
baseline approach (TCA+) by 44.41 percent. Notice HYDRA
only improves the F1-score of Zero-R which predict all the
instances to be defective by 5.42 percent, but it improves the
PofB20 of Zero-R by 58.65 percent. Although the improve-
ment of F1-score is relatively small compared with PofB20,
in practice, Zero-R is hard to use since it simply predicts all
of the instances to be defective, and thus developers have to
inspect all of the instances to find the defective ones. More-
over, we notice the improvement of HYDRA over other
baseline approaches in terms of F1-score and when inspect-
ing the top 20 percent lines of code are substantial, and in
most cases the improvements are significant and have large
effect sizes across the 29 datasets.

In the future, we plan to evaluate HYDRA with datasets
frommore software projects, and develop a better technique

10. In our setting, a target task is a target software project.

996 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

which can improve the prediction performance further. We
also plan to extend this work to predict the number of bugs
in each instance (instead of only predicting defective/clean
labels) by leveraging the bug count information.

ACKNOWLEDGMENTS

We thank Jaechang Nam and Sunghun Kim for providing
us the source code of TCA+, and Eric Eaton for providing
us the source code of TransferBoost. XinyuWang is the corre-
sponding author. This research was supported by the
National Basic Research Program of China (the 973 Pro-
gram) under grant 2015CB352201, NSFC Program
(No.61572426), and National Key Technology R&D Program
of the Ministry of Science and Technology of China under
grant 2015BAH17F01. The source code and datasets of
HYDRA can be downloaded from: https://github.com/xin-
xia1986/TSE-Code_HYDRA.

REFERENCES

[1] H. Abdi, “Bonferroni and �sid�ak corrections for multiple
comparisons” in Encyclopedia of Measurement and Statistics, N. J. Sal-
kind, Ed. Newbury Park, CA, USA: Sage, 2007, Available: http://
www. utdallas.edu/herve/abdi-bonferroni2007-pretty. pdf

[2] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug
repository,” in Proc. OOPSLA Workshop Eclipse Technol. eXchange,
2005, pp. 35–39.

[3] A. Arcuri and L. C. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. 33rd Int. Conf. Software Eng., 2011, pp. 1–10.

[4] E. Arisholm, L. C. Briand, and M. Fuglerud, “Data mining techni-
ques for building fault-proneness models in telecom Java software,”
inProc. 18th IEEE Int. Symp. Software Reliability, 2007, pp. 215–224.

[5] J. Bansiya and C. G. Davis, “A hierarchical model for object-ori-
ented design quality assessment,” IEEE Trans. Softw. Eng., vol. 28,
no. 1, pp. 4–17, Jan. 2002.

[6] N. Bettenburg, M. Nagappan, and A. E. Hassan, “Think locally, act
globally: Improving defect and effort prediction models,” in Proc.
9th IEEEWork. Conf. Mining Softw. Repositories, 2012, pp. 60–69.

[7] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and
Machine Learning, vol. 1. New York, NY, USA: Springer, 2006.

[8] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of
empirical software engineering data,” Dept. Comput. Sci., North
Carolina State University, 2015, http://openscience.us/repo

[9] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella, “Multi-objective cross-project defect pre-
diction,” in Proc. IEEE 6th Int. Conf. Softw. Testing, Verification Vali-
dation, 2013, pp. 252–261

[10] C. Catal and B. Diri, “Investigating the effect of dataset size, met-
rics sets, and feature selection techniques on software fault predic-
tion problem,” Inf. Sci., vol. 179, no. 8, pp. 1040–1058, 2009.

[11] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493,
Jun. 1994.

[12] N. Cliff. Ordinal Methods for Behavioral Data Analysis. Psychology
Press, New York, USA, 2014.

[13] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer
learning,” in Proc. 24th Int. Conf. Mach. Learning, 2007, pp. 193–200.

[14] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive compari-
son of bug prediction approaches,” in Proc. 7th IEEE Working Conf.
Mining Softw. Repositories, 2010, pp. 31–41.

[15] E. Eaton and M. des Jardins, “Selective transfer between learning
tasks using task-based boosting,” in Proc. 25th AAAI Conf. Artif.
Intell., 2011, pp. 337–342.

[16] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” in Proc. 2nd
Eur. Conf. Comput. Learning Theory, 1995, pp. 23–37.

[17] D. E. Goldberg and J. H. Holland, “Genetic algorithms and
machine learning,”Mach. Learning, vol. 3, no. 2, pp. 95–99, 1988.

[18] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” ACM
SIGKDD Explorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[19] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techni-
ques. Burlington, MA, USA: Morgan Kaufmann, 2006.

[20] A. E. Hassan, “Predicting faults using the complexity of code
changes,” in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 78–88.

[21] B. Henderson-Sellers, Object-Oriented Metrics, Measures of Complex-
ity. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.

[22] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in
NLP,” in Proc. 45th Annu. Meeting Assoc. Comput. Linguistics, 2007,
pp. 22.

[23] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in
Proc. 28th Int. Conf. Autom. Softw. Eng., 2013, pp. 279–289.

[24] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in Proc. 6th Int.
Conf. Predictive Models Softw. Eng., 2010, pp. 9.

[25] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Trans. Softw. Eng., vol. 34, no. 2,
pp. 181–196, Mar./Apr. 2008.

[26] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 481–490.

[27] A. G. Koru, K. El Emam, D. Zhang, H. Liu, and D. Mathew,
“Theory of relative defect proneness,” Empirical Softw. Eng.,
vol. 13, no. 5, pp. 473–498, 2008.

[28] Y. Liu, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary optimiza-
tion of software quality modeling with multiple repositories,”
IEEE Trans. Softw. Eng., vol. 36, no. 6, pp. 852–864, Nov./Dec. 2010.

[29] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Inf. Softw. Technol., vol. 54,
no. 3, pp. 248–256, 2012.

[30] R. Martin, “OO design quality metrics—An analysis of depend-
encies,” in Proc. Workshop Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, 1994, pp. 151–170.

[31] T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. 2, no. 4, pp. 308–320, Dec. 1976.

[32] K. Meffert, N. Rotstan, C. Knowles, and U. Sangiorgi. (2011). Jgap-
java genetic algorithms and genetic programming package
[Online]. Available: http://jgap.sourceforge.net/

[33] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of
empirical software engineering data,” Dept. Comput. Sci., North
Carolina State University, 2015, http://openscience.us/repo

[34] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 2–13, Jan. 2007.

[35] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and
Y. Jiang, “Implications of ceiling effects in defect predictors,”
in Proc. 4th Int. Workshop Predictor Models Softw. Eng., 2008,
pp. 47–54.

[36] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc.
Int. Conf. Soft. Eng., 2013, pp. 382–391.

[37] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Multi-layered approach for recovering links between bug reports
and fixes,” in Proc. ACM SIGSOFT 20th Int. Symp. Found. Softw.
Eng., 2012, pp. 63.

[38] N. Ohlsson and H. Alberg, “Predicting fault-prone software mod-
ules in telephone switches,” in IEEE Trans. Softw. Eng., vol. 22,
no. 12, pp. 886–894, Dec. 1996.

[39] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adapta-
tion via transfer component analysis,” IEEE Trans. Neural Netw.,
vol. 22, no. 2, pp. 199–210, Feb. 2011.

[40] S. J. Pan and Q. Yang, “A survey on transfer learning,”
IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359,
Oct. 2010.

[41] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-project defect
prediction models: L’nion fait la force,” in Proc. Softw. Evolution
Week—IEEE Conf. Softw. Maintenance, Reengineering Reverse Eng.,
2014, pp. 164–173.

[42] F. Peters, T. Menzies, and A. Marcus, “Better cross company
defect prediction,” in Proc 10th Int. Workshop Mining Softw. Reposi-
tories, 2013, pp. 409–418.

[43] F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proc. Int. Conf. Softw. Eng, 2013, pp. 432–441.

[44] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the impreci-
sion of cross-project defect prediction,” in Proc. ACM SIGSOFT
20th Int. Symp. Found. Softw. Eng, 2012, p. 61.

[45] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size
vs. bias in defect prediction,” in Proc. 9th Joint Meeting Foundations
Softw. Eng., 2013, pp. 147–157.

XIA ET AL.: HYDRA: MASSIVELY COMPOSITIONAL MODEL FOR CROSS-PROJECT DEFECT PREDICTION 997

[46] R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee, “Boosting the
margin: A new explanation for the effectiveness of voting meth-
ods,” in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 322–330.

[47] S. Shivaji, J. E. J. Whitehead, R. Akella, and S. Kim, “Reducing fea-
tures to improve bug prediction,” in Proc. IEEE/ACM Int. Conf.
Autom. Softw. Eng., 2009, pp. 600–604.

[48] S. Sivanandam and S. Deepa, Introduction to Genetic Algorithms.
New York, NY, USA: Springer, 2007.

[49] M. Tang, M. Kao, and M. Chen, “An empirical study on object-ori-
ented metrics,” in Proc. 6th Int. Softw. Metrics Symp., 2009, pp. 242–
249.

[50] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing
patches,” in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 386–396.

[51] B. Turhan, “On the dataset shift problem in software engineering
prediction models,” Empirical Softw. Eng., vol. 17, no. 1/2, pp. 62–
74, 2012.

[52] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the rela-
tive value of cross-company and within-company data for defect
prediction,” Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

[53] B. Turhan, A. T. Mısırlı, and A. Bener, “Empirical evaluation of
the effects of mixed project data on learning defect predictors,”
Inf. Softw. Technol., vol. 55, no. 6, pp. 1101–1118, 2013.

[54] F. Wilcoxon, “Individual comparisons by ranking methods,” Bio-
metrics, vol. 1, no. 6, pp. 80–83, 1945.

[55] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering
links between bugs and changes,” in Proc. 19th ACM SIGSOFT
Symp., 13th Eur. Conf. Foundations Softw. Eng., 2011, pp. 15–25.

[56] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca
Raton, FL, USA: CRC Press, 2012.

[57] T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in Proc. 30th Int. Conf.
Softw. Eng., 2008, pp. 531–540.

[58] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: A large scale experiment on data
vs. domain vs. process,” in Proc. 7th Joint Meeting Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2009, pp. 91–100.

Xin Xia received the PhD degree from the College
of Computer Science and Technology, Zhejiang
University, China, in 2014. He is currently a
research assistant professor in theCollege of Com-
puter Science and Technology, Zhejiang Univer-
sity. His research interests include software
analytic, empirical study, and mining software
repository. He is amember of IEEE.

David Lo received the PhD degree from the
School of Computing, National University of Sin-
gapore in 2008. He is currently an assistant pro-
fessor in the School of Information Systems,
Singapore Management University. He has about
10 years of experience in software engineering
and data mining research and has more than 130
publications in these areas. He received the Lee
Foundation Fellow for Research Excellence from
the Singapore Management University in 2009.
He received number of research awards including

an ACM Distinguished Paper Award for his work on bug report manage-
ment. He has published in many top international conferences in soft-
ware engineering, programming languages, data mining and databases,
including ICSE, FSE, ASE, PLDI, KDD, WSDM, TKDE, ICDE, and
VLDB. He has also served on the program committees of ICSE, ASE,
KDD, VLDB, and many others. He is a steering committee member of
the IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER) which is a merger of the two major conferences
in software engineering, namely CSMR andWCRE. He will also serve as
the general chair of ASE 2016. He is a leading researcher in the emerg-
ing field of software analytics and has been invited to give keynote
speeches and lectures on the topic in many venues, such as the 2010
Workshop on Mining Unstructured Data, the 2013 Gnie Logiciel Empiri-
que Workshop, the 2014 International Summer School on Leading Edge
Software Engineering, and the 2014 Estonian Summer School in Com-
puter and Systems Science. He is member of the IEEE.

Sinno Jialin Pan received the PhD degree in
computer science from the Hong Kong University
of Science and Technology in 2010. He is a
Nanyang assistant professor at the School of
Computer Engineering, Nanyang Technological
University (NTU), Singapore. Prior to joining
NTU, he was a scientist and lab head of text ana-
lytics with the Data Analytics Department, Insti-
tute for Infocomm Research, Singapore. His
research interests include transfer learning, and
its applications to wireless-sensor-based data

mining, text mining, sentiment analysis, software engineering and Bioin-
formatics. For more details about his research, please visit his home-
page at http://www.ntu.edu.sg/home/sinnopan/.

Nachiappan Nagappan receive the PhD degree
from the North Carolina State University. He is a
principal researcher at Microsoft Research where
he works in the Empirical Software Engineering
Research Group (ESE) in RiSE. He also holds an
adjunct faculty appointment at Indraprastha Insti-
tute of Information Technology, New Delhi, India.
His research interests include data analytics for
software engineering focusing on software reli-
ability, software metrics, software testing and
empirical software processes. More broadly he

works on software analytics for improving software engineering practices
and developer productivity. He is an ACM distinguished scientist.

Xinyu Wang received the bachelor’s and PhD
degrees in computer science from the Zhejiang
University of China, in 2002 and 2007. He was a
research assistant in Zhejiang University, during
2002–2007. He is currently an associate profes-
sor in the College of Computer Science, Zhejiang
University. His research interests include soft-
ware engineering, formal methods, and very
large information systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

998 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 42, NO. 10, OCTOBER 2016

http://www.ntu.edu.sg/home/sinnopan/

	HYDRA: Massively compositional model for cross-project defect prediction
	Citation

	untitled

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

